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ABSTRACT
Complex networks, such as biological, social, and communi-
cation networks, often entail uncertainty, and thus, can be
modeled as probabilistic graphs. Similar to the problem of
similarity search in standard graphs, a fundamental prob-
lem for probabilistic graphs is to efficiently answer k-nearest
neighbor queries (k-NN), which is the problem of computing
the k closest nodes to some specific node.

In this paper we introduce a framework for processing
k-NN queries in probabilistic graphs. We propose novel dis-
tance functions that extend well-known graph concepts, such
as shortest paths. In order to compute them in probabilistic
graphs, we design algorithms based on sampling. During
k-NN query processing we efficiently prune the search space
using novel techniques.

Our experiments indicate that our distance functions out-
perform previously used alternatives in identifying true neigh-
bors in real-world biological data. We also demonstrate
that our algorithms scale for graphs with tens of millions
of edges.

1. INTRODUCTION
Noisy measurements, inference models, and privacy pre-

serving perturbation processes produce uncertain data. Re-
search in probabilistic relational databases has focused on
SQL query evaluation [3, 4, 13, 39], mining [2, 12, 35], rank-
ing and top-k queries [11, 20, 34, 40, 45, 46]. However, in
many prevalent application domains, such as social, biolog-
ical, and mobile networks, graphs serve as better models
than relational tables. Incorporating uncertainty to graphs
leads to probabilistic graphs.

Biological networks constitute one of the main applica-
tions of probabilistic graphs. Nodes represent genes and pro-
teins, and edges represent interactions among them. Since
the interactions are derived through noisy and error-prone
lab experiments, each edge is associated with an uncertainty
value [5]. In protein-protein interaction networks [26], pos-
sible interactions have been established experimentally for
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Figure 1: (a) A probabilistic graph with 5 edges and

25 = 32 possible worlds. (b) One possible world:

G = {(A, B), (B, D)}. Probability of G is Pr[G] =
p(A,B) p(B,D) (1 − p(A,D)) (1− p(B,C)) (1− p(C, D)) =
0.2× 0.3× 0.4× 0.6× 0.3 = 0.00432.

a limited number of pairs of proteins. Identifying protein
neighbors in such interaction networks is useful for predict-
ing possible co-complex memberships [26, 30] and new inter-
actions [38]. Thus, k-nearest neighbor queries can be used
to provide candidate links, whose validity can be further
explored through strenuous biological experiments.

In large social networks uncertainty arises for various rea-
sons [1]. The probability of an edge may represent the un-
certainty of a link prediction [28] or the influence of a person
to another, as for example in viral marketing [15, 24]. Thus,
in the context of social-network applications, we are inter-
ested in queries such as: “Who are the ten people that Alice
influences the most?”

In mobile ad-hoc networks, mobile nodes move and con-
nect to each other. The connectivity between nodes can be
estimated using measurements [8], and the notion of the “de-
livery probability” can be used to quantify the probability
that a given node can deliver a packet to another node [19].
Therefore, k-nearest neighbor queries can be used for ad-
dressing the probabilistic-routing problem [8, 19].

The problems of computing distance functions and pro-
cessing k-NN queries are fundamental for probabilistic
graphs, just as they are for standard graphs. They serve as
primitive operators for tasks such as link prediction, clus-
tering, classification, and graph mining. In this paper, we
present a principled extension of these problems in the pres-
ence of uncertainty and we assess the quality of the proposed
distance functions using a real probabilistic protein-protein
interaction network.

To gain more intuition on the graph model and the diffi-
culties in defining a meaningful distance function, we present
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a simple example. Consider the probabilistic graph shown
in Figure 1(a). Each edge is associated with a probability
of being present. Possible instantiations of this graph are
commonly referred to as worlds [13]. In our example, there
are 25 = 32 possible worlds. The probability of a world is
calculated based on the probability of its edges as shown in
the example in Figure 1(b).

Suppose we are interested in quantifying the distance be-
tween two nodes, say, B and D. The Most-Probable-Path-
Distance has already been used as a distance function [38];
it is defined as the length of the most probable path. For
the pair (B, D), it is the direct path B → D and its length is
1. Another trivial alternative is to consider the probability
that there exists a path from B to D (i.e., reliability) as an
indicator of closeness. In our example this is the probabil-
ity that at least one of the three possible paths between B
and D exist, i.e., 1 − (1 − 0.3)(1 − 0.12)(1 − 0.28) = 0.56.
Now, consider the distribution of the shortest path distance
between B and D, in terms of pairs (distance, probability):
i.e., 〈(1, 0.3), (2, 0.26), (∞, 0.44)〉. Notice that the most prob-
able distance is infinite, while the median distance is 2. The
expected distance, disregarding the infinity part, is 1.46.

Among the five different measures presented which ones
are the most appropriate? How are they computed? We
address these questions in the remainder of this paper.

Our contributions in this paper are summarized as follows:

1. We extend shortest paths and random walks to define
meaningful distance functions in probabilistic graphs.

2. We show that our distance functions outperform their
competitors (i.e, MostProbPath and Reliability)
in identifying true neighbors, in real-world data.

3. We define the k-NN problem in probabilistic graphs
and introduce novel pruning algorithms to address it.

4. We propose a novel probabilistic random walk and
show its equivalence to a standard random walk.

5. We perform an extensive experimental evaluation with
large real-world graphs. We show that our algorithms
work in practice, and we observe that smaller proba-
bility values result in greater processing cost.

2. PROBABILISTIC GRAPH MODEL
In this section, we formally present the data model consid-

ered in this paper. We assume independence among edges
noting that most of our results are applicable to graphs with
edge correlations (see Appendix B for details). Similar to
normal graphs, probabilistic graphs may be undirected or
directed and carry additional labels on the edges (such as
weights). For sake of generality, we focus on directed and
weighted probabilistic graphs. We assume that the weights
are discrete.

Let G = (V, E, P, W ) be a probabilistic graph, where
V and E denote the set of nodes and edges respectively.
The variable P denotes the probabilities associated with the
edges; p(e) denotes the probability of edge e ∈ E. In the
case of weighted graphs, we will use W to collectively denote
the weights, and w(e) for the weight of an edge. Let G be a
graph that is is sampled from G according to the probabili-
ties P , that is, each edge e ∈ E is selected to be an edge of
G with probability p(e). If EG denotes the set of edges of

Figure 2: The most probable path may be long.

