FULL LENGTH PAPER

Series A

k-Point semidefinite programming bounds for equiangular lines

David de Lat ${ }^{1}{ }^{\text {(D) }}$. Fabrício Caluza Machado ${ }^{2}$. Fernando Mário de Oliveira Filho ${ }^{1}$. Frank Vallentin ${ }^{3}$

Received: 18 November 2019 / Accepted: 9 March 2021 / Published online: 21 April 2021
© The Author(s) 2021

Abstract

We propose a hierarchy of k-point bounds extending the Delsarte-Goethals-Seidel linear programming 2-point bound and the Bachoc-Vallentin semidefinite programming 3-point bound for spherical codes. An optimized implementation of this hierarchy allows us to compute 4, 5, and 6-point bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.

Mathematics Subject Classification 52C17.90C22

[^0]
1 Introduction

Given $D \subseteq[-1,1)$, a subset C of the unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ is a spherical D-code if $x \cdot y \in D$ for all distinct $x, y \in C$, where $x \cdot y$ is the Euclidean inner product between x and y. The maximum cardinality of a spherical D-code in S^{n-1} is denoted by $A(n, D)$.

Different sets D describe different problems that can be treated with similar techniques. The most important cases are D being an interval and D being a finite set. If $D=[-1, \cos (\pi / 3)]$, then $A(n, D)$ is the kissing number, the maximum number of pairwise nonoverlapping unit spheres that can touch a central unit sphere.

A fundamental tool for computing upper bounds for $A(n, D)$ is the linear programming bound of Delsarte et al. [13], which is an adaptation of the Delsarte bound [12] to the sphere. The linear programming bound was one of the first nontrivial upper bounds for the kissing number and is the optimal value of a convex optimization problem. It is a 2-point bound, because it takes into account interactions between pairs of points on the sphere: pairs $\{x, y\}$ with $x \cdot y \notin D$ correspond to constraints in the optimization problem. Bachoc and Vallentin [2] extended the linear programming bound to a 3-point bound by taking into account interactions between triples of points, extending the three-point bound by Schrijver [44] for binary codes. The resulting semidefinite programming bound gives the best known upper bounds for the kissing number for all dimensions $3 \leq n \leq 24$, although in dimensions $n=3,4,8$, and 24 the optimal values were already known by other methods.

In the same paper in which the linear programming bound was proposed, Delsarte et al. [13] considered its application to bound $A(n, D)$ when D is finite and also to the related problem of bounding $A(n, D)$ for all D with a given size $|D|=s$. The semidefinite programming bound from Bachoc and Vallentin was first computed for these problems by Barg and Yu [4].

In this paper, we give a hierarchy of k-point bounds that extend both the linear and semidefinite programming bounds. We model the parameter $A(n, D)$ as the independence number of a graph, namely the infinite graph with vertex set S^{n-1} in which two vertices x and y are adjacent if $x \cdot y \notin D$. The linear programming bound corresponds to an extension of the Lovász theta number to this infinite graph [1]. In Sect. 2, we derive our hierarchy from a generalization [11] of Lasserre's hierarchy to a class of infinite graphs that comprises the graph being considered. The first level of our hierarchy is the Lovász theta number, and is therefore equivalent to the linear programming bound; the second level is the semidefinite programming bound by Bachoc and Vallentin, as shown in Sect. 5.2. This puts the 2 and 3-point bounds in a common framework and shows how these relate to the Lasserre hierarchy.

For the case where D is infinite, we give a precise reason why it is difficult to compute the problems in this hierarchy when $k \geq 4$. This might explain why so far nobody has been able to compute a 4-point bound generalization of the 2 and 3-point bounds for the kissing number problem. For the case where D is finite there is no such obstruction, and though our hierarchy is not as strong, in theory, as the Lasserre hierarchy, it is computationally less expensive. This allows us to use it to compute 4 , 5 , and 6-point bounds for the maximum number of equiangular lines with a certain angle, a problem that corresponds to the case $|D|=2$. Aside from a previous result of
de Laat [10], which uses Lasserre's hierarchy directly, this is the first successful use of k-point bounds for $k>3$ for geometrical problems; it yields improved bounds for the number of equiangular lines with given angles in several dimensions.

To perform computations, we transform the resulting problems into semidefinite programming problems. To this end, for a given $k \geq 2$ we use a characterization of kernels $K: S^{n-1} \times S^{n-1} \rightarrow \mathbb{R}$ on the sphere that are invariant under the action of the subgroup of the orthogonal group that stabilizes $k-2$ given points. For $k=2$, this characterization was given by Schoenberg [43] and for $k=3$, by Bachoc and Vallentin [2]; Musin [36] extended these two results for $k>3$; a similar result is given by Kuryatnikova and Vera [42].

Still, a naive implementation of our approach would be too slow even to generate the problems for $k=5$. The implementation available with the arXiv version of this paper was carefully written to deal with the orbits of k points in the sphere in an efficient way; this allows us to generate problems even for $k=6$. This implementation could be of interest to others working on similar problems.

1.1 Equiangular lines

A set of equiangular lines is a set of lines through the origin such that every pair of lines defines the same angle. If this angle is α, then such a set of equiangular lines corresponds to a spherical D-code where $D=\{a,-a\}$ and $a=\cos \alpha$. So we are interested in finding $A(n,\{a,-a\})$ for a given $a \in[-1,1)$ and also in finding the maximum number of equiangular lines with any given angle, namely

$$
M(n)=\max \{A(n,\{a,-a\}): a \in[-1,1)\} .
$$

The study of $M(n)$ started with Haantjes [24]. He showed that $M(2)=3$ and that the optimal configuration is a set of lines on the plane having a common angle of 60°. He also showed that $M(3)=6$; the optimal configuration is given by the lines going through opposite vertices of a regular icosahedron, which have a common angle of $63.43 \ldots$ degrees. These two constructions provide lower bounds; in both cases, Gerzon's bound, which states that $M(n) \leq n(n+1) / 2$ (see Theorem 6.1 below which is proven for example in Matoušek's book [35, Miniature 9]), provides matching upper bounds.

In the setting of equiangular lines, the LP bound coincides with van Lint and Seidel's relative bound ([47], see also, Theorem 6.5). The 3-point SDP bound was first specialized to this setting by Barg and Yu [4]. No k-point bound has been computed or formulated for $k \geq 4$ for equiangular lines or for any other spherical code problem. Gijswijt, Mittelmann, and Schrijver [17] computed 4-point SDP bounds for binary codes and Litjens, Polak, and Schrijver [34] extended these 4-point bounds to q-ary codes.

Next to being fundamental objects in discrete geometry, equiangular lines have applications, for example in the field of compressed sensing: Only measurement matrices whose columns are unit vectors determining a set of equiangular lines can minimize the coherence parameter [16, Chapter 5].

Table 1 Known values for $M(n)$ for small dimensions together with the cosine a of the common angle between the lines

n	$M(n)$	a	SDP bound	n	$M(n)$	a	SDP bound
2	3	$1 / 2$	3	17	$48-49$	$1 / 5$	51
3	6	$1 / \sqrt{5}$	6	18	$56-60$	$1 / 5$	61
4	6	$1 / 3,1 / \sqrt{5}$	6	19	$72-74$	$1 / 5$	76
5	10	$1 / 3$	10	20	$90-94$	$1 / 5$	96
6	16	$1 / 3$	16	21	126	$1 / 5$	126
$7-13$	28	$1 / 3$	28	22	176	$1 / 5$	176
14	28	$1 / 3,1 / 5$	30	$23-41$	276	$1 / 5$	276
15	36	$1 / 5$	36	42	$276-288$	$1 / 5,1 / 7$	288
16	40	$1 / 5$	42	43	344	$1 / 7$	344

The values known exactly were determined by several authors [5,21,24,31,47]. Most lower bounds are collected by Lemmens and Seidel [31], except for dimensions 18, 19, and 20 [32], [46, p.123]. The remaining upper bounds [$19,21,22$] do not rely on semidefinite programming

In general, it is a difficult problem to determine $M(n)$ for a given dimension n. Currently, the first open case is dimension $n=17$ where it is known that $M(17)$ is either 48 or 49; see Table 1. Sequence A002853 in The On-Line Encyclopedia of Integer Sequences [45] is $M(n)$.

2 Derivation of the hierarchy

In this section we derive a hierarchy of bounds for the independence number of a graph. We first derive this for finite graphs and then we show how this can be extended to a larger class, which includes the infinite graphs that we use to model the geometric problems described in the introduction. We provide detailed arguments to justify each step of the derivation, but Proposition 2.1 at the end of the section has a direct and simple proof for the validity of the bound we use in the rest of the paper.

