k-Path-Connectivity of Completely Balanced Tripartite Graphs

Pi Wang, Shasha Li * (D) and Xiaoxue Gao
School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China; 2011071032@nbu.edu.cn (P.W.); 2011071012@nbu.edu.cn (X.G.)
* Correspondence: lishasha@nbu.edu.cn

check for updates

Citation: Wang, P.; Li, S.; Gao, X. k-Path-Connectivity of Complete Balanced Tripartite Graphs. Axioms 2022, 11, 270. https://doi.org/ 10.3390/axioms11060270

Academic Editors: Sidney A. Morris and Elena Guardo

Received: 11 May 2022
Accepted: 31 May 2022
Published: 5 June 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

For a graph $G=(V, E)$ and a set $S \subseteq V(G)$ of a size at least 2, a path in G is said to be an S-path if it connects all vertices of S. Two S-paths P_{1} and P_{2} are said to be internally disjoint if $E\left(P_{1}\right) \cap E\left(P_{2}\right)=\varnothing$ and $V\left(P_{1}\right) \cap V\left(P_{2}\right)=S$; that is, they share no vertices and edges apart from S. Let $\pi_{G}(S)$ denote the maximum number of internally disjoint S-paths in G. The k-path-connectivity $\pi_{k}(G)$ of G is then defined as the minimum $\pi_{G}(S)$, where S ranges over all k-subsets of $V(G)$. In this paper, we study the k-path-connectivity of the complete balanced tripartite graph $K_{n, n, n}$ and obtain $\pi_{k}\left(K_{n, n, n}\right)=\left\lfloor\frac{2 n}{k-1}\right\rfloor$ for $3 \leq k \leq n$.

Keywords: path-connectivity; internally disjoint paths; complete balanced tripartite graphs
MSC: 05C38; 05C40

1. Introduction

An interconnection network is usually modeled by a connected graph $G=(V, E)$, where vertices represent processors and edges represent communication links between processors. Connectivity is an important parameter to evaluate the reliability and fault tolerance of a network. For a graph G, the connectivity $\kappa(G)$ is defined as the minimum cardinality of a subset V^{\prime} of vertices of G such that $G-V^{\prime}$ is disconnected or trivial. An equivalent definition of connectivity was given in [1]. For each 2-subset $S=\{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint (u, v)-paths in G. Then, $\kappa(G)=\min \{\kappa(S) \mid S \subseteq V$ and $|S|=2\}$.

There exist many generalizations of the classical connectivity, such as conditional connectivity [2], component connectivity [3], tree-connectivity [4,5] and rainbow connectivity [6]. In particular, Hager [7] introduced the concept of path-connectivity, which concerns paths connecting any k vertices in G and not only any two. Given a graph $G=(V, E)$ and a set $S \subseteq V(G)$ of a size at least 2 , a path in G is said to be an S-path if it connects all vertices of S. Two S paths P_{1} and P_{2} are said to be internally disjoint if $E\left(P_{1}\right) \cap E\left(P_{2}\right)=\varnothing$ and $V\left(P_{1}\right) \cap V\left(P_{2}\right)=S$; that is, they share no vertices and edges apart from S. Let $\pi_{G}(S)$ denote the maximum number of internally disjoint S-paths in G. The k-path connectivity of G, denoted by $\pi_{k}(G)$, is then defined as $\pi_{k}(G)=\min \left\{\pi_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=k\right\}$, where $2 \leq k \leq n$. Clearly, $\pi_{2}(G)$ is exactly the classical connectivity $\kappa(G)$, and $\pi_{n}(G)$ is exactly the maximum number of edge-disjoint Hamiltonian paths in G.

In [7], Hager studied the sufficient conditions for $\pi_{k}(G)$ to be at least ℓ in terms of $\kappa(G)$. Hager conjectured that if G is a graph with $\kappa(G) \geq \ell(k-1)$ for $k \geq 2$ and $\ell \geq 1$, then $\pi_{k}(G) \geq \ell$; moreover, the bound is sharp. He confirmed the conjecture for $2 \leq k \leq 4$. Recently, Li et al. [8] showed that this conjecture also is true for $k=5$. Moreover, they studied the complexity of the path-connectivity. With their conclusions, it is difficult to obtain $\pi_{k}(G)$ for general G and $k \geq 5$. In [9,10], the path connectivity of lexicographic product graphs was investigated. For special classes of graphs, the exact values of $\pi_{k}(G)$ were obtained for complete graphs [7] and complete bipartite graphs [7,11].