G, then the probability associated with G is:

Pr[G] =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)).

We identify the probabilistic graph G with the distribution
{G}P of sampled graphs, where each of the 2|E| possible
graphs G is sampled with probability Pr[G], and we write
G ⊑ G to denote that G is sampled from G (with probability
Pr[G]). We can think of the probabilistic graph G as a world
generator process, and each graph G ⊑ G as a possible world.

3. PROBABILISTIC GRAPH DISTANCE
Next we extend the concept of shortest paths and random

walks to distance functions in probabilistic graphs.
First, we remind the reader that the MostProbPath dis-

tance can be computed easily by considering a deterministic
weighted graph G′ = (V ′, E′, W ′), with the same nodes and
edges as G, edge weights w′(e) = − log(p(e)), and running
the Dijkstra shortest-path algorithm on G′ [38].

The definition of MostProbPath distance has several
limitations. First the probability of such a path may be ar-
bitrarily small. Second, even if the probability of the path
itself is large, the probability that it is indeed the shortest
path can be arbitrarily small. Consider the example of Fig-
ure 2. The lower path between S and T has length n, which
can be arbitrarily large, and probability 1.

However, the probability that it will be a shortest path is
close to 0, i.e., 2ǫ− ǫ2, since most likely, one of the paths of
length 1 or 2 will be present. In this paper, we overcome the
limitations of the MostProbPath distance by using statis-
tics of the shortest path distance distribution, rather than
any single path. Furthermore, in Section 5, we demonstrate
experimentally that our distance functions outperform the
MostProbPath distance in real world link prediction sce-
narios.

3.1 Shortest path distribution
Given G ⊑ G, let the shortest-path distance between s and

t be dG(s, t). We define the distribution ps,t of shortest-path
distance between s and t as:

ps,t(d) =
∑

G | dG(s,t)=d

Pr[G].

In other words, ps,t(d) is the sum of the probabilities of all
the worlds in which the shortest path distance between s
and t is exactly d. Note that there may be worlds G in
which s and t are disconnected. Thus, we allow d to take a
special value ∞, and ps,t(∞) is consequently defined to be
the total probability of all the worlds in which s and t are
disconnected. We base our distance function definitions on
standard statistical measures of the distribution ps,t.
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Definition 1 (Median-Distance). Given a probabilis-
tic graph G = (V, E, P, W ) and any two nodes s and t, we de-
fine the Median-Distance dM(s, t) to be the median shortest-
path distance among all possible worlds

dM(s, t) = arg max
D

{

D
∑

d=0

ps,t(d) ≤
1

2

}

.

Note that the median distance may be infinite for some
pairs s and t and that all results presented in this paper for
Median-Distance, hold for any k-th order statistic as well.

Another commonly adopted statistic is the majority dis-
tance, which is the shortest-path distance that is most likely
to be observed when sampling a random graph from G:

Definition 2 (Majority-Distance). Given a proba-
bilistic graph G = (V, E, P, W ) and any two nodes s and t we
define the Majority-Distance dJ(s, t) to be the most probable
shortest-path distance:

dJ(s, t) = arg max
d

ps,t(d).

In the case of weighted graphs, Majority-Distance is mean-
ingful if the weights come from a discrete domain.

Next we consider the notion of expectation. In most cases,
the expected shortest path distance is trivially infinite due
to the presence of ∞. Thus, we seek a more meaningful
definition. We consider only the events that a graph contains
a path between s and t. Taking expectation over the non-
infinite distances gives the following:

Definition 3 (Expected-Reliable-Distance).
Given a probabilistic graph G = (V, E, P, W ) and any two
nodes s and t we define the Expected-Reliable-Distance to
be the expected shortest-path distance in all worlds in which
there exists a path between s and t. We also define the prob-
ability p(s, t) that there exists some path between s and t.

dER(s, t) =
∑

d | d<∞

d ·
ps,t(d)

1 − ps,t(∞)
, and p(s, t) =

∑

d | d<∞

ps,t(d).

Computing the Expected-Reliable-Distance is a #P-hard
problem since it is a generalization of the reliability prob-
lem [43].

3.2 Probabilistic random walk
We define a distance function based on random walks.

In contrast with shortest-path functions which rely on one
path, random walks consider all paths. Also, their navi-
gational choices are random instead of optimal. Random
walks have already been used for nearest-neighbor search in
standard graphs [36].

Our distance function is based on the Individual PageRank
(IPR) [16]. Given a node s, IPR refers to the stationary
distribution of a PageRank walk [31] that always teleports
back to s, instead of teleporting to any node in the graph.

We now define the IPR for probabilistic graphs. We con-
sider a weighted probabilistic graph G = (V, E, W,P ), where
W denotes the proximity between nodes in the graph, and
P denotes the edge probabilities. The walk is parameterized
on the source node s and a teleportation probability a.

The walk is initialized at node s and world G0, which
is sampled online according to P . At the t-th step, the
walk is characterized by the current node ut and the cur-
rent world Gt. At the t-th step we either follow an active
edge (with probability 1− a) or we teleport back to s (with

probability a). In the first scenario, we follow an active edge

(ut, v) with probability w(ut,v)
∑

q|(ut,q)∈Gt
w(ut,q)

. If there are no

outgoing edges we stay at the same node. We call this pro-
cess Probabilistic-Random-Walk. We define Random-Walk-
Distance as (see Appendix C for examples and details):

Definition 4 (Random-Walk-Distance). Given G =
(V, E, W, P ), a teleportation probability α, and any pair of
nodes (s, t) ∈ V×V define the Random-Walk-Distance dRW(s, t)
to be the inverse of the stationary probability of t of the
Probabilistic-Random-Walk with source s.

4. K -NEAREST NEIGHBORS
In the following we introduce algorithms to efficiently pro-

cess k-NN queries for the distance functions defined previ-
ously. First, we show how sampling can be used to compute
the distances defined in the previous section.

4.1 Computing the distance functions
The exact computation of the Median-Distance is intrac-

table, as it involves executing a point-to-point shortest-path
algorithm in every world and taking the median. A nat-
ural way to overcome the intractability of computing the
Median-Distance is to approximate it using sampling. The
idea is to (i) sample r possible graphs according to P , and
(ii) compute the median of the shortest-part distances in
the sample graphs. Using the Chernoff bound we have the
following standard result:

Lemma 1. Consider r ≥ c
ǫ2

log( 2
δ
) independent samples

X1, . . . , Xr drawn from a population of N elements, which
has median µ. Let α and β be the elements of the population
that are ±ǫN away from µ. Let X = median(X1, . . . , Xr).
For a suitable choice of the constant c we have

Pr(X ∈ [α, β]) > 1− δ.