Let $G=(V, E)$ be a graph. A subset of V is independent if it does not contain a pair of adjacent vertices. The independence number of G, denoted by $\alpha(G)$, is the maximum cardinality of an independent set. For an integer $k \geq 0$, let I_{k} be the set of independent sets in G of size at most k and $I_{=k}$ be the set of independent sets in G of size exactly k.

2.1 Definition of the hierarchy for finite graphs

Assume for now that G is finite. We can obtain upper bounds for the independence number via the Lasserre hierarchy [29] for the independent set problem, whose t-th step, as shown by Laurent [30], can be formulated as

$$
\begin{equation*}
\max \left\{\sum_{S \in I_{=1}} v_{S}: v \in \mathbb{R}_{\geq 0}^{I_{2 t}}, \nu_{\emptyset}=1, \text { and } M(v) \succeq 0\right\}, \tag{1}
\end{equation*}
$$

where $M(v)$ is the matrix indexed by $I_{t} \times I_{t}$ such that

$$
M(v)_{J, J^{\prime}}= \begin{cases}v_{J \cup J^{\prime}} & \text { if } J \cup J^{\prime} \text { is independent; } \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and $M(v) \succeq 0$ means that $M(v)$ is positive semidefinite. It is easily seen that this hierarchy bounds the independence number from above since for an independent set $C \subseteq V$, the vector $v \in \mathbb{R}^{I_{2 t}}$ defined by $v_{S}=1$ if $S \subseteq C$ and $v_{S}=0$ otherwise is such that $M(\nu)$ is a principal submatrix of $\nu \nu^{T}$ and hence is a feasible solution to (1) with value $\sum_{S \in I_{=1}} v_{S}=|C|$. It is also shown [30] that this hierarchy converges to the independence number in at most $\alpha(G)$ steps.

To produce an optimization program where the variables are easier to parameterize, we construct in two stages a weaker hierarchy with matrices indexed only by the vertex set of the graph. First, we modify the problem to remove \emptyset from the domain of v; this gives the possibly weaker problem

$$
\begin{equation*}
\max \left\{1+2 \sum_{S \in I_{=2}} v_{S}: v \in \mathbb{R}_{\geq 0}^{I_{2 t} \backslash\{\emptyset\}}, \sum_{S \in I_{=1}} v_{S}=1, \text { and } M(v) \succeq 0\right\} \tag{3}
\end{equation*}
$$

where $M(\nu)$ is now considered as a matrix indexed by $\left(I_{t} \backslash\{\emptyset\}\right) \times\left(I_{t} \backslash\{\emptyset\}\right)$. To see how problem (3) is a weaker version of problem (1) and thus still an upper bound for the independence number, let $v \in \mathbb{R}^{I_{2 t}}$ be a feasible solution for (1) and define $\bar{v} \in \mathbb{R}^{I_{2 t} \backslash\{\emptyset\}}$ as $\bar{v}_{S}=v_{S} /\left(\sum_{Q \in I_{=1}} \nu_{Q}\right)$. One can check that \bar{v} is feasible for (3) and $\sum_{S \in I_{=1}} v_{S} \leq 1+2 \sum_{S \in I_{=2}} \bar{\nu}_{S}$. To justify this last inequality, apply the Schur complement to the submatrix of $M(\nu)$ indexed by I_{1} to conclude that the matrix

$$
\left(v_{\{u, v\}}-v_{\{u\}} v_{\{v\}}\right)_{u, v \in V}
$$

indexed by $I_{=1} \simeq V\left(\operatorname{set} v_{\{u, v\}}=0\right.$ if $\{u, v\}$ is not independent $)$ is positive semidefinite and hence

$$
\left(\sum_{u \in V} v_{\{u\}}\right)^{2} \leq \sum_{u, v \in V} v_{\{u, v\}},
$$

which implies the desired inequality.
Second, we construct a weaker hierarchy by only requiring certain principal submatrices of $M(v)$ to be positive semidefinite, an approach similar to the one employed by Gvozdenović et al. [23]. For this we fix $k \geq 2$ and, for each $Q \in I_{k-2}$, define the
$\operatorname{matrix} M_{Q}(\nu): V \times V \rightarrow \mathbb{R}$ by

$$
M_{Q}(v)(x, y)= \begin{cases}v_{Q \cup\{x, y\}} & \text { if } Q \cup\{x, y\} \in I_{k} \\ 0 & \text { otherwise }\end{cases}
$$

and replace the condition ' $M(\nu) \succeq 0$ ' by ' $M_{Q}(\nu) \succeq 0$ for all $Q \in I_{k-2}$ '. With these conditions we can restrict the support of v to the set $I_{k} \backslash\{\emptyset\}$, obtaining the relaxation

$$
\begin{equation*}
\max \left\{1+2 \sum_{S \in I_{=2}} v_{S}: v \in \mathbb{R}_{\geq 0}^{I_{k} \backslash\{\varnothing\}}, \sum_{S \in I_{=1}} v_{S}=1, \text { and } M_{Q}(v) \succeq 0 \text { for } Q \in I_{k-2}\right\} . \tag{4}
\end{equation*}
$$

We now proceed to the computation of the dual of program (4). For that we use $\mathbb{R}^{V^{2} \times I_{k-2}}$ to denote a collection of matrices $V \times V \rightarrow \mathbb{R}$ indexed by $I_{I_{k-2}}$ and $\mathbb{R}_{\succeq 0}^{V^{2} \times I_{k-2}}$ to denote that each of these matrices is positive semidefinite. We define a linear operator $M_{k}: \mathbb{R}^{I_{k} \backslash\{\emptyset\}} \rightarrow \mathbb{R}^{V^{2} \times I_{k-2}}$ by

$$
M_{k}(\nu)=\left(M_{Q}(v)\right)_{Q \in I_{k-2}}
$$

and write the constraints ' $M_{Q}(\nu) \succeq 0$ for all $Q \in I_{k-2}$ ' as $M_{k}(\nu) \in \mathbb{R}_{\geq 0}^{V^{2} \times I_{k-2}}$. The adjoint operator is defined in such a way that the inner product between $M_{k}(\nu)$ and $T \in \mathbb{R}^{V^{2} \times I_{k-2}}$ is equal to the inner product between v and $M_{k}^{*}(T)$:

$$
\begin{aligned}
\sum_{Q \in I_{k-2}} \sum_{x, y \in V} M_{Q}(v)(x, y) T(x, y, Q) & =\sum_{Q \in I_{k-2}} \sum_{\substack{x, y \in V \\
Q \cup\{x, y\} \in I_{k}}} v_{Q \cup\{x, y\}} T(x, y, Q) \\
& =\sum_{S \in I_{k} \backslash\{\theta\}} v_{S} \sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S \\
Q \cup\{x, y\}=S}} T(x, y, Q),
\end{aligned}
$$

so we conclude that the expression for $M_{k}^{*}: \mathbb{R}^{V^{2} \times I_{k-2}} \rightarrow \mathbb{R}^{I_{k} \backslash\{\emptyset\}}$ is

$$
\begin{equation*}
M_{k}^{*}(T)(S)=\sum_{\substack{Q \subseteq S \\|Q| \leq k-2}} \sum_{\substack{x, y \in S \\ Q \cup\{x, y\}=S}} T(x, y, Q) . \tag{5}
\end{equation*}
$$

Using the duality theory of conic optimization as described e.g. by Barvinok [6, Chapter IV], we can derive the following dual problem for (4):

$$
\begin{equation*}
\min \left\{1+\lambda: \lambda \in \mathbb{R}, T \in \mathbb{R}_{\succeq 0}^{V^{2} \times I_{k-2}}, \text { and } M_{k}^{*}(T) \leq \lambda \chi_{I_{=1}}-2 \chi_{I_{=2}}\right\} \tag{6}
\end{equation*}
$$

where $\chi_{I_{=1}}$ and $\chi_{I_{=2}}$ are the characteristic functions of $I_{=1}$ and $I_{=2}$. It is a consequence of weak duality that program (6) gives an upper bound for the independence number.

At the end of the next section we give a direct proof of this fact in a more general context.

2.2 Definition of the hierarchy for infinite graphs

We extend this hierarchy to infinite graphs in the same way that the Lasserre hierarchy is extended by de Laat and Vallentin [11]. This extension can be carried out for compact topological packing graphs; these are graphs whose vertex sets are compact Hausdorff spaces and in which every finite clique is contained in an open clique. The main consequences of this definition are that the independence number is finite and I_{k}, considered with the topology inherited from V, is the disjoint union of the compact and open sets $I_{=s}$ for $s=0, \ldots, k[11$, Section 2]. We assume from now on that G is a compact topological packing graph.