A complete multipartite graph is balanced if the partite sets all have the same cardinality. In this paper, we study the k-path-connectivity of the complete balanced tripartite graph $K_{n, n, n}$ and obtain $\pi_{k}\left(K_{n, n, n}\right)=\left\lfloor\frac{2 n}{k-1}\right\rfloor$, for $3 \leq k \leq n$. Moreover, our result implies that Hager's conjecture is true for $K_{n, n, n}$ and $3 \leq k \leq n$.

2. Main Result

We first introduce some notations and terminology that will be used throughout the paper.
The subgraph of G induced by a vertex set $U \subseteq V(G)$ is denoted by $G[U]$. A subset S of V is called an independent set of G if no two vertices of S are adjacent in G. For any two vertices $x, y \in V(G)$, an $x y$-path is a path starting at x and ending at y. For convenience, let $\left[x_{1}, x_{n}\right]=\left\{x_{1}, \ldots, x_{n}\right\}$. We refer the reader to [12] for the notations and terminology not defined in this paper.

Now we provide our main result.
Theorem 1. Given any positive integer $n \geq 2$, let $K_{n, n, n}$ denote a complete balanced tripartite graph in which each partite set contains exactly n vertices. Then, we have the following.

$$
\pi_{k}\left(K_{n, n, n}\right)=\left\lfloor\frac{2 n}{k-1}\right\rfloor, \text { for } 3 \leq k \leq n .
$$

Proof. Suppose that X, Y, and Z are the three parts of $K_{n, n, n}$, where $X=\left[x_{1}, x_{n}\right], Y=\left[y_{1}, y_{n}\right]$, and $Z=\left[z_{1}, z_{n}\right]$. Let $G=K_{n, n, n}$ and S be any subset of $V(G)$ of cardinality k. By the symmetry of $K_{n, n, n}$, we can assume that $S \cap X=A=\left[x_{1}, x_{a}\right], S \cap Y=B=\left[y_{1}, y_{b}\right], S \cap X=C=$ $\left[z_{1}, z_{c}\right]$. Obviously, $a+b+c=k$.

Remember that, when we construct internally disjoint S-paths, each vertex in $V(G) \backslash S$ can appear on one S-path at most. We distinguish three cases as follows.

Case 1: $a=b=0$ and $c=k$.
In this case, $S \subseteq Z$. Therefore, each vertex in S is adjacent to all the vertices in $X \cup Y$, which means that we can use any $k-1$ vertices of $X \cup Y$ to connect all vertices in S into an S-path. On the other hand, since S is an independent set, each S-path needs at least $k-1$ vertices of $X \cup Y$. Thus, $\pi(S)=\left\lfloor\frac{|X \cup Y|}{k-1}\right\rfloor=\left\lfloor\frac{2 n}{k-1}\right\rfloor$.

Case 2: $1 \leq a \leq b \leq c$.
Note that $3 \leq k=a+b+c \leq n$. We will show $\pi(S) \geq\left\lfloor\frac{2 n}{k-1}\right\rfloor$ in this case by constructing $\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor+2$ internally disjoint S-paths and prove that $\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor+2 \geq$ $\left\lfloor\frac{2 n}{k-1}\right\rfloor$. We divide the construction process into four steps. In Steps 1 and 2, we will construct two S-paths mainly by using some edges in $G[S]$ and some vertices in $Z \backslash C$. In Steps 3 and 4, we will use $n-c-1$ vertices from $X \backslash A$ and $n-c-1$ vertices from $Y \backslash B$ to construct $\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor$ internally disjoint S-paths. On these S-paths, any two vertices of S are connected by the vertices from $X \backslash A$ and $Y \backslash B$.

Step 1: Construct the first S-path P_{1}.
Firstly, by using vertices $z_{c+1}, \ldots, z_{c+b-1}$ in $Z \backslash C$, we can connect all vertices y_{1}, \ldots, y_{b} of B into a path, denoted by P_{11}, i.e., $P_{11}=y_{1} z_{c+1} y_{2} z_{c+2} \ldots y_{b-1} z_{c+b-1} y_{b}$.

