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Abstract
Wepropose a hierarchy of k-point bounds extending theDelsarte–Goethals–Seidel lin-
ear programming 2-point bound and the Bachoc–Vallentin semidefinite programming
3-point bound for spherical codes. An optimized implementation of this hierarchy
allows us to compute 4, 5, and 6-point bounds for the maximum number of equiangu-
lar lines in Euclidean space with a fixed common angle.
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1 Introduction

Given D ⊆ [−1, 1), a subset C of the unit sphere Sn−1 = { x ∈ R
n : ‖x‖ = 1 } is a

spherical D-code if x ·y ∈ D for all distinct x , y ∈ C , where x ·y is the Euclidean inner
product between x and y. The maximum cardinality of a spherical D-code in Sn−1 is
denoted by A(n, D).

Different sets D describe different problems that can be treated with similar tech-
niques. The most important cases are D being an interval and D being a finite set.
If D = [−1, cos(π/3)], then A(n, D) is the kissing number, the maximum number of
pairwise nonoverlapping unit spheres that can touch a central unit sphere.

A fundamental tool for computing upper bounds for A(n, D) is the linear program-
ming bound of Delsarte et al. [13], which is an adaptation of the Delsarte bound [12] to
the sphere. The linear programming bound was one of the first nontrivial upper bounds
for the kissing number and is the optimal value of a convex optimization problem. It
is a 2-point bound, because it takes into account interactions between pairs of points
on the sphere: pairs {x, y} with x · y /∈ D correspond to constraints in the optimiza-
tion problem. Bachoc and Vallentin [2] extended the linear programming bound to a
3-point bound by taking into account interactions between triples of points, extending
the three-point bound by Schrijver [44] for binary codes. The resulting semidefinite
programming bound gives the best known upper bounds for the kissing number for
all dimensions 3 ≤ n ≤ 24, although in dimensions n = 3, 4, 8, and 24 the optimal
values were already known by other methods.

In the same paper in which the linear programming bound was proposed, Delsarte
et al. [13] considered its application to bound A(n, D) when D is finite and also to
the related problem of bounding A(n, D) for all D with a given size |D| = s. The
semidefinite programming bound from Bachoc and Vallentin was first computed for
these problems by Barg and Yu [4].

In this paper, we give a hierarchy of k-point bounds that extend both the linear and
semidefinite programming bounds. We model the parameter A(n, D) as the indepen-
dence number of a graph, namely the infinite graph with vertex set Sn−1 in which
two vertices x and y are adjacent if x · y /∈ D. The linear programming bound corre-
sponds to an extension of the Lovász theta number to this infinite graph [1]. In Sect. 2,
we derive our hierarchy from a generalization [11] of Lasserre’s hierarchy to a class
of infinite graphs that comprises the graph being considered. The first level of our
hierarchy is the Lovász theta number, and is therefore equivalent to the linear pro-
gramming bound; the second level is the semidefinite programming bound by Bachoc
and Vallentin, as shown in Sect. 5.2. This puts the 2 and 3-point bounds in a common
framework and shows how these relate to the Lasserre hierarchy.

For the case where D is infinite, we give a precise reason why it is difficult to
compute the problems in this hierarchy when k ≥ 4. This might explain why so far
nobody has been able to compute a 4-point bound generalization of the 2 and 3-point
bounds for the kissing number problem. For the case where D is finite there is no
such obstruction, and though our hierarchy is not as strong, in theory, as the Lasserre
hierarchy, it is computationally less expensive. This allows us to use it to compute 4,
5, and 6-point bounds for the maximum number of equiangular lines with a certain
angle, a problem that corresponds to the case |D| = 2. Aside from a previous result of
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k-Point semidefinite programming bounds for equiangular… 535

de Laat [10], which uses Lasserre’s hierarchy directly, this is the first successful use
of k-point bounds for k > 3 for geometrical problems; it yields improved bounds for
the number of equiangular lines with given angles in several dimensions.

To perform computations, we transform the resulting problems into semidefinite
programming problems. To this end, for a given k ≥ 2 we use a characterization of
kernels K : Sn−1 × Sn−1 → R on the sphere that are invariant under the action of
the subgroup of the orthogonal group that stabilizes k − 2 given points. For k = 2,
this characterization was given by Schoenberg [43] and for k = 3, by Bachoc and
Vallentin [2]; Musin [36] extended these two results for k > 3; a similar result is given
by Kuryatnikova and Vera [42].

Still, a naive implementation of our approachwould be too slow even to generate the
problems for k = 5. The implementation available with the arXiv version of this paper
was carefully written to deal with the orbits of k points in the sphere in an efficient
way; this allows us to generate problems even for k = 6. This implementation could
be of interest to others working on similar problems.

1.1 Equiangular lines

A set of equiangular lines is a set of lines through the origin such that every pair of
lines defines the same angle. If this angle is α, then such a set of equiangular lines
corresponds to a spherical D-code where D = {a,−a} and a = cosα. So we are
interested in finding A(n, {a,−a}) for a given a ∈ [−1, 1) and also in finding the
maximum number of equiangular lines with any given angle, namely

M(n) = max{ A(n, {a,−a}) : a ∈ [−1, 1) }.

The study of M(n) started with Haantjes [24]. He showed that M(2) = 3 and
that the optimal configuration is a set of lines on the plane having a common angle
of 60◦. He also showed that M(3) = 6; the optimal configuration is given by the lines
going through opposite vertices of a regular icosahedron, which have a common angle
of 63.43 . . . degrees. These two constructions provide lower bounds; in both cases,
Gerzon’s bound, which states that M(n) ≤ n(n+1)/2 (see Theorem 6.1 below which
is proven for example inMatoušek’s book [35,Miniature 9]), provides matching upper
bounds.

In the setting of equiangular lines, the LP bound coincides with van Lint and
Seidel’s relative bound ([47], see also, Theorem 6.5). The 3-point SDP bound was first
specialized to this setting by Barg and Yu [4]. No k-point bound has been computed
or formulated for k ≥ 4 for equiangular lines or for any other spherical code problem.
Gijswijt, Mittelmann, and Schrijver [17] computed 4-point SDP bounds for binary
codes and Litjens, Polak, and Schrijver [34] extended these 4-point bounds to q-ary
codes.

Next to being fundamental objects in discrete geometry, equiangular lines have
applications, for example in the field of compressed sensing: Onlymeasurementmatri-
ceswhose columns are unit vectors determining a set of equiangular lines canminimize
the coherence parameter [16, Chapter 5].
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536 D. de Laat et al.

Table 1 Known values for M(n) for small dimensions together with the cosine a of the common angle
between the lines

n M(n) a SDP bound n M(n) a SDP bound

2 3 1/2 3 17 48–49 1/5 51

3 6 1/
√
5 6 18 56–60 1/5 61

4 6 1/3, 1/
√
5 6 19 72–74 1/5 76

5 10 1/3 10 20 90–94 1/5 96

6 16 1/3 16 21 126 1/5 126

7–13 28 1/3 28 22 176 1/5 176

14 28 1/3, 1/5 30 23–41 276 1/5 276

15 36 1/5 36 42 276–288 1/5, 1/7 288

16 40 1/5 42 43 344 1/7 344

The values known exactly were determined by several authors [5,21,24,31,47]. Most lower bounds are
collected byLemmens and Seidel [31], except for dimensions 18, 19, and 20 [32], [46, p.123]. The remaining
upper bounds [19,21,22] do not rely on semidefinite programming

In general, it is a difficult problem to determine M(n) for a given dimension n.
Currently, the first open case is dimension n = 17 where it is known that M(17)
is either 48 or 49; see Table 1. Sequence A002853 in The On-Line Encyclopedia of
Integer Sequences [45] is M(n).

2 Derivation of the hierarchy

In this section we derive a hierarchy of bounds for the independence number of a
graph. We first derive this for finite graphs and then we show how this can be extended
to a larger class, which includes the infinite graphs that we use to model the geometric
problems described in the introduction. We provide detailed arguments to justify each
step of the derivation, but Proposition 2.1 at the end of the section has a direct and
simple proof for the validity of the bound we use in the rest of the paper.

