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Abstract: For a graph G = (V, E) and a set S ⊆ V(G) of a size at least 2, a path in G is said to be
an S-path if it connects all vertices of S. Two S-paths P1 and P2 are said to be internally disjoint if
E(P1) ∩ E(P2) = ∅ and V(P1) ∩ V(P2) = S; that is, they share no vertices and edges apart from S.
Let πG(S) denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity
πk(G) of G is then defined as the minimum πG(S), where S ranges over all k-subsets of V(G). In this
paper, we study the k-path-connectivity of the complete balanced tripartite graph Kn,n,n and obtain
πk(Kn,n,n) =

⌊
2n

k−1

⌋
for 3 ≤ k ≤ n.
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1. Introduction

An interconnection network is usually modeled by a connected graph G = (V, E),
where vertices represent processors and edges represent communication links between
processors. Connectivity is an important parameter to evaluate the reliability and fault
tolerance of a network. For a graph G, the connectivity κ(G) is defined as the minimum
cardinality of a subset V′ of vertices of G such that G−V′ is disconnected or trivial. An
equivalent definition of connectivity was given in [1]. For each 2-subset S = {u, v} of
vertices of G, let κ(S) denote the maximum number of internally disjoint (u, v)-paths in G.
Then, κ(G) =min{κ(S)|S ⊆ V and |S| = 2}.

There exist many generalizations of the classical connectivity, such as conditional
connectivity [2], component connectivity [3], tree-connectivity [4,5] and rainbow connectiv-
ity [6]. In particular, Hager [7] introduced the concept of path-connectivity, which concerns
paths connecting any k vertices in G and not only any two. Given a graph G = (V, E) and
a set S ⊆ V(G) of a size at least 2, a path in G is said to be an S-path if it connects all
vertices of S. Two S paths P1 and P2 are said to be internally disjoint if E(P1) ∩ E(P2) = ∅
and V(P1) ∩V(P2) = S; that is, they share no vertices and edges apart from S. Let πG(S)
denote the maximum number of internally disjoint S-paths in G. The k-path connectivity
of G, denoted by πk(G), is then defined as πk(G) =min{πG(S)|S ⊆ V(G) and |S| = k},
where 2 ≤ k ≤ n. Clearly, π2(G) is exactly the classical connectivity κ(G), and πn(G) is
exactly the maximum number of edge-disjoint Hamiltonian paths in G.

In [7], Hager studied the sufficient conditions for πk(G) to be at least ` in terms of
κ(G). Hager conjectured that if G is a graph with κ(G) ≥ `(k− 1) for k ≥ 2 and ` ≥ 1,
then πk(G) ≥ `; moreover, the bound is sharp. He confirmed the conjecture for 2 ≤ k ≤ 4.
Recently, Li et al. [8] showed that this conjecture also is true for k = 5. Moreover, they
studied the complexity of the path-connectivity. With their conclusions, it is difficult to
obtain πk(G) for general G and k ≥ 5. In [9,10], the path connectivity of lexicographic
product graphs was investigated. For special classes of graphs, the exact values of πk(G)
were obtained for complete graphs [7] and complete bipartite graphs [7,11].

Axioms 2022, 11, 270. https://doi.org/10.3390/axioms11060270 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060270
https://doi.org/10.3390/axioms11060270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2706-0399
https://doi.org/10.3390/axioms11060270
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060270?type=check_update&version=2


Axioms 2022, 11, 270 2 of 6

A complete multipartite graph is balanced if the partite sets all have the same cardi-
nality. In this paper, we study the k-path-connectivity of the complete balanced tripartite
graph Kn,n,n and obtain πk(Kn,n,n) =

⌊
2n

k−1

⌋
, for 3 ≤ k ≤ n. Moreover, our result implies

that Hager’s conjecture is true for Kn,n,n and 3 ≤ k ≤ n.

2. Main Result

We first introduce some notations and terminology that will be used throughout the paper.
The subgraph of G induced by a vertex set U ⊆ V(G) is denoted by G[U]. A subset S

of V is called an independent set of G if no two vertices of S are adjacent in G. For any two
vertices x, y ∈ V(G), an xy-path is a path starting at x and ending at y. For convenience, let
[x1, xn] = {x1, . . . , xn}. We refer the reader to [12] for the notations and terminology not
defined in this paper.

Now we provide our main result.

Theorem 1. Given any positive integer n ≥ 2, let Kn,n,n denote a complete balanced tripartite
graph in which each partite set contains exactly n vertices. Then, we have the following.