Since $c \geq a, A \subseteq\left\{x_{1}, \ldots, x_{c}\right\}$. Note that $G\left[\left\{x_{1}, \ldots, x_{c}\right\} \cup C\right]=K_{c, c}$. Thus, there must exist a path, denoted by P_{12}, connecting all the vertices of $A \cup C$ in $G\left[\left\{x_{1}, \ldots, x_{c}\right\} \cup C\right]$. More specifically, let $P_{12}=z_{1} x_{1} z_{2} \ldots x_{c-1} z_{c} x_{c}$.

Finally, using the vertex x_{c+1} to connect y_{b} and z_{1}, we obtain the first S-path P_{1}, i.e., $P_{1}=P_{11} \cup\left\{y_{b} x_{c+1} z_{1}\right\} \cup P_{12}$.

Step 2: Construct the second S-path P_{2}.
Firstly, by using the vertices $z_{c+b}, \ldots, z_{c+b+a-2}$ in $Z \backslash C$, we can connect all the vertices x_{1}, \ldots, x_{a} of A into a path, denoted by P_{21}, i.e., $P_{21}=x_{1} z_{b+c} \ldots x_{a-1} z_{a+b+c-2} x_{a}$.

Since $c \geq b, B \subseteq\left\{y_{1}, \ldots, y_{c}\right\}$. Similarly, in $G\left[\left\{y_{1}, \ldots, y_{c}\right\} \cup C\right]$ there must exist a path, denoted by P_{22}, connecting all the vertices of $B \cup C$. More specifically, let $P_{22}=$ $z_{1} y_{1} z_{2} \ldots y_{c-1} z_{c} y_{c}$.

Finally, using the vertex y_{c+1} to connect x_{a} and z_{1}, we obtain the second S-path P_{2}, i.e., $P_{2}=P_{21} \cup\left\{x_{a} y_{c+1} z_{1}\right\} \cup P_{22}$.

Remark. After the first two steps, we have found two S-paths, which are obviously internally disjoint. Moreover, there are $n-c-1$ unused vertices in $X \backslash A\left(\right.$ namely, $\left.x_{c+2}, \ldots, x_{n}\right), n-c-1$ unused vertices in $Y \backslash B$ (namely, y_{c+2}, \ldots, y_{n}) and $n-k+2$ unused vertices in $Z \backslash C$. Set $A^{\prime}=$ $\left[x_{c+2}, x_{n}\right]$ and $B^{\prime}=\left[y_{c+2}, y_{n}\right]$.

Step 3: Construct the next $2 l S$-paths, where $l=\left\lfloor\frac{n-c-1}{k-1}\right\rfloor$.
Note that, if $l=0$, proceed directly to Step 4 . Thus, we assume that $l \geq 1$. We now provide a method to construct S-paths in pairs. The outline of the method is as follows.

Firstly, we take $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices from A^{\prime} and $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices from B^{\prime}. Then, using the $k-1$ vertices in total, connect all the vertices of S into an S-path. Next, we take $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices from A^{\prime} and $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices from B^{\prime}. Using the $k-1$ vertices in total, construct another S-path. Thus, by $\left\lceil\frac{k-1}{2}\right\rceil+\left\lfloor\frac{k-1}{2}\right\rfloor=k-1$ vertices in A^{\prime} and $\left\lfloor\frac{k-1}{2}\right\rfloor+\left\lceil\frac{k-1}{2}\right\rceil=k-1$ vertices in B^{\prime}, we can obtain a pair of S-paths. By repeating this process, we can construct $l=\left\lfloor\frac{n-c-1}{k-1}\right\rfloor$ pairs of S-paths in this step.

Now, we construct the S-paths P_{3} and P_{4} to illustrate the specific method. Note that, since $a \geq 1,\left\lfloor\frac{k-1}{2}\right\rfloor=\left\lfloor\frac{a+b+c-1}{2}\right\rfloor \geq\left\lfloor\frac{b+c}{2}\right\rfloor \geq b \geq a$.

The construction of P_{3}.
Firstly, by using $b-1$ vertices x_{c+2}, \ldots, x_{c+b} in A^{\prime}, connect all vertices y_{1}, \ldots, y_{b} of B into a path, denoted by P_{31}, i.e., $P_{31}=y_{1} x_{c+2} y_{2} x_{c+3} \ldots x_{c+b} y_{b}$.

Similarly, by using $a-1$ vertices y_{c+2}, \ldots, y_{c+a} in B^{\prime}, connect all vertices x_{1}, \ldots, x_{a} of A into a path, denoted by P_{32}, i.e., $P_{32}=x_{1} y_{c+2} x_{2} y_{c+3} \ldots y_{c+a} x_{a}$.