Let G = (V , E) be a graph. A subset of V is independent if it does not contain
a pair of adjacent vertices. The independence number of G, denoted by α(G), is the
maximum cardinality of an independent set. For an integer k ≥ 0, let Ik be the set of
independent sets in G of size at most k and I=k be the set of independent sets in G of
size exactly k.

2.1 Definition of the hierarchy for finite graphs

Assume for now that G is finite. We can obtain upper bounds for the independence
number via the Lasserre hierarchy [29] for the independent set problem, whose t-th
step, as shown by Laurent [30], can be formulated as
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k-Point semidefinite programming bounds for equiangular… 537

max

⎧
⎨

⎩

∑

S∈I=1

νS : ν ∈ R
I2t≥0, ν∅ = 1, and M(ν) � 0

⎫
⎬

⎭
, (1)

where M(ν) is the matrix indexed by It × It such that

M(ν)J ,J ′ =
{

νJ∪J ′ if J ∪ J ′ is independent;
0 otherwise

(2)

and M(ν) � 0 means that M(ν) is positive semidefinite. It is easily seen that this
hierarchy bounds the independence number from above since for an independent set
C ⊆ V , the vector ν ∈ R

I2t defined by νS = 1 if S ⊆ C and νS = 0 otherwise is
such that M(ν) is a principal submatrix of ννT and hence is a feasible solution to (1)
with value

∑
S∈I=1

νS = |C |. It is also shown [30] that this hierarchy converges to the
independence number in at most α(G) steps.

To produce an optimization programwhere the variables are easier to parameterize,
we construct in two stages a weaker hierarchywithmatrices indexed only by the vertex
set of the graph. First, we modify the problem to remove ∅ from the domain of ν; this
gives the possibly weaker problem

max

⎧
⎨

⎩
1 + 2

∑

S∈I=2

νS : ν ∈ R
I2t\{∅}
≥0 ,

∑

S∈I=1

νS = 1, and M(ν) � 0

⎫
⎬

⎭
, (3)

where M(ν) is now considered as a matrix indexed by (It\{∅}) × (It\{∅}). To see
how problem (3) is a weaker version of problem (1) and thus still an upper bound
for the independence number, let ν ∈ R

I2t be a feasible solution for (1) and define
ν ∈ R

I2t\{∅} as νS = νS/(
∑

Q∈I=1
νQ). One can check that ν is feasible for (3)

and
∑

S∈I=1
νS ≤ 1 + 2

∑
S∈I=2

νS . To justify this last inequality, apply the Schur
complement to the submatrix of M(ν) indexed by I1 to conclude that the matrix

(
ν{u,v} − ν{u}ν{v}

)

u,v∈V

indexed by I=1 � V (set ν{u,v} = 0 if {u, v} is not independent) is positive semidefinite
and hence

(
∑

u∈V
ν{u}

)2

≤
∑

u,v∈V
ν{u,v},

which implies the desired inequality.
Second, we construct a weaker hierarchy by only requiring certain principal sub-

matrices of M(ν) to be positive semidefinite, an approach similar to the one employed
by Gvozdenović et al. [23]. For this we fix k ≥ 2 and, for each Q ∈ Ik−2, define the
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538 D. de Laat et al.

matrix MQ(ν) : V × V → R by

MQ(ν)(x, y) =
{

νQ∪{x,y} if Q ∪ {x, y} ∈ Ik;
0 otherwise

and replace the condition ‘M(ν) � 0’ by ‘MQ(ν) � 0 for all Q ∈ Ik−2’. With these
conditions we can restrict the support of ν to the set Ik\{∅}, obtaining the relaxation

max

⎧
⎨

⎩
1 + 2

∑

S∈I=2

νS : ν ∈ R
Ik\{∅}
≥0 ,

∑

S∈I=1

νS = 1, and MQ(ν) � 0 for Q ∈ Ik−2

⎫
⎬

⎭
.

(4)

We now proceed to the computation of the dual of program (4). For that we use

R
V 2×Ik−2 to denote a collection ofmatrices V×V → R indexed by IIk−2 andR

V 2×Ik−2
�0

to denote that each of thesematrices is positive semidefinite.Wedefine a linear operator
Mk : RIk\{∅} → R

V 2×Ik−2 by

Mk(ν) = (
MQ(ν)

)

Q∈Ik−2

and write the constraints ‘MQ(ν) � 0 for all Q ∈ Ik−2’ as Mk(ν) ∈ R
V 2×Ik−2
�0 . The

adjoint operator is defined in such a way that the inner product between Mk(ν) and
T ∈ R

V 2×Ik−2 is equal to the inner product between ν and M∗
k (T ):

∑

Q∈Ik−2

∑

x,y∈V
MQ(ν)(x, y)T (x, y, Q) =

∑

Q∈Ik−2

∑

x,y∈V
Q∪{x,y}∈Ik

νQ∪{x,y}T (x, y, Q)

=
∑

S∈Ik\{∅}
νS

∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q),

so we conclude that the expression for M∗
k : RV 2×Ik−2 → R

Ik\{∅} is

M∗
k (T )(S) =

∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q). (5)

Using the duality theory of conic optimization as described e.g. by Barvinok [6,
Chapter IV], we can derive the following dual problem for (4):

min
{
1 + λ : λ ∈ R, T ∈ R

V 2×Ik−2
�0 , and M∗

k (T ) ≤ λχI=1 − 2χI=2

}
, (6)

where χI=1 and χI=2 are the characteristic functions of I=1 and I=2. It is a consequence
of weak duality that program (6) gives an upper bound for the independence number.
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k-Point semidefinite programming bounds for equiangular… 539

At the end of the next section we give a direct proof of this fact in a more general
context.

2.2 Definition of the hierarchy for infinite graphs

We extend this hierarchy to infinite graphs in the same way that the Lasserre hierarchy
is extended by deLaat andVallentin [11]. This extension can be carried out for compact
topological packing graphs; these are graphs whose vertex sets are compact Hausdorff
spaces and in which every finite clique is contained in an open clique. The main
consequences of this definition are that the independence number is finite and Ik ,
considered with the topology inherited from V , is the disjoint union of the compact
and open sets I=s for s = 0, …, k [11, Section 2]. We assume from now on that G is
a compact topological packing graph.

The extension relies on the theory of conic optimization over infinite-dimensional
spaces presented e.g. by Barvinok [6]. The first step is to introduce the spaces for the
variables of our problem; we will use both the space C(X) of continuous real-valued
functions on a compact space X and its topological dual (with respect to the supremum
norm) M(X), the space of signed Radon measures.

In the infinite setting, the nonnegative variable ν from (4) becomes a measure in
the dual of the cone C(Ik\{∅})≥0 of continuous and nonnegative functions, namely

M(Ik\{∅})≥0 = { ν ∈ M(Ik\{∅}) : ν( f ) ≥ 0 for all f ∈ C(Ik\{∅})≥0 };

we observe that when V is finite, M(Ik\{∅})≥0 can be identified with R
Ik\{∅}
≥0 .

Let C(V 2 × Ik−2)sym be the set of continuous real-valued functions on V 2 × Ik−2
that are symmetric in the first two coordinates and letM(V 2× Ik−2)sym be the space of
symmetric and signed Radon measures1. A kernel K ∈ C(V 2) is positive if for every
finite U ⊆ V the matrix

(
K (x, y)

)

x,y∈U is positive semidefinite. A function T ∈
C(V 2 × Ik−2) is positive if for every Q ∈ Ik−2 the kernel (x, y) �→ T (x, y, Q) is
positive. The set of all positive functions in C(V 2 × Ik−2) is a convex cone denoted
by C(V 2 × Ik−2)�0; its dual cone is denoted byM(V 2 × Ik−2)�0.

