
SPECIAL SECTION ON DATA-ENABLED INTELLIGENCE FOR DIGITAL HEALTH

Received November 19, 2019, accepted December 9, 2019, date of publication December 24, 2019,
date of current version March 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961941

K_net: Lysine Malonylation Sites Identification
With Neural Network

JIN SUN 1, YI CAO 1, DONG WANG 1, WENZHENG BAO 2, AND YUEHUI CHEN 1
1School of Information, University of Jinan, Jinan 250024, China
2School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221018, China

Corresponding author: Wenzheng Bao (baowz55555@126.com)

This work was supported in part by the National Science Foundation of China under Grant 61902337, and in part by the National Key

Research and Development Program of China under 2016YFC0106000.

ABSTRACT Lysine Malonylation (Kmal) is a newly discovered protein post-translational

modifications (PTMs) type, which plays an important role in many biological processes. Therefore,

identifying and understanding Kmal sites is very critical in the studies of biology and diseases. The

typical methods are time-wasting and expensive. Nowadays, many researchers have proposed machine

learning (ML) methods to deal with PTMs’s identification issue. Especially, some deep learning (DL)

methods are also utilized in this field. In this work, we proposed K_net, which employed Convolutional

Neural Network to identify the potential sites. Meanwhile, we proposed a new verification method Split to

Equal Validation (SEV), which can well solve the impact of sample imbalance on prediction results. More

Specifically, Acc, Sn, Sp, MCC and AUC values were adopted to evaluate the prediction performance of

predictors. In total, CNN_Kmal achieved the better performance than other methods.

INDEX TERMS Lysine malonylation, deep learning, convolutional neural network, split to equal validation.

I. INTRODUCTION

Protein post-translational modification (PTM) is a key

mechanism that influence almost all aspects of cell biol-

ogy and pathogenesis [1], [2]. PTMs can regulate protein

functions by covalent addition of functional groups or small

molecules, which plays important role in some internal life

processes of organisms like metabolism and material trans-

portation [3]–[5]. For instance, Lysine glycation is character-

ized as an important regulator for aging and pathogenesis of

diabetes. acetylation, another important type of lysine PTM,

is associated with protein stability, protein–protein interac-

tions and cellular metabolism [6]–[8]. In fact, many protein

residues owe various PTM sites, and there are almost various

modification types in the same residue [9]–[14]. More than

20 type of PTM s have been characterized, such as lysine

acetylation, glycation andmethylation [15]–[18]. As an origi-

nal identifiedmodification type, lysinemalonylation has been

widely existed on lysine residues. There are many researches

related to Kmal in recent researches: For instance, malony-

lation on K184 of glyceraldehyde 3-phosphate dehydroge-

nase regulates the activity of this key metabolic enzyme,
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and several Kmal sites in histone proteins have potential con-

nections with cancer. Therefore, identifying and understand-

ing Kmal sites become very urgent in the studies of biology

and diseases [9], [19]–[21].

Due to the rapid development of computational methods

and their cross- disciplinary characteristics, many machine

learning (ML) models have become very popular tools

in many fields including bioinformatics. As for PTMs

researches, Support vector machine (SVM) was utilized in

MaloPred for malonylation site prediction using 10-fold

cross-validation [22], [23]. NetGlycate-1.0, a predictor made

by combining 60 artificial neural networks (ANN), was pro-

posed for Prediction of glycation sites [23]–[25]. The flexible

neural tree algorithm, which is a new neural network model

proposed by Chen et al, was also applied in prediction of

phosphorylation sites using the features according to different

encoding schemes [26], [27].

In addition to traditional machine learning methods, with

the deepening of theoretical research and wider applica-

tion of deep learning method, it has become a hot tool

for classification and regression problems. Many researchers

have utilized deep learning tools to do PTM experi-

ments: the recently published tool MusiteDeep is uti-

lized for general and kinase-specific phosphorylation site
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FIGURE 1. The activity flow of Classifier development.

prediction [28]. Muscadel successfully applies multi-layer

deep neural network to predict nitration and nitrosylation

sites, and long short-term memory (LSTM) recurrent neural

networks (RNNs) were utilized in DeepNitro to predict eight

types of lysine PTMs [29].

