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Abstract—Recently, Wang introduced a novel (2, n) region
incrementing visual cryptographic scheme (RIVCS), which can
gradually reconstruct secrets in a single image with multiple
security levels. In RIVCS, the secret image is subdivided into
multiple regions in such a way that any t shadow images, where
2 ≤ t ≤ n, can be used to reveal the (t − 1)th region. However,
Wang’s scheme suffers from the incorrect-color problem, which
the colors of reconstructed images may be reversed (i.e., the
black and white are reversed). If the color of text is also the
secret information, the incorrect-color problem will compromise
the secret. Additionally, Wang’s scheme is only suitable for the
2-out-of-n case, i.e., (k, n)-RIVCS where k = 2. In this paper, we
propose a general (k, n)-RIVCS, where k and n are any integers,
that is able to reveal correct colors of all regions. This paper has
made three main contributions: 1) our scheme is a general (k,
n)-RIVCS, where k and n can be any integers; 2) the incorrect-
color problem is solved; and 3) our (k, n)-RIVCS is theoretically
proven to satisfy the security and contrast conditions.

Index Terms—Image secret sharing, secret sharing, visual
cryptography, visual secret sharing.

I. Introduction

THE SECRET image sharing scheme (SISS) is an impor-
tant and active research area. SISS divides a secret image

into shadow images (referred to be shadows). If shadows are
combined in a specific way, the secret information can be
revealed. SISS is usually referred to be a threshold (k, n)-SISS,
where k ≤ n, that encrypts a secret image into n shadows in
such way that for any k or more than k shadows can reconstruct
the secret image; but for less than k shadows cannot recover
the secret image.

There are two major types of SISS: one is the visual
cryptographic scheme (VCS) [1]–[19], and the other is the
polynomial-based SISS (PSISS) [20]–[29]. In VCS, each
shadow can be made on a transparency. By stacking any
k transparencies on an overhead projector, we can visually
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decode the secret through a human visual system without
the assistance of any hardware or computation. However, the
reconstructed image of VCS suffers from poor visual quality,
which is caused by its intrinsic property in using the OR-
operation for decoding. On the contrary, the reconstructed im-
age of PSISS is distortion-less in using Lagrange interpolation.

The first VCS encrypts a halftone (black-and-white) secret
image into noise-like shadows [1]. Since the visual quality of
a reconstructed image in VCS is degraded by a large pixel
expansion, research papers have been published to enhance
the visual quality or reduce the pixel expansion. Some of
them can even have no pixel expansion (m = 1) which are
known as the probabilistic VCS (PVCS) [2]–[4]. The authors
in [5] extended the PVCS to share both grey-scale images
and color images. A multi-secret VCS (MVCS) explores
the possibility of sharing multiple secret images [6]–[11].
MVCS can reveal different secret images by stacking shadows
at different positions. VCSs with specific features, such as
cheating prevention, solving misalignment problem, achiev-
ing the ideal contrast, sharing color image, were proposed
[12]–[19]. Although VCS cannot recover the original image
without distortion-less, the simplicity of VCS provides new
applications in sharing secret images, e.g., visual authenti-
cation, steganography, and image encryption. For example,
VCS-based authentication can let a user perform verification
personally. This type of authentication involving human factor
actually enhances the system security like seeing-is-believing
and CAPTCHA. The first visual authentication using VCS
was proposed by Naor and Pinkas [30]. RcCune et al. also
adopted VCS to enhance the security in logging to a wireless
AP [31]. Some security criteria of VSS-based authentication
are formally discussed in [32]. To enhance the recognition
of PIN code in visual authentication, the segment-based VCS
was introduced [33]. More applications of VCS can be found
in Chapter 12 “Applications of Visual Cryptography” in the
book [34]. Other VCS applications in combining watermark,
fingerprint, Google street view, and bar code were introduced
in [35]–[38].

Recently, Wang introduced a novel (2, n) region increment-
ing visual cryptographic scheme (RIVCS) [39]. In a RIVCS,
the secret image is subdivided into multiple regions in such a
way that any t shadows, where 2 ≤ t ≤ n, can be used to reveal
the (t−1)th region. The incrementing region property provides
an attractive feature in secret image sharing applications since
this feature enables more shadows to reveal more secrets.
However, in Wang’s (2, n)-RIVCS, the colors of reconstructed
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image with different security levels are reversed (i.e., the black
color and white color are reversed). The objective of this
paper is to design a general (k, n)-RIVCS to reveal correct
colors in all regions. The main contributions of this paper are:
1) our scheme is a general (k, n)-RIVCS where k and n are
any integers and k < n; 2) the scheme reveals correct colors
of the secret image; and 3) our (k, n)-RIVCS is theoretically
proven to satisfy the security and contrast conditions.

The rest of this paper is organized as follows. In Section II,
two VCSs are reviewed. In Section III, we propose three
constructions of (k, n)-RIVCS. Our RIVCS not only can
overcome the problem of the reverse colors, but also can
enhance the contrast and reduces the shadow size for most
cases in comparing with Wang’s RIVCS. Experimental results
and comparison are included in Section IV. The conclusion is
in Section V.

II. Previous Works

Our new RIVCS scheme is based on the conventional VCS.
Here, we describe the (k, n)-VCS and briefly review Wang’s
(2, n)-RIVCS.

A. (k, n)-VCS

In a black-and-white (k, n)-VCS, the secret image consists
of a collection of black-and-white pixels and each pixel is
subdivided into a collection of m black-and-white subpixels
in each of the n shadows. The collection of sub pixels can be
represented by an n × m Boolean matrix S = [sij], where the
element sij represents the jth subpixel in the ith shadow. A
white subpixel sij is represented by a 0, and a black subpixel
is represented by a 1. Stacking t shadows together, the grey-
level of each secret pixel (m subpixels) of the stacked result
is proportional to the Hamming weight (the number of 1s
in the vector V ) H(V ) of the OR-ed (“OR” operation) m-
tuple V = OR(i1, . . . , it) where i1, . . . , it are t rows of S
associated with the shadows we stack. Verheul and Van Tilborg
[17] extended the definition of Naor and Shamir’s scheme [1].
The formal definition of binary VCS is given below.