Instead of extending the operator Mk from the finite case, a key step in this
extension is to use its adjoint. Based on formula (5), we define the operator
Bk : C(V 2 × Ik−2)sym → C(Ik\{∅}) by

BkT (S) =
∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q). (7)

Note that, though the number of summands in (7) varies with the size of S, the func-
tion BkT is still continuous since, by the assumption that G is a topological packing
graph, Ik\{∅} can be written as the disjoint union of the compact and open subsets I=s

for s = 1, …, k and BkT is continuous in each of these parts. Furthermore, since the

1 A measure μ ∈ M(V 2 × Ik−2) is symmetric if μ(E × E ′ ×C) = μ(E ′ × E ×C) for all Borel sets E ,
E ′ ⊆ V and C ⊆ Ik−2.
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540 D. de Laat et al.

number of summands in (7) is bounded by a constant depending only on k, the operator
Bk is itself continuous. Thus it has an adjoint B∗

k : M(Ik\{∅}) → M(V 2 × Ik−2)sym.
Using the adjoint, we define the generalized k-point bound for k ≥ 2:

�k(G) = sup{ 1 + 2ν(I=2) : ν ∈ M(Ik\{∅})≥0,

ν(I=1) = 1, and B∗
k ν ∈ M(V 2 × Ik−2)�0 }. (8)

Note that for a finite graph with the discrete topology this reduces to (4).
Again, using the duality theory of conic optimization [6, Chapter IV], we can derive

the following dual problem for (8):

�k(G)∗ = inf{ 1 + λ : λ ∈ R, T ∈ C(V 2 × Ik−2)�0, and BkT ≤ λχI=1 − 2χI=2 },
(9)

where χI=1 and χI=2 are the characteristic functions of I=1 and I=2, which are contin-
uous since G is a topological packing graph. From now on, we will denote both the
optimal value of (9) and the optimization problem itself by �k(G)∗.

It is a direct consequence of weak duality that �k(G)∗ is an upper bound for the
independence number of G, but it is instructive to see a direct proof.

Proposition 2.1 If G = (V , E) is a compact topological packing graph, then α(G) ≤
�k(G)∗.

Proof Let C ⊆ V be a nonempty independent set and let (λ, T ) be a feasible solution
of �k(G)∗. On the one hand, since BkT ≤ λχI=1 − 2χI=2 , we have

∑

S⊆C
|S|≤k, S �=∅

BkT (S) ≤
(|C |

1

)

λ +
(|C |

2

)

(−2) = |C |(1 + λ − |C |).

On the other hand, since T ∈ C(V 2 × Ik−2)�0, we have

∑

S⊆C
|S|≤k, S �=∅

BkT (S) =
∑

S⊆C
|S|≤k, S �=∅

∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q)

=
∑

Q⊆C
|Q|≤k−2

∑

x,y∈C
T (x, y, Q) ≥ 0

since, by the definition of C(V 2× Ik−2)�0, thematrices
(
T (x, y, Q)

)

x,y∈C are positive
semidefinite for all Q ∈ Ik−2. Putting it all together we get |C | ≤ 1 + λ. ��

3 Symmetry reduction

Symmetry reduction plays a key role in the computation of�k(G)∗ in our application.
We now see how to exploit symmetry to decompose the variable T of (9) in terms of
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simpler kernels from C(V 2). In this section we keep assuming that G is a compact
topological packing graph and delay the specialization to the case where V is a sphere
to the next section.

Let � be a compact group that acts continuously on V and that is a subgroup of the
automorphism group2 of the graph G. The group � acts coordinatewise on V 2, and
this action extends to an action on C(V 2) by

(γ K )(x, y) = K (γ −1x, γ −1y).

The group � acts continuously on It by

γ∅ = ∅ and γ {x1, . . . , xt } = {γ x1, . . . , γ xt },

and hence it also acts on C(V 2 × Ik−2)sym by

(γ T )(x, y, S) = T (γ −1x, γ −1y, γ −1S).

If � acts on a set X , we denote by X� the set of elements of X that are invariant
under this action. In this way we write C(V 2)� , C(V 2 × Ik−2)

��0, etc.

Given a feasible solution (λ, T ) of �k(G)∗, the pair (λ, T ) with

T (x, y, S) =
∫

�

T (γ −1x, γ −1y, γ −1S) dγ,

where we integrate against the Haar measure on� normalized so that the total measure
is 1, is also feasiblewith the same objective value. Sowemay assume that T is invariant
under the action of �.

Let Rk−2 be a complete set of representatives of the orbits of Ik−2/�. For R ∈
Rk−2, let Stab�(R) = { γ ∈ � : γ R = R } be the stabilizer of R with respect to �

and, for Q ∈ �R, let γQ ∈ � be a group element such that γQQ = R. When Ik−2/�

is finite, we can decompose the space C(V 2× Ik−2)
� as a direct sum of simpler spaces.

The next proposition may seem rather technical but the main idea is to use the
symmetry of T ∈ C(V 2× Ik−2)

� and the assumption that there is just a finite collection
of representatives for the last coordinate to write T (x, y, Q) = T (γQx, γQ y, γQQ)

and express T by finitely many kernels, each of them representing T when its last
coordinate is fixed; this is also the place where the stabilizer subgroups come into
play.

Proposition 3.1 If Ik−2/� is finite, then


 :
⊕

R∈Rk−2

C(V 2)Stab�(R) → C(V 2 × Ik−2)
�

2 The automorphism group Aut(G) of a graph G = (V , E) is the group of permutations σ : V → V that
respect the adjacency relation; that is, σ(x) and σ(y) are adjacent if and only if x and y ∈ V are adjacent.

123



542 D. de Laat et al.

given by

((KR)R∈Rk−2)(x, y, Q) = KγQQ(γQx, γQ y)

is an isomorphism that preserves positivity, that is, if (KR)R∈Rk−2 is such that KR is
a positive kernel for each R, then 
((KR)R∈Rk−2) is positive.

Proof We first show that (V 2 × Ik−2)/� is homeomorphic to the disjoint union

⋃

R∈Rk−2

V 2/Stab�(R) × {R}.

More precisely, we show that

ψ :
⋃

R∈Rk−2

V 2/Stab�(R) × {R} → (V 2 × Ik−2)/�

given by ψ(Stab�(R)(x, y), R) = �(x, y, R) is such a homeomorphism with inverse

ψ−1(�(x, y, Q)) = (Stab�(γQQ)(γQx, γQ y), γQQ). (10)

Indeed, the map ψ is well defined because �(x, y, R) = �(γ x, γ y, R) for all γ in
Stab�(R). For each R ∈ Rk−2, the map ψR : V 2/Stab�(R) → (V 2 × Ik−2)/� given
by

ψR
(
Stab�(R)(x, y)

) = �(x, y, R)

is continuous, as follows from the definition of quotient topology. By the definition of
disjoint union topology, this implies ψ is continuous.

The map (10) is well defined, for if we replace γQ by ξγQ , where ξ ∈ Stab�(γQQ),
then the right-hand side of (10) does not change. Direct verification shows ψ−1 ◦ ψ

and ψ ◦ ψ−1 are the identity maps.
Since Rk−2 is finite, the domain of ψ is compact. So ψ is a continuous bijection

between compact Hausdorff spaces, and hence a homeomorphism.
Now the proposition follows easily. Under the isomorphisms

C
⎛

⎝
⋃

R∈Rk−2

V 2/Stab�(R) × {R}
⎞

⎠ �
⊕

R∈Rk−2

C(V 2)Stab�(R)

and

C((V 2 × Ik−2)/�) � C(V 2 × Ik−2)
�,

the operator 
 is equal to

C
⎛

⎝
⋃

R∈Rk−2

V 2/Stab�(R) × {R}
⎞

⎠ → C((V 2 × Ik−2)/�), f �→ f ◦ ψ−1,
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k-Point semidefinite programming bounds for equiangular… 543

which is a well-defined isomorphism since ψ is a homeomorphism. Finally, it follows
directly from the definitions of positive kernels and C(V 2 × Ik−2)

��0 that 
 preserves
positivity. ��

The above proposition shows that to characterize C(V 2 × Ik−2)
� we need to

characterize the sets C(V 2)Stab�(R) for R ∈ Rk−2. In the next section we give this
characterization for the case of spherical symmetry.

4 Parameterizing invariant kernels on the sphere by positive
semidefinite matrices

From now on we assume G = (V , E) is the graph where V = Sn−1 and where two
distinct vertices x , y ∈ Sn−1 are adjacent if x · y /∈ D for some D ⊆ [−1, 1). We
assume D is closed in order to make G a compact topological packing graph. Taking
� = O(n), we are in the situation described in the previous section.

We observe that I=m/O(n) can be represented by the set ofm×m positive semidef-
inite matrices of rank at most n with ones in the diagonal and elements of D elsewhere,
up to simultaneous permutations of the rows and columns. So the condition that
Ik−2/O(n) is finite is fulfilled for any set D when k = 2 or 3 and it only holds
for finite D when k ≥ 4.