The extension relies on the theory of conic optimization over infinite-dimensional spaces presented e.g. by Barvinok [6]. The first step is to introduce the spaces for the variables of our problem; we will use both the space $\mathcal{C}(X)$ of continuous real-valued functions on a compact space X and its topological dual (with respect to the supremum norm) $\mathcal{M}(X)$, the space of signed Radon measures.

In the infinite setting, the nonnegative variable v from (4) becomes a measure in the dual of the cone $\mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right)_{\geq 0}$ of continuous and nonnegative functions, namely

$$
\mathcal{M}\left(I_{k} \backslash\{\emptyset\}\right)_{\geq 0}=\left\{v \in \mathcal{M}\left(I_{k} \backslash\{\emptyset\}\right): v(f) \geq 0 \text { for all } f \in \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right)_{\geq 0}\right\}
$$

we observe that when V is finite, $\mathcal{M}\left(I_{k} \backslash\{\varnothing\}\right)_{\geq 0}$ can be identified with $\mathbb{R}_{\geq 0}^{I_{k} \backslash\{\varnothing\}}$.
Let $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\text {sym }}$ be the set of continuous real-valued functions on $V^{2} \times I_{k-2}$ that are symmetric in the first two coordinates and let $\mathcal{M}\left(V^{2} \times I_{k-2}\right)_{\text {sym }}$ be the space of symmetric and signed Radon measures ${ }^{1}$. A kernel $K \in \mathcal{C}\left(V^{2}\right)$ is positive if for every finite $U \subseteq V$ the matrix $(K(x, y))_{x, y \in U}$ is positive semidefinite. A function $T \in$ $\mathcal{C}\left(V^{2} \times I_{k-2}\right)$ is positive if for every $Q \in I_{k-2}$ the kernel $(x, y) \mapsto T(x, y, Q)$ is positive. The set of all positive functions in $\mathcal{C}\left(V^{2} \times I_{k-2}\right)$ is a convex cone denoted by $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$; its dual cone is denoted by $\mathcal{M}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$.

Instead of extending the operator M_{k} from the finite case, a key step in this extension is to use its adjoint. Based on formula (5), we define the operator $B_{k}: \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\text {sym }} \rightarrow \mathcal{C}\left(I_{k} \backslash\{\emptyset\}\right)$ by

$$
\begin{equation*}
B_{k} T(S)=\sum_{\substack{Q \subseteq S \\|Q| \leq k-2}} \sum_{\substack{x, y \in S \\ Q \cup\{x, y\}=S}} T(x, y, Q) . \tag{7}
\end{equation*}
$$

Note that, though the number of summands in (7) varies with the size of S, the function $B_{k} T$ is still continuous since, by the assumption that G is a topological packing graph, $I_{k} \backslash\{\emptyset\}$ can be written as the disjoint union of the compact and open subsets $I_{=s}$ for $s=1, \ldots, k$ and $B_{k} T$ is continuous in each of these parts. Furthermore, since the

[^1]number of summands in (7) is bounded by a constant depending only on k, the operator B_{k} is itself continuous. Thus it has an adjoint $B_{k}^{*}: \mathcal{M}\left(I_{k} \backslash\{\emptyset\}\right) \rightarrow \mathcal{M}\left(V^{2} \times I_{k-2}\right)_{\text {sym }}$. Using the adjoint, we define the generalized k-point bound for $k \geq 2$:
\[

$$
\begin{gather*}
\Delta_{k}(G)=\sup \left\{1+2 v\left(I_{=2}\right): v \in \mathcal{M}\left(I_{k} \backslash\{\emptyset\}\right)_{\geq 0},\right. \\
\left.v\left(I_{=1}\right)=1, \text { and } B_{k}^{*} v \in \mathcal{M}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}\right\} . \tag{8}
\end{gather*}
$$
\]

Note that for a finite graph with the discrete topology this reduces to (4).
Again, using the duality theory of conic optimization [6, Chapter IV], we can derive the following dual problem for (8):

$$
\begin{equation*}
\Delta_{k}(G)^{*}=\inf \left\{1+\lambda: \lambda \in \mathbb{R}, T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}, \text { and } B_{k} T \leq \lambda \chi_{I_{=1}}-2 \chi_{I_{=2}}\right\}, \tag{9}
\end{equation*}
$$

where $\chi_{I_{=1}}$ and $\chi_{I_{=2}}$ are the characteristic functions of $I_{=1}$ and $I_{=2}$, which are continuous since G is a topological packing graph. From now on, we will denote both the optimal value of (9) and the optimization problem itself by $\Delta_{k}(G)^{*}$.

It is a direct consequence of weak duality that $\Delta_{k}(G)^{*}$ is an upper bound for the independence number of G, but it is instructive to see a direct proof.

Proposition 2.1 If $G=(V, E)$ is a compact topological packing graph, then $\alpha(G) \leq$ $\Delta_{k}(G)^{*}$.

Proof Let $C \subseteq V$ be a nonempty independent set and let (λ, T) be a feasible solution of $\Delta_{k}(G)^{*}$. On the one hand, since $B_{k} T \leq \lambda \chi_{I_{=1}}-2 \chi_{I_{=2}}$, we have

$$
\sum_{\substack{S \subseteq C \\|S| \leq k, S \neq \emptyset}} B_{k} T(S) \leq\binom{|C|}{1} \lambda+\binom{|C|}{2}(-2)=|C|(1+\lambda-|C|) .
$$

On the other hand, since $T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$, we have

$$
\begin{aligned}
\sum_{\substack{S \subseteq C \\
|S| \leq k, S \neq \emptyset}} B_{k} T(S) & =\sum_{\substack{S \subseteq C \\
|S| \leq k, S \neq \emptyset}} \sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S \\
Q \cup\{x, y\}=S}} T(x, y, Q) \\
& =\sum_{\substack{Q \subseteq C \\
|Q| \leq k-2}} \sum_{x, y \in C} T(x, y, Q) \geq 0
\end{aligned}
$$

since, by the definition of $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}$, the matrices $(T(x, y, Q))_{x, y \in C}$ are positive semidefinite for all $Q \in I_{k-2}$. Putting it all together we get $|C| \leq 1+\lambda$.

3 Symmetry reduction

Symmetry reduction plays a key role in the computation of $\Delta_{k}(G)^{*}$ in our application. We now see how to exploit symmetry to decompose the variable T of (9) in terms of
simpler kernels from $\mathcal{C}\left(V^{2}\right)$. In this section we keep assuming that G is a compact topological packing graph and delay the specialization to the case where V is a sphere to the next section.

Let Γ be a compact group that acts continuously on V and that is a subgroup of the automorphism group ${ }^{2}$ of the graph G. The group Γ acts coordinatewise on V^{2}, and this action extends to an action on $\mathcal{C}\left(V^{2}\right)$ by

$$
(\gamma K)(x, y)=K\left(\gamma^{-1} x, \gamma^{-1} y\right) .
$$

The group Γ acts continuously on I_{t} by

$$
\gamma \emptyset=\emptyset \quad \text { and } \quad \gamma\left\{x_{1}, \ldots, x_{t}\right\}=\left\{\gamma x_{1}, \ldots, \gamma x_{t}\right\}
$$

and hence it also acts on $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\text {sym }}$ by

$$
(\gamma T)(x, y, S)=T\left(\gamma^{-1} x, \gamma^{-1} y, \gamma^{-1} S\right)
$$

If Γ acts on a set X, we denote by X^{Γ} the set of elements of X that are invariant under this action. In this way we write $\mathcal{C}\left(V^{2}\right)^{\Gamma}, \mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}^{\Gamma}$, etc.

Given a feasible solution (λ, T) of $\Delta_{k}(G)^{*}$, the pair (λ, \bar{T}) with

$$
\bar{T}(x, y, S)=\int_{\Gamma} T\left(\gamma^{-1} x, \gamma^{-1} y, \gamma^{-1} S\right) \mathrm{d} \gamma
$$

where we integrate against the Haar measure on Γ normalized so that the total measure is 1 , is also feasible with the same objective value. So we may assume that T is invariant under the action of Γ.

Let \mathcal{R}_{k-2} be a complete set of representatives of the orbits of I_{k-2} / Γ. For $R \in$ \mathcal{R}_{k-2}, let $\operatorname{Stab}_{\Gamma}(R)=\{\gamma \in \Gamma: \gamma R=R\}$ be the stabilizer of R with respect to Γ and, for $Q \in \Gamma R$, let $\gamma_{Q} \in \Gamma$ be a group element such that $\gamma_{Q} Q=R$. When I_{k-2} / Γ is finite, we can decompose the space $\mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}$ as a direct sum of simpler spaces.