In this article, we proposed a deep learning classifier

named K_net, which employed Convolutional Neural Net-

work to identify the potential sites. 4 traditional machine

learning classifiers were constructed to compare the perfor-

mance. Meanwhile, we proposed a new verification method

Split to Equal Validation (SEV), which can well solve the

impact of sample imbalance on prediction results. In total,

As AUC value, accuracy (Acc), sensitivity (Sn), specificity

(Sp), and Matthew’s correlation coefficient (MCC) were

adopted to evaluate the prediction performance of predictors,

CNN_Kmal performed better than other classifiers.

II. METHODS AND MATERIALS

The working flow of our works is demonstrated in Figure 1.

The first step is data procession, through which the dataset

would be refined. The following procedure is feature extrac-

tion, which converted the input data into feature vectors. And

then, we will train different models on the training set and

evaluated by 10-fold cross validation as well as Split to Equal

validation (SEV) [30], [31]. Finally, the trained model will be

validated on independent test data, and then 5 metrics would

be used to evaluate the performance of predictors.

In details, EAAC, EBPR and EAACon are different feature

extraction shames, EAAC were developed by chen et al.

based on AAC encoding, EBPR were proposed by Han et al.

and EAACon were proposed by us based on EAAC and

Convolutional Neural Network. Besedes, K_net is the model

proposed by us based on CNN, and Split to Equal Validation

were also proposed by us, which can both achieve two func-

tions of data preprocessing and cross-validation.

In order to develop an effective predictor, we derived a non-

redundant dataset with high confidence from the database

established by Chen et al. [23] In details, (1)The initial set

consists of a total of 10368 Kmal sites with high confidence

(i.e., Kmal peptides with Andromeda scores > 50 and local-

ization probability> 0.75) and 142830 negative sites belong-

ing to different human and mice proteins. With the lysine site

in the center, 31-residue peptides (-15 to+15) were extracted

from the representatives. It’s worth emphasizing that if the

peptides containing positive sites were identical to the pep-

tides containing negative sites, both peptides were removed.

And then, the dataset was separated into two groups: one

for training and other for testing. In total, 5032 positive and

62299 negative peptides sequence were retained for training

and then were subjected to ten-fold cross-validation and Split

to Equal validation (SEV) proposed by us, other 1046 positive

peptides and 16827 negative peptides were employed as the

independent test dataset.

A. FEATURE ENCODINGS

1) EAAC ENCODING

The EAAC encoding that proposed by Chen et. Al reflects

the frequency of 20 amino acid residues surrounding the

modification site. In details, we can define an 8-size window

continuously sliding from the N-terminus to C-terminus of

a peptide, and the frequency of the 20 amino acid residues

appeared in each 8-dimensional peptide chain fragment was

counted. Accordingly, the dimension of features can be

calculated as follows:

N_s = L_p− L_s+ 1 (1)

D_eaac = N_s×20 (2)

where, L_p refers to the length of each peptide, L_s is the

length of sliding windows and D_eaac is the dimension

of feature vector. As all of the peptides owe 31 residues,

each peptide in the dataset would be converted to a matrix

of 24 (31-8 + 1) ∗ 20 dimensions, and then turned into a

480-dimensional vector after stretched by rows.

2) EBAG ENCODING

It has been proved that amino acid residues can be grouped

according to their various physical and chemical properties

in previous research. Based on this theory, we adopt a fea-

ture encoding method called Encoding Based on Attribute

Grouping (EBAG) [24], [25], which divide 20 amino acid

residues into 4 groups containing hydrophobic group, polar

group, acidic group and basic group. Although some intervals

existed in the amino acid sequences have no separate physical

and chemical properties, they can be a basis for identifying

whether a site can be modified or no, and we divide them

into the fifth group denoted by ‘‘X’’ (Table 1):

3) EBAG + PROFILE ENCODING

As each peptide contains 31 amino acid residues, Profile

Encoding can calculate the frequency of each residue and

then generate the frequency sequence for every peptide. The

frequency of each residue can be calculated as follows:

F_i = C_i/L (3)
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TABLE 1. The groups generated by EBAG method.