Definition 1: A (k, n)-VCS consists of two collections
of n × m Boolean matrices B0 and B1. To share a white
(respectively black) pixel, the dealer randomly chooses one of
the matrices in B0 (respectively B1). The chosen matrix defines
the color of the m subpixels in each one of the n shadows. The
collection C0 (respectively C1) can be obtained by permuting
the columns of the corresponding matrix B0 (respectively B1)
in all possible ways. B0 and B1 are called basis matrices, and
every collection has m! matrices. The (k, n)-VCS is considered
valid if the following three conditions are satisfied.

1) For any S in C0, the OR vector V0 of any k rows of the
n rows satisfies H(V0) ≤ l.

2) For any S in C1, the OR vector V1 of any k rows of the
n rows satisfies H(V1) ≥ h, where 0 ≤ l < h ≤ m.

3) For any subset {i1, . . . , it}⊂{1, . . . , n} with t <

k, the two collections of t × m matrices obtained by
restricting each t × m matrix in C0 and C1 to rows
i1, . . . , it are indistinguishable in the sense that they
contain the same matrices with the same frequencies.

The first two conditions are called contrast and the third
condition is called security. The security condition of VCS is
similar to the well-known Shamir’s secret sharing [40], and the
VCS is perfectly secure. The contrast α = H(V1)−H(V0)

m
= h−l

m
is

defined as the difference in weight between a white pixel and
a black pixel in the reconstructed image [1]. From Definition
1, the black-and-white (k, n)-VCS can be realized by two
Boolean matrices B0 and B1. Let OR (Bi|t) denote the “OR”-
ed t rows in Bi, i = 0, 1, and H(.) be the Hamming weight
function. Three conditions in Definition 1 can be rewritten as
follows.

(V-1) H (OR (B1|t)) ≥h and H (OR (B0|t)) ≤ l for t = k,
where 0 ≤ l < h ≤ m.

(V-2) H (OR (B1|t)) = H (OR (B0|t)) for t ≤ (k − 1).
Example 1: Construct a (2, 2)-VCS of h = 1, l = 0 and

m = 2 by B0 =

[
10
10

]
and B1 =

[
10
01

]
.

It is observed that H (OR (B1|2)) = 2, H (OR (B0|2)) = 1,
and H (OR (B1|1))=H (OR (B0|1)) = 1 satisfy the contrast
condition (V-1) and the security condition (V-2). We use

xByW to represent (

x︷ ︸︸ ︷
1 · · · 1,

y︷ ︸︸ ︷
0 · · · 0) and its permutations. In

a reconstructed image, the black color is 2B0W and the
white color is 1B1W. Thus, we can visually decode the secret
image. Because every 2-subpixel block in shadows is 1B1W,
shadows are noise-like. The contrast for this (2, 2)-VCS is
α = h−l

m
= 1/2. �

B. Wang’s (2, n)-RIVCS

Similar to MVCS, Wang’s (2, n)-RIVCS can reveal multiple
images. However, there are two differences between RIVCS
and MVCS.

1) MVCS has multiple secret images, while RIVCS divides
a secret image into multiple regions, where each region
is an image. Thus, a complete secret image in RIVCS
is composed by multiple images.

2) In MVCS, the reconstruction of different secret images
is performed by stacking two shadows at different posi-
tions. However, RIVCS reveals different images gradu-
ally by stacking 2, 3, . . . , and n shadows, respectively.

In Wang’s (2, n)-RIVCS, when stacking (j + 1) shadows,
one can decode the jth security level region, where j =
1, 2, . . . , (n − 1). For example, in a (2, 4)-RIVCS, the secret
image is divided into three secret level regions, as shown in
Fig. 1(a). When stacking two, three, and four shadows, we
can decode the first, second, and third security level regions,
respectively [see Fig. 1(b)–(d)]. Let LK0

j (respectively, LK1
j ),

1 ≤ j ≤ (n−1), be the matrix encoding a white (respectively,
black) pixel for the jth security level region, and |LK0

j | and
|LK1

j | are the number of columns. These matrices LK0
j and

LK1
j , 1 ≤ j ≤ (n − 1), should satisfy the following four

conditions.
(R-1) |LK0

j | = |LK1
j | for 1 ≤ j ≤ (n − 1).

(R-2) H
(
OR

(
LK1

j |t
)) �=H

(
OR

(
LK0

j |t
))

for t = j + 1.
(R-3) H

(
OR

(
LK1

j |t
))

=H
(
OR

(
LK0

j |t
))

for t≤j.
(R-4) LK0

1 = LK0
2 = · · · = LK0

n−1.
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Fig. 1. Partition of three security level regions for the (2, 4)-RIVCS.
(a) Three secrecy-level decomposition. (b) Revealed region when stacking
two shadows. (c) Revealed region when stacking three shadows. (d) Revealed
region when stacking four shadows.

In condition (R-1), the matrices have the same number
of columns in order to arrange subpixels of all regions in
a shadow. Through (R-2) and (R-3), when stacking (j + 1)
shadows, one can decode the jth security level region by the
different whiteness for the black and white colors. Meantime,
the areas where no secret is revealed are noise-like due to
condition (R-4).

Example 2: Construct Wang’s (2, 3)-RIVCS by LK0
1 =

LK0
2 =

⎡
⎣ 0 0 1 1

0 1 0 1
0 1 1 0

⎤
⎦, LK1

1 =

⎡
⎣ 0 0 1 1

0 0 1 1
0 0 1 1

⎤
⎦, and

LK1
2 =

⎡
⎣ 0 0 1 1

0 1 0 1
1 0 0 1

⎤
⎦.