The next proposition may seem rather technical but the main idea is to use the symmetry of $T \in \mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}$ and the assumption that there is just a finite collection of representatives for the last coordinate to write $T(x, y, Q)=T\left(\gamma_{Q} x, \gamma_{Q} y, \gamma_{Q} Q\right)$ and express T by finitely many kernels, each of them representing T when its last coordinate is fixed; this is also the place where the stabilizer subgroups come into play.

Proposition 3.1 If I_{k-2} / Γ is finite, then

$$
\Psi: \bigoplus_{R \in \mathcal{R}_{k-2}} \mathcal{C}\left(V^{2}\right)^{\operatorname{Stab}_{\Gamma}(R)} \rightarrow \mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}
$$

[^2]given by
$$
\Psi\left(\left(K_{R}\right)_{R \in \mathcal{R}_{k-2}}\right)(x, y, Q)=K_{\gamma_{Q} Q}\left(\gamma_{Q} x, \gamma_{Q} y\right)
$$
is an isomorphism that preserves positivity, that is, if $\left(K_{R}\right)_{R \in \mathcal{R}_{k-2}}$ is such that K_{R} is a positive kernel for each R, then $\Psi\left(\left(K_{R}\right)_{R \in \mathcal{R}_{k-2}}\right)$ is positive.

Proof We first show that $\left(V^{2} \times I_{k-2}\right) / \Gamma$ is homeomorphic to the disjoint union

$$
\bigcup_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \times\{R\} .
$$

More precisely, we show that

$$
\psi: \bigcup_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \times\{R\} \rightarrow\left(V^{2} \times I_{k-2}\right) / \Gamma
$$

given by $\psi\left(\operatorname{Stab}_{\Gamma}(R)(x, y), R\right)=\Gamma(x, y, R)$ is such a homeomorphism with inverse

$$
\begin{equation*}
\psi^{-1}(\Gamma(x, y, Q))=\left(\operatorname{Stab}_{\Gamma}\left(\gamma_{Q} Q\right)\left(\gamma_{Q} x, \gamma_{Q} y\right), \gamma_{Q} Q\right) . \tag{10}
\end{equation*}
$$

Indeed, the map ψ is well defined because $\Gamma(x, y, R)=\Gamma(\gamma x, \gamma y, R)$ for all γ in $\operatorname{Stab}_{\Gamma}(R)$. For each $R \in \mathcal{R}_{k-2}$, the map $\psi_{R}: V^{2} / \operatorname{Stab}_{\Gamma}(R) \rightarrow\left(V^{2} \times I_{k-2}\right) / \Gamma$ given by

$$
\psi_{R}\left(\operatorname{Stab}_{\Gamma}(R)(x, y)\right)=\Gamma(x, y, R)
$$

is continuous, as follows from the definition of quotient topology. By the definition of disjoint union topology, this implies ψ is continuous.

The map (10) is well defined, for if we replace γ_{Q} by $\xi \gamma_{Q}$, where $\xi \in \operatorname{Stab}_{\Gamma}\left(\gamma_{Q} Q\right)$, then the right-hand side of (10) does not change. Direct verification shows $\psi^{-1} \circ \psi$ and $\psi \circ \psi^{-1}$ are the identity maps.

Since \mathcal{R}_{k-2} is finite, the domain of ψ is compact. So ψ is a continuous bijection between compact Hausdorff spaces, and hence a homeomorphism.

Now the proposition follows easily. Under the isomorphisms

$$
\mathcal{C}\left(\bigcup_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \times\{R\}\right) \simeq \bigoplus_{R \in \mathcal{R}_{k-2}} \mathcal{C}\left(V^{2}\right)^{\operatorname{Stab}_{\Gamma}(R)}
$$

and

$$
\mathcal{C}\left(\left(V^{2} \times I_{k-2}\right) / \Gamma\right) \simeq \mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}
$$

the operator Ψ is equal to

$$
\mathcal{C}\left(\bigcup_{R \in \mathcal{R}_{k-2}} V^{2} / \operatorname{Stab}_{\Gamma}(R) \times\{R\}\right) \rightarrow \mathcal{C}\left(\left(V^{2} \times I_{k-2}\right) / \Gamma\right), \quad f \mapsto f \circ \psi^{-1},
$$

which is a well-defined isomorphism since ψ is a homeomorphism. Finally, it follows directly from the definitions of positive kernels and $\mathcal{C}\left(V^{2} \times I_{k-2}\right)_{\succeq 0}^{\Gamma}$ that Ψ preserves positivity.

The above proposition shows that to characterize $\mathcal{C}\left(V^{2} \times I_{k-2}\right)^{\Gamma}$ we need to characterize the sets $\mathcal{C}\left(V^{2}\right)^{\operatorname{Stab}_{\Gamma}(R)}$ for $R \in \mathcal{R}_{k-2}$. In the next section we give this characterization for the case of spherical symmetry.

4 Parameterizing invariant kernels on the sphere by positive semidefinite matrices

From now on we assume $G=(V, E)$ is the graph where $V=S^{n-1}$ and where two distinct vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \notin D$ for some $D \subseteq[-1,1)$. We assume D is closed in order to make G a compact topological packing graph. Taking $\Gamma=\mathrm{O}(n)$, we are in the situation described in the previous section.

We observe that $I_{=m} / \mathrm{O}(n)$ can be represented by the set of $m \times m$ positive semidefinite matrices of rank at most n with ones in the diagonal and elements of D elsewhere, up to simultaneous permutations of the rows and columns. So the condition that $I_{k-2} / \mathrm{O}(n)$ is finite is fulfilled for any set D when $k=2$ or 3 and it only holds for finite D when $k \geq 4$.

Let us see how to parameterize the cones

$$
\mathcal{C}\left(S^{n-1} \times S^{n-1}\right)_{\succeq 0}^{\operatorname{Stab}_{\mathrm{O}(n)}(R)} \quad \text { for } R \in \mathcal{R}_{k-2}
$$

by positive semidefinite matrices. For simplicity, we only consider the case where every $R \in \mathcal{R}_{k-2}$ consists of linearly independent vectors; later on we will see that all cases considered in the computations satisfy this assumption.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and fix $R \in \mathcal{R}_{k-2}$. By rotating a set $R \in \mathcal{R}_{k-2}$ if necessary, we may assume that R is contained in $\operatorname{span}\left(\left\{e_{1}, \ldots, e_{m}\right\}\right)$, where $m=\operatorname{dim}(\operatorname{span}(R))$. The stabilizer subgroup of $\mathrm{O}(n)$ with respect to R is isomorphic to the direct product of two groups, namely

$$
\operatorname{Stab}_{\mathrm{O}(n)}(R) \simeq \mathcal{S}_{R} \times \operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))
$$

where \mathcal{S}_{R} is isomorphic to a finite subgroup of $\mathrm{O}(m)$ that acts on the first m coordinates and acts on R as a permutation of its elements and $\operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$ is a group isomorphic to $\mathrm{O}(n-m)$ that acts on the last $n-m$ coordinates. Indeed, any rotation that leaves $\operatorname{span}(R)$ and its orthogonal complement invariant and acts in R as a permutation fixes R as a set and hence is from $\operatorname{Stab}_{\mathrm{O}(n)}(R)$. Conversely, any rotation that fixes R as a set will at most permute its elements and hence by linearity, leaves span (R) invariant; while by orthogonality, such a rotation also leaves the orthogonal complement invariant and hence is of the prescribed form.

If $k=2$, then $R=\emptyset$ and $\operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))=\mathrm{O}(n)$. By a classical result of Schoenberg [43], each positive $\mathrm{O}(n)$-invariant kernel $K: S^{n-1} \times S^{n-1} \rightarrow \mathbb{R}$ is of the
form

$$
K(x, y)=\sum_{l=0}^{\infty} a_{l} P_{l}^{n}(x \cdot y)
$$

for some nonnegative numbers a_{0}, a_{1}, \ldots with absolute and uniform convergence, where P_{l}^{n} is the Gegenbauer polynomial of degree l in dimension n normalized so that $P_{l}^{n}(1)=1$ (equivalently, P_{l}^{n} is the Jacobi polynomial with both parameters equal to $(n-3) / 2)$.

Kernels invariant under the stabilizer of one point were considered by Bachoc and Vallentin [2] and kernels invariant under the stabilizer of more points were considered by Musin [37]. The analogue of Schoenberg's theorem for kernels invariant under the stabilizer of one or more points is stated in terms of certain polynomials $P_{l}^{n, m}$, which were called by Musin [37] "multivariate Gegenbauer polynomials".