The Expected-Reliable-Distance distance can also be effi-
ciently approximated via sampling (see Appendix A for ad-
ditional details). Also, we remark that Lemma 1 works on
graphs with conditional probabilities on their edges and we
refer the reader to Appendix B for additional details.

4.2 k-NN problem definition
A k-NN query on a probabilistic graph G, consists of a

source node s, a probabilistic distance function dP(s, t), and
k. The distance dP may be any of the distances dJ, dM, dER,
or dRW. The k-NN problem is the following:

Problem 1 (k-NN). Given G = (V, E, P, W ), a source
node s, a probabilistic distance dP, and k, find the set of k
nodes Tk(s) = {t1, . . . , tk} for which the distance dP(s, ti)
is less or equal to the distance dP(s, t) for any other node
t ∈ V \ Tk(s).

The challenge is to compute the set Tk(s) without having to
compute the distance dP(s, t) for all nodes t ∈ V . We note
that various tie-break mechanisms may be incorporated in
this definition, depending on the application.

Next, we present pruning algorithms for Median-Distance
and Majority-Distance.

4.3 Median-distancek-NN pruning
The algorithm for dM is based on exploring the local neigh-

borhood around the source node s, and computing the distri-
bution ps,t, truncated to the smaller distances. In particular,
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for a distance value D, we compute the distribution pD,s,t,
which is identical to ps,t for all distances smaller than D.
The remaining probability mass is concentrated exactly at
distance D. More precisely, we have:

pD,s,t(d) =











ps,t(d) if d < D
∑∞

x=D
ps,t(x) if d = D

0 if d > D

Our algorithm is based on the following lemma:

Lemma 2. Let dD,M(s, t) be the median distance obtained
from the distribution pD,s,t, and dM(s, t) be the actual me-
dian distance that we would have obtained from the real dis-
tribution ps,t. For any two nodes t1, t2 ∈ V , dD,M(s, t1) <
dD,M(s, t2) implies dM(s, t1) < dM(s, t2).

Proof. First notice that dD,M(s, t) < D implies dM(s, t) =
dD,M(s, t), and dD,M(s, t) = D implies dM(s, t) ≥ D. Since
dD,M(s, t1) < dD,M(s, t2) it should be dD,M(s, t1) < D, and
the lemma follows.

A direct corollary of the above lemma is that if we find the
set of k nodes Tk(s) = {t1, . . . , tk, ...} for which dD,M(s, ti) ≤
dD,M(s, t), for all ti ∈ Tk(s) and t ∈ V \Tk(s), we can declare
the set Tk(s) to be the answer to the k-NN query. This is
the core idea of our pruning scheme.

Computing the exact distribution pD,s,t is expensive, since
there are exponentially many graphs to consider. We over-
come this problem by sampling graphs and approximating
the distribution pD,s,t, with the sample distribution p̃D,s,t.

1

Observe that Lemma 2 holds for any fixed sample of worlds,
by replacing all distributions and distance values with their
sample based approximations.

The algorithm (whose pseudocode is provided in Algo-
rithm 1) proceeds by repeating the following process r times:

1. Starting from s, we perform a computation of the Dijk-
stra algorithm. Once a node is visited it never gets vis-
ited again. To apply Dijkstra in probabilistic graphs,
we proceed as in the case of deterministic graphs: when
it is required to explore one node we generate (sam-
ple) the outgoing edges from that node. We stop the
execution of the algorithm when we visit a node whose
distance exceeds D.

2. For all nodes t that were visited we either update or
instantiate their distribution p̃D,s,t. Their distance is
less than D.

After performing the above process r times, we have com-
puted the distribution p̃D,s,t for a subset of nodes t ∈ V .
These are the nodes that were visited at least once. We
have no information about nodes never encountered, those
are presumably nodes that are far away (in terms of dM)
from s and we can safely ignore them. Note that after the r
traversals are done, for each node t that was visited at least
once, the entry of p̃D,s,t that corresponds to distance D is
set to the number of traversals that the node t was not en-
countered. Therefore, the counts in all distributions p̃D,s,t

sum to r.
We note that the larger the value of the parameter D, the

more likely that the condition (d̃D,M(s, ti) ≤ d̃D,M(s, t) for

1For the remainder of the paper, we denote approximations
using the symbol .̃

ti ∈ Tk(s) and t ∈ V \ Tk(s)) holds, and a solution to the
k-NN problem is obtained. However, we do not know exactly
how large D needs to be. Our solution to this problem is
to increase D as you go and to perform all r repetitions of
the Dijkstra algorithm in parallel. The algorithm proceeds
in rounds, starting from distance D = 0, and increasing the
distance by γ. In each round, we resume all r executions of
the Dijkstra from where they had left in the previous round,
and pause them when they reach all nodes with distance at
most D. If the distribution p̃D,s,t of a node t reaches the 50%
of its mass, then t is added to the k-NN solution. All other
nodes that will be added in later steps will have greater or
equal median distances. The algorithm terminates once the
solution set contains at least k nodes. This scheme works
for any order statistic other than the median.

Algorithm 1 Median-Distance k-NN

Input: Probabilistic graph G = (V, E, P, W ), node s ∈ V ,
number of samples r, number k, distance increment γ

Ouput: Tk, a result set of k nodes for the k-NN query
1: Tk ← ∅; D ← 0
2: Initiate r executions of Dijkstra from s
3: while |Tk| < k do

4: D ← D + γ
5: for i← 1 : r do

6: Continue visiting nodes in the i-th execution
of Dijkstra until reaching distance D

7: For each node t ∈ V visited
update the distribution p̃D,s,t {Create the distribu-
tion p̃D,s,t if t has never been visited before}

8: end for

9: for all nodes t 6∈ Tk for which p̃D,s,t exists do

10: if median(p̃D,s,t) < D then

11: Tk ← Tk ∪ {t}
12: end if

13: end for

14: end while

4.4 Majority-distance k-NN pruning
The k-NN algorithm for Majority-Distance is similar to

the one for Median-Distance. There are two main differ-
ences: In the case of the median, the distance of a node t
from s is determined once the truncated distribution p̃D,s,t

reaches the 50% of its mass. In the case of the majority, let
d1 be the current majority value in p̃D,s,t, and let rt be all
Dijkstra executions in which a node t has been visited. The
condition for ensuring that d1 will be the exact majority dis-
tance is p̃D,s,t(d1) ≥

r−rt

r
. The above conditions take care

of the (worst) case that a node will appear with the same
distance value in all future Dijkstra executions.