FIGURE 2. Example of the EBAG + Profile encoding method utilizing to an
amino acid sequence.

where, L is length of the sample; i is type of amino acid

residue, and C_i is its times appeared in the peptide. And

then, a sample can be converted a feature vector PV as

follows:

PV = [F_i]i ∈ [1, 2, 3, . . . 20] (4)

There is a novel strategy to integrate Profile encoding method

with EBAG method, called EBPR method, which shows bet-

ter performance than each of it. The first step is splitting a

31-dimension peptide into a new sequence with 5 groups,

which generates a new sequence by EBAG method. And

then Profile encoding method was utilized to encode the

generative EBAG sequence, where all residues are assigned

values according the frequency calculated by this method.

The example of EGPR feature encoding is shown in Figure 2.

B. CONSTRUCTION OF CLASSIFIERS

1) RANDOM FOREST

RF is a bagging type of ensemble methods that integrate lots

of decision trees. The basic idea of RF is to train the model

with the original data until it completely split and finally

get multiple decision trees, and the prediction of new data

is to average all decision trees. Although there are many

parameters in the random forest that can affect the final

prediction accuracy of the random forest, the number of

trees is undoubtedly the most important. In our experiments,

we selected 1000 decision trees to build a RF model after

continuous attempts, which makes the random forest model

stand out in many traditional machine learning classifiers.

2) NEURAL NETWORK

NN, imitated from neurons and their connectivity in

animal brains, is another commonly employed machine

learning algorithm. Here, we developed an ANN classifier

that is composed of three layers: the input layer was the

initial layer which received the 31 residues of the peptide

sequence fragments; the second layer is hidden layer, which is

contained by 100 neurons; the last layer is output layer that a

single unit is activated by the ‘‘sigmoid’’ function, outputting

the probability score of Kmal modification.

3) SUPPORT VECTOR MACHINE

SVM is another widely employed algorithm for different

classification problems in various field. It can transform the

samples into a high dimensional feature space, and then con-

struct an Optimal Separating Hyperplane (OSH) that max-

imize its distance from the closest training samples. In our

SVM model, the kernel function was set to Radial Basis

Function (RBF), while the penalty coefficient of the objective

function is set to 1e-05 to balance classification interval

margin and misclassification samples.

4) K-NEAREST NEIGHBORS ALGORITHM

kNN is a basic classification method that can obtain higher

classification accuracy for unknown and non-normal distri-

bution data. There are some basic elements of kNN, i.e. the

choice of k-value, distance measure and classification deci-

sion rules. In our kNN model build in this work, we choose

4 as k , which represents the number of neighbors. Besides,

the measure distance of our model is set to Euclidean Dis-

tance, which is the power parameter for the Minkowski

metric.

5) CONVOLUTIONAL NEURAL NETWORKS

In addition to the traditional machine learning methods

mentioned above, we also applied depth learning algorithm

to our experiments. CNN is one of the most successful

applications of depth learning algorithm, which includes one-

dimensional, two-dimensional and three-dimensional convo-

lution neural network. Among them, one-dimensional CNN is

mainly applied in data processing of sequence classes, while

two-dimensional CNN is often utilized to image recognition

filed. Based on EAAC feature extraction method, we propose

a new idea to integrate the EAAC encoding and the CNN

model, and then we establish two CNN models through this

ideal: One is namedCNN1deaac, which is generated by EAAC

and a one-dimensional CNN model, the other one is named

CNN2deaac, which combines EAAC and a two-dimensional

CNN model. Among them, CNN is the K net in our topic.