For $0 \leq m \leq n-2, t \in \mathbb{R}$, and $u, v \in \mathbb{R}^{m}$, the polynomial $P_{l}^{n, m}$ is the $(2 m+1)$ variable polynomial

$$
P_{l}^{n, m}(t, u, v)=\left(\left(1-\|u\|^{2}\right)\left(1-\|v\|^{2}\right)\right)^{l / 2} P_{l}^{n-m}\left(\frac{t-u \cdot v}{\sqrt{\left(1-\|u\|^{2}\right)\left(1-\|v\|^{2}\right)}}\right),
$$

where $\|v\|=\sqrt{v \cdot v}$. If we use the convention $\mathbb{R}^{0}=\{0\}$, then $P_{l}^{n}(t)=P_{l}^{n, 0}(t, 0,0)$. Since the Gegenbauer polynomials are odd or even according to the parity of l, the function $P_{l}^{n, m}(t, u, v)$ is indeed a polynomial in the variables u, v, and t. Musin [37] denotes $P_{l}^{n, m}$ by $G_{l}^{(n, m)}$ and Bachoc and Vallentin [2] denote $P_{l}^{n, 1}$ by Q_{l}^{n-1}.

Fix $d \geq 0$, let \mathcal{B}_{l} be a basis of the space of m-variable polynomials of degree at most l (e.g. the monomial basis), and write $z_{l}(u)$ for the column vector containing the polynomials in \mathcal{B}_{l} evaluated at $u \in \mathbb{R}^{m}$. Let $Y_{l}^{n, m}$ be the matrix of polynomials

$$
Y_{l}^{n, m}(t, u, v)=P_{l}^{n, m}(t, u, v) z_{d-l}(u) z_{d-l}(v)^{T} .
$$

The choice of d makes $Y_{l}^{n, m}$ a $\binom{d-l+m}{m} \times\binom{ d-l+m}{m}$ matrix with $(2 m+1)$-variable polynomials of degree at most $2 d$ as its entries.

Given a matrix X with linearly independent columns, set $L(X)=B^{-1} X^{T}$, where B is the matrix such that $B B^{T}$ is the Cholesky factorization of $X^{T} X$, which is unique since $X^{T} X$ is positive definite. For each $R \in \mathcal{R}_{k-2}$, fix a matrix A_{R} whose columns are the vectors of R in some order. The rows of $L\left(A_{R}\right)$ span the same space as the columns of A_{R} because B is invertible, and by construction the rows of $L\left(A_{R}\right)$ are orthonormal:

$$
L\left(A_{R}\right) L\left(A_{R}\right)^{T}=B^{-1} A_{R}^{T} A_{R} B^{-T}=B^{-1} B B^{T} B^{-T}=I .
$$

Therefore, for $x \in \mathbb{R}^{n}, L\left(A_{R}\right) x$ is a vector with the coordinates of the projection of x onto span (R) with respect to an orthonormal basis of the linear span.

The following theorem is a restatement of a result of Musin [37, Corollary 3.2] in terms of invariant kernels and with adapted notation. We will only use the sufficiency part of the statement, proved in Appendix A for completeness.

For square matrices A, B of the same dimensions, write $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)$ for their Frobenius inner product.

Theorem 4.1 Let $R \subseteq S^{n-1}$ with $m=\operatorname{dim}(\operatorname{span}(R))=|R| \leq n-2$ and let A_{R} be a matrix whose columns are the vectors of R in some order. Fix $d \geq 0$ and, for each $0 \leq l \leq d$, let F_{l} be a positive semidefinite matrix with $\binom{d-l+m}{m}$ rows and columns. Then $K: S^{n-1} \times S^{n-1} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
K(x, y)=\sum_{l=0}^{d}\left\langle F_{l}, Y_{l}^{n, m}\left(x \cdot y, L\left(A_{R}\right) x, L\left(A_{R}\right) y\right)\right\rangle \tag{11}
\end{equation*}
$$

is a positive, continuous, and $\mathrm{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$-invariant kernel. Conversely, every $\operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$-invariant kernel $K \in \mathcal{C}\left(S^{n-1} \times S^{n-1}\right)_{\succeq 0}$ can be uniformly approximated by kernels of the above form.

Theorem 4.1 gives us a parameterization of $\operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$-invariant kernels. To get a parameterization of $\operatorname{Stab}_{\mathrm{O}(n)}(R)$-invariant kernels we still have to deal with the symmetries in \mathcal{S}_{R}. By construction, for an orthogonal matrix $\sigma \in \mathcal{S}_{R}$ there is a permutation matrix P_{σ} such that $\sigma A_{R}=A_{R} P_{\sigma}$. Since $\sigma \in \mathrm{O}(n)$ and $A_{R}^{T} A_{R}=A_{R}^{T} \sigma^{T} \sigma A_{R}=P_{\sigma}^{T} A_{R}^{T} A_{R} P_{\sigma}$, the elements of \mathcal{S}_{R} correspond precisely to the symmetries of the Gram matrix $A_{R}^{T} A_{R}$ under simultaneous permutations of rows and columns. Indeed, if the Gram matrix $A_{R}^{T} A_{R}$ is invariant under a certain simultaneous permutation of rows and columns, then since R is linearly independent, this permutation defines a linear transformation of $\operatorname{span}(R)$ that preserves all inner products between vectors of R, whence it is orthogonal and therefore corresponds to an element of \mathcal{S}_{R}. This observation leads to the following corollary.

Corollary 4.2 Let $R \subseteq S^{n-1}$ with $m=\operatorname{dim}(\operatorname{span}(R))=|R| \leq n-2$ and let A_{R} be a matrix whose columns are the vectors of R in some order. Fix $d \geq 0$ and, for each $0 \leq l \leq d$, let F_{l} be a positive semidefinite matrix with $\binom{d-l+m}{m}$ rows and columns. Then $K: S^{n-1} \times S^{n-1} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
K(x, y)=\sum_{l=0}^{d}\left\langle F_{l}, \mathcal{F}_{l}(R)(x, y)\right\rangle \tag{12}
\end{equation*}
$$

where

$$
\mathcal{F}_{l}(R)(x, y)=\frac{1}{\left|\mathcal{S}_{R}\right|} \sum_{\sigma \in \mathcal{S}_{R}} Y_{l}^{n, m}\left(x \cdot y, L\left(A_{R} P_{\sigma}\right) x, L\left(A_{R} P_{\sigma}\right) y\right),
$$

is a positive, continuous, and $\mathrm{Stab}_{\mathrm{O}(n)}(R)$-invariant kernel.

Proof If K is given by (12), then by writing

$$
K(x, y)=\frac{1}{\left|\mathcal{S}_{R}\right|} \sum_{\sigma \in \mathcal{S}_{R}} \sum_{l=0}^{d}\left\langle F_{l}, Y_{l}^{n, m}\left(x \cdot y, L\left(A_{R} P_{\sigma}\right) x, L\left(A_{R} P_{\sigma}\right) y\right)\right\rangle
$$

we see using Theorem 4.1 that K is a sum of $\left|\mathcal{S}_{R}\right|$ positive, continuous, and $\operatorname{Stab}_{\mathrm{O}(n)}$ ($\operatorname{span}(R)$)-invariant kernels, and hence it is itself positive, continuous, and $\mathrm{Stab}_{\mathrm{O}(n)}$ (span (R))-invariant.

Since, for every $\sigma \in \mathcal{S}_{R}$,

$$
L\left(A_{R} P_{\sigma}\right) x=B^{-1} P_{\sigma}^{T} A_{R}^{T} x=B^{-1} A_{R}^{T} \sigma^{T} x=L\left(A_{R}\right) \sigma^{T} x
$$

(recall $B B^{T}$ is the Cholesky decomposition of $A_{R}^{T} A_{R}=\left(A_{R} P_{\sigma}\right)^{T}\left(A_{R} P_{\sigma}\right)$), and since $x \cdot y=\left(\sigma^{T} x\right) \cdot\left(\sigma^{T} y\right)$, we have that

$$
\begin{equation*}
K(x, y)=\frac{1}{\left|\mathcal{S}_{R}\right|} \sum_{\sigma \in \mathcal{S}_{R}} K^{\prime}\left(\sigma^{T} x, \sigma^{T} y\right) \tag{13}
\end{equation*}
$$

where

$$
K^{\prime}(x, y)=\sum_{l=0}^{d}\left\langle F_{l}, Y_{l}^{n, m}\left(x \cdot y, L\left(A_{R}\right) x, L\left(A_{R}\right) y\right)\right\rangle .
$$

Now it follows directly from (13) that K is $\operatorname{Stab}_{\mathrm{O}(n)}(R)$-invariant.