The second difference is in the termination condition; a
node that enters the k-NN set, may not be in the final re-
sult: another node might enter at a later step of the algo-
rithm with a smaller majority distance. Candidate nodes
can be discarded if their majority distance is guaranteed to
be greater than the largest distance in the k-NN set.

5. QUALITATIVE ANALYSIS
In the previous sections we defined distance functions among

nodes that reside in probabilistic graphs and proposed algo-
rithms to compute distance and k-NN queries. Before we
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explore the efficiency of these algorithms (Section 6), we
showcase that our distance functions outperform their al-
ternatives Reliability and MostProbPath in identifying
true neighbors via a link-prediction experiment. We experi-
ment with two real-world datasets, a protein-protein interac-
tion network and a co-authorship graph. Both datasets con-
sist of two parts: a probabilistic graph and a set of ground-
truth neighbors. The underlying assumption is that a good
distance function measured on the graph should be better
correlated with the ground-truth neighbors.

We perform the following classification experiment. We
choose a random ground-truth edge (A,B0), and a random
node B1 from the graph, such that (A,B1) is not a ground-
truth edge. We then randomly permute B0 and B1, pro-
ducing either a triplet of class 0 of the form 〈A, B0, B1〉 or a
triplet of class 1, of the form 〈A,B1, B0〉. Given a triplet, the
classification task is to assign the appropriate class. In other
words, the classifier attempts to identify the true neighbor.
We build various classifiers based on different distance func-
tions. All classifiers are unaware of the ground truth and
pick the node that appears to be closer to A in the proba-
bilistic graph.

For both datasets we used 8000 random triplets. We used
50 random worlds for Median, Majority, ExpectedRel,
and Reliability. We used a reliability threshold equal to 0
for ExpectedRel, without optimization. Next, we present
the specific experimental setups and the results.

5.1 Protein-protein interaction network
We used the protein-protein interaction network (PPI)

created by Krogan et al. [26]. Two proteins are linked if
it is likely that they interact. The network consists of 3 672
proteins and 14 317 interactions labeled with probabilities.
As ground truth we used the complex-membership lists from
the MIPS database [30]. Keeping only the part of MIPS
with nodes that are also in the PPI network, we had a set of
13 024 ground-truth co-complex memberships with 867 dis-
tinct proteins.

Finding good neighbors in a PPI network is important.
The PPI network consists of uncertain interactions that have
been established using biological experiments. The k-NN
sets can be used as a filter step to identify candidate neigh-
bors that will be validated experimentally. Our experiment
demonstrates that our functions produced higher quality
neighbors than their competitors, and thus, they constitute
better choices for k-NN in PPI networks.

5.2 Co-authorship network
We predict co-authorships in the DBLP after the year

2001, based on historical data. We took a recent snapshot
of the DBLP database. Two authors are linked if they have
coauthored a journal or a conference paper. In order to ob-
tain a probabilistic graph, we isolated the co-authorships
that occurred before 2001. Each edge was labeled with the
number of papers coauthored before 2001. We generated
probabilities based on these values using the intuition that
the greater the weight of the edge, the more likely to be
re-activated in the future. Regarding the value of the edge
probabilities, we note that the first coauthored paper be-
tween two authors is more informative than any subsequent.
So, we applied an exponential cdf of mean 2 to the weights.
This way, weight of 1 is mapped to probability of 0.39, 2 to
0.63, and 10 to 0.99. We emphasize that we did not perform
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Figure 3: ROC curves. ExpectedRel, Median, and

Majority dominate the rest.

any optimization on estimating the probabilities; finding the
optimal probability model is beyond the scope of this paper.
The resulting probabilistic graph consists of 90 713 nodes
and 462 242 edges. The ground truth is formed by taking all
edges formed after 2001. After discarding authors that have
not appear before 2001, and edges that appear both before
and after 2001, we obtained 90 946 ground-truth edges with
23 966 distinct authors.

5.3 Results
We illustrate our results using ROC curves in Figure 3. In

both PPI and DBLP datasets, our functions ExpectedRel,
Median, Majority clearly dominate the rest. In contrast
with their main competitor, MostProbPath, which essen-
tially treats probabilities as weights and relies on the length
of just one path of the probabilistic graph, our functions take
into account the possible-world semantics and use the en-
tire shortest-path length distribution. Therefore, they yield
higher quality results. For instance, in the PPI network, for
a false positive rate (FPR) of 0.2, all three yield a true posi-
tive rate (TPR) above 0.6, while the MostProbPath yields
a TPR below 0.4. The RandWalk and Reliability func-
tions are clearly worse than the ones based on shortest paths,
but still more informative than the baseline Random clas-
sifier. Contrary to all of our distance functions, both com-
petitors do not work for weighted probabilistic graphs, since
they do not take weights into account. For example, the
most probable path could have an arbitrarily large weight in
a weighted probabilistic graph. To be fair, we use unweighted
probabilistic graphs for both experiments. We remark that
even though ExpectedRel dominates marginally Median
and Majority, the appropriate function for other datasets
could be different. Thus, it should be chosen based on a
similar qualitative analysis as the one presented above.

We conclude that our distance functions are better in iden-
tifying true neighbors in real world data than their com-
petitors. Also, this experiment demonstrates that our dis-
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tance functions differ from one another. Finally, the remark-
able difference between our functions and their competitors
draws future directions for research in applications, where
MostProbPath is currently used [38].

6. EFFICIENCY ANALYSIS
We next report empirical assessment of the efficiency of

the methods presented in this paper. We implemented all
our methods in C++. All the experiments were run on a
Linux server with 8 2.8GHz GHz AMD Opteron processors
and 64GB of memory.

We tested the performance of our algorithms on datasets
from three different real-world domains: BIOMINE, FLICKR,
and DBLP.

BIOMINE. This is a recent snapshot of the database of
the BIOMINE project [38], which is a collection of biologi-
cal interactions. Interactions are directed and labeled with
probabilities.