Obviously, all matrices have four columns, LK0
1 = LK0

2 and
satisfy (R-1) and (R-4), respectively. Every row in all matrices
has 2B2W subpixels, and thus all three shadows are noise-like.
When stacking any two shadows, we have 3B1W in LK0

1 and
2B2W in LK1

1 for the first security level region, 3B1W in LK0
2

and LK1
2 for the second security level region. Thus, only the

first secret is recovered and its contrast is 1/4. When stacking
all three shadows, we have 4B0W and 3B1W in both LK1

2
and LK0

2. The contrast is 1/4 for the second secret.

III. Proposed RIVCS

In [39], basis matrices of a (2, n)-RIVCS with n = 3, 4, 5
were directly given. However, the author did not explain how
to design the basis matrices. Also, in Example 2, the colors of
the first security level region are reversed. The combination of
3B1W in the white matrix LK0

1 is darker than 2B2W in the
black matrix LK1

1. In this paper, we construct a general (k, n)-
RIVCS, which the images can be revealed with correct colors
for all regions. Our (k, n)-RIVCS is very similar to the scalable
(k, n)-PSISS [27]–[29], which has the threshold property
and the scalable decoding capability (the scalability). The
scalability means that the amount of secret information used in
reconstruction is proportional to the number of shadows. The
feature of scalability (revealing secrets gradually) is similar
to the feature in the well-known ramp secret sharing scheme
[41]–[43]. In a (k, L, n)-threshold ramp secret sharing scheme,
one can decrypt the secret with any k or more than k shadows;
but no information of the secret can be revealed with any k−L

or less than k − L shadows. With any set of k − l shadows,
l = 1, 2, . . . , L − 1, can learn something about the secret. In
the case of L = 1, the (k, L, n)-threshold ramp secret sharing
scheme is reduced to the original (k, n)-threshold secret shar-
ing scheme. In fact, our (k, n)-RIVCS has the same threshold

property and the scalability as the scalable (k, n)-PSISS and
the (n, n − k + 1, n)-threshold ramp secret sharing scheme.

A. (k, n)-RIVCS with Correct Color for All Regions

Condition (R-2) implies that Wang’s (2, n)-RIVC uses the
different whiteness of the black and white colors to reveal the
secret. If the secret image is a bi-level image, the secret infor-
mation is not compromised even though the black and white
colors are reversed. However, if the color of text is the secret
information, the incorrect-color problem will compromise the
secret. For this case, (R-2) does not assure the correctness of
reconstructing correct colors. In our proposed (k, n)-RIVCS,
conditions are modified as follows.

(R-1′) |LK0
j |=|LK1

j | for 1 ≤ j ≤ (n − k + 1).
(R-2′) H

(
OR

(
LK1

j |t
))

>H
(
OR

(
LK0

j |t
))

for t = j +k−1.
(R-3′) H

(
OR

(
LK1

j |t
))

=H
(
OR

(
LK0

j |t
))

for t ≤ j +k−2.
(R-4′) LK0

1 = LK0
2 = · · · = LK0

n−k+1.
Condition (R-2′) is stricter than condition (R-2). The

blackness in black color is always darker than that in white
color. However, in (R-2), the blackness in different colors is
just different.

The proposed (k, n)-RIVCS is based on the (n−k+1) (t, n)-
VCSs, k ≤ t ≤ n. Let B

(t,n)
1 and B

(t,n)
0 be the black and white

basis matrices of a (t, n)-VCS. Suppose that the background
color of a secret image is white. The design concept is
described as follows. We unite all white matrices of these (t,
n)-VCSs, k ≤ t ≤ n, to construct LK0

j . When designing the

matrix LK1
j for the jth security level region, we use B

(j+k−1,n)
1

instead of B
(j+k−1,n)
0 in LK0

j . Therefore, when stacking t

shadows, the secrets in (t−k+1) regions can be revealed. The
formal construction is shown in Construction 1. Let the matrix
operations “∪” and “−” be the union and minus operations of
column vectors. Then, the basis matrices of (k, n)-RIVCS LK0

j

and LK1
j , where 1 ≤ j ≤ (n−k+1), are constructed as follows.

Construction 1: The white matrices LK0
j ,

1≤j≤(n−k+1), are LK0
j =

[
B

(k,n)
0

⋃
B

(k+1,n)
0

⋃ · · · ⋃ B
(n,n)
0

]
.

The corresponding black matrix for the LK0
j is

LK1
j =

[
B

(j+k−1,n)
1 LK0

j − B
(j+k−1,n)
0

]
.

Theorem 1: The proposed (k, n)-RIVCS using matrices in
Construction 1 satisfies conditions (R-1′), (R-2′), (R-3′), and
(R-4′).

Proof: Since |B(k,n)
1 | = |B(k,n)

0 |, we have |LK1
j | =∣∣∣[ B

(k,n)
1 LK0

j − B
(k,n)
0

]∣∣∣=|B(k,n)
1 |+ |LK0

j |− |B(k,n)
0 | = |LK0

j |.
Thus, condition (R-1′) is satisfied. Obviously, all white ma-
trices are

[
B

(k,n)
0

⋃
B

(k+1,n)
0

⋃ · · · ⋃ B
(n,n)
0

]
, and thus (R-4′) is

satisfied.
From the definition of LK0

j and LK0
j , stacking t shadows

in LK0
j and LK1

j is exactly the same as stacking t shadows in

B
(j+k−1,n)
0 and B

(j+k−1,n)
1 . Since B

(j+k−1,n)
0 and B

(j+k−1,n)
1 are the

basis matrices of (j + k − 1, n)-VCS for 1 ≤ j ≤ (n − k + 1),
considering to stack t = j + k − 1 and t ≤ j + k − 2 shadows
in B

(j+k−1,n)
0 and B

(j+k−1,n)
1 , we have{

H
(

OR
(
B

(j+k−1,n)
1 |t

))
> H

(
OR

(
B

(j+k−1,n)
0 |t

))
for t = j + k − 1

H
(

OR
(
B

(j+k−1,n)
1 |t

))
= H

(
OR

(
B

(j+k−1,n)
0 |t

))
for t ≤ j + k − 2.

(1)
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From (1), we can derive the following equation:{
H

(
OR

(
LK1

j |t
))

> H
(
OR

(
LK0

j |t
))

for t = j + k − 1
H

(
OR

(
LK1

j |t
))

= H
(
OR

(
LK0

j |t
))

for t ≤ j + k − 2.
(2)

From (2), the proposed (k, n)-RIVCS satisfies conditions
(R-2′) and (R-3′).

Example 3: Construct the proposed (2, 3)-RIVCS, (2, 4)-
RIVCS, and (2, 5)-RIVCS.