πk(Kn,n,n) =
⌊

2n
k−1

⌋
, for 3 ≤ k ≤ n.

Proof. Suppose that X, Y, and Z are the three parts of Kn,n,n, where X = [x1, xn], Y = [y1, yn],
and Z = [z1, zn]. Let G = Kn,n,n and S be any subset of V(G) of cardinality k. By the sym-
metry of Kn,n,n, we can assume that S∩X = A = [x1, xa], S∩Y = B = [y1, yb], S∩X = C =
[z1, zc]. Obviously, a + b + c = k.

Remember that, when we construct internally disjoint S-paths, each vertex in V(G) \ S
can appear on one S-path at most. We distinguish three cases as follows.

Case 1: a = b = 0 and c = k.
In this case, S ⊆ Z. Therefore, each vertex in S is adjacent to all the vertices in X ∪Y,

which means that we can use any k− 1 vertices of X ∪Y to connect all vertices in S into an
S-path. On the other hand, since S is an independent set, each S-path needs at least k− 1
vertices of X ∪Y. Thus, π(S) =

⌊
|X∪Y|

k−1

⌋
=
⌊

2n
k−1

⌋
.

Case 2: 1 ≤ a ≤ b ≤ c.
Note that 3 ≤ k = a + b + c ≤ n. We will show π(S) ≥

⌊
2n

k−1

⌋
in this case by

constructing
⌊

2(n−c−1)
k−1

⌋
+ 2 internally disjoint S-paths and prove that

⌊
2(n−c−1)

k−1

⌋
+ 2 ≥⌊

2n
k−1

⌋
. We divide the construction process into four steps. In Steps 1 and 2, we will

construct two S-paths mainly by using some edges in G[S] and some vertices in Z \ C. In
Steps 3 and 4, we will use n− c− 1 vertices from X \ A and n− c− 1 vertices from Y \ B to
construct

⌊
2(n−c−1)

k−1

⌋
internally disjoint S-paths. On these S-paths, any two vertices of S

are connected by the vertices from X \ A and Y \ B.
Step 1: Construct the first S-path P1.
Firstly, by using vertices zc+1, . . . , zc+b−1 in Z \C, we can connect all vertices y1, . . . , yb

of B into a path, denoted by P11, i.e., P11 = y1zc+1y2zc+2 . . . yb−1zc+b−1yb.
Since c ≥ a, A ⊆ {x1, . . . , xc}. Note that G[{x1, . . . , xc} ∪ C] = Kc,c. Thus, there must

exist a path, denoted by P12, connecting all the vertices of A ∪ C in G[{x1, . . . , xc} ∪ C].
More specifically, let P12 = z1x1z2 . . . xc−1zcxc.

Finally, using the vertex xc+1 to connect yb and z1, we obtain the first S-path P1, i.e.,
P1 = P11 ∪ {ybxc+1z1} ∪ P12.

Step 2: Construct the second S-path P2.
Firstly, by using the vertices zc+b, . . . , zc+b+a−2 in Z \C, we can connect all the vertices

x1, . . . , xa of A into a path, denoted by P21, i.e., P21 = x1zb+c . . . xa−1za+b+c−2xa.
Since c ≥ b, B ⊆ {y1, . . . , yc}. Similarly, in G[{y1, . . . , yc} ∪ C] there must exist a

path, denoted by P22, connecting all the vertices of B ∪ C. More specifically, let P22 =
z1y1z2 . . . yc−1zcyc.
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Finally, using the vertex yc+1 to connect xa and z1, we obtain the second S-path P2, i.e.,
P2 = P21 ∪ {xayc+1z1} ∪ P22.

Remark. After the first two steps, we have found two S-paths, which are obviously internally
disjoint. Moreover, there are n− c− 1 unused vertices in X\A (namely, xc+2, . . . , xn), n− c− 1
unused vertices in Y\B (namely, yc+2, . . . , yn) and n− k + 2 unused vertices in Z\C. Set A′ =
[xc+2, xn] and B′ = [yc+2, yn].

Step 3: Construct the next 2l S-paths, where l =
⌊

n−c−1
k−1

⌋
.

Note that, if l = 0, proceed directly to Step 4. Thus, we assume that l ≥ 1. We now
provide a method to construct S-paths in pairs. The outline of the method is as follows.

Firstly, we take
⌈

k−1
2

⌉
unused vertices from A

′
and

⌊
k−1

2

⌋
unused vertices from B

′
.