Let us see how to parameterize the cones

C(Sn−1 × Sn−1)
StabO(n)(R)

�0 for R ∈ Rk−2

by positive semidefinite matrices. For simplicity, we only consider the case where
every R ∈ Rk−2 consists of linearly independent vectors; later on we will see that all
cases considered in the computations satisfy this assumption.

Let {e1, . . . , en} be the standard basis of Rn and fix R ∈ Rk−2. By rotating a
set R ∈ Rk−2 if necessary, we may assume that R is contained in span({e1, . . . , em}),
where m = dim(span(R)). The stabilizer subgroup of O(n) with respect to R is
isomorphic to the direct product of two groups, namely

StabO(n)(R) � SR × StabO(n)(span(R)),

whereSR is isomorphic to a finite subgroup of O(m) that acts on the firstm coordinates
and acts on R as a permutation of its elements and StabO(n)(span(R)) is a group
isomorphic toO(n−m) that acts on the last n−m coordinates. Indeed, any rotation that
leaves span(R) and its orthogonal complement invariant and acts in R as a permutation
fixes R as a set and hence is from StabO(n)(R). Conversely, any rotation that fixes R as
a set will at most permute its elements and hence by linearity, leaves span(R) invariant;
while by orthogonality, such a rotation also leaves the orthogonal complement invariant
and hence is of the prescribed form.

If k = 2, then R = ∅ and StabO(n)(span(R)) = O(n). By a classical result of
Schoenberg [43], each positive O(n)-invariant kernel K : Sn−1 × Sn−1 → R is of the
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form

K (x, y) =
∞∑

l=0

al P
n
l (x · y)

for some nonnegative numbers a0, a1, … with absolute and uniform convergence,
where Pn

l is the Gegenbauer polynomial of degree l in dimension n normalized so
that Pn

l (1) = 1 (equivalently, Pn
l is the Jacobi polynomial with both parameters equal

to (n − 3)/2).
Kernels invariant under the stabilizer of one point were considered by Bachoc and

Vallentin [2] and kernels invariant under the stabilizer of more points were considered
by Musin [37]. The analogue of Schoenberg’s theorem for kernels invariant under the
stabilizer of one or more points is stated in terms of certain polynomials Pn,m

l , which
were called by Musin [37] “multivariate Gegenbauer polynomials”.

For 0 ≤ m ≤ n − 2, t ∈ R, and u, v ∈ R
m , the polynomial Pn,m

l is the (2m + 1)-
variable polynomial

Pn,m
l (t, u, v) = (

(1 − ‖u‖2)(1 − ‖v‖2))l/2Pn−m
l

(
t − u · v

√
(1 − ‖u‖2)(1 − ‖v‖2)

)

,

where ‖v‖ = √
v · v. If we use the convention R

0 = {0}, then Pn
l (t) = Pn,0

l (t, 0, 0).
Since the Gegenbauer polynomials are odd or even according to the parity of l, the
function Pn,m

l (t, u, v) is indeed a polynomial in the variables u, v, and t . Musin [37]

denotes Pn,m
l by G(n,m)

l and Bachoc and Vallentin [2] denote Pn,1
l by Qn−1

l .
Fix d ≥ 0, let Bl be a basis of the space of m-variable polynomials of degree at

most l (e.g. the monomial basis), and write zl(u) for the column vector containing the
polynomials in Bl evaluated at u ∈ R

m . Let Yn,m
l be the matrix of polynomials

Yn,m
l (t, u, v) = Pn,m

l (t, u, v)zd−l(u)zd−l(v)T .

The choice of d makes Yn,m
l a

(d−l+m
m

) × (d−l+m
m

)
matrix with (2m + 1)-variable

polynomials of degree at most 2d as its entries.
Given a matrix X with linearly independent columns, set L(X) = B−1XT , where

B is the matrix such that BBT is the Cholesky factorization of XT X , which is unique
since XT X is positive definite. For each R ∈ Rk−2, fix a matrix AR whose columns
are the vectors of R in some order. The rows of L(AR) span the same space as the
columns of AR because B is invertible, and by construction the rows of L(AR) are
orthonormal:

L(AR)L(AR)T = B−1AT
R ARB

−T = B−1BBT B−T = I .

Therefore, for x ∈ R
n , L(AR)x is a vector with the coordinates of the projection of x

onto span(R) with respect to an orthonormal basis of the linear span.
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The following theorem is a restatement of a result of Musin [37, Corollary 3.2] in
terms of invariant kernels and with adapted notation. We will only use the sufficiency
part of the statement, proved in Appendix A for completeness.

For square matrices A, B of the same dimensions, write 〈A, B〉 = tr(AT B) for
their Frobenius inner product.

Theorem 4.1 Let R ⊆ Sn−1 with m = dim(span(R)) = |R| ≤ n − 2 and let AR be
a matrix whose columns are the vectors of R in some order. Fix d ≥ 0 and, for each
0 ≤ l ≤ d, let Fl be a positive semidefinite matrix with

(d−l+m
m

)
rows and columns.

Then K : Sn−1 × Sn−1 → R given by

K (x, y) =
d∑

l=0

〈
Fl ,Y

n,m
l (x · y, L(AR)x, L(AR)y)

〉
(11)

is a positive, continuous, and StabO(n)(span(R))-invariant kernel. Conversely, every
StabO(n)(span(R))-invariant kernel K ∈ C(Sn−1× Sn−1)�0 can be uniformly approx-
imated by kernels of the above form.

Theorem 4.1 gives us a parameterization of StabO(n)(span(R))-invariant kernels.
To get a parameterization of StabO(n)(R)-invariant kernels we still have to deal
with the symmetries in SR . By construction, for an orthogonal matrix σ ∈ SR

there is a permutation matrix Pσ such that σ AR = AR Pσ . Since σ ∈ O(n) and
AT
R AR = AT

Rσ T σ AR = PT
σ AT

R AR Pσ , the elements of SR correspond precisely to
the symmetries of the Gram matrix AT

R AR under simultaneous permutations of rows
and columns. Indeed, if the Gram matrix AT

R AR is invariant under a certain simul-
taneous permutation of rows and columns, then since R is linearly independent, this
permutation defines a linear transformation of span(R) that preserves all inner prod-
ucts between vectors of R, whence it is orthogonal and therefore corresponds to an
element of SR . This observation leads to the following corollary.

Corollary 4.2 Let R ⊆ Sn−1 with m = dim(span(R)) = |R| ≤ n − 2 and let AR be
a matrix whose columns are the vectors of R in some order. Fix d ≥ 0 and, for each
0 ≤ l ≤ d, let Fl be a positive semidefinite matrix with

(d−l+m
m

)
rows and columns.

Then K : Sn−1 × Sn−1 → R given by

K (x, y) =
d∑

l=0

〈
Fl ,Fl(R)(x, y)

〉
, (12)

where

Fl(R)(x, y) = 1

|SR |
∑

σ∈SR

Y n,m
l (x · y, L(AR Pσ )x, L(AR Pσ )y),

is a positive, continuous, and StabO(n)(R)-invariant kernel.
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Proof If K is given by (12), then by writing

K (x, y) = 1

|SR |
∑

σ∈SR

d∑

l=0

〈
Fl ,Y

n,m
l (x · y, L(AR Pσ )x, L(AR Pσ )y)

〉

we see using Theorem 4.1 that K is a sum of |SR | positive, continuous, and StabO(n)

(span(R))-invariant kernels, and hence it is itself positive, continuous, and StabO(n)

(span(R))-invariant.
Since, for every σ ∈ SR ,

L(AR Pσ )x = B−1PT
σ AT

Rx = B−1AT
Rσ T x = L(AR)σ T x

(recall BBT is the Cholesky decomposition of AT
R AR = (AR Pσ )T (AR Pσ )), and since

x · y = (σ T x) · (σ T y), we have that

K (x, y) = 1

|SR |
∑

σ∈SR

K ′(σ T x, σ T y), (13)

where

K ′(x, y) =
d∑

l=0

〈
Fl ,Y

n,m
l (x · y, L(AR)x, L(AR)y)

〉
.