By Construction 1, we can derive the basis matrices of
(2, 3)-RIVCS with m = 6, as follows. The basis matrices
of Naor and Shamir’s (2, 3)-VCS and Naor and Shamir’s
(3, 3)-VCS used for constructing LK0

1, LK1
1, LK0

2, and LK1
2

are B
(2,3)
1 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦, B

(2,3)
0 =

⎡
⎣ 1 0 0

1 0 0
1 0 0

⎤
⎦, B

(3,3)
1 =⎡

⎣ 1 0 0 1
0 1 0 1
0 0 1 1

⎤
⎦, B

(3,3)
0 =

⎡
⎣ 0 0 1 1

0 1 0 1
0 1 1 0

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 =
[
B

(2,3)
0

⋃
B

(3,3)
0

]
=

[
1 0 0
1 0 0
1 0 0

]⋃[
0 0 1 1
0 1 0 1
0 1 1 0

]
=

[
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0

]
LK1

1 =
[

B
(2,3)
1 LK0

1 − B
(2,3)
0

]
=

[
0 1 1

B
(2,3)
1 1 0 1

1 1 0

]
=

[
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

]
LK1

2 =
[

B
(3,3)
1 LK0

2− B
(3,3)
0

]
=

[
1 0

B
(3,3)
1 1 0

1 0

]
=

[
1 0 0 1 1 0
0 1 0 1 1 0
0 0 1 1 1 0

]
.

(3)
Using the same approach, we can derive the basis matrices

of (2, 4)-RIVCS with m = 14 and (2, 5)-RIVCS with m = 22,
as shown in (4) and (5), respectively. The basis matrices of (2,
4)-VCS, (3, 4)-VCS, (4, 4)-VCS used for (2, 4)-RIVCS, and
the basis matrices of (2, 5)-VCS, (3, 5)-VCS, (4, 5)-VCS, (5,
5)-VCS used for (2, 5)-RIVCS are given in the Appendix.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 = LK0
3 =

[
B

(2,4)
0

⋃
B

(3,4)
0

⋃
B

(4,4)
0

]
=

⎡
⎢⎢⎣

10000111111000

10001011100110

10001101010101

10001110001011

⎤
⎥⎥⎦

LK1
1 =

[
B

(2,4)
1 LK0

1 − B
(2,4)
0

]
=

⎡
⎢⎢⎣

1000 0111111000

0100 1011100110

0010 1101010101

0001 1110001011

⎤
⎥⎥⎦

LK1
2 =

[
B

(3,4)
1 LK0

2 − B
(3,4)
0

]
=

⎡
⎢⎢⎣

100011 10111000

010011 10100110

001011 10010101

000111 10001011

⎤
⎥⎥⎦

LK1
3 =

[
B

(4,4)
1 LK0

3 − B
(4,4)
0

]
=

⎡
⎢⎢⎣

10001110 000111

01001101 001011

00101011 001101

00010111 001110

⎤
⎥⎥⎦ .

(4)
In the following example, (3, 4)-RIVCS and (3, 5)-RIVCS

are schemes with k > 2. This example reveals that our
general (k, n)-RIVCS has region incrementing ability to reveal
different secrets.

Example 4: Construct the proposed (3, 4)-RIVCS and (3,
5)-RIVCS.

From Construction 1, we can derive the basis matrices of
(3, 4)-RIVCS with m = 13 as (6) and (7).

Using the same approach, we can derive the basis matrices
of (3, 5)-RIVCS with m = 20.

Although the proposed (k, n)-RIVCS from Construction
1 reveals correct colors for all regions, it has large pixel
expansion. Next, we demonstrate a modified version to reduce
the shadow size and enhance the contrast. Our modified (k, n)-
RIVCS may reveal reverse color for some security levels like
Wang’s scheme.

B. Modified (k, n)-RIVCS

If the secret image is a bi-level image and the color of
image is not a secret, shadowholders want to reveal the secret
text or the shape of image. In this case, the secret information
is not compromised even though the black and white colors
are reversed. Without the requirement of revealing correct
color, our construction can be modified to reduce the pixel
expansion and enhances the contrast compared with Wang’
scheme. In this case, condition (R-2′) can be modified as
follows:

(R-2′′) H
(
OR

(
LK1

j |t
)) �=H

(
OR

(
LK0

j |t
))

for t = j +k−1.
In the modified RIVCS, we unite black or white matrices

of these (t, n)-VCSs, k ≤ t ≤ n, to construct LK0
j with

minimal pixel expansion. In designing the matrix LK1
j for

the jth security level region, if we use B
(j+k−1,n)
1 (respectively

B
(j+k−1,n)
0 ) in LK0

j , we use B
(j+k−1,n)
0 (respectively B

(j+k−1,n)
1 )

in LK1
j . Let B

(t,n)
ij

be the black or white matrix of a (k, n)-
VCS, where k ≤ t ≤ n, 1 ≤ j ≤ (n−k+1) and ij ∈ {0, 1}. Let

the matrix B
(j+k−1,n)
ij

be B
(j+k−1,n)
(ij+1) mod 2 (i.e., B

(j+k−1,n)
1 =B

(j+k−1,n)
0

and B
(j+k−1,n)
0 = B

(j+k−1,n)
1 ). The modified (k, n)-RIVCS, with

LK0
j and LK1

j where 1 ≤ j ≤ (n − k + 1), is proposed in
Construction 2.

Construction 2: The white matrices are
LK0

j =
[
B

(k,n)
i1

⋃
B

(k+1,n)
i2

⋃ · · · ⋃ B
(n,n)
in−k+1

]
by choosing ij

in B
(j+k−1,n)
ij

, 1≤j≤(n−k+1), from 0 or 1 to minimize |LK0
j |.

The corresponding black matrix for the LK0
j is LK1

j =[
B

(j+k−1,n)
ij

LK0
j − B

(j+k−1,n)
ij

]
.

Theorem 2: The modified (k, n)-RIVCS using matrices in
Construction 2 satisfies conditions (R-1′), (R-2′′), (R-3′), and
(R-4′).