FLICKR. Flickr is a popular online community for shar-
ing photos. Among other activities, users can participate
in common-interest groups and form friendships. We cre-
ated a graph from an anonymized recent snapshot of Flickr.
In particular, we extracted information about users joining
interest groups. We labeled the edges with probabilities as-
suming homophily, the principle that similar interests may
indicate social ties. Namely, we computed the edge proba-
bility between any two nodes (users) as the Jaccard coeffi-
cient of the groups they belonged to. This process creates
quadratic number of edges with respect to the number of
users. We, thus, put a threshold of 0.05 to the probability
value. In order to avoid high values of the coefficient given
by users who participate only in one group, we also put a
threshold on the size of the intersection to be at least 3.
We computed this information for a small number of users
(77K), and we obtained a dense graph of 20M edges.

DBLP. We created a DBLP graph by considering an undi-
rected edge between two authors if they have coauthored a
journal paper. We labeled the edges with probabilities as
described in Section 5.

Figure 4(a) shows the edge-probability distributions in the
three datasets. Notice that DBLP has only a few proba-
bility values. Observe also that Flickr probability values
are generally very small, while BIOMINE has a more uni-
form probability distribution. Additional details about the
datasets can be found in the Appendix D.

We accumulated distances running the full BFS traversal
for 500 sampled nodes on a sample of 500 worlds. We set
the sample-size to 500 worlds after experimentally observing
that the result was stable. We present the distributions of
all the distance functions in Figure 4(b). For the expected
reliable distance we set the reliability threshold to 0.5 (we
have removed the infinity bars from the histograms (see Ap-
pendix E for details). Observe that all distance functions
yield similar distributions. Also, they all look qualitatively
similar to typical distributions of shortest path distances in
non-probabilistic networks with scale-free characteristics.

We move on to study the convergence of the distance func-
tions based on the number of worlds. In Figure 5 we plot the
Mean Squared Error (MSE) of the distance approximations
(using the distances according to a sample of 500 worlds as
the “ground truth”), for various numbers of worlds. Ob-
serve that they all converge, as expected, to 0. We conclude
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Figure 4: Distribution of (a) edge probabilities, (b)

distances.
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Figure 5: MSE vs. worlds. 200 worlds are enough.

that 200 worlds are enough to compute distances accurately
since the MSE drops below 0.2 for all datasets and all dis-
tances. Even though we had already established in theory
that a small number of samples is needed, it was surprising
to find out that 200 worlds are enough, in datasets with tens
of millions of edges.

6.1 k-NN pruning
We present an experimental evaluation of the pruning al-

gorithms introduced in Section 4.2. We implemented the
algorithms for both the median and the majority distances.
Tie-breaking was done by extending Tk(s) to include all ob-
jects tied with tk. We experiment with the two most impor-
tant components of the algorithm: efficiency and quality of
the results. We measure efficiency for each run of a k-NN
algorithm as a fraction of the number of the union of the
visited nodes in all executions of the Dijkstra algorithm,
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Figure 6: Number of visited nodes with respect to (a) k and (b) number of worlds. (c) Pruning efficiency vs.

edge-probabilities; decreasing the uncertainty boosts the pruning power. (d) Convergence of the method.

Table 1: Pruning Speedup.
Median, 200 Worlds

k 5 10 20 50
DBLP 269 267 208 185

BIOMINE 247 183 121 95
FLICKR 111 102 81 66

Majority, 10-NN
Worlds 20 50 100 200
DBLP 18 22 22 23

BIOMINE 55 59 59 65
FLICKR 3.6 3.6 3.8 4.0

over the total number of nodes in the graph. The reason is
that the number of visited nodes determines the cost (node
retrieval and histogram maintenance). Other aspects of effi-
ciency, such as the number of worlds sampled, can be taken
into account and factored in the presented graphs.

Figure 6(a) shows the fraction of visited nodes as a func-
tion of k for the median k-NN problem and 200 worlds. The
efficiency decreases sublinearly as k increases. Note that a
node is counted as visited if it is visited in at least one of the
worlds. Figure 6(b) shows the fraction of visited nodes as
a function of the number of worlds sampled for the major-
ity 10-NN problem. As expected, efficiency decreases with
the number of worlds but it stabilizes for some hundreds
of worlds. In both plots, all three datasets yield similar be-
havior. We also measured wall-clock times in CPU ticks and
report the speedup of our pruning techniques in Table 1 (av-
eraged over 100 queries). Observe that the gains are large,
and that they decrease as k increases. For example, com-
puting the median 5-NN with pruning and with 200 worlds
in BIOMINE was 247 times faster than without pruning; it
took 0.5 seconds instead of 123. The wall-clock gains with
respect to the number of worlds were almost constant.

In Figure 6(d) we present the stability of the k-NN result
for the median distance, 50-NN. We considered the result in
1000 worlds as the ground truth since it was stable. Clearly,
the solution stabilizes for a few hundred worlds.

Finally, to study the effect of the edge-probability values
on the pruning efficiency, we conducted the following exper-
iment: we boosted each edge’s probability p, by making it
pd = 1−(1−p)d. Thus, we gave each edge d chances to be in-
stantiated, instead of one. For d = 1, we have p1 = p, while
for d > 1, we have pd > p. We plot the pruning efficiency
in Figure 6(c) with respect to parameter d for the 50-NN
median experiment and 200 worlds. Clearly, the pruning
efficiency depends heavily on the uncertainty of the edges;

increasing the probabilities results to dramatic increase in
the pruning power for all datasets. We conclude that the
smaller the edge-probabilities the harder the pruning task.
Observe also in Figure 4(a) that FLICKR bears more uncer-
tainty (lower probability values). This explains the superior
performance of DBLP and BIOMINE in the runtime exper-
iments in Table 1.

7. RELATED WORK
Our work on probabilistic shortest paths is related to the

Stochastic Shortest Path problem (SSP) that has been stud-
ied in the field of Operations Research. This line of research
deals with computing the probability density function (aka
pdf) of the shortest path length for a pair of nodes [17].
By contrast, we avoid the exact computation of the pdf of a
source node to all other nodes (which in our datasets are mil-
lions) since it is not a scalable solution for the k-NN problem
under investigation. Our pruning algorithms for the median
and majority shortest path problems are tailored to compute
as little of the pdf as possible for the smaller possible fraction
of nodes with no loss in accuracy. In [14], the problem of
finding a shortest path on a probabilistic graph is addressed
by transforming each edge’s pdf to its expected value and
running Dijkstra. Clearly in our setting this expectation
is always infinite. Others investigate the pdf computation
over various application-dependent cost functions [33], while
Jaillet has considered a model with node failures [21].