Then, join the vertices y_{b} and z_{1} by vertex x_{c+b+1}. Moreover, join vertices x_{1} and z_{c} by vertex y_{c+a+1}.

Next, we take $\left\lceil\frac{k-1}{2}\right\rceil-b$ unused vertices $\left[x_{c+b+2}, x_{c+1+\left\lceil\frac{k-1}{2}\right\rceil}\right]$ from A^{\prime} and take $\left\lfloor\frac{k-1}{2}\right\rfloor-a$ unused vertices $\left[y_{c+a+2}, y_{c+1+\left\lfloor\frac{k-1}{2}\right\rfloor}\right]$ from B^{\prime}. Since each vertex in $A^{\prime} \cup B^{\prime}$ is adjacent to all the vertices in C, using the $k-1-a-b=c-1$ vertices in total, we can connect all the vertices of C into a $z_{1} z_{c}$-path P_{33}.

Now, we obtain the third S-path $P_{3}=P_{31} \cup\left\{y_{b} x_{c+b+1} z_{1}\right\} \cup P_{33} \cup\left\{z_{c} y_{c+a+1} x_{1}\right\} \cup P_{32}$.
The construction of P_{4} is similar. The only difference is that the subpath P_{43} is constructed by $\left\lfloor\frac{k-1}{2}\right\rfloor-b$ unused vertices in A^{\prime} and $\left\lceil\frac{k-1}{2}\right\rceil-a$ unused vertices in B^{\prime}. It follows that the fourth S-path P_{4} uses $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices in A^{\prime} and $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices in B^{\prime}, respectively.

Step 4: Construct the last path if necessary.
Let $d=n-c-1-l(k-1)$. Thus, there are d unused vertices in A^{\prime} and B^{\prime}, respectively. Since $l=\left\lfloor\frac{n-c-1}{k-1}\right\rfloor, 0 \leq d<k-1$. Now, according to the value of d, we distinguish two cases.

If $0 \leq d<\left\lceil\frac{k-1}{2}\right\rceil$, then $2 l=2\left\lfloor\frac{n-c-1}{k-1}\right\rfloor=2\left\lfloor\frac{l(k-1)+d}{k-1}\right\rfloor=\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor$. In this case, we stop constructing any new S-path.

If $\left\lceil\frac{k-1}{2}\right\rceil \leq d<k-1$, then $2 l=2\left\lfloor\frac{n-c-1}{k-1}\right\rfloor=\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor-1$. Since $d \geq\left\lceil\frac{k-1}{2}\right\rceil$, we can take $\left\lceil\frac{k-1}{2}\right\rceil$ and $\left\lfloor\frac{k-1}{2}\right\rfloor$ remaining vertices from A^{\prime} and B^{\prime}, respectively. Similarly to P_{3}, using the $k-1$ vertices in total, we can obtain a new S-path.

Therefore, by the above four steps, we construct $\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor+2$ S-paths, which are obviously internally disjoint.

Moreover, since $1 \leq a \leq b \leq c, k-1=a+b+c-1 \geq c+1$. Hence,

$$
\left\lfloor\frac{2(n-c-1)}{k-1}\right\rfloor+2 \geq\left\lfloor\frac{2(n-k+1)}{k-1}\right\rfloor+2=\left\lfloor\frac{2 n}{k-1}\right\rfloor .
$$

It follows that we can obtain at least $\left\lfloor\frac{2 n}{k-1}\right\rfloor$ internally disjoint S-paths in this case; that is, $\pi(S) \geq\left\lfloor\frac{2 n}{k-1}\right\rfloor$.

Case 3: $a=0$ and $1 \leq b \leq c$.
In this case, $S=(B \cup C)$. We will also construct at least $\left\lfloor\frac{2 n}{k-1}\right\rfloor$ internally disjoint S-paths. We divide the construction process into four steps, as follows.

Step 1: Construct the first S-path P_{1}.
By using $b-1$ vertices $z_{c+1}, \ldots, z_{c+b-1}$ in $Z \backslash C$, connect all the vertices y_{1}, \ldots, y_{b} of B into a path, denoted by P_{11}, i.e., $P_{11}=y_{1} z_{c+1} y_{2} z_{c+2} \ldots y_{b-1} z_{c+b-1} y_{b}$.