Now it follows directly from (13) that K is StabO(n)(R)-invariant. ��

5 Semidefinite programming formulations

Before giving the semidefinite programming formulations, let us discuss how the
matrix-valued function Fl(R)(x, y) can be computed. We have

L(AR Pσ )x = B−1PT
σ AT

Rx = B−1PT
σ (AT

Rx),

where BBT is the Cholesky decomposition of AT
R AR = (AR Pσ )T (AR Pσ ). This

shows that L(AR Pσ )x depends only on the inner products between the vectors in the
set R ∪ {x} and on the ordering of the columns of AR . Since the size of R is bounded
by k − 2, this also shows that all computations for setting up the problem can be done
in a relatively small dimension depending on k and not on n.

5.1 An SDP formulation for spherical finite-distance sets

To write the full semidefinite programming formulation corresponding to (9), we use
Corollary 4.2 together with the isomorphism from Proposition 3.1. Let SN�0 denote
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the cone of N × N positive semidefinite matrices. If for R ∈ Rk−2 and 0 ≤ l ≤ d we
have FR,l ∈ SN�0, where N = (d−l+|R|

|R|
)
, then T : Sn−1 × Sn−1 × Ik−2 → R given by

T (x, y, Q) =
d∑

l=0

〈
FγQQ,l ,Fl(γQQ)(γQx, γQ y)

〉

is a function in C(Sn−1× Sn−1× Ik−2)
O(n)
�0 and hence, for S ∈ Rk\{∅}, the expression

for BkT (S) becomes

BkT (S) =
∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
{x,y}∪Q=S

T (x, y, Q)

=
∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
{x,y}∪Q=S

d∑

l=0

〈
FγQQ,l ,Fl(γQQ)(γQx, γQ y)

〉

=
∑

Q⊆S
|Q|≤k−2

d∑

l=0

〈
FγQQ,l ,

∑

x,y∈S
{x,y}∪Q=S

Fl(γQQ)(γQx, γQ y)
〉
.

Since the action ofO(n) on Sn−1 � I=1 is transitive, the quotient I=1/O(n) has only
one element. We setR1\R0 = {e1}, where e1 is the first canonical basis vector ofRn .
We replace the objective 1+λ in (9) by 1+ BkT ({e1}), which we can further simplify
by noticing that Yn,1

0 (1, 1, 1) is the all-ones matrix Jd+1 of size (d + 1)× (d + 1) and

Yn,1
l (1, 1, 1) is the zero matrix for l > 0. This gives the semidefinite programming

formulation

min

{

1 +
d∑

l=0

F∅,l + 〈F{e1},0, Jd+1〉 : FR,l ∈ S(d−l+|R|
|R| )

�0 for 0 ≤ l ≤ d and R ∈ Rk−2,

∑

Q⊆S
|Q|≤k−2

d∑

l=0

〈
FγQQ,l ,

∑

x,y∈S
{x,y}∪Q=S

Fl(γQQ)(γQx, γQ y)
〉 ≤ −2χI=2(S) for S ∈ Rk\R1

}

.

For each fixed d this gives an upper bound for �k(G)∗ that converges to �k(G)∗ as
d tends to infinity.

We give an efficient Julia [7] implementation to generate the semidefinite program-
ming input files for the solver, which was essential to make computations with k = 6.
This includes an efficient function for generating the representatives of the indepen-
dent sets, a function for checking whether two sets of vectors are in the same orbit,
an implementation of the function F that works entirely in dimension k, and finally
a function for setting up the semidefinite programming problems, which works for
general n, finite D, and k.
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5.2 A precise connection between the Bachoc–Vallentin bound and the Lasserre
hierarchy

The bound�2(G)∗ immediately reduces to the generalization of the Lovász ϑ number
as given by Bachoc et al. [1], which coincides with the LP bound [13] after symmetry
reduction. Here we show that �3(G)∗ can be interpreted as a nonsymmetric version
of the Bachoc–Vallentin 3-point bound [2].

Suppose T is feasible for �3(G)∗. If S = {a, b} with a �= b, then

B3T ({a, b}) =
∑

Q⊆S
|Q|≤1

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q)

= T (a, b,∅) + T (b, a,∅) + T (a, b, {a}) + T (b, a, {a})
+ T (b, b, {a}) + T (a, b, {b}) + T (b, a, {b}) + T (a, a, {b}).

By using T (x, y,∅) = ∑d
l=0 F∅,l Pn

l (x · y) and

T (x, y, {z}) =
d∑

l=0

〈
F{e1},l ,Fl

({e1}
)
(γ{z}x, γ{z}y)

〉

=
d∑

l=0

〈
F{e1},l ,Y

n,1
l (x · y, x · z, y · z)〉,

we see that

B3T ({a, b}) = 2
d∑

l=0

F∅,l P
n
l (a · b) + 6

d∑

l=0

〈
F{e1},l , Snl (a · b, a · b, 1)〉,

where we use the notation Snl = 1
6

∑
σ∈S3 σYn,1

l , in which σ runs through the group

of all permutations of three variables and acts on Yn,1
l by permuting its arguments.

If |S| = 3, say S = {a, b, c}, then

B3T ({a, b, c}) =
∑

Q⊆S
|Q|≤1

∑

x,y∈S
Q∪{x,y}=S

T (x, y, Q)

= T (a, b, {c}) + T (b, a, {c}) + T (a, c, {b})
+ T (c, a, {b}) + T (b, c, {a}) + T (c, b, {a})

= 6
d∑

l=0

〈
F{e1},l , Snl (a · b, a · c, b · c)〉.

Using the above expressions we see that the constraints B3T (S) ≤ −2 for S ∈ I=2
and B3T (S) ≤ 0 for S ∈ I=3 in�3(G)∗ are exactly the ones that appear inTheorem4.2
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of Bachoc and Vallentin [2]. Except for the presence of an ad hoc 2×2 matrix variable
b that comes from a separate argument, both bounds are identical.

Remark 5.1 Recall that for our method it is essential that Ik−2/O(n) be finite and that
I=m/O(n) can be represented by the set ofm×m positive semidefinitematrices of rank
at most n with ones in the diagonal and elements of D elsewhere, up to simultaneous
permutations of the rows and columns. So Ik−2/O(n) is finite for k = 2, 3, but infinite
whenever D is infinite and k ≥ 4. This explains why it is not clear how to compute a 4-
point bound generalization of the LP [13] and SDP [2] bounds for the size of spherical
codes with given minimal angular distance. For the spherical finite-distance problem,
however, the set Ik−2/O(n) is always finite, so that we can perform computations
beyond k = 3.

6 Two-distance sets and equiangular lines

If D = {a,−a} for some 0 < a < 1, then the vectors in a spherical D-code correspond
to a set of equiangular lines with common angle arccos a. We set

Ma(n) = A
(
n, {a,−a})

and write

M(n) = max
0<a<1

Ma(n)

for the maximum number of equiangular lines in Rn with any common angle.
A semidefinite programming bound based on the method of Bachoc and Vallentin

[2], and hence equivalent to �3(G)∗, was applied to this problem by Barg and Yu [5]
(see also the table computed by King and Tang [27]) which, together with previous
results, determines M(n) for most n ≤ 43.

Barg and Yu present [4, Eqs. (14)–(17)] a semidefinite programming formulation
that corresponds exactly to the formulation given in Sect. 5.1 when k = 3 (except
for an ad hoc 2 × 2 matrix). In the other papers [5,27,41,48] where this semidefinite
program is considered, a primal version is given instead, which is less convenient from
the perspective of rigorous verification of bounds.

In this paper we compute new upper bounds for Ma(n) for a = 1/5, 1/7, 1/9,
and 1/11 and many values of n using �k(G)∗ with k = 4, 5, and 6. The results do
not improve the known bounds for M(n) but greatly improve the known bounds for
Ma(n) for certain ranges of dimensions; these results are presented in Sect. 6.2.

6.1 Overview of the literature

The literature on equiangular lines is vast; here is a summary.
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6.1.1 Bounds forM(n)

The interest in M(n) started with Haantjes [24], who showed M(3) = M(4) = 6 in
1948. Since then, much progress has been made using different techniques, and M(n)

has been determined for many values of n ≤ 43. Table 1 presents the known values
for M(n) for small dimensions.