Recently, probabilistic databases have received increased
interest and a number of system prototypes have been de-
veloped that can store and query probabilistic data. No-
table examples include the BayesStore [44], MayBMS [4],
MCDB [22], MystiQ [13], ORION [39], PrDB [37] and Trio [3].
These systems model data with relations and therefore, they
cannot perform shortest path computations on graphs effi-
ciently. Also, since computing exact answers to many typi-
cal SQL queries has been shown to have #P-complete data
complexity [13], research has focused on computing approx-
imate answers [25, 34].

Another important area in probabilistic relational data-
bases is the definition and efficient evaluation of top-k queries
(similar to our k-NN queries). Soliman et al. were the first to
define meaningful top-k queries in probabilistic databases [40].
Since then, a number of different definitions of top-k queries
have been proposed, as well as methods to evaluate them
efficiently [10, 11, 18, 23, 41, 45, 47]. A unified approach
that can express and generalize many of the proposed top-k
definitions has appeared recently [27].

Probabilistic-Random-Walk extends random walks, which
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have been extensively studied [29]. Applications of ran-
dom walks range from web search [31] to clustering [32] and
nearest-neighbor search [36].

Finally, the need to store and query massive graph data
has lead to an increased interest in graph databases [9, 42].
The focus here is on standard graphs, not on probabilistic.

8. CONCLUSION
Probabilistic graphs are a natural representation in many

applications, ranging from mobile ad-hoc networks to so-
cial and biological networks. In this paper, we addressed
the problem of processing nearest-neighbor queries in large
probabilistic graphs. To that end, we extended the concepts
of shortest paths and random walks in standard graphs. We
defined meaningful distance functions and introduced ap-
proximation algorithms based on sampling. Our algorithms
prune the search space by computing a truncated version of
the shortest-path distance distribution.

We assessed the quality of our functions in real-world
data. Our functions identify better neighbors than their
competitors. In addition, our extensive empirical analysis
confirmed the efficiency of our methods. We also observed
that larger probabilities of the edges result to more effective
k-NN pruning. Future work involves enriching our frame-
work with more powerful models that can handle node fail-
ures [21] and arbitrary probability distributions.
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APPENDIX

A. EXPECTED RELIABLE DISTANCE
The bound on the number of graphs needed to provide a

good estimate for the Expected-Reliable-Distance problem
is given by the following Lemma:

Lemma 3 (Expected-Reliable-Distance). Consider
G = (V, E, P, W ) with n nodes. Consider accuracy param-
eters ǫ and δ, and a number of samples r. Let {Gi}P ,
1 ≤ i ≤ r, be a set of r graphs sampled according to P .
Given a pair of vertices (s, t), define Ii to be equal to 1 if
there exists at least one path from s to t in graph Gi, and
0 otherwise. Let G′ ⊆ {Gi}P be the set of k graphs for
which Ii = 1, and let di be the corresponding shortest path
distance. Then the following hold:

1. The random variables di are independent identically
distributed and they are bounded in the range [0, n− 1].
They also have the same expectation E[di] = dER(s, t).

By selecting r ≥ (n−1)2

2ǫ2
ln( 2

δ
), we have

Pr(|
1

r

∑

Gi∈G′

di − dER(s, t)| ≥ ǫ) ≤ δ.

2. The indicator random variables are independent iden-
tically distributed and they have the same expectation
E[Ii] = p(s, t). By selecting r ≥ 3

ǫ2p(s,t)
ln( 2

δ
) we get

Pr(|
1

r

∑

Gi

Ii − p(s, t)| ≥ ǫp(s, t)) ≤ δ.

We move on to prove Lemma 3. We first reproduce the
Chernoff bound:

Theorem 1 (Chernoff bound). Let X1, X2, ..., Xr be
independent and identically distributed indicator random vari-
ables, that have the same expectation µ = E[Xi]. If r ≥

3
ǫ2µ

ln( 2
δ
) we have Pr(| 1

r

∑

Xi − µ| ≥ ǫµ) ≤ δ. We say that

r samples provide with an (ǫ, δ) approximation to µ.

We also reproduce the Hoeffding Inequality:

Theorem 2 (Hoeffding inequality). Let X1, X2, . . .,
Xr be independent and identically distributed random vari-
ables. Assume that Xi are almost surely bounded, that is
Pr(Xi ∈ [ai, bi]) = 1. Then for the sum of the variables
S = X1 + ... + Xr we have

Pr(|S − E[S]| ≥ ǫ) ≤ 2 exp(−
2ǫ2

∑r

i=1(bi − ai)2
).

We can now prove Lemma 3 for unweighted graphs:

Proof. The first part of the lemma is a direct applica-
tion of the Hoeffding inequality, Theorem 2. Observe that
assuming connectivity, any distance in an unweighted graph
takes values between [0, n − 1], where n is the number of
vertices in the graph. The second part of the lemma is a
direct application of the Chernoff bound, Theorem 1.

The number of samples is polynomial and not exponential
as the brute-force algorithm. At first glance, this can still
be prohibitively large due to the factor (n− 1)2. However,
(n−1) comes from an estimation of the largest possible path
in the network. In real-world scenarios, networks have small
diameter, due to the “small-world phenomenon”, typically

smaller than 20 (see , e.g., Figure 4(b)). Thus, in practice,
the number of samples is much smaller. In order to bring
Lemma 3 into practice, we introduce a threshold parameter
ρ for the reliability. We make the assumption that Expected-
Reliable-Distance queries with connectivity below ρ are not
interesting. Together with accuracy parameters ǫ and δ, the
parameter ρ is used to estimate the number of graphs that
need to be sampled. In order to satisfy both parts of Lemma

3, we need to sample at least r = max{ 3
ǫ2ρ

, (n−1)2

2ǫ2
} · ln( 2

δ
)

graphs. Finally, in the case of weighted graphs, the bound
needs to be adjusted by using the range of distances in the
graph instead of the term (n− 1).