5 Semidefinite programming formulations

Before giving the semidefinite programming formulations, let us discuss how the matrix-valued function $\mathcal{F}_{l}(R)(x, y)$ can be computed. We have

$$
L\left(A_{R} P_{\sigma}\right) x=B^{-1} P_{\sigma}^{T} A_{R}^{T} x=B^{-1} P_{\sigma}^{T}\left(A_{R}^{T} x\right)
$$

where $B B^{T}$ is the Cholesky decomposition of $A_{R}^{T} A_{R}=\left(A_{R} P_{\sigma}\right)^{T}\left(A_{R} P_{\sigma}\right)$. This shows that $L\left(A_{R} P_{\sigma}\right) x$ depends only on the inner products between the vectors in the set $R \cup\{x\}$ and on the ordering of the columns of A_{R}. Since the size of R is bounded by $k-2$, this also shows that all computations for setting up the problem can be done in a relatively small dimension depending on k and not on n.

5.1 An SDP formulation for spherical finite-distance sets

To write the full semidefinite programming formulation corresponding to (9), we use Corollary 4.2 together with the isomorphism from Proposition 3.1. Let $\mathcal{S}_{\succeq 0}^{N}$ denote
the cone of $N \times N$ positive semidefinite matrices. If for $R \in \mathcal{R}_{k-2}$ and $0 \leq l \leq d$ we have $F_{R, l} \in \mathcal{S}_{\geq 0}^{N}$, where $N=\binom{d-l+|R|}{|R|}$, then $T: S^{n-1} \times S^{n-1} \times I_{k-2} \rightarrow \mathbb{R}$ given by

$$
T(x, y, Q)=\sum_{l=0}^{d}\left\langle F_{\gamma_{Q} Q, l}, \mathcal{F}_{l}\left(\gamma_{Q} Q\right)\left(\gamma_{Q} x, \gamma_{Q} y\right)\right\rangle
$$

is a function in $\mathcal{C}\left(S^{n-1} \times S^{n-1} \times I_{k-2}\right)_{\succeq 0}^{\mathrm{O}(n)}$ and hence, for $S \in \mathcal{R}_{k} \backslash\{\emptyset\}$, the expression for $B_{k} T(S)$ becomes

$$
\begin{aligned}
B_{k} T(S) & =\sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S \\
\{x, y\} \cup \cup Q=S}} T(x, y, Q) \\
& =\sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{\substack{x, y \in S \\
\{x, y\} \cup Q=S}} \sum_{l=0}^{d}\left\langle F_{\gamma_{Q} Q, l}, \mathcal{F}_{l}\left(\gamma_{Q} Q\right)\left(\gamma_{Q} x, \gamma_{Q} y\right)\right\rangle \\
& =\sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{l=0}^{d}\left\langle F_{\gamma_{Q} Q, l}, \sum_{\substack{x, y \in S \\
\{x, y\} \cup Q=S}} \mathcal{F}_{l}\left(\gamma_{Q} Q\right)\left(\gamma_{Q} x, \gamma_{Q} y\right)\right\rangle .
\end{aligned}
$$

Since the action of $\mathrm{O}(n)$ on $S^{n-1} \simeq I_{=1}$ is transitive, the quotient $I_{=1} / \mathrm{O}(n)$ has only one element. We set $\mathcal{R}_{1} \backslash \mathcal{R}_{0}=\left\{e_{1}\right\}$, where e_{1} is the first canonical basis vector of \mathbb{R}^{n}. We replace the objective $1+\lambda$ in (9) by $1+B_{k} T\left(\left\{e_{1}\right\}\right)$, which we can further simplify by noticing that $Y_{0}^{n, 1}(1,1,1)$ is the all-ones matrix J_{d+1} of size $(d+1) \times(d+1)$ and $Y_{l}^{n, 1}(1,1,1)$ is the zero matrix for $l>0$. This gives the semidefinite programming formulation

$$
\begin{aligned}
& \min \left\{1+\sum_{l=0}^{d} F_{\emptyset, l}+\left\langle F_{\left\{e_{1}\right\}, 0}, J_{d+1}\right\rangle: F_{R, l} \in \mathcal{S}_{\succeq 0}^{\binom{d-l| | R \mid}{|R|}} \text { for } 0 \leq l \leq d \text { and } R \in \mathcal{R}_{k-2},\right. \\
& \left.\sum_{\substack{Q \subseteq S \\
|Q| \leq k-2}} \sum_{l=0}^{d}\left\langle F_{\gamma_{Q} Q, l}, \sum_{\substack{x, y \in S \\
\{x, y\} \cup Q=S}} \mathcal{F}_{l}\left(\gamma_{Q} Q\right)\left(\gamma_{Q} x, \gamma_{Q} y\right)\right\rangle \leq-2 \chi_{I_{=2}}(S) \text { for } S \in \mathcal{R}_{k} \backslash \mathcal{R}_{1}\right\} .
\end{aligned}
$$

For each fixed d this gives an upper bound for $\Delta_{k}(G)^{*}$ that converges to $\Delta_{k}(G)^{*}$ as d tends to infinity.

We give an efficient Julia [7] implementation to generate the semidefinite programming input files for the solver, which was essential to make computations with $k=6$. This includes an efficient function for generating the representatives of the independent sets, a function for checking whether two sets of vectors are in the same orbit, an implementation of the function \mathcal{F} that works entirely in dimension k, and finally a function for setting up the semidefinite programming problems, which works for general n, finite D, and k.

5.2 A precise connection between the Bachoc-Vallentin bound and the Lasserre hierarchy

The bound $\Delta_{2}(G)^{*}$ immediately reduces to the generalization of the Lovász ϑ number as given by Bachoc et al. [1], which coincides with the LP bound [13] after symmetry reduction. Here we show that $\Delta_{3}(G)^{*}$ can be interpreted as a nonsymmetric version of the Bachoc-Vallentin 3-point bound [2].

Suppose T is feasible for $\Delta_{3}(G)^{*}$. If $S=\{a, b\}$ with $a \neq b$, then

$$
\begin{aligned}
B_{3} T(\{a, b\})= & \sum_{\substack{Q \subseteq S \\
\mid Q \subseteq \leq}} \sum_{\substack{x, y \in S \\
Q \cup\{x, y\}=S}} T(x, y, Q) \\
= & T(a, b, \emptyset)+T(b, a, \emptyset)+T(a, b,\{a\})+T(b, a,\{a\}) \\
& +T(b, b,\{a\})+T(a, b,\{b\})+T(b, a,\{b\})+T(a, a,\{b\}) .
\end{aligned}
$$

By using $T(x, y, \emptyset)=\sum_{l=0}^{d} F_{\emptyset, l} P_{l}^{n}(x \cdot y)$ and

$$
\begin{aligned}
T(x, y,\{z\}) & =\sum_{l=0}^{d}\left\langle F_{\left\{e_{1}\right\}, l}, \mathcal{F}_{l}\left(\left\{e_{1}\right\}\right)\left(\gamma_{\{z\}} x, \gamma_{\{z\}} y\right)\right\rangle \\
& =\sum_{l=0}^{d}\left\langle F_{\left\{e_{1}\right\}, l}, Y_{l}^{n, 1}(x \cdot y, x \cdot z, y \cdot z)\right\rangle
\end{aligned}
$$

we see that

$$
B_{3} T(\{a, b\})=2 \sum_{l=0}^{d} F_{\emptyset, l} P_{l}^{n}(a \cdot b)+6 \sum_{l=0}^{d}\left\langle F_{\left\{e_{1}\right\}, l}, S_{l}^{n}(a \cdot b, a \cdot b, 1)\right\rangle,
$$

where we use the notation $S_{l}^{n}=\frac{1}{6} \sum_{\sigma \in S_{3}} \sigma Y_{l}^{n, 1}$, in which σ runs through the group of all permutations of three variables and acts on $Y_{l}^{n, 1}$ by permuting its arguments.

If $|S|=3$, say $S=\{a, b, c\}$, then

$$
\begin{aligned}
B_{3} T(\{a, b, c\})= & \sum_{\substack{Q \subseteq S \\
|Q| \leq 1}} \sum_{\substack{x, y \in S \\
Q \cup\{x, y\}=S}} T(x, y, Q) \\
= & T(a, b,\{c\})+T(b, a,\{c\})+T(a, c,\{b\}) \\
& +T(c, a,\{b\})+T(b, c,\{a\})+T(c, b,\{a\}) \\
= & 6 \sum_{l=0}^{d}\left\langle F_{\left\{e_{1}\right\}, l}, S_{l}^{n}(a \cdot b, a \cdot c, b \cdot c)\right\rangle .
\end{aligned}
$$

Using the above expressions we see that the constraints $B_{3} T(S) \leq-2$ for $S \in I_{=2}$ and $B_{3} T(S) \leq 0$ for $S \in I_{=3}$ in $\Delta_{3}(G)^{*}$ are exactly the ones that appear in Theorem 4.2
of Bachoc and Vallentin [2]. Except for the presence of an ad hoc 2×2 matrix variable b that comes from a separate argument, both bounds are identical.