C. PERFORMANCE ASSESSMENT OF THE PREDICTORS

1) CROSS VALIDATION

Cross Validation (CV) is a statistic analysis strategy. In this

work, 10-fold Cross Validation was employed to evaluate the

performance of classifiers. The basic idea of CV is divid-

ing the original dataset into 10 parts, where 9 parts were

converted as training set and the last part as validation set.

The classifiers will be trained with training set, and then the

trained model will be tested by the independent set. There are

10 epochs in whole Cross Validation produces, and each part
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FIGURE 3. Activity flow of Split to Equal Validation (SEV).

in training set will be utilized as a verification set in each

specific epoch. This validation strategy takes advantage of

making full use of all of samples, however the calculation

process is complicated for requiring training and testing for

10 times.

2) SPLIT TO EQUAL VALIDATION

As typically classifiers are more sensitive to detecting the

majority class and less sensitive to the minority class, there is

a need to preprocess imbalanced data before feed them into

classifiers. If we don’t take care of the issue, the classification

output will be biased, and resulting in always predicting

the majority class in many cases. Inspired by oversampling

strategy and k-fold cross-validation, we proposed a novel

validation schemes named Split to Equal validation (SEV)

that can both achieve two functions of data preprocessing and

cross-validation. In details, the first step is calculating the rate

of majority samples to minority samples in training set:

r = N_maj÷ N_min (5)

Subdata = [data1, data2, · · · , datai, · · · datar ] (6)

where, N_maj refers to the total number of negative samples

and N_pos is the number of positive samples in our training

set. And then the majority class (positive samples) will be

split to r groups and each group will be combined with

the minority class (positive samples) so that there are i new

sub-training sets been generated. As the rate of positive sam-

ples to negative samples might be even in the order of 1 to 1,

each sub-dataset will be utilized to train a current classifier

and validate the previous classifier.

In this article, SEV contained five steps. As the ratio

of negative and positive samples in training set approach

to 12:1, the first step is to split the negative samples into

12 groups. The second step is to combine each positive group

with the positive samples, so that 12 balanced sub-sets were

generated. In the third step, model1 would be trained by

the sub-set1 and validated by the sub-set2; model 2 would

be trained by the sub-set2 and validated by the sub-set3,

and do on. In total, 12 models were trained and vali-

dated according to these 12 balanced sub-sets. And then,

each model would be tested by the independent dataset,

the average of their scores would be utilized to assess their

performance.

There are four measurements adopted to evaluate the

prediction performance of predictors, i.e., accuracy (Acc),

sensitivity (Sn), specificity (Sp), and Matthew’s correlation

coefficient (MCC). The definition of these four metrics is as

follows:

Sn =
TP

TP+ FN
(7)

Sp =
TN

TN + FP
(8)

Acc =
TP+ TN

TP+ FN + TN + FP
(9)

MCC =
TP×TN−FP×FN

√
(TP+FP)×(TP+FN )×(TN+FN )×(TN+FP)

(10)

Moreover, we also shown the Receiver-Operating Char-

acteristic (ROC) curves and calculated Area Under the

Curve (AUC) values to reflect the prediction performance.
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TABLE 2. The results of different classifiers based on SEV and 10-fold CV.

III. RESULTS AND DISCUSSION

A. PERFORMANCE OF THE SPLIT TO EQUAL

VALIDATION (SEV) AND 10-FOLD CROSS VALIDATION

In previous researches, validation strategies, such as the cross

validation, are widely utilized to overcome the intrinsic over-

fitting limits of various predictors. In this work, we proposed

a novel validation strategy, Split to Equal Validation (SEV),

for both dataset process and performance evaluation as well

as k-fold cross validation. In details, we built 12 balanced,

fragment-level non-redundant subsets by splitting the nega-

tive samples into 12 pieces, and each piece is combined with

the positive sample to creating a new set of balanced set.

All of sub-sets were utilizing for model training and model

validation, respectively.