B. CONDITIONAL PROBABILITIES
We next discuss how Lemma 1 can be applied when edges

have conditional probabilities on their edges.
We relax the assumption of independence, as stated in the

model definition in Section 2, by allowing edges to depend
on one another. In particular, we assume that the prob-
ability of edge e1 is conditioned on the existence of other
edges, i.e., it is given by p(e1|e2, e3, . . . ). Construct graph
H from probabilistic graph G as follows: each edge of G is
a node of H ; each condition of the form p(ei| . . . , ej , . . . ) is
a directed edge of H with ej as the source and ei as the
target. We now consider two cases for H , depending on its
structure. Specifically, we consider whether H is a directed
acyclic graph (aka DAG) or not.

• H is a DAG. Then, there exists a topological order
T of H ’s nodes (i.e., G’s edges). Now, sampling a
random world is easy. We just need to sample each
edge of G according to the topological order T . In
other words, when the time comes to sample ei with
p(ei| . . . , ej , . . . ), ej has already been sampled. Com-
puting T and sampling a world scales linearly to the
number of edges in H (i.e., the number of conditions
in G). Once we have a sample of r independent worlds,
we can directly apply Lemma 1.

• H is not a DAG. In this case, obtaining an inde-
pendent sample of r graphs is more challenging. We
employ Gibbs sampling, a Markov Chain Monte Carlo
technique (MCMC). Beginning from an initial assign-
ment of active and inactive edges, we randomly choose
an edge e. We draw a sample from e’s distribution,
based on the initial edge assignments. Edge e may be-
come active or inactive, regardless of its previous state.
We repeat this process many times, each time choos-
ing a random edge. It can be proven that this Markov
chain yields, eventually, a sample (i.e., a world) from
the edge-distribution (see [7] Ch.11 for details). Simi-
lar to the DAG case, once we obtain r worlds, we can
directly apply Lemma 1.

In brief, sampling a random world from probabilistic graphs
that exhibit dependencies on their edges, may require so-
phisticated sampling techniques. However, Lemma 1 holds,
as long as r independent worlds have been sampled from
G. This discussion applies directly to Lemma 3. In this pa-
per, we do not elaborate further on dependencies, since we
are not aware of large real-world probabilistic graphs that
exhibit them. However, we foresee such graphs’s existence,
and thus we believe that studying their properties is an im-
portant future direction.
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C. PROBABILISTIC RANDOM WALK

C.1 An example of a walk
For additional intuition on the Probabilistic-Random-Walk,

consider this example: assume that a drifter is in Boston
and that there are three roads that she can take, one to
New York, another one to Toronto, and one to Montreal.
Each road has a proximity value indicating the inverse of
the time it takes to cross it. Also, each road is labeled with
a probability of being open or closed, since snowfalls are not
rare in the area. Now, the universe tosses coins to decide
if the roads are open or closed. The roads to Toronto and
Montreal are open, while the road to New York is closed.
The drifter favors short roads so she chooses between the
two roads, with probability relative to their proximity to
Boston. If all roads were closed she would stay another
night and wait for better weather the next day.

C.2 Random walk transformation
The following theorem provides an equivalent definition of

the walk (defined in Section 3.2) by taking advantage of the
memoryless property inherent in this process. The walk on
G can be transformed into a standard random walk process
on a non-probabilistic graph G = (V, E, W ).

Theorem 3. The probabilistic random walk on a proba-
bilistic graph G = (V, E,W, P ) has the same properties as a
random walk on the deterministic graph G(V, E, W ), where
E = E ∪ S, with S = {(u, u)} (i.e., the set of self-looping
edges). W = {w(u, v)}, with

w(u, u) =
∏

(u,q)∈E

(1− p(u, q)), and

w(u, v) =
∑

G|(u,v)∈G

w(u, v)
∑

(u,q)∈G w(u, q)
Pr[G] (1)

A direct corollary of Theorem 3 is that the stationary dis-
tribution of Probabilistic-Random-Walk on G is the same
as the one of the standard random walk on G = (V, E, W ).
Thus, once we have computed G = (V, E, W ) we can apply
standard algebraic techniques to solve the stationary distri-
bution problem and compute any Random-Walk-Distance
distance. The complexity of computing each weight w(u, v)
using the equations of Theorem 3 is exponential to the num-
ber of neighbors of each node. Thus, for graphs with nodes
of high degree, computing the weights w(u, v) becomes an
intractable problem.

We propose a Monte Carlo algorithm for computing the
weights w(u, v). We sample different outgoing edges, for
each node u, and estimate Equation (1) by taking the sum of
probabilities over the sampled graphs only, instead of using
all possible graphs. The Chernoff bound can be applied
again to show that a small number of samples per node u is
sufficient to approximate the weights w(u, v).

C.3 Transformation with grouping
We begin our discussion by considering a special case:

Equal weight, equal probability. Consider a graph where
each edge is equally probable to appear with probability p,
and all weights are equal to 1 (or to any other constant).
This model is the probabilistic analogue of an Erdős-Renyi
graph restricted to a given topology defined by the set of
edges E.

In this simple case, we can easily compute the random
walk transformation. After simple algebraic calculations
we get:

w(u, u) = (1− p)du , and

w(u, v) =

du
∑

k=1

(

du

k

)

k
pk(1− p)du−k =

1− w(u, u)

du

,

where du denotes the out-degree of node u.

Equal weight, groups of equal probability. To build
intuition, we consider the case that all edges in the graph
have equal weight, while the outgoing edges of a node u are
partitioned into groups of equal probabilities. In particular,
assume there are R groups, and let ni be the number of
edges in group i, 1 ≤ i ≤ R. Also let qi be the probability
of the edges in group i. Omitting some simple algebra, the
equations for the weights now become:

w(u, u) =
R
∏

i=1

(1 − qi)
ni

w(u, i) = qi

n1
∑

m1=0

..

ni−1
∑

mi=0

..

nG
∑

mR=0

C(i, m1, .., mR)
1

1 +
∑R

j=1 mj

R
∏

k=1

q
mk
k

(1 − qk)nk−mk

where wu,i denotes the weights on all outgoing edges to
nodes of the group i (note that because of symmetry they
have all the same weight). The function C(i, m1, .., mR)
gives the number of possible ways in which we can choose
mj nodes from group j, given that we have at least one node
from group i. The formula is:

C(i, m1, .., mR) =

(

n1

m1

)

· .. ·

(

ni − 1

mi

)

· .. ·

(

nG

mG

)

.

The complexity of the algorithm implied by the equations
above is O(n1 · n2 · .. · nR) = O(( n

R
)R).