The most general bound for M(n), called the absolute bound, is due to Gerzon:

Theorem 6.1 (Gerzon, cf. Lemmens and Seidel [31])We have

M(n) ≤ n(n + 1)

2
.

Moreover, if equality holds, then n = 2, n = 3, or n = l2 − 2 for some odd integer l
and the cosine of the common angle is a = 1/l.

The four cases where it is known that the bound is attained are n = 2, 3, 7, and 23.
Delsarte et al. [13, Example 8.3] show that equality holds if and only if the union
of the code with its antipodal code is a tight spherical 5-design, and in this case
Cohn and Kumar [9] show this union is a universally optimal code (which means
it minimizes every completely monotonic potential function in the squared chordal
distance). Bannai et al. [3] and Nebe and Venkov [39] show that there are infinitely
manyodd integers l forwhich no tight spherical 5-design exists in Sn−1 withn = l2−2,
so that Gerzon’s bound cannot be attained in those dimensions. This list starts with
l = 7, 9, 13, 21, 25, 45, 57, 61, 69, 85, 93, … (resp. n = 47, 79, 167, 439, 623,
2023, 3247, 3719, 4759, 7223, 8647, …). For the remaining possible dimensions,
attainability is an open problem.

For the dimensions that are not of the form l2−2 for some odd integer l, the absolute
bound can be improved:

Theorem 6.2 (Glazyrin and Yu [18] and King and Tang [27]) Let l be the unique odd
integer such that l2 − 2 ≤ n ≤ (l + 2)2 − 3. Then,

M(n) ≤

⎧
⎪⎨

⎪⎩

n(l + 1)(l + 3)

(l + 2)2 − n
, n = 44, 45, 46, 76, 77, 78, 117, 118, 166, 222, 286, 358;

(l2 − 2)(l2 − 1)

2
, for all other n ≥ 44.

Furthermore, if the bound is attained, then the cosine of the angle between the lines
is a = 1/(l + 2) for the first case and a = 1/l for the second.

Glazyrin and Yu also proved another theorem [18, Theorem 4] about the codes that
attain the bound from Theorem 6.2:

Theorem 6.3 (Glazyrin and Yu [18]) Suppose l is a positive odd integer. If X is a
{1/l,−1/l}-spherical code of size (l2 − 2)(l2 − 1)/2 contained in Sn−1 with n ≤
3l2 − 16, then X must belong to a (l2 − 2)-dimensional subspace.
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Since (l + 2)2 − 3 ≤ 3l2 − 16 for l ≥ 5, this last theorem implies that if the second
bound from Theorem 6.2 is attained, then Gerzon’s bound also has to be attained for
n = l2 − 2. For the first two cases where tight spherical 5-designs do not exist, this
implies M(n) ≤ 1127 for 47 ≤ n ≤ 75 and M(n) ≤ 3159 for 79 ≤ n ≤ 116. The
following theorem is adapted from Larman, Rogers, and Seidel [28, Theorem 2]:

Theorem 6.4 (Larman et al. [28])We have

M(n) ≤ max{2n + 3, M1/3(n), M1/5(n), . . . , M1/l(n)},

where l is the largest odd integer such that l ≤ √
2n.

Most of the results for M(n) rely on Theorem 6.4, which shows that to bound
M(n) one just has to consider finitely many angles. This motivates the consideration
of Ma(n) when 1/a is an odd integer.

6.1.2 Bounds forMa(n)

Bounds for fixed a are known as relative bounds, as opposed to Gerzon’s absolute
bound from Theorem 6.1. The first relative bound is due to van Lint and Seidel [47]:

Theorem 6.5 (van Lint and Seidel [47]) If n < 1/a2, then

Ma(n) ≤ n(1 − a2)

1 − na2
.

As shown by Glazyrin and Yu [18, Theorem 5], Theorem 6.5 can be derived from
the positivity of the Gegenbauer polynomials Pn

2 , and indeed this is the bound given
by the semidefinite programming techniques when n ≤ 1/a2 − 2. This bound is also
the first case of Theorem 6.2.

After computing the semidefinite programming bound for many values of n and a,
Barg and Yu [5] observed long ranges 1/a2 − 2 ≤ n ≤ 3/a2 − 16 where the bound
remained stable, matching Gerzon’s bound (Theorem 6.1) at n = 1/a2 − 2. Based on
this observation, Yu [48] proved the following theorem:

Theorem 6.6 rm (Yu [48]) If n ≤ 3/a2 − 16 and a ≤ 1/3, then

Ma(n) ≤ (1/a2 − 2)(1/a2 − 1)

2
.

An alternative proof for the previous theorem is given by Glazyrin and Yu [18,
Theorem 6], where the use of the positivity of the Gegenbauer polynomials Pn−1

1
and Pn−1

3 is made more explicit. The bounds given by the semidefinite programming
method were also used to prove the following theorem:

Theorem 6.7 (Okuda and Yu [41]) If 3/a2 − 16 ≤ n ≤ 3/a2 + 6/a + 1, then

Ma(n) ≤ 2 + (n − 2)(1/a + 1)3

(3/a2 − 6/a + 2) − n
.
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The bounds from Theorems 6.5, 6.6, and 6.7 coincide with the values given by the
semidefinite programming formulation when k = 3 (see the points labeled “�3(G)∗
[5,27]” in Figs. 1, 2, 3 and 4). Another source of relative bounds is a technique called
pillar decomposition, introduced by Lemmens and Seidel [31] and used to determine
M1/3(n):

Theorem 6.8 (Lemmens and Seidel [31]) If n ≥ 15, then

M1/3(n) = 2n − 2.

For a = 1/5, they obtained results that lead to the following conjecture:

Conjecture 6.9 (Lemmens and Seidel [31])We have

M1/5(n) =
{
276 for 23 ≤ n ≤ 185;
� 3
2 (n − 1)� for n ≥ 185.

Note that 276 is the bound given by Theorem 6.6 when a = 1/5 and this shows
(together with the fact that there exists a {−1/5, 1/5}-code of size 276 in dimension
n = 23) that the conjecture is true for n ≤ 59. In fact, the semidefinite programming
bound computed by Barg and Yu [5] also shows M1/5(60) = 276. Neumaier [40]
(see also [20, Corollary 6.6]) proved that there exists a large N such that M1/5(n) =
� 3
2 (n − 1)� for all n > N . Neumaier claimed, without a proof, that N should be at

most 30251.
Recently, Lin and Yu [33] made progress in this conjecture by proving some claims

fromLemmens and Seidel [31]. The only case still open is when the code has a set with
4 unit vectors with mutual inner products −1/5 and no such set with 5 unit vectors
(up to replacement of some vectors by their antipodes).

Glazyrin and Yu [18] introduced a newmethod to derive upper bounds for spherical
finite-distance sets. By using Gegenbauer polynomials together with the polynomial
method, they proved a theorem that, specialized for two-distance sets, is:

Theorem 6.10 (Glazyrin and Yu [18]) For all a, b, and n, we have

A
(
n, {a, b}) ≤ n + 2

1 − (n − 1)/(n(1 − a)(1 − b))

whenever the right-hand side is positive.

With this result, they proved the following relative bound, which provides the best
bounds for moderately large values of n (see Figs. 2, 3 and 4):

Theorem 6.11 (Glazyrin and Yu [18]) If a ≤ 1/3, then

Ma(n) ≤ n

(
(a−1 − 1)(a−1 + 2)2

3a−1 + 5
+ (a−1 + 1)(a−1 − 2)2

3a − 5
+ 2

)

+ 2

≤ n

(
2

3
a−2 + 4

7

)

+ 2.
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King and Tang [27] improved the pillar decomposition technique and got a better
bound for M1/5(n) [27, Theorem 7]. Recently, Lin and Yu [33] further improved parts
of their argument; by combining [33, Proposition 4.5] with the proof of [27, Theorem
7] we get:

Theorem 6.12 (Lin and Yu [33]) If n ≥ 63, then

M1/5(n) ≤ 100 + 3A(n − 4, {1/13,−5/13}).