By using $c-1$ vertices x_{1}, \ldots, x_{c-1} in X, connect all the vertices z_{1}, \ldots, z_{c} of C into a path, denoted by P_{12}, i.e., $P_{12}=z_{1} x_{1} z_{2} x_{2} \ldots z_{c-1} x_{c-1} z_{c}$.

Finally, using the vertex x_{c} to connect y_{b} and z_{1}, we obtain the first S-path P_{1}, i.e., $P_{1}=P_{11} \cup\left\{y_{b} x_{c} z_{1}\right\} \cup P_{12}$.

Step 2: Construct the second S-path P_{2}.
Let $P_{2}=z_{1} y_{1} z_{2} \ldots y_{c-1} z_{c} y_{c}$. Since $c \geq b, B \subseteq\left\{y_{1}, \ldots, y_{c}\right\}$. Hence, P_{2} is a path connecting all the vertices of $B \cup C$, and so is an S-path.

Remark. After the first two steps, we have found two S-paths, which are obviously internally disjoint. Moreover, there are $n-c$ unused vertices in $X \backslash A\left(\right.$ namely, $\left.x_{c+1}, \ldots, x_{n}\right), n-c$ unused vertices in $Y \backslash B$ (namely, y_{c+1}, \ldots, y_{n}) and $n-c-(b-1)=n-k+1$ unused vertices in $Z \backslash C$ (namely, z_{c+b}, \ldots, z_{n}). Set $A^{\prime}=\left[x_{c+1}, x_{n}\right], B^{\prime}=\left[y_{c+1}, y_{n}\right]$, and $C^{\prime}=\left[z_{k}, z_{n}\right]$.

Step 3: Construct the next $2 l S$-paths, where $l=\left\lfloor\frac{n-c}{k-1}\right\rfloor$.
The method is similar to case 2 . If $l=0$, proceed directly to Step 4 . thus, we assume that $l \geq 1$. In general, by $k-1$ vertices in A^{\prime} and $k-1$ vertices in B^{\prime}, we can obtain S-paths in pairs: use $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices in A^{\prime} and $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices in B^{\prime} to construct an S-path; next, use $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices in A^{\prime} and $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices in B^{\prime} to construct another S-path; by repeating this process, we can construct $l=\left\lfloor\frac{n-c}{k-1}\right\rfloor$ pairs of S-paths.

However, when $b=c,\left\lfloor\frac{k-1}{2}\right\rfloor=\left\lfloor\frac{2 b-1}{2}\right\rfloor=b-1$ and $\left\lceil\frac{k-1}{2}\right\rceil=b$. If we only use $b-1$ vertices in A^{\prime} and b vertices in B^{\prime} and do not use any other vertex and edge in $E(G[B \cup C])$, we cannot connect all the vertices of $B \cup C$ into a path. Thus, we distinguish two subcases:

Subcase 3.1: $1 \leq b<c$.
We have $\left\lfloor\frac{k-1}{2}\right] \geq b$.
Firstly, by using b vertices in A^{\prime}, connect all vertices y_{1}, \ldots, y_{b} of B and vertex z_{1} into a $y_{1} z_{1}$-path, denoted by $P_{i 1}$, where $3 \leq i \leq 2 l+2$.

Next, when i is odd (when i is even), take $\left\lceil\frac{k-1}{2}\right\rceil-b\left(\left\lfloor\frac{k-1}{2}\right\rfloor-b\right)$ unused vertices from A^{\prime}, and take $\left\lfloor\frac{k-1}{2}\right\rfloor\left(\left\lceil\frac{k-1}{2}\right\rceil\right)$ unused vertices from B^{\prime}. Using the $k-1-b=c-1$ vertices in total, we can connect all vertices z_{1}, \ldots, z_{c} of C into a $z_{1} z_{c}$-path $P_{i 2}$.

Combining these two paths, we obtain an S-path P_{i}, i.e., $P_{i}=P_{i 1} \cup P_{i 2}$, where $3 \leq i \leq$ $2 l+2$.

Clearly, when i is odd (when i is even), then the path P_{i} uses $\left\lceil\frac{k-1}{2}\right\rceil\left(\left\lfloor\frac{k-1}{2}\right\rfloor\right)$ vertices in A^{\prime} and $\left\lfloor\frac{k-1}{2}\right\rfloor\left(\left\lceil\frac{k-1}{2}\right\rceil\right)$ vertices in B^{\prime}, respectively.