Proof: Since |B(j+k−1,n)
ij

| = |B(j+k−1,n)
ij

|, we have |LK1
j | =∣∣∣[ B

(j+k−1,n)
ij

LK0
j − B

(j+k−1,n)
ij

]∣∣∣=∣∣∣B(j+k−1,n)
ij

∣∣∣+|LK0
j |−

|B(j+k−1,n)
ij

|=|LK0
j |. Thus, condition (R-1′) is satisfied. Obvi-

ously, all white matrices are
[
B

(k,n)
i1

⋃
B

(k+1,n)
i2

⋃ · · · ⋃ B
(n,n)
in−k+1

]
,

and condition (R-4′) is satisfied.
From the definition of LK0

j and LK1
j , if ij = 0, stacking t

shadows in LK0
j and LK1

j is exactly the same as stacking t

shadows in B
(j+k−1,n)
ij

= B
(j+k−1,n)
0 and B

(j+k−1,n)
ij

= B
(j+k−1,n)
1 .

This is the same as the proposed scheme, and we derive{
H

(
OR

(
LK1

j |t
))

> H
(
OR

(
LK0

j |t
))

for t = j + k − 1
H

(
OR

(
LK1

j |t
))

= H
(
OR

(
LK0

j |t
))

for t ≤ j + k − 2.
(8-1)

On the other hand, if ij = 1, stacking t shadows in LK0
j and

LK1
j is exactly the same as stacking t shadows in B

(j+k−1,n)
ij

=
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B
(j+k−1,n)
1 and B

(j+k−1,n)
ij

= B
(j+k−1,n)
0 . Following the similar

argument, we have{
H

(
OR

(
LK1

j |t
))

< H
(
OR

(
LK0

j |t
))

for t = j + k − 1
H

(
OR

(
LK1

j |t
))

= H
(
OR

(
LK0

j |t
))

for t ≤ j + k − 2.
(8-2)

Equations (8-1) and (8-2) imply the following equation:⎧⎨
⎩

H
(
OR

(
LK1

j |t
)) �= H

(
OR

(
LK0

j |t
))

for t = j + k − 1

H
(
OR

(
LK1

j |t
))

= H
(
OR

(
LK0

j |t
))

for t ≤ j + k − 2.

(9)

From (9), the modified (k, n)-RIVCS satisfies (R-2′′) and
(R-3′).

The modified (2, n)-RIVCS in Construction 2 can be further
improved in the following construction to enhance the contrast
for the first security level region.

Construction 3: For the modified (2, n)-RIVCS in
Construction 2, if B

(2,n)
i1

in LK0
j is B

(2,n)
1 , we can use

LK1
1 =

⎡
⎢⎢⎢⎣ B

(2,n)
1

m1︷ ︸︸ ︷
1 · · · 1

m0︷ ︸︸ ︷
0 · · · 0

... · · · 10 · · · 0
1 · · · 10 · · · 0

⎤
⎥⎥⎥⎦ instead of LK1

1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 = LK0
3 = LK0

4 =
[
B

(2,5)
0

⋃
B

(3,5)
0

⋃
B

(4,5)
0

⋃
B

(5,5)
0

]

=

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0
1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0
1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

LK1
1 =

[
B

(2,5)
1 LK0

1− B
(2,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0
1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1
1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

LK1
2 =

[
B

(3,5)
1 LK0

2− B
(3,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦

LK1
3 =

[
B

(4,5)
1 LK0

3− B
(4,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1
1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1
1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1
1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

LK1
4 =

[
B

(5,5)
1 LK0

4− B
(5,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎦

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 =
[
B

(3,4)
0

⋃
B

(4,4)
0

]
=

⎡
⎢⎢⎣

0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 0

⎤
⎥⎥⎦⋃

⎡
⎢⎢⎣

01 1 10 00 1
01 0 01 10 1
00 1 01 01 1
00 0 10 11 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 11 10 01 11 00 01
1 01 10 01 00 11 01
1 10 10 00 10 10 11
1 11 00 00 01 01 11

⎤
⎥⎥⎦

LK1
1=

[
B

(3,4)
1 LK0

1 − B
(3,4)
0

]
=

⎡
⎢⎢⎣

1 1 1 0 0 0 1
1 0 0 1 1 0 1

B
(3,4)
1 0 1 0 1 0 1 1

0 0 1 0 1 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 1 1 1 0 0 1 1 0 1
0 0 1 0 1 1 0 1 0 1 0 1 1
0 0 0 1 1 1 0 0 1 0 1 1 1

⎤
⎥⎥⎦

LK1
2 =

[
B

(4,4)
1 LK0

2 − B
(4,4)
0

]
=

⎡
⎢⎢⎣

0 1 1 1 0
1 0 1 1 0

B
(4,4)
1 1 1 0 1 0

1 1 1 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0 1 1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 1 1 0 1 1 0
0 0 1 0 1 0 1 1 1 1 0 1 0
0 0 0 1 0 1 1 1 1 1 1 0 0

⎤
⎥⎥⎦

(6)
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[
B

(2,n)
1 LK0

1 − B
(2,n)
1

]
, where the values of m1 and m0 are

chosen to let the number of ones in a row be exactly the same
as LK0

1. Other matrices are the same as in Construction 2.
Theorem 3: The modified (2, n)-RIVCS using matrices in

Construction 3 satisfies conditions (R-1′), (R-2′′), (R-3′), and
(R-4′).

Proof: We consider two cases: 1) j ∈ [2, n − 1]; and
2) j = 1 in proving this theorem.