The previous results give three competing methods to bound M1/5(n), each one
being the best for a different range of dimensions. One can either use semidefinite
programming to bound M1/5(n) directly, use Theorem 6.12 together with semidefinite
programming to bound A

(
n−4, {1/13,−5/13}), or use Theorem 6.10. King and Tang

[27] made this comparison, computing the semidefinite programming bound�3(G)∗.
See in Table 2 and in Fig. 1 the comparison with the new semidefinite programming
bound �6(G)∗.

Regarding asymptotic results, while it is known that M(n) is asymptotically
quadratic in n (a quadratic lower bound in which the cosine of the angle between
the lines, a, tends to zero as n increases can be found in [20, Corollary 2.8], while
Theorem 6.1 gives a quadratic upper bound), for fixed a we have that Ma(n) is linear
in n. Bukh [8] was the first to show a bound for Ma(n) of the form Ma(n) ≤ cn,
although with a large constant c. Theorem 6.11 has another linear bound good to give
results for intermediate values of n, while the best asymptotic result is due to Jiang et
al. [25]. They completely settled the value of limn→∞ Ma(n)/n for every a in terms
of a parameter called the spectral radius order r(λ), which is defined for λ > 0 as the
smallest integer r so there exists a graph with r vertices and adjacency matrix with
largest eigenvalue exactly λ, and is defined r(λ) = ∞ in case no such graph exists.

Theorem 6.13 (Jiang et al. [25]) Fix 0 < a < 1. Let λ = (1 − a)/(2a) and r = r(λ)

be its spectral radius order. The maximum number Ma(n) of equiangular lines in R
n

with common angle arccos a satisfies

(a) Ma(n) = �r(n − 1)/(r − 1)� for all sufficiently large n > n0(a) if r < ∞.
(b) Ma(n) = n + o(n) as n → ∞ if r = ∞.

Jiang et al. remarks that the n0(a) from their theorem may be really big, though.
When a = 1/(2r − 1) for some positive integer r , then λ = r − 1 and r(λ) = r (since
the complete graph on r vertices has spectral radius r − 1). Theorem 6.13 confirms a
conjecture made by Bukh [8]:

Corollary 6.14 (Jiang et al. [25]) If a = 1/(2r − 1) for some positive integer r ≥ 2,
then for all n sufficiently large,

Ma(n) =
⌊
r(n − 1)

r − 1

⌋

.

There is a simple construction that achieves the value from Corollary 6.14. Let
a = 1/(2r −1) for some positive integer r and t, s be arbitrary positive integers. Then
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Fig. 1 Relative bounds for M1/5(n). In fact, King and Tang [27] computed a bound using �3(G)∗ together
with a theorem [27, Theorem 7] weaker than Theorem 6.12; the result is similar though

one can show that a matrix with t diagonal blocks, each of size r , and s diagonal blocks
of size 1, with diagonal entries equal to 1, off-diagonal entries inside each block equal
to−a, and all other entries equal to a is the Grammatrix of a {−a, a}-code in S(r−1)t+s

of size r t + s. Letting t = �(n−1)/(r −1)� and s = n−1− (r −1)�(n−1)/(r −1)�
we get the desired size.

6.2 New semidefinite programming bounds

As observed in Sect. 6, the semidefinite programming bounds computed by Barg and
Yu [5] and King and Tang [27] correspond to �3(G)∗. In this paper we compute new
upper bounds for Ma(n) for a = 1/5, 1/7, 1/9, and 1/11 and many values of n using
k = 4, 5, and 6. Since every two-distance set with these angles and at most k − 2 ≤ 4
vectors is linearly independent, the assumption made in Sect. 4 is satisfied. We always
use degree d = 5 for the polynomials since, as reported by Barg and Yu [4], no
improvement is observed for larger values of d (but this may change if sets D with
cardinality greater than 2 are considered). The semidefinite programs were produced
using a script written in Julia [7] using Nemo [15], were solved with SDPA-GMP [38],
and the results were rigorously verified using the interval arithmetic library Arb [26].
The rigorous verification procedure is much simpler than that for similar problems
[14]. The scripts used to generate the programs and verify the results can be found
with the arXiv version of this paper.

The results are presented in Figs. 1, 2, 3 and 4 and Tables 2, 3, 4 and 5, where
we compile the bounds for Ma(n) for each n that is a multiple of 5; the best bounds
are displayed in boldface. While it takes only a few seconds to generate and solve a
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Fig. 2 Relative bounds for M1/7(n)

Fig. 3 Relative bounds for M1/9(n)

single instance of the semidefinite programming problem for k = 3, the process takes
about 5 days using a single core of an Intel i7-8650U processor for k = 6; that is why
the tables have some missing values for �6(G)∗.

No improvements were obtained for n ≤ 3/a2 − 16; we observed in this case
that �6(G)∗ = �3(G)∗ which is equal to the values given by Theorems 6.5 and 6.6.
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Fig. 4 Relative bounds for M1/11(n)

Since this is the range of dimensions that influences M(n), no improvements for M(n)

were obtained. We obtained great improvements for all dimensions n > 3/a2 − 16,
making the semidefinite programming bound competitive with the other methods (like
Theorem 6.11) for more dimensions. Asymptotically, the semidefinite programming
bounds behave badly, loosing even to Gerzon’s bound.

In particular, we improved the range of dimensions for which the bound remains
stable, showing that n = 3/a2 − 16 from Theorem 6.6 is not optimal. Table 6 shows
how much this range is increased for the values of a considered. This observation
motivates the following two questions, where a is such that 1/a is an odd integer:

(1) What is the smallest n such that Ma(n) = (1/a2 − 2)(1/a2 − 1)/2?
(2) What is the smallest n such that Ma(n) > (1/a2 − 2)(1/a2 − 1)/2?

Question (1) is themore interesting of the two since if the smallest n is 1/a2−2, then
Gerzon’s bound is attained. Theorem6.3makes progress in this direction, showing that
Gerzon’s bound is also attained if the smallest n is at most 3/a2−16; this is known not
to be the case for many a (due to the nonexistence of some tight spherical 5-designs,
as mentioned after Theorem 6.1), which implies M1/7(n) ≤ 1127 for n ≤ 131 and
M1/9(n) ≤ 3159 for n ≤ 227. Table 6 also suggests that the constraint n ≤ 3/a2 − 16
in Theorem 6.3 may not be optimal.

Question (2) seems interesting because Table 6 shows that n = 3/a2 − 15 is not
a good candidate solution. In fact, the smallest n is likely much larger, as suggested
by Conjecture 6.9 for M1/5(n) and the construction described after Corollary 6.14.
Using this construction, we know that (1/a2 − 2)(1/a2 − 1)/2 is achieved when
n = (1/a2 − 2)(1/a − 1)2/2 + 1, which corresponds to the dimensions 185, 847,
2529, and 5951 for a = 1/5, 1/7, 1/9, and 1/11 respectively.
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Table 6 By considering �k (G)∗ for k ≥ 4 we find out that the maximum dimension n for which the bound
Ma(n) ≤ (1/a2 − 2)(1/a2 − 1)/2 is valid is larger than 3/a2 − 16 as given by Theorem 6.6 and �3(G)∗;
the table shows the improved dimensions

a (1/a2 − 2)(1/a2 − 1)/2 �3(G)∗ [5,27] �4(G)∗ �5(G)∗ �6(G)∗

1/5 276 60 65 69 70

1/7 1128 131 145 158 169

1/9 3160 227 251 273 300

1/11 7140 347 381 413 448

We also improve the bounds computed by King and Tang [27] for M1/5(n) by
replacing their theorem [27, Theorem 7] by Theorem 6.12 and by using �6(G)∗
to compute better bounds for A(n, {1/13,−5/13}). Lin and Yu [33] observed that
A(n, {1/13,−5/13}) ≥ 3n/2 − 3 and therefore there is a limit to the power of this
approach: it will never be able to prove Conjecture 6.9 no matter how much we
increase k. In general, it is not clear how good the bound �k(G)∗ can be for Ma(n)

if one allows k to increase; in contrast, de Laat and Vallentin [11, Theorem 2] show
that their version of the Lasserre hierarchy for compact topological packing graphs
converges to the independence number if enough steps are computed. Whether such a
convergence result holds for �k(G)∗ is an open question; in any case, it takes days to
compute �k(G)∗ for k = 6, so one can expect that solving the resulting semidefinite
programs for k > 6 will be hard in practice.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Proof of the sufficiency part of Theorem 4.1

We now prove, for the sake of completeness, a theorem that, together with the linear
transformation L(AR) used to compute the coordinates of the projection of a vector
with respect to an orthonormal basis of span(R), amounts to the sufficiency part
of Theorem 4.1, which is the direction used in this paper. It is a restatement of a
proposition of Musin [37, Corollary 3.1].