Then, using the k− 1 vertices in total, connect all the vertices of S into an S-path. Next, we
take

⌊
k−1

2

⌋
unused vertices from A

′
and

⌈
k−1

2

⌉
unused vertices from B

′
. Using the k− 1

vertices in total, construct another S-path. Thus, by
⌈

k−1
2

⌉
+
⌊

k−1
2

⌋
= k− 1 vertices in A

′

and
⌊

k−1
2

⌋
+
⌈

k−1
2

⌉
= k− 1 vertices in B

′
, we can obtain a pair of S-paths. By repeating

this process, we can construct l =
⌊

n−c−1
k−1

⌋
pairs of S-paths in this step.

Now, we construct the S-paths P3 and P4 to illustrate the specific method. Note that,
since a ≥ 1,

⌊
k−1

2

⌋
=
⌊

a+b+c−1
2

⌋
≥
⌊

b+c
2

⌋
≥ b ≥ a.

The construction of P3.
Firstly, by using b− 1 vertices xc+2, . . . , xc+b in A′, connect all vertices y1, . . . , yb of B

into a path, denoted by P31, i.e., P31 = y1xc+2y2xc+3 . . . xc+byb.
Similarly, by using a− 1 vertices yc+2, . . . , yc+a in B′, connect all vertices x1, . . . , xa of

A into a path, denoted by P32, i.e., P32 = x1yc+2x2yc+3 . . . yc+axa.
Then, join the vertices yb and z1 by vertex xc+b+1. Moreover, join vertices x1 and zc by

vertex yc+a+1.
Next, we take

⌈
k−1

2

⌉
− b unused vertices

[
xc+b+2, xc+1+d k−1

2 e
]

from A
′

and take⌊
k−1

2

⌋
− a unused vertices

[
yc+a+2, yc+1+b k−1

2 c
]

from B
′
. Since each vertex in A

′ ⋃
B
′

is adjacent to all the vertices in C, using the k− 1− a− b = c− 1 vertices in total, we can
connect all the vertices of C into a z1zc-path P33.

Now, we obtain the third S-path P3 = P31 ∪ {ybxc+b+1z1} ∪ P33 ∪ {zcyc+a+1x1} ∪ P32.
The construction of P4 is similar. The only difference is that the subpath P43 is con-

structed by
⌊

k−1
2

⌋
− b unused vertices in A

′
and d k−1

2 e − a unused vertices in B
′
. It follows

that the fourth S-path P4 uses
⌊

k−1
2

⌋
unused vertices in A

′
and

⌈
k−1

2

⌉
unused vertices in

B
′
, respectively.

Step 4: Construct the last path if necessary.
Let d = n− c− 1− l(k− 1). Thus, there are d unused vertices in A

′
and B

′
, respectively.

Since l =
⌊

n−c−1
k−1

⌋
, 0 ≤ d < k− 1. Now, according to the value of d, we distinguish two

cases.
If 0 ≤ d <

⌈
k−1

2

⌉
, then 2l = 2

⌊
n−c−1

k−1

⌋
= 2

⌊
l(k−1)+d

k−1

⌋
=
⌊

2(n−c−1)
k−1

⌋
. In this case, we

stop constructing any new S-path.
If
⌈

k−1
2

⌉
≤ d < k− 1, then 2l = 2

⌊
n−c−1

k−1

⌋
=
⌊

2(n−c−1)
k−1

⌋
− 1. Since d ≥

⌈
k−1

2

⌉
, we

can take
⌈

k−1
2

⌉
and

⌊
k−1

2

⌋
remaining vertices from A

′
and B

′
, respectively. Similarly to P3,

using the k− 1 vertices in total, we can obtain a new S-path.
Therefore, by the above four steps, we construct

⌊
2(n−c−1)

k−1

⌋
+ 2 S-paths, which are

obviously internally disjoint.
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Moreover, since 1 ≤ a ≤ b ≤ c, k− 1 = a + b + c− 1 ≥ c + 1. Hence,⌊
2(n− c− 1)

k− 1

⌋
+ 2 ≥

⌊
2(n− k + 1)

k− 1

⌋
+ 2 =

⌊
2n

k− 1

⌋
.

It follows that we can obtain at least
⌊

2n
k−1

⌋
internally disjoint S-paths in this case; that

is, π(S) ≥
⌊

2n
k−1

⌋
.