To compare the performance of SEV and conventional

validation strategy in PTMs, we have built two models of

each classifier (i.e. RF, ANN, SVM, kNN) based on different

validation strategies of 10-fold cross validation strategy and

Split to Equal validation. For themodel utilized 10-fold cross-

validation, we have one dataset which we divide into 10 parts,

using 9 of those parts for training and reserve one tenth for

validating. We repeated this procedure 10 times each time

reserving a different tenth for validation test, and then the

final models were tested by independent dataset. For the

SEV model, we also have one dataset which utilized to build

12 balanced subsets. Each subset will be utilized as input to

train the corresponding model and then utilized as validation

set to test the former model. Finally, the SEV model was also

tested by independent dataset, in terms of AUC, Acc, Sn, Sp,

and MCC. The results are depicted in Table 2.

It can be seen that RFSEV got the AUC score of 0.7642,

which is nearly 2 percent higher than 10-fold cross validation.

Besides, it is obviously unreasonable that the Acc and Sp

score of many models based on 10-fold cross validation are

coming close to 1, while theMCC and Sn score are approach-

ing to 0. This fallacious phenomenon can be attributed to the

training set where the rate of positive samples to negative

samples might be even in the order of 1 to 12. As we know,

if 90% of the samples of the training set belong to the same

class, the trained classifier is like to classify all the new

samples into one class. In this case, the classifier would

be invalid despite the final classification accuracy of 90%.

As 10-fold cross validation cannot effectively solve this prob-

lem of unbalanced data, the four metrics of Acc,MCC, Sn, Sp

consequently lose their reference significance; On the other

hand, the performance of the trained classifier becoming

neither well reflected nor fully compared with other models.

However, SEV not only achieved higher AUC value, but also

obtained more objective and reliable MCC, Acc, Sn and Sp

values, which is not as unreliable as 10-fold cross validation.

On the other hand, as a new verification method,

SE Validation can also be extended to other binary

classification problems besides PTMs. Besides, this val-

idation method can also be utilized to validate multi-

classification problems as long as SEV is slightly modified

according to the actual situation.

B. FEATURE EXTRACTION METHOD HAS GREAT

INFLUENCE ON PREDICTION RESULTS

Although the scores of prediction approach is affected by

the selection of the validation approaches, we reason that the

most important determinant likely comes from the encod-

ing scheme. Therefore, we trained the classifiers above

based on two diffiernt encoding methods of EAAC and

EBAG+ Profile(EBPR) methods. The results were shown

in Table 3.

From the table 3, we can see that the type of different fea-

ture extraction methods really has great influence on the clas-

sification effect of all the classifiers. For instance, the AUC

value of the same NN classifier that utilized EAAC encod-

ing reaches 0.7237, while it is only 0.6538 in EBPR-based

models. Similar situation was also occurred in SVM, kNN

and other classifiers. Not only AUC value, other evaluation

metrics have made great differences under different coding

methods, which futher verifies our conjecture that the scores

of the prediction method is greatly influenced by the feature

extraction methods. Besides, we can see that each classifier

that utilized EAACmethod are plays better performance than

the same classifier utilized another feature encoding scheme,

which suggests that the EAAC schemes captured the unique

information from Kmal-containing peptides and is indepen-

dent of the type of classifier.
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TABLE 3. The results of different classifiers based on EAAC and EBPR feature extraction schemes.

In addition to verifying the excellent importance of val-

idation and feature extraction method, these two groups of

experiments showed that RFEAAC performed the best in terms

of AUC and MCC values among these different classifiers.

when all other conditions, including data set selection, feature

extraction method and verification strategy are the same and

only the classifier is different, RF can achieve higher AUC

value. As a result, based on SE Validation and EAAC encod-

ing simultaneously, RF achieves the highest AUC value of

0.7642, while the highest AUC values of ANN, SVM and

kNN are 0.7237, 0.6394 and 0.6626, respectively. Therefore,

when we need a traditional machine learning classifier in

Kmal research, either as a separate model to predict the

results or as a part to participate in integrated learning, RF

is available as the first choice.

C. DEEP LEARNING APPROACH SHOWED

SUPERIOR PERFORMANCE

Although several traditional classifiers established above

have achieved good classification scores, we have still estab-

lished two deep learning models, one is CNN1Dwe(K_net),

the other is CNN2Dwe.