In the general case, we do not have groups of edges with
equal probability, so we suggest to cluster together edges
with similar probabilities. In order to choose an optimal k-
clustering of edges from a node u, and the respective assign-
ment of the probability of each edge pi to a representative
probability qk, we seek to minimize the function

du
∑

i=1

min
1≤k≤G

(pi − qk)2.

This problem is the 1-dimensional k-means problem and can
be solved in polynomial time by dynamic programming.

In the more general case, where edges have both probabil-
ities and weights, we create R groups that are characterized
by having similar probability and weight (qi, ti). Creating
such groups is casted as a 2-dimensional clustering problem,
which can be solved by the k-means algorithm.

C.4 Random walkk-NN
The answer to the random walk k-NN problem is the set of

k nodes that have the largest stationary distribution values.
In order to compute the k-NN results for a source node s,
we propose to simulate the random walk and approximate
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Figure 7: Performance of k-NN vs. (a) number of

samples, (b) number of groups.

the stationary distribution of each node by the frequency
that the node was visited during the simulation. This is
a standard Monte Carlo approach for computing PageR-
ank, (see [6] for discussion and analysis of the method). In
contrast with the power iteration method, the Monte Carlo
approach is well-suited for the k-NN problem because it is
localized in the neighborhood of the graph around s: distant
nodes from s are never (or rarely) visited. Observe that we
can perform the walk on (the transformed graph) G instead
of G using Theorem 3 from Section C.2. This way, we dras-
tically reduce the amount of randomness at each step of the
walk (i.e., we save the time needed to check if each outgoing
edge of the current node is active). We note that any tech-
nique for personalized or individual PageRank computation
on deterministic graphs, e.g., [16] can be directly applied
to G.

C.5 Transformation efficiency
Theorem 3 shows the equivalence of the Probabilistic-

Random-Walk to a random walk on a deterministic weighted
graph. The direct computation of the transformed graph G
can be performed in a per node basis. However, it scales
exponentially to the number of the node’s outgoing edges,
making it practically intractable to compute exactly for out-
degrees greater than 30. Thus, we implemented the sam-
pling algorithm for the transformation (with an option to
group edges). We also implemented the k-NN algorithm
from Appendix C.4.

In Figure 7(a) we present the performance of the trans-
formation in terms of success for the k-NN query. Success
in the k-NN query was computed using Jaccard’s coefficient

Table 2: Grouping Speedup.

Median, 200 Worlds
Number of groups 2 4 8 16 32

DBLP 1.02 1.00 1.00 1.00 1.00
BIOMINE 1.20 1.15 1.10 1.06 1.03
FLICKR 1.33 1.32 1.30 1.28 1.24

for the k-NN sets of our method and the true k-NN. We
consider the true k-NN to be the result using 50K samples
for the transformation, after observing empirically that the
results were stable for that number of samples.

The transformation scales linearly to the number of sam-
ples and it can take a few minutes (for 1000 samples) to a
few hours (for 50K samples) for BIOMINE, using one CPU.
However, we remark that the transformation can straight-
forwardly be parallelized since it is local to a node and
its edges. In order to compute the stationary distribution
for the Random-Walk-Distance we performed 1M random
walks per experiment after empirically observing that this
number was large enough. The teleport probability was set
to 0.20. Notice that less than 1K samples in DBLP and 10K
in BIOMINE yielded more than 90% accuracy. In FLICKR
which is a more volatile graph since it is very dense and
has edges of extremely low probability, the performance is
around 80% at 50K samples and we need to sample 200K
worlds to reach 90% performance.

In Appendix C.3 we presented a grouping heuristic for the
graph transformation of Section C.2. We performed an ex-
periment to gain intuition about the error introduced when
we force edges to participate in groups of equal probabil-
ity. We present our results for various numbers of groups
in Figure 7(b). As expected DBLP converges very fast (4
groups are enough). Recall from Table 3 that the maxi-
mum out-degree is just 238; on the other hand BIOMINE
and FLICKR which have nodes with out-degree in the thou-
sands need more groups to converge. Still, we get the sur-
prising result that 20 groups are enough. Thus, the offline
computation of the transformation can be safely sped up for
nodes with large outdegree, using the grouping technique.
We note that for this experiment we used everywhere 20K
MC samples.

We also present wall-clock speedups in Table 2. As ex-
pected, efficiency increases as the number of groups de-
crease. The gains, however, are overall moderate due to
the power law out-degree property of our datasets. In par-
ticular, only the nodes that have larger out-degree than the
number of groups are affected from grouping. For instance,
less than 5% of the nodes in BIOMINE have degree more
than 16. Consequently on 95% of the nodes the grouping
with 16 groups has no effect. At the same time, more than
50% of the savings come from nodes of out-degree greater
than 100, which comprise less than 1% of the total number
of nodes. In absolute numbers, a complete transformation of
FLICKR with 16 groups took approximately 1000 seconds,
instead of 1300.

D. DATASETS
The probabilities for DBLP and FLICKR have been com-

puted from real information based on simple probability as-
signment models. We choose to use simple models, since
model selection, in general, is beyond the scope of this pa-

1007



Table 3: Datasets’ characteristics.
Dataset |V | |E| Max Outdegree

DBLP 226K 1.4M 238
BIOMINE 1M 10M 139603
FLICKR 77K 20M 5765
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Figure 8: Out-degree distribution of BIOMINE.

Table 4: Frequency of infinite distance values.

BIOMINE DBLP FLICKR

Majority 0.83 0.78 0.42
ExpectedRel 0.69 0.56 0.35

Median 0.69 0.56 0.35

per. BIOMINE is already labeled with probabilities. All the
probabilistic graphs are connected, but obviously many dis-
connected worlds can be instantiated and thus infinite dis-
tances can occur. Table 3 summarizes size and maximum
out-degree of the datasets.

The datasets follow a power-law out-degree distribution,
commonly found in scale-free networks. We present the de-
gree distribution of BIOMINE in Figure 8 as an example
and note that the others are similar. Observe that there are
some central nodes, connected to 5% of the database.

E. INFINITE DISTANCE
Table 4 is complementary to Figure 4(b). There are many

infinite distances in our datasets. For example, for 56% of
the pairs of nodes, the median distance is infinite. Recall
from Figure 8 that there are many nodes with one or two
edges. Also recall from Figure 4(a) that these edges most
likely have low probability. In other words, these nodes are
disconnected from the main part of the graph in most worlds
generated by the probabilistic graph. Thus their median,
expected-reliable and majority distances to the rest are of-
tentimes infinite.
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