Case 1 j ∈ [2, n − 1].
Same as the proof of Theorem 2.
Case 2 j = 1.
For j = 1, the only difference is LK1

1. Therefore, we only
need to prove that conditions (R-1′), (R-2′′), and (R-3′) are
satisfied for j = 1. Since m1 and m0 are chosen to let the
number of ones in a row be exactly the same as LK0

1, so
|LK0

1|=|LK1
1|and H

(
OR

(
LK1

1|t
))

=H
(
OR

(
LK0

1|t
))

for t =
1. Thus, (R-1′) and (R-3′) are satisfied. For j = 1 and k = 2,
(R-2′′) is reduced as follows:

H
(
OR

(
LK1

1|t
)) �= H

(
OR

(
LK0

1|t
))

for t = 2. (10)

From construction, we have LK0
1 =

[
B

(2,n)
1

⋃
B

(3,n)
i2

⋃ · · ·

⋃
B

(n,n)
in−1

]
and LK1

1 =

⎡
⎢⎢⎢⎣ B

(2,n)
0

m1︷ ︸︸ ︷
1 · · · 1

m0︷ ︸︸ ︷
0 · · · 0

... · · · 10 · · · 0
1 · · · 10 · · · 0

⎤
⎥⎥⎥⎦, where

every row in LK0
1 and LK0

1 has the same Hamming weight.
Also, every row in B

(2,n)
1 and B

(2,n)
0 has the same Ham-

ming weight. The above statement implies the following

equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(
OR

(
LK0

1|1
))

= H
(
OR

(
LK1

1|1
))

H
(
OR

(
LK1

1|1
))

= H
(

OR
(
B

(2,n)
0 |1

))
+ m1

H
(
OR

(
LK0

1|1
))

= H
(

OR
(
B

(2,n)
1 |1

))
+

H
(

OR
([

B
(3,n)
i2

⋃ · · · ⋃ B
(n,n)
in−1

]
|1

))
.

(11)

From (11), we can derive H
(

OR
([

B
(3,n)
i2

⋃ · · ·⋃
B

(n,n)
in−1

]
|1

))
= m1. It is evident that, when stacking any two

binary vectors with m1 constant weights, the Hamming weight
is large than m1. Therefore, we have H

(
OR

([
B

(3,n)
i2

⋃ · · ·⋃
B

(n,n)
in−1

]
|2

))
≥ m1. Finally, we obtain

H
(
OR

(
LK0

1|2
))

= H
(

OR
(
B

(2,n)
1 |2

))
+H

(
OR

([
B

(3,n)
i2

⋃ · · · ⋃ B
(n,n)
in−1

]
|1

))
≥ H

(
OR

(
B

(2,n)
0 |2

))
+H

(
OR

([
B

(3,n)
i2

⋃ · · · ⋃ B
(n,n)
in−1

]
|1

))
≥ H

(
OR

(
B

(2,n)
0 |2

))
+ m1 = H

(
OR

(
LK1

1|2
))

.

(12)

In (12), H
(
OR

(
LK0

1|2
)) ≥ H

(
OR

(
LK1

1|2
))

and
this result implies H

(
OR

(
LK0

1|2
)) �= H

(
OR

(
LK1

1|2
))

. So,
(R-2′′) is satisfied.

Example 5: Construct the modified (2, 3)-RIVCS, (2, 4)-
RIVCS and (2, 5)-RIVCS.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 = LK0
3 =

[
B

(3,5)
0

⋃
B

(4,5)
0

⋃
B

(5,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1
1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1
1 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1
1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎦

LK1
1 =

[
B

(3,5)
1 LK0

1− B
(3,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1
0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1
0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1
0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎦

LK1
2 =

[
B

(4,5)
1 LK0

2− B
(4,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1
1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1
1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1
1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

LK1
3 =

[
B

(5,5)
1 LK0

3− B
(5,5)
0

]
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎦

(7)
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From Construction 3, we can derive the basis matrices of
the modified (2, 3)-RIVCS with m = 4, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1 = LK0

2 = B
(2,3)
1

⋃
B

(3,3)
1 =

[
1 0 0
0 1 0
0 0 1

]⋃[
1 0 0 1
0 1 0 1
0 0 1 1

]
=

[
1 0 0 1
0 1 0 1
0 0 1 1

]
LK1

1 =

[
B

(2,3)
1

1
1
1

]
=

[
B

(2,3)
0

1
1
1

]
=

[
1 0 0 1
1 0 0 1
1 0 0 1

]
LK1

2 =
[

B
(3,3)
1 LK0

2 − B
(3,3)
1

]
=
[

B
(3,3)
0 ∅

]
=

[
0 0 1 1
0 1 0 1
0 1 1 0

]
.

(13)

If we use B
(2,3)
1 =

⎡
⎣ 1 1 0

0 1 1
1 0 1

⎤
⎦ and B

(2,3)
0 =⎡

⎣ 1 1 0
1 1 0
1 1 0

⎤
⎦, from Construction 3, we have

LK0
1=LK0

2=B
(2,3)
1 �B

(3,3)
0 =

⎡
⎣ 0 0 1 1

0 1 0 1
0 1 1 0

⎤
⎦, and

LK1
1 =

⎡
⎣ B

(2,3)
1

1
1
1

⎤
⎦=

⎡
⎣ B

(2,3)
0

0
0
0

⎤
⎦

⎡
⎣ 1 1 0 0

1 1 0 0
1 1 0 0

⎤
⎦,

LK1
2 =

[
B

(3,3)
0 LK0

2 − B
(3,3)
0

]
=

[
B

(3,3)
1 ∅ ]

=⎡
⎣ 1 0 0 1

0 1 0 1
0 0 1 1

⎤
⎦. We can obtain the same matrices as

Wang’s (2, 3)-RIVCS.
Using the same approach, we can derive the basis matrices

of the modified (2, 4)-RIVCS with m = 10 and (2, 5)-RIVCS
with m = 20, as shown in (14) and (15), respectively, at the
top of the next page. �

Example 6: Construct the modified (3, 4)-RIVCS and
(3, 5)-RIVCS.

From Construction 2, we can derive the basis matrices of
the modified (3, 4)-RIVCS with m = 10 and the modified (3,
5)-RIVCS with m = 20 as shown in (16) and (17), respectively⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LK0
1=LK0

2=B
(3,4)
1

⋃
B

(4,4)
1 =

[
1 0 0 0 1 1 1 0 1 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 1 0 1 1 1 1
0 0 0 1 0 1 1 1 1 1

]

LK1
1=

[
B

(3,4)
1 LK0

1 − B
(3,4)
1

]
=

[
0 1 1 1 0 0 1 1 1 0
1 0 1 1 0 0 1 1 0 1
1 1 0 1 0 0 1 0 1 1
1 1 1 0 0 0 0 1 1 1

]

LK1
2=

[
B

(4,4)
1 LK0

2 − B
(4,4)
1

]
=

[
0 1 1 1 0 0 0 1 1 1
0 1 0 0 1 1 0 1 1 1
0 0 1 0 1 0 1 1 1 1
0 0 0 1 0 1 1 1 1 1

]
.