K_net includes the following 7 layers the first two layers

is a convolutional layer followed by a pooling layer, which

directly serves as the input layers of the entire network.

In these two layers, the 24∗20 feature matrix generated by

EAAC is converted into intermediate horizontal features, and

then further feature abstraction is carried out in the following

layers. The third and fourth layers are also composed of

convolutional layer and pooling layer. Similar to the prior

two layers, they are also utilized to increase the expression

ability of classifier. In detail, we set the convolution kernel

size of both the first layer and the third layer to 3, so that

the first convolution layer contains 32 convolution kernels,

while the number of convolution kernels in the third layer is

64. The fifth layer is a flatten layer, which is the transition

from convolution-pooling layer to full connection layer, and

is used to uniformize multi-dimensional output. After passing

through this layer, the multi-dimensional feature matrix will

be converted into a 1∗64 one-dimensional feature vector.

FIGURE 4. The average AUC values of different classifiers, where the
CNN2Dwe and K_net were both based on deep learning approach.

The next layer is a fully connected layer, where 64 neuron

units were built with the rectified linear unit (ReLU) chosen

for its activation function. The last layer is output layer,

in which a single unit is activated by the ‘‘sigmoid’’ function,

outputting the probability score to judge whether the result is

positive or negative.

As K_net had been constructed, we practiced another idea:

we regard the two-dimensional characteristic matrix as a

picture and then constructed the CNN2Dwe model accord-

ingly. Similar to K_net, this model is also composed of two

convolutional layers, two pooling layers, a flatten layer, a full

connection layer and an output layer composed of a sigmoid

unit. However, the convolutional layer of K_net adopts an

intuitive sequence processing strategy, while the convolu-

tional layer of CNN2Dwe adopts an image recognition idea.

Therefore, in CNN2Dwe, the size of convolutional kernel in

the first and the third convolutional layers are both 3∗3, which
is obviously different from K_net.

After all the models were built and trained, we tested

their performance on independent data sets. In order to

get a more intuitive analysis result, we draw two his-

tograms to show the scores of two representative evaluation

metrics (AUC and MCC values) that can best reflect the

model performance were shown in the form of histogram

in figure 4 and figure 5.

VOLUME 8, 2020 47309



J. Sun et al.: K_net: Lysine Malonylation Sites Identification With Neural Network

FIGURE 5. The average MCC values of different classifiers.

These two charts show that the deep learning

approach–K_net based on CNN1d scored the highest in terms

of AUC value and won the first place. The second place is the

deep learningmodel CNN2Dwe, and the traditional classifiers

are all behind. The phenomenon that the scores of that deep

learning model is higher than that of all traditional classifiers

can also be reflected in the MCC value. This shows that

compared with traditional machine learning methods, deep

learning methods can achieve better results. The strong point

of deep learning lies in its perfect fitting ability, which can

approximate any complex function. This may explain why

DL models demonstrated superior performance. As a result,

K_net obtained the best PTM prediction performance with

the AUC value of 0.7927 and MCC value of 0.2412.

IV. CONCLUSION

Although many shallow machine learning methods are still

applied to various classification problems, deep learning

methods continuously refresh the classification accuracy of

various problemswith its excellent performance. In this work,

we construct two CNN models to predict Kma sites. Deep

neural network not only has perfect fitting ability and can

approximate any complex function, but also contains many

hidden layers with lots of hidden nodes, which makes the

expression ability of neural network very stronger.

At the same time, in order to solve the problem caused

by imbalanced training samples in the classification prob-

lem, we propose a new validation method of SEV. SEV

not only has the function of making full use of train-

ing samples similar to the 10-fold cross-validation, but

also can objectively show the final ACC, Sn,Sp and other

indicators, instead of making them lose reference signif-

icance as the training samples are not balanced. Besides

the binary classification problems, SEV method can also

be utilized to validate multi-classification problems as

long as SEV is slightly modified according to the actual

situation.
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