Remark 5.1 Recall that for our method it is essential that $I_{k-2} / \mathrm{O}(n)$ be finite and that $I_{=m} / \mathrm{O}(n)$ can be represented by the set of $m \times m$ positive semidefinite matrices of rank at most n with ones in the diagonal and elements of D elsewhere, up to simultaneous permutations of the rows and columns. So $I_{k-2} / \mathrm{O}(n)$ is finite for $k=2$, 3, but infinite whenever D is infinite and $k \geq 4$. This explains why it is not clear how to compute a 4 point bound generalization of the LP [13] and SDP [2] bounds for the size of spherical codes with given minimal angular distance. For the spherical finite-distance problem, however, the set $I_{k-2} / \mathrm{O}(n)$ is always finite, so that we can perform computations beyond $k=3$.

6 Two-distance sets and equiangular lines

If $D=\{a,-a\}$ for some $0<a<1$, then the vectors in a spherical D-code correspond to a set of equiangular lines with common angle $\arccos a$. We set

$$
M_{a}(n)=A(n,\{a,-a\})
$$

and write

$$
M(n)=\max _{0<a<1} M_{a}(n)
$$

for the maximum number of equiangular lines in \mathbb{R}^{n} with any common angle.
A semidefinite programming bound based on the method of Bachoc and Vallentin [2], and hence equivalent to $\Delta_{3}(G)^{*}$, was applied to this problem by Barg and Yu [5] (see also the table computed by King and Tang [27]) which, together with previous results, determines $M(n)$ for most $n \leq 43$.

Barg and Yu present [4, Eqs. (14)-(17)] a semidefinite programming formulation that corresponds exactly to the formulation given in Sect. 5.1 when $k=3$ (except for an ad hoc 2×2 matrix). In the other papers [5,27,41,48] where this semidefinite program is considered, a primal version is given instead, which is less convenient from the perspective of rigorous verification of bounds.

In this paper we compute new upper bounds for $M_{a}(n)$ for $a=1 / 5,1 / 7,1 / 9$, and $1 / 11$ and many values of n using $\Delta_{k}(G)^{*}$ with $k=4,5$, and 6 . The results do not improve the known bounds for $M(n)$ but greatly improve the known bounds for $M_{a}(n)$ for certain ranges of dimensions; these results are presented in Sect. 6.2.

6.1 Overview of the literature

The literature on equiangular lines is vast; here is a summary.

6.1.1 Bounds for $M(n)$

The interest in $M(n)$ started with Haantjes [24], who showed $M(3)=M(4)=6$ in 1948. Since then, much progress has been made using different techniques, and $M(n)$ has been determined for many values of $n \leq 43$. Table 1 presents the known values for $M(n)$ for small dimensions.

The most general bound for $M(n)$, called the absolute bound, is due to Gerzon:
Theorem 6.1 (Gerzon, cf. Lemmens and Seidel [31]) We have

$$
M(n) \leq \frac{n(n+1)}{2}
$$

Moreover, if equality holds, then $n=2, n=3$, or $n=l^{2}-2$ for some odd integer l and the cosine of the common angle is $a=1 / l$.

The four cases where it is known that the bound is attained are $n=2,3,7$, and 23 . Delsarte et al. [13, Example 8.3] show that equality holds if and only if the union of the code with its antipodal code is a tight spherical 5-design, and in this case Cohn and Kumar [9] show this union is a universally optimal code (which means it minimizes every completely monotonic potential function in the squared chordal distance). Bannai et al. [3] and Nebe and Venkov [39] show that there are infinitely many odd integers l for which no tight spherical 5-design exists in S^{n-1} with $n=l^{2}-2$, so that Gerzon's bound cannot be attained in those dimensions. This list starts with $l=7,9,13,21,25,45,57,61,69,85,93, \ldots$ (resp. $n=47,79,167,439,623$, $2023,3247,3719,4759,7223,8647, \ldots)$. For the remaining possible dimensions, attainability is an open problem.

For the dimensions that are not of the form $l^{2}-2$ for some odd integer l, the absolute bound can be improved:

Theorem 6.2 (Glazyrin and Yu [18] and King and Tang [27]) Let l be the unique odd integer such that $l^{2}-2 \leq n \leq(l+2)^{2}-3$. Then,

$$
M(n) \leq \begin{cases}\frac{n(l+1)(l+3)}{(l+2)^{2}-n}, & n=44,45,46,76,77,78,117,118,166,222,286,358 \\ \frac{\left(l^{2}-2\right)\left(l^{2}-1\right)}{2}, & \text { for all other } n \geq 44 .\end{cases}
$$

Furthermore, if the bound is attained, then the cosine of the angle between the lines is $a=1 /(l+2)$ for the first case and $a=1 / l$ for the second.

Glazyrin and Yu also proved another theorem [18, Theorem 4] about the codes that attain the bound from Theorem 6.2:

Theorem 6.3 (Glazyrin and Yu [18]) Suppose l is a positive odd integer. If X is a $\{1 / l,-1 / l\}$-spherical code of size $\left(l^{2}-2\right)\left(l^{2}-1\right) / 2$ contained in S^{n-1} with $n \leq$ $3 l^{2}-16$, then X must belong to a $\left(l^{2}-2\right)$-dimensional subspace.

Since $(l+2)^{2}-3 \leq 3 l^{2}-16$ for $l \geq 5$, this last theorem implies that if the second bound from Theorem 6.2 is attained, then Gerzon's bound also has to be attained for $n=l^{2}-2$. For the first two cases where tight spherical 5-designs do not exist, this implies $M(n) \leq 1127$ for $47 \leq n \leq 75$ and $M(n) \leq 3159$ for $79 \leq n \leq 116$. The following theorem is adapted from Larman, Rogers, and Seidel [28, Theorem 2]:
Theorem 6.4 (Larman et al. [28]) We have

$$
M(n) \leq \max \left\{2 n+3, M_{1 / 3}(n), M_{1 / 5}(n), \ldots, M_{1 / l}(n)\right\},
$$

where l is the largest odd integer such that $l \leq \sqrt{2 n}$.
Most of the results for $M(n)$ rely on Theorem 6.4 , which shows that to bound $M(n)$ one just has to consider finitely many angles. This motivates the consideration of $M_{a}(n)$ when $1 / a$ is an odd integer.

6.1.2 Bounds for $M_{a}(n)$

Bounds for fixed a are known as relative bounds, as opposed to Gerzon's absolute bound from Theorem 6.1. The first relative bound is due to van Lint and Seidel [47]:
Theorem 6.5 (van Lint and Seidel [47]) If $n<1 / a^{2}$, then

$$
M_{a}(n) \leq \frac{n\left(1-a^{2}\right)}{1-n a^{2}}
$$

As shown by Glazyrin and Yu [18, Theorem 5], Theorem 6.5 can be derived from the positivity of the Gegenbauer polynomials P_{2}^{n}, and indeed this is the bound given by the semidefinite programming techniques when $n \leq 1 / a^{2}-2$. This bound is also the first case of Theorem 6.2.

After computing the semidefinite programming bound for many values of n and a, Barg and Yu [5] observed long ranges $1 / a^{2}-2 \leq n \leq 3 / a^{2}-16$ where the bound remained stable, matching Gerzon's bound (Theorem 6.1) at $n=1 / a^{2}-2$. Based on this observation, Yu [48] proved the following theorem:
Theorem 6.6 rm (Yu [48]) If $n \leq 3 / a^{2}-16$ and $a \leq 1 / 3$, then

$$
M_{a}(n) \leq \frac{\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right)}{2}
$$

An alternative proof for the previous theorem is given by Glazyrin and Yu [18, Theorem 6], where the use of the positivity of the Gegenbauer polynomials P_{1}^{n-1} and P_{3}^{n-1} is made more explicit. The bounds given by the semidefinite programming method were also used to prove the following theorem:
Theorem 6.7 (Okuda and Yu [41]) If $3 / a^{2}-16 \leq n \leq 3 / a^{2}+6 / a+1$, then

$$
M_{a}(n) \leq 2+\frac{(n-2)(1 / a+1)^{3}}{\left(3 / a^{2}-6 / a+2\right)-n} .
$$

The bounds from Theorems $6.5,6.6$, and 6.7 coincide with the values given by the semidefinite programming formulation when $k=3$ (see the points labeled " $\Delta_{3}(G)^{*}$ [5,27]" in Figs. 1, 2, 3 and 4). Another source of relative bounds is a technique called pillar decomposition, introduced by Lemmens and Seidel [31] and used to determine $M_{1 / 3}(n)$:
Theorem 6.8 (Lemmens and Seidel [31]) If $n \geq 15$, then

$$
M_{1 / 3}(n)=2 n-2
$$

For $a=1 / 5$, they obtained results that lead to the following conjecture:
Conjecture 6.9 (Lemmens and Seidel [31]) We have

$$
M_{1 / 5}(n)= \begin{cases}276 & \text { for } 23 \leq n \leq 185 \\ \left\lfloor\frac{3}{2}(n-1)\right\rfloor & \text { for } n \geq 185\end{cases}
$$

Note that 276 is the bound given by Theorem 6.6 when $a=1 / 5$ and this shows (together with the fact that there exists a $\{-1 / 5,1 / 5\}$-code of size 276 in dimension $n=23$) that the conjecture is true for $n \leq 59$. In fact, the semidefinite programming bound computed by Barg and Yu [5] also shows $M_{1 / 5}(60)=276$. Neumaier [40] (see also [20, Corollary 6.6]) proved that there exists a large N such that $M_{1 / 5}(n)=$ $\left\lfloor\frac{3}{2}(n-1)\right\rfloor$ for all $n>N$. Neumaier claimed, without a proof, that N should be at most 30251.