Case 3: a = 0 and 1 ≤ b ≤ c.
In this case, S = (B ∪ C). We will also construct at least

⌊
2n

k−1

⌋
internally disjoint

S-paths. We divide the construction process into four steps, as follows.
Step 1: Construct the first S-path P1.
By using b− 1 vertices zc+1, . . . , zc+b−1 in Z \ C, connect all the vertices y1, . . . , yb of B

into a path, denoted by P11, i.e., P11 = y1zc+1y2zc+2 . . . yb−1zc+b−1yb.
By using c− 1 vertices x1, . . . , xc−1 in X, connect all the vertices z1, . . . , zc of C into a

path, denoted by P12, i.e., P12 = z1x1z2x2 . . . zc−1xc−1zc.
Finally, using the vertex xc to connect yb and z1, we obtain the first S-path P1, i.e.,

P1 = P11 ∪ {ybxcz1} ∪ P12.
Step 2: Construct the second S-path P2.
Let P2 = z1y1z2 . . . yc−1zcyc. Since c ≥ b, B ⊆ {y1, . . . , yc}. Hence, P2 is a path

connecting all the vertices of B ∪ C, and so is an S-path.

Remark. After the first two steps, we have found two S-paths, which are obviously internally
disjoint. Moreover, there are n− c unused vertices in X\A (namely, xc+1, . . . , xn), n− c unused
vertices in Y\B (namely, yc+1, . . . , yn) and n− c− (b− 1) = n− k + 1 unused vertices in Z\C
(namely, zc+b, . . . , zn). Set A′ = [xc+1, xn], B′ = [yc+1, yn], and C

′
= [zk, zn].

Step 3: Construct the next 2l S-paths, where l =
⌊

n−c
k−1

⌋
.

The method is similar to case 2. If l = 0, proceed directly to Step 4. thus, we assume
that l ≥ 1. In general, by k− 1 vertices in A

′
and k− 1 vertices in B

′
, we can obtain S-paths

in pairs: use
⌈

k−1
2

⌉
unused vertices in A

′
and

⌊
k−1

2

⌋
unused vertices in B

′
to construct an

S-path; next, use
⌊

k−1
2

⌋
unused vertices in A

′
and

⌈
k−1

2

⌉
unused vertices in B

′
to construct

another S-path; by repeating this process, we can construct l =
⌊

n−c
k−1

⌋
pairs of S-paths.

However, when b = c,
⌊

k−1
2

⌋
=
⌊

2b−1
2

⌋
= b− 1 and

⌈
k−1

2

⌉
= b. If we only use b− 1

vertices in A
′

and b vertices in B
′

and do not use any other vertex and edge in E(G[B ∪ C]),
we cannot connect all the vertices of B ∪ C into a path. Thus, we distinguish two subcases:

Subcase 3.1: 1 ≤ b < c.
We have

⌊
k−1

2

⌋
≥ b.

Firstly, by using b vertices in A′, connect all vertices y1, . . . , yb of B and vertex z1 into a
y1z1-path, denoted by Pi1, where 3 ≤ i ≤ 2l + 2.

Next, when i is odd (when i is even), take
⌈

k−1
2

⌉
− b (

⌊
k−1

2

⌋
− b) unused vertices from

A
′
, and take

⌊
k−1

2

⌋
(
⌈

k−1
2

⌉
) unused vertices from B

′
. Using the k− 1− b = c− 1 vertices

in total, we can connect all vertices z1, . . . , zc of C into a z1zc-path Pi2.
Combining these two paths, we obtain an S-path Pi, i.e., Pi = Pi1 ∪ Pi2, where 3 ≤ i ≤

2l + 2.
Clearly, when i is odd (when i is even), then the path Pi uses

⌈
k−1

2

⌉
(
⌊

k−1
2

⌋
) vertices in

A
′

and
⌊

k−1
2

⌋
(
⌈

k−1
2

⌉
) vertices in B

′
, respectively.

Subcase 3.2: b = c.
We have

⌈
k−1

2

⌉
= b and

⌊
k−1

2

⌋
= b− 1.
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When i is odd (3 ≤ i ≤ 2l + 2), since
⌈

k−1
2

⌉
− b ≥ 0, by the same method as Subcase 3.1,

we can construct Pi by
⌈

k−1
2

⌉
unused vertices in A

′
and

⌊
k−1

2

⌋
unused vertices in B

′
.

However, when i is even, as noted above,
⌊

k−1
2

⌋
vertices in A

′
and

⌈
k−1

2

⌉
vertices in

B
′

are not enough to obtain an S-path. We will complete the construction with the help of a
vertex in C

′
, as follows.