Subcase 3.2: $b=c$.
We have $\left\lceil\frac{k-1}{2}\right\rceil=b$ and $\left\lfloor\frac{k-1}{2}\right\rfloor=b-1$.

When i is odd $(3 \leq i \leq 2 l+2)$, since $\left\lceil\frac{k-1}{2}\right\rceil-b \geq 0$, by the same method as Subcase 3.1, we can construct P_{i} by $\left\lceil\frac{k-1}{2}\right\rceil$ unused vertices in A^{\prime} and $\left\lfloor\frac{k-1}{2}\right\rfloor$ unused vertices in B^{\prime}.

However, when i is even, as noted above, $\left\lfloor\frac{k-1}{2}\right\rfloor$ vertices in A^{\prime} and $\left\lceil\frac{k-1}{2}\right\rceil$ vertices in B^{\prime} are not enough to obtain an S-path. We will complete the construction with the help of a vertex in C^{\prime}, as follows.

Firstly, by using $\left\lfloor\frac{k-1}{2}\right\rfloor=b-1$ vertices in A^{\prime}, connect all the vertices y_{1}, \ldots, y_{b} of B into a $y_{1} y_{b}$-path, denoted by $P_{i 1}$.

Then, by using $\left[\frac{k-1}{2}\right]-1=b-1$ vertices in B^{\prime}, connect all vertices z_{1}, \ldots, z_{c} of C into a $z_{1} z_{c}$-path, denoted by $P_{i 2}$.

Finally, by one unused vertex \hat{y} in B^{\prime} and one unused vertex \hat{z} in C^{\prime}, connect vertices y_{b} and z_{1}. Then, we obtain an S-path P_{i}, i.e., $P_{i}=P_{i 1} \cup y_{b} \hat{z} \hat{y} z_{1} \cup P_{i 2}$, where $3 \leq i \leq 2 l+2$ and i is even.

Note that, it remains to show that the vertices in C^{\prime} are enough. Therefore, we will prove that $\left|C^{\prime}\right| \geq l$.

Since $3 \leq k \leq n$ and $c \geq 2$, we obtain the following.

$$
\begin{aligned}
\left|C^{\prime}\right|-l & =n-k+1-\left\lfloor\frac{n-c}{k-1}\right\rfloor \\
& \geq n-k+1-\frac{n-c}{k-1} \\
& =\frac{n(k-2)-(k-1)^{2}+c}{k-1} \\
& \geq \frac{k(k-2)-(k-1)^{2}+c}{k-1} \\
& =\frac{c-1}{k-1} \geq 0 .
\end{aligned}
$$

Thus, in either case, we can always obtain $2 l=2\left\lfloor\frac{n-c}{k-1}\right\rfloor S$-paths in this step.
Step 4: Construct the last path if necessary.
Let $d=n-c-l(k-1)$. Since $l=\left\lfloor\frac{n-c}{k-1}\right\rfloor, 0 \leq d<k-1$. Similarly to Case 2, according to the value of d, distinguish two cases.

If $0 \leq d<\left\lceil\frac{k-1}{2}\right\rceil$, then $2 l=2\left\lfloor\frac{n-c}{k-1}\right\rfloor=\left\lfloor\frac{2(n-c)}{k-1}\right\rfloor$. We stop constructing any new S-path.

If $\left\lceil\frac{k-1}{2}\right\rceil \leq d<k-1$, then $2 l=2\left\lfloor\frac{n-c}{k-1}\right\rfloor=\left\lfloor\frac{2(n-c)}{k-1}\right\rfloor-1$. We can construct one more new S-path by the remaining d vertices in A^{\prime} and B^{\prime}, respectively.

Therefore, by the above four steps, we construct $\left\lfloor\frac{2(n-c)}{k-1}\right\rfloor+2 S$-paths, which are obviously internally disjoint.

Moreover, since $a=0$ and $1 \leq b \leq c, k-1=b+c-1 \geq c$. Hence,

$$
\left\lfloor\frac{2(n-c)}{k-1}\right\rfloor+2 \geq\left\lfloor\frac{2(n-k+1)}{k-1}\right\rfloor+2=\left\lfloor\frac{2 n}{k-1}\right\rfloor .
$$

Thus, in this case, we can also obtain at least $\left\lfloor\frac{2 n}{k-1}\right\rfloor$ internally disjoint S-paths; that is, $\pi(S) \geq\left\lfloor\frac{2 n}{k-1}\right\rfloor$.