Recall that Pn
l is the Gegenbauer polynomial of degree l in dimension n normalized

so that Pn
l (1) = 1. For 0 ≤ m ≤ n − 2, t ∈ R, and u, v ∈ R

m , the polynomial Pn,m
l

is the (2m + 1)-variable polynomial

Pn,m
l (t, u, v) = (

(1−‖u‖2)(1−‖v‖2))l/2Pn−m
l

(
t − u · v

√
(1 − ‖u‖2)(1 − ‖v‖2)

)

, (14)

123

http://creativecommons.org/licenses/by/4.0/


564 D. de Laat et al.

where ‖v‖ = √
v · v. If we use the convention R

0 = {0}, then Pn
l (t) = Pn,0

l (t, 0, 0).
Fix d ≥ 0, let Bl be a basis of the space of m-variable polynomials of degree at
most l (e.g. the monomial basis), and write zl(u) for the column vector containing the
polynomials of Bl evaluated at u ∈ R

m . The matrix Yn,m
l is the matrix of polynomials

Yn,m
l (t, u, v) = Pn,m

l (t, u, v)zd−l(u)zd−l(v)T .

Theorem A.1 (Musin [37]) Let R ⊆ Sn−1 with m = dim(span(R)) ≤ n− 2 and let E
be anm×n matrix whose rows form an orthonormal basis for span(R). Fix d ≥ 0 and,
for each 0 ≤ l ≤ d, let Fl be a positive semidefinite matrix of size

(d−l+m
m

)× (d−l+m
m

)
.

Then K : Sn−1 × Sn−1 → R given by

K (x, y) =
d∑

l=0

〈
Fl ,Y

n,m
l (x · y, Ex, Ey)〉

is a positive, continuous, and StabO(n)(span(R))-invariant kernel.

First we prove that the polynomials Pn,m
l satisfy the following positivity property

[37, Theorem 3.1].

Proposition A.2 (Musin [37]) For 0 ≤ m ≤ n − 2, let E be an m × n matrix whose
rows form an orthonormal set in Rn and C be a finite subset of Sn−1. Then, for every
nonnegative integer l, the matrix

(
Pn,m
l (x · y, Ex, Ey))x,y∈C is positive semidefinite.

Proof If l = 0 then all polynomials evaluate to 1 and the proposition holds, so we
assume l �= 0. Let L be the space spanned by the rows of E and z be a unit vector in
L⊥. For each x ∈ C , write x = x1 + x2 with x1 ∈ L and x2 ∈ L⊥. If ‖x2‖ > 0, then
let x̄ = x2/‖x2‖, otherwise write x̄ = z. If ‖x2‖, ‖y2‖ �= 0, then

x̄ · ȳ = x2 · y2
‖x2‖‖y2‖ = x · y − x1 · y1

√
(1 − ‖x1‖2)(1 − ‖y1‖2)

.

Since the rows of E are orthonormal, we have x1 · y1 = (Ex) · (Ey) and hence
‖x2‖l‖y2‖l Pn−m

l (x̄ · ȳ) = Pn,m
l (x · y, Ex, Ey).

If, say, ‖x2‖ = 0, then ‖x2‖l‖y2‖l Pn−m
l (x̄ · ȳ) = 0, while Pn,m

l (x · y, Ex, Ey) is
also 0 as can be seen from (14) since x · y − x1 · y1 = x2 · y2 = 0.

Now { x̄ : x ∈ C } is contained in an embedding of Sn−m−1 into Sn−1 and by
Schoenberg’s theorem [43] we have that

(
Pn−m
l (x̄ · ȳ))x,y∈C is positive semidefinite.

Since
(‖x2‖l‖y2‖l

)

x,y∈C is positive semidefinite, so is
(‖x2‖l‖y2‖l Pn−m

l (x̄ · ȳ))x,y∈C ,
and we are done. ��
Proof of TheoremA.1 Since all entries of Yn,m

l are polynomials, K is continuous, and
since x · y, Ex , and Ey are invariant under the action of StabO(n)(span(R)) on (x, y),
K is invariant. To prove positivity, let C be a finite subset of Sn−1 and w : C → R be
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a function. We have

∑

x,y∈C
wxwyK (x, y) =

d∑

l=0

〈

Fl ,
∑

x,y∈C
wxwyY

n,m
l (x · y, Ex, Ey)

〉

.

To show this quantity is nonnegative, we will show that for all l = 0, …, d the
matrix

∑
x,y∈C wxwyY

n,m
l

(
x · y, Ex, Ey) is positive semidefinite. For this, write it

as a product of matrices: if B is the matrix whose columns are given by zd−l(Ex)
for x ∈ C , then

∑

x,y∈C
wxwyY

n,m
l (x · y, Ex, Ey)

=
∑

x,y∈C
wxwyzd−l(Ex)zd−l(Ey)

T Pn,m
l (x · y, Ex, Ey)

= B
(
Pn,m
l (x · y, Ex, Ey))x,y∈C BT ,

and, since the matrix
(
Pn,m
l (x · y, Ex, Ey))x,y∈C is positive semidefinite by Proposi-

tion A.2, we are done. ��

References

1. Bachoc, C., Nebe, G., de Oliveira Filho, F.M., Vallentin, F.: Lower bounds for measurable chromatic
numbers. Geom. Funct. Anal. 19(3), 645–661 (2009)

2. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J.
Am. Math. Soc. 21(3), 909–924 (2008)

3. Bannai, E., Munemasa, A., Venkov, B.: The nonexistence of certain tight spherical designs. Algebra
Anal. 16(4), 1–23 (2004)

4. Barg, A., Wei-Hsuan, Y.: New bounds for spherical two-distance sets. Exp. Math. 22(2), 187–194
(2013)

5. Barg, A., Yu, W.-H.: New bounds for equiangular lines. In: Discrete Geometry and Algebraic Combi-
natorics, Volume 625 of Contemporary Mathematics, pp. 111–121. Amer. Math. Soc., Providence, RI
(2014)

6. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathemat-
ical Society, Providence (2002)

7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017)

8. Bukh, B.: Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 30(1),
549–554 (2016)

9. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1),
99–148 (2007)

10. de Laat, D.:Momentmethods in energyminimization: new bounds for Rieszminimal energy problems.
Trans. Am. Math. Soc. 373, 1407–1453 (2020)

11. de Laat, D., Vallentin, F.: A semidefinite programming hierarchy for packing problems in discrete
geometry. Math. Program. 151(2, Ser. B), 529–553 (2015)

12. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep.
Suppl. 10, vi+97 (1973)

13. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedic. 6(3), 363–388
(1977)

123



566 D. de Laat et al.

14. Dostert, M., Guzmán, C., de Oliveira Filho, F.M., Vallentin, F.: New upper bounds for the density of
translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput.
Geom. 58(2), 449–481 (2017)

15. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra and number the-
ory packages for the Julia programming language. In: ISSAC’17—Proceedings of the 2017 ACM
International Symposium on Symbolic and Algebraic Computation, pp. 157–164. ACM, New York
(2017)

16. Foucart, S., Rauhut, H.: AMathematical Introduction to Compressive Sensing. Applied and Numerical
Harmonic Analysis. Birkhäuser/Springer, New York (2013)

17. Gijswijt, D.C., Mittelmann, H.D., Schrijver, A.: Semidefinite code bounds based on quadruple dis-
tances. IEEE Trans. Inform. Theory 58(5), 2697–2705 (2012)

18. Glazyrin, A., Wei-Hsuan, Y.: Upper bounds for s-distance sets and equiangular lines. Adv. Math. 330,
810–833 (2018)

19. Greaves, G.R.W.: Equiangular line systems and switching classes containing regular graphs. Linear
Algebra Appl. 536, 31–51 (2018)

20. Greaves, G.R.W., Koolen, J.H., Munemasa, A., Szöllősi, F.: Equiangular lines in Euclidean spaces. J.
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