Firstly, by using
⌊

k−1
2

⌋
= b− 1 vertices in A′, connect all the vertices y1, . . . , yb of B

into a y1yb-path, denoted by Pi1.
Then, by using

⌈
k−1

2

⌉
− 1 = b− 1 vertices in B′, connect all vertices z1, . . . , zc of C into

a z1zc-path, denoted by Pi2.
Finally, by one unused vertex ŷ in B′ and one unused vertex ẑ in C

′
, connect vertices

yb and z1. Then, we obtain an S-path Pi, i.e., Pi = Pi1
⋃

yb ẑŷz1
⋃

Pi2, where 3 ≤ i ≤ 2l + 2
and i is even.

Note that, it remains to show that the vertices in C
′

are enough. Therefore, we will
prove that |C′| ≥ l.

Since 3 ≤ k ≤ n and c ≥ 2, we obtain the following.

∣∣C′∣∣− l = n− k + 1−
⌊

n− c
k− 1

⌋
≥ n− k + 1− n− c

k− 1

=
n(k− 2)− (k− 1)2 + c

k− 1

≥ k(k− 2)− (k− 1)2 + c
k− 1

=
c− 1
k− 1

≥ 0.

Thus, in either case, we can always obtain 2l = 2
⌊

n−c
k−1

⌋
S-paths in this step.

Step 4: Construct the last path if necessary.
Let d = n− c− l(k− 1). Since l =

⌊
n−c
k−1

⌋
, 0 ≤ d < k− 1. Similarly to Case 2, according

to the value of d, distinguish two cases.
If 0 ≤ d <

⌈
k−1

2

⌉
, then 2l = 2

⌊
n−c
k−1

⌋
=
⌊

2(n−c)
k−1

⌋
. We stop constructing any new

S-path.
If
⌈

k−1
2

⌉
≤ d < k− 1, then 2l = 2

⌊
n−c
k−1

⌋
=
⌊

2(n−c)
k−1

⌋
− 1. We can construct one more

new S-path by the remaining d vertices in A
′

and B
′
, respectively.

Therefore, by the above four steps, we construct
⌊

2(n−c)
k−1

⌋
+ 2 S-paths, which are

obviously internally disjoint.
Moreover, since a = 0 and 1 ≤ b ≤ c, k− 1 = b + c− 1 ≥ c. Hence,⌊

2(n− c)
k− 1

⌋
+ 2 ≥

⌊
2(n− k + 1)

k− 1

⌋
+ 2 =

⌊
2n

k− 1

⌋
.

Thus, in this case, we can also obtain at least
⌊

2n
k−1

⌋
internally disjoint S-paths; that is,

π(S) ≥
⌊

2n
k−1

⌋
.

From the above discussion, π(S) ≥
⌊

2n
k−1

⌋
in all cases and π(S) is exactly

⌊
2n

k−1

⌋
in Case 1. Thus, we can conclude that πk(Kn,n,n) = min{π(S)|S ⊆ V(Kn,n,n), |S| = k} =⌊

2n
k−1

⌋
.
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By Steps 3 and 4 of Case 2 in Theorem 1, we can obtain the following corollary, which
may be useful for study on complete tripartite graphs.

Corollary 1. Let a, b, c, and d be positive integers with 1 ≤ a ≤ b ≤ c, and G be a complete
tripartite graph with three parts X, Y, and Z, where |X| = a + d, |Y| = b + d, and |Z| = c. For
any k-subset S of V(G), if |X ∩ S| = a, |Y ∩ S| = b, and |Z ∩ S| = c, then there always exist at
least

⌊
2d

k−1

⌋
internally disjoint S-paths in G, where k = a + b + c.

Remark. Since
(⌊

2n
k−1

⌋
+ 1
)
(k− 1) > κ(Kn,n,n) = 2n ≥

⌊
2n

k−1

⌋
(k− 1), Theorem 1 implies

that Hager’s conjecture is true for Kn,n,n and 3 ≤ k ≤ n.

3. Conclusions

k-path-connectivity is a natural generalization of the traditional connectivity. In this
paper, we showed that the k-path-connectivity of the complete balanced tripartite graph
Kn,n,n is

⌊
2n

k−1

⌋
, for 3 ≤ k ≤ n. For future work, we will continue to investigate the k-path-

connectivity of Kn,n,n for n + 1 ≤ k ≤ 3n. It would also be interesting to study the path
connectivity of complete r-partite graphs for r ≥ 4.
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