From the above discussion, $\pi(S) \geq\left\lfloor\frac{2 n}{k-1}\right\rfloor$ in all cases and $\pi(S)$ is exactly $\left\lfloor\frac{2 n}{k-1}\right\rfloor$ in Case 1. Thus, we can conclude that $\pi_{k}\left(K_{n, n, n}\right)=\min \left\{\pi(S)\left|S \subseteq V\left(K_{n, n, n}\right),|S|=k\right\}=\right.$ $\left\lfloor\frac{2 n}{k-1}\right\rfloor$.

By Steps 3 and 4 of Case 2 in Theorem 1, we can obtain the following corollary, which may be useful for study on complete tripartite graphs.

Corollary 1. Let a, b, c, and d be positive integers with $1 \leq a \leq b \leq c$, and G be a complete tripartite graph with three parts X, Y, and Z, where $|X|=a+d,|Y|=b+d$, and $|Z|=c$. For any k-subset S of $V(G)$, if $|X \cap S|=a,|Y \cap S|=b$, and $|Z \cap S|=c$, then there always exist at least $\left\lfloor\frac{2 d}{k-1}\right\rfloor$ internally disjoint S-paths in G, where $k=a+b+c$.

Remark. Since $\left(\left\lfloor\frac{2 n}{k-1}\right\rfloor+1\right)(k-1)>\kappa\left(K_{n, n, n}\right)=2 n \geq\left\lfloor\frac{2 n}{k-1}\right\rfloor(k-1)$, Theorem 1 implies that Hager's conjecture is true for $K_{n, n, n}$ and $3 \leq k \leq n$.

3. Conclusions

k-path-connectivity is a natural generalization of the traditional connectivity. In this paper, we showed that the k-path-connectivity of the complete balanced tripartite graph $K_{n, n, n}$ is $\left\lfloor\frac{2 n}{k-1}\right\rfloor$, for $3 \leq k \leq n$. For future work, we will continue to investigate the k-pathconnectivity of $K_{n, n, n}$ for $n+1 \leq k \leq 3 n$. It would also be interesting to study the path connectivity of complete r-partite graphs for $r \geq 4$.

Author Contributions: Conceptualization, S.L.; methodology, S.L.; validation, P.W. and X.G.; formal analysis, P.W. and X.G.; writing-original draft preparation, P.W.; writing-review and editing, X.G. and S.L.; supervision, S.L.; project administration, S.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the Natural Science Foundation of Ningbo, China (No. 202003N4148).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors are very grateful to Q. Jin for her helpful comments and suggestions. This study is supported by the Natural Science Foundation of Ningbo, China (No. 202003N4148).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Whitney, H. Congruent graphs and the connectivity of graphs. Am. J. Math. 1932, 54, 150-168. [CrossRef]

Harary, F. Conditional connectivity. Networks 1983, 13, 347-357. [CrossRef]
Sampathkumar, E. Connectivity of a graph—A generalization. J. Comb. Inf. Syst. Sci. 1984, 9, 71-78.
Hager, M. Pendant tree-connectivity. J. Comb. Theory Ser. B 1985, 38, 179-189. [CrossRef]
Li, X.; Mao, Y. Generalized Connectivity of Graphs; Springer: Cham, Switzerland, 2016.
Chartrand, G.; Johns, G.L.; McKeon, K.A.; Zhang, P. Rainbow connection in graphs. Math. Bohem. 2008, 133, 85-98. [CrossRef] Hager, M. Path-connectivity in graphs. Discrete Math. 1986, 59, 53-59. [CrossRef]
Li, S.; Qin, Z.; Tu, J.; Yue, J. On Tree-Connectivity and Path-Connectivity of Graphs. Graphs Combin. 2021, 37, 2521-2533. [CrossRef]
Ma, T.; Wang, J.; Zhang, M.; Liang, X. Path 3-(edge-)connectivity of lexicographic product graphs. Discrete Appl. Math. 2020, 282, 152-161. [CrossRef]
10. Mao, Y. Path-connectivity of lexicographic product graphs. Int. J. Comput. Math. 2016, 93, 27-39. [CrossRef]
11. Gao, X.; Li, S.; Zhao, Y. Note on Path-Connectivity of Complete Bipartite Graphs. J. Interconnect. Netw. 2022, 22. [CrossRef]
12. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Macmillan: London, UK, 2008.