(16)

�

IV. Experiments and Comparisons

Six schemes are implemented to examine the performance
of the proposed (k, n)-RIVCS and the modified (k, n)-RIVCS.
Scheme #1 is Wang’s (2, 3)-RIVCS, Scheme #2 is the pro-
posed (2, 3)-RIVCS, Schemes #3 and #4 are our modified
(2, 3)-RIVCS and (2, 5)-RIVCS. All these four schemes are
(2, n)-RIVCS. Schemes #5 and 6 are the (k, n)-RIVCS with
k>2. Scheme #5 is the modified (3, 4)-RIVCS. Scheme #6 is

Fig. 2. Secret image and the secrecy-level decomposition. (a) Secret image.

(b) Two secrecy-level decomposition ABC
123 and abc

αβγ
used for (2, 3)-RIVCS

and (3, 4)-RIVCS. (c) Three secrecy-level decomposition ABC
123 , abc and

αβγ for (3, 5)-RIVCS. (d) Four secrecy-level decomposition ABC , abc ,

123 and αβγ used for (2,5)-RIVCS.

Fig. 3. Wang’s (2, 3)-RIVCS. (a) Stacking any two shadows to gain first
level secret. (b) Stacking all three shadows to gain second level secret.

the proposed (3, 5)-RIVCS, and this scheme is the modified
(3, 5)-RIVCS. MATLAB source codes of these schemes can
be found in the supplementary manuscript on the website
(http://cis.csie.ndhu.edu.tw/∼cnyang/RIVCS.htm).

Obviously, Wang’s RIVCS and our modified RIVCS cannot
be extended to grey-level secret images since both schemes
have the incorrect color problem. The proposed RIVCS can
be extended to grey-level/color secret images. Generally, for
processing grey-level or color secret images, a trivial solution
is to convert the secret image into the binary image by
the halftoning technique [44, 18]. Notice that color images
should be halftoned at the primary colors yellow, magenta,
and cyan. Then, we process these halftoned images using a
black-and-white VCS. However, a better way in designing
grey-level/color version needs further study. In all experiments,
we only show the black-and-white secret image to demonstrate
our improvements in revealing the correct color (the proposed
RIVCS) and having less pixel expansion (the modified RIVCS)
in comparing with Wang’s RIVCS.

As shown in Fig. 2(a), the secret image used for these
schemes is a printed-text secret image embracing ABC ,
abc , 123 , and αβγ . The two security-level decomposition

is shown in Fig. 2(b), the secret image is subdivided into two

regions, ABC
123 (with first security level) and abc

αβγ (with second

security level). This decomposition is used in Schemes #1,
#2, #3, and #5. For Scheme #6 and Scheme #4, we need three
and four security-level decompositions, respectively. Fig. 2(c)

shows three security regions: ABC
123 (with first security level),

abc (with second security level), and αβγ (with third
security level), and Fig. 2(d) shows four security regions:
ABC (with first security level), abc (with second security

level), 123 (with third security level), and αβγ (with fourth
security level).

The reconstructed images of Scheme #1 are shown in Fig. 3.
The revealed secrets by stacking two shadows and all three
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Fig. 4. Proposed (2, 3)-RIVCS. (a) Stacking any two shadows to gain first
level secret. (b) Stacking all three shadows to gain second level secret.

Fig. 5. Modified (2, 3)-RIVCS. (a) Stacking any two shadows to gain first
level secret. (b) Stacking all three shadows to gain second level secret.

shadows are ABC
123 [Fig. 3(a)], abc

αβγ [Fig. 3(b)], respectively.

It is observed that the color of ABC
123 is lighter than the

background, while the color of abc
αβγ is darker than the back-

ground. This is the incorrect color problem in Wang’s scheme.
Scheme #2 solves this incorrect color problem. However, it
has pixel expansion m = 6. From the reconstructed images
in Scheme #2 [Fig. 4(a), (b)], all printed texts are darker
than the background, and show the correct color. Scheme #3
has m = 4, which is the same as Scheme #1. Fig. 5 shows
the reconstructed images of Scheme #3. Although both (2,
3)-RIVCSs have same pixel expansion m = 4, Wang’s (2,
3)-RIVCS scheme has α = 1/4 for the first security level
region when stacking three shadows, while our modified (2, 3)-
RIVCS scheme enhances the contrast to α = 1/2 by stacking
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1
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⎤
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⎡
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(2,5)
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=

⎡
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1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
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1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

⎤
⎥⎦

LK1
2 =
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B

(3,5)
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2 − B
(3,5)
0
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=

⎡
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1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 1 1

⎤
⎥⎦

LK1
3 =

[
B

(4,5)
0 LK0

3 − B
(4,5)
0

]
=

⎡
⎢⎣

0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
1 1 0 1 1 0 0 1 0 0 0 0 1 0 0
1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1

1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

⎤
⎥⎦

LK1
4 =

[
B

(5,5)
0 LK0

4 − B
(5,5)
0

]
=

⎡
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1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
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0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

⎤
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Fig. 6. Modified (2, 5)-RIVCS. (a) Stacking any two shadows to obtain first
level secret. (b) Stacking any three shadows to obtain second level secret.
(c) Stacking any four shadows to obtain third level secret. (d) Stacking all
five shadows to obtain fourth level secret.

Fig. 7. Modified (3, 4)-RIVCS. (a) Stacking any three shadows to obtain
first level secret. (b) Stacking all four shadows to obtain second level secret.

Fig. 8. Proposed (3, 5)-RIVCS [also is the modified (3, 5)-RIVCS].
(a) Stacking three shadows to obtain first level secret. (b) Stacking four
shadows to obtain second level secret. (c) Stacking five shadows to obtain
third level secret.

three shadows. It is observed that ABC
123 in Fig. 5(b) is clearer

than Fig. 3(b). Experimental results of Scheme #4 are shown
in Fig. 6. We gradually reveal the secret images with different
security levels by stacking 2, 3, 4 and 5 shadows, respectively.
Scheme #4 has pixel expansion m = 20, which is lesser
than m = 23 in Wang’s (2, 5)-RVICS. Experimental results
of Scheme #5 and Scheme #6, where k ≥ 3, are shown in
Figs. 7 and 8. The color of text in the reconstructed image
in our modified (3, 4)-RIVCS is reversed. Scheme #6 is the
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Fig. 9. Wang’s (2, 3)-RIVCS. (a) Stacking any two shadows to gain first
level secret (Lena). (b) All three shadows to gain second level secret (Baboon).

Fig. 10. Proposed (2, 3)-RIVCS. (a) Stacking any two shadows to gain first
level secret (Lena). (b) All three shadows to gain second level secret (Baboon).

TABLE I

Comparison of Pixel Expansion

(k, n)-RIVCS
Proposed Modified Wang’
Scheme Scheme Scheme

n = 3 6 4 4
k = 2 n = 4 14 10 10

n = 5 22 20 23

k = 3
n = 4 13 10 −
n = 5 20 20 −

k = 4 n = 5 20 20 −

proposed (3, 5)-RIVCS. Since {B(3,5)
i1

∪ B
(4,5)
i2

∪ B
(5,5)
i3

} has
minimal pixel expansion m=20 for i1=i2=i1=0, the proposed
(3, 5)-RIVCS is also the modified (3, 5)-RIVCS. Fig. 8 shows
three reconstructed images with different security levels for
our (3, 5)-RIVCS.

The secret image in all above experiments is a printed-text
secret. Figs. 9 and 10 show that Wang’s (2, 3)-RIVCS and the
proposed (2, 3)-RIVCS use two halftoned photos (Lena and
Baboon) as secret images for two regions. In stacking any two
and three shadows, we can gain the first level secret (Lena)
and second level secret (Baboon), respectively. It is observed
that the color of the Lena image is reversed in Wang’s (2, 3)-
RIVCS (Fig. 9), while the proposed (2, 3)-RIVCS (Fig. 10)
reveals these two photo images in correct contrast.

The pixel expansions of the proposed (k, n)-RIVCS, the
modified (k, n)-RIVCS, and Wang’s (2, n)-RIVCS, where 2 ≤
k ≤ 4 and 3 ≤ n ≤ 5, are illustrated in Table I. Although the
proposed scheme has larger pixel expansion than the modified
scheme, it shows correct colors for all regions. In comparing
with Wang’s scheme, our modified (2, 3)-RIVCS and (2, 4)-
RIVCS have the same pixel expansion, and the modified (2, 5)-
RIVCS has smaller pixel expansion. Contrasts of our modified
(2, n)-RIVCS and Wang’s (2, n)-RIVCS are shown in Table II,
where the asterisk denotes better contrast. It is observed that
our modified scheme has better contrasts for most cases.

TABLE II

Comparison of Contrast

(k, n)-RIVCS Security
Contrast of Our Modified Scheme (Wang’ Scheme)

Level
Stacking 2 Stacking 3 Stacking 4 Stacking 5
Shadows Shadows Shadows Shadows

n = 3
First 1/4 (1/4) 1/2∗ (1/4) − −

Second − 1/4 (1/4) − −
First 1/5 (1/5) 3/10 (3/10) 2/5∗ (3/10) −

n = 4 Second − 1/0 (1/10) 1/5∗ (1/10) −
k = 2 Third − − 1/10 (1/10) −

First 1/5∗ (4/23) 3/10∗ (6/23) 7/20∗ (7/23) 7/20∗ (7/23)
n = 5 Second − 1/20∗ (1/23) 1/10 (3/23∗) 3/20 (6/23∗)

Third − − 1/20∗ (1/23) 3/20∗ (3/23)
Fourth − − − 1/20∗ (1/23)

n = 4 First − 1/10 1/5 −
Second − − 1/10 −

k = 3 First − 1/20 1/10 3/20
n = 5 Second − − 1/20 3/20

Third − − − 1/20
k = 4 n = 5 First − − 1/20 3/20

Second − − − 1/20

V. Conclusion

Our paper presented a systematic way to construct two types
of (k, n)-RIVCSs for any values of k and n, where k < n. Also,
we theoretically proved that our (k, n)-RIVCSs satisfy security
and contrast conditions. The proposed (k, n)-RIVCS reveals
correct colors for all regions, and the modified (k, n)-RIVCS
has smaller shadow size and enhances the contrast.

APPENDIX

Base matrices used for constructing our (k, n)-RIVCS are
shown below.

Naor and Shamir’s (2, 4)-VCS

B
(2,4)
1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ B

(2,4)
0 =

⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Naor and Shamir’s (3, 4)-VCS

B
(3,4)
1 =

⎡
⎢⎢⎣

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1

⎤
⎥⎥⎦

B
(3,4)
0 =

⎡
⎢⎢⎣

0 1 1 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 0 0

⎤
⎥⎥⎦ .

Naor and Shamir’s (4, 4)-VCS

B
(4,4)
1 =

⎡
⎢⎢⎣

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦

B
(4,4)
0 =

⎡
⎢⎢⎣

0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦ .
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Naor and Shamir’s reversed (2, 5)-VCS

B
(2,5)
1 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦

B
(2,5)
0 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ .

Naor and Shamir’s (3, 5)-VCS

B
(3,5)
1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎦

B
(3,5)
0 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 0
1 0 1 1 1 0 0 0
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Droste’s (4, 5)-VCS [45]

B
(4,5)
1 =

⎡
⎢⎣

0 1 1 1 1 1 0 0 0 0 1 0 0 0 0
1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
1 1 0 1 1 0 0 1 0 0 0 0 1 0 0
1 1 1 0 1 0 0 0 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 1

⎤
⎥⎦

B
(4,5)
0 =

⎡
⎢⎣

1 1 1 1 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 1 1 0 0 0 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0 1 1 0 0 0
0 0 1 0 0 1 0 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 1 1 1 1 0 0 0

⎤
⎥⎦ .

Naor and Shamir’s (4, 5)-VCS

B
(5,5)
1 =

⎡
⎢⎣

1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

⎤
⎥⎦

B
(5,5)
0 =

⎡
⎢⎣

0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

⎤
⎥⎦ .
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