Recently, Lin and Yu [33] made progress in this conjecture by proving some claims from Lemmens and Seidel [31]. The only case still open is when the code has a set with 4 unit vectors with mutual inner products $-1 / 5$ and no such set with 5 unit vectors (up to replacement of some vectors by their antipodes).

Glazyrin and Yu [18] introduced a new method to derive upper bounds for spherical finite-distance sets. By using Gegenbauer polynomials together with the polynomial method, they proved a theorem that, specialized for two-distance sets, is:
Theorem 6.10 (Glazyrin and Yu [18]) For all a, b, and n, we have

$$
A(n,\{a, b\}) \leq \frac{n+2}{1-(n-1) /(n(1-a)(1-b))}
$$

whenever the right-hand side is positive.
With this result, they proved the following relative bound, which provides the best bounds for moderately large values of n (see Figs. 2, 3 and 4):

Theorem 6.11 (Glazyrin and Yu [18]) If $a \leq 1 / 3$, then

$$
\begin{aligned}
M_{a}(n) & \leq n\left(\frac{\left(a^{-1}-1\right)\left(a^{-1}+2\right)^{2}}{3 a^{-1}+5}+\frac{\left(a^{-1}+1\right)\left(a^{-1}-2\right)^{2}}{3 a-5}+2\right)+2 \\
& \leq n\left(\frac{2}{3} a^{-2}+\frac{4}{7}\right)+2
\end{aligned}
$$

King and Tang [27] improved the pillar decomposition technique and got a better bound for $M_{1 / 5}(n)$ [27, Theorem 7]. Recently, Lin and Yu [33] further improved parts of their argument; by combining [33, Proposition 4.5] with the proof of [27, Theorem 7] we get:

Theorem 6.12 (Lin and Yu [33]) If $n \geq 63$, then

$$
M_{1 / 5}(n) \leq 100+3 A(n-4,\{1 / 13,-5 / 13\}) .
$$

The previous results give three competing methods to bound $M_{1 / 5}(n)$, each one being the best for a different range of dimensions. One can either use semidefinite programming to bound $M_{1 / 5}(n)$ directly, use Theorem 6.12 together with semidefinite programming to bound $A(n-4,\{1 / 13,-5 / 13\})$, or use Theorem 6.10. King and Tang [27] made this comparison, computing the semidefinite programming bound $\Delta_{3}(G)^{*}$. See in Table 2 and in Fig. 1 the comparison with the new semidefinite programming bound $\Delta_{6}(G)^{*}$.

Regarding asymptotic results, while it is known that $M(n)$ is asymptotically quadratic in n (a quadratic lower bound in which the cosine of the angle between the lines, a, tends to zero as n increases can be found in [20, Corollary 2.8], while Theorem 6.1 gives a quadratic upper bound), for fixed a we have that $M_{a}(n)$ is linear in n. Bukh [8] was the first to show a bound for $M_{a}(n)$ of the form $M_{a}(n) \leq c n$, although with a large constant c. Theorem 6.11 has another linear bound good to give results for intermediate values of n, while the best asymptotic result is due to Jiang et al. [25]. They completely settled the value of $\lim _{n \rightarrow \infty} M_{a}(n) / n$ for every a in terms of a parameter called the spectral radius order $r(\lambda)$, which is defined for $\lambda>0$ as the smallest integer r so there exists a graph with r vertices and adjacency matrix with largest eigenvalue exactly λ, and is defined $r(\lambda)=\infty$ in case no such graph exists.

Theorem 6.13 (Jiang et al. [25]) Fix $0<a<1$. Let $\lambda=(1-a) /(2 a)$ and $r=r(\lambda)$ be its spectral radius order. The maximum number $M_{a}(n)$ of equiangular lines in \mathbb{R}^{n} with common angle \arccos a satisfies
(a) $M_{a}(n)=\lfloor r(n-1) /(r-1)\rfloor$ for all sufficiently large $n>n_{0}(a)$ if $r<\infty$.
(b) $M_{a}(n)=n+o(n)$ as $n \rightarrow \infty$ if $r=\infty$.

Jiang et al. remarks that the $n_{0}(a)$ from their theorem may be really big, though. When $a=1 /(2 r-1)$ for some positive integer r, then $\lambda=r-1$ and $r(\lambda)=r$ (since the complete graph on r vertices has spectral radius $r-1$). Theorem 6.13 confirms a conjecture made by Bukh [8]:

Corollary 6.14 (Jiang et al. [25]) If $a=1 /(2 r-1)$ for some positive integer $r \geq 2$, then for all n sufficiently large,

$$
M_{a}(n)=\left\lfloor\frac{r(n-1)}{r-1}\right\rfloor .
$$

There is a simple construction that achieves the value from Corollary 6.14. Let $a=1 /(2 r-1)$ for some positive integer r and t, s be arbitrary positive integers. Then

Fig. 1 Relative bounds for $M_{1 / 5}(n)$. In fact, King and Tang [27] computed a bound using $\Delta_{3}(G)^{*}$ together with a theorem [27, Theorem 7] weaker than Theorem 6.12; the result is similar though
one can show that a matrix with t diagonal blocks, each of size r, and s diagonal blocks of size 1 , with diagonal entries equal to 1 , off-diagonal entries inside each block equal to $-a$, and all other entries equal to a is the Gram matrix of a $\{-a, a\}$-code in $S^{(r-1) t+s}$ of size $r t+s$. Letting $t=\lfloor(n-1) /(r-1)\rfloor$ and $s=n-1-(r-1)\lfloor(n-1) /(r-1)\rfloor$ we get the desired size.

6.2 New semidefinite programming bounds

As observed in Sect. 6, the semidefinite programming bounds computed by Barg and Yu [5] and King and Tang [27] correspond to $\Delta_{3}(G)^{*}$. In this paper we compute new upper bounds for $M_{a}(n)$ for $a=1 / 5,1 / 7,1 / 9$, and $1 / 11$ and many values of n using $k=4,5$, and 6 . Since every two-distance set with these angles and at most $k-2 \leq 4$ vectors is linearly independent, the assumption made in Sect. 4 is satisfied. We always use degree $d=5$ for the polynomials since, as reported by Barg and Yu [4], no improvement is observed for larger values of d (but this may change if sets D with cardinality greater than 2 are considered). The semidefinite programs were produced using a script written in Julia [7] using Nemo [15], were solved with SDPA-GMP [38], and the results were rigorously verified using the interval arithmetic library Arb [26]. The rigorous verification procedure is much simpler than that for similar problems [14]. The scripts used to generate the programs and verify the results can be found with the arXiv version of this paper.

The results are presented in Figs. 1, 2, 3 and 4 and Tables 2, 3, 4 and 5, where we compile the bounds for $M_{a}(n)$ for each n that is a multiple of 5 ; the best bounds are displayed in boldface. While it takes only a few seconds to generate and solve a

Fig. 2 Relative bounds for $M_{1 / 7}(n)$

Fig. 3 Relative bounds for $M_{1 / 9}(n)$
single instance of the semidefinite programming problem for $k=3$, the process takes about 5 days using a single core of an Intel i7-8650U processor for $k=6$; that is why the tables have some missing values for $\Delta_{6}(G)^{*}$.

No improvements were obtained for $n \leq 3 / a^{2}-16$; we observed in this case that $\Delta_{6}(G)^{*}=\Delta_{3}(G)^{*}$ which is equal to the values given by Theorems 6.5 and 6.6.

Fig. 4 Relative bounds for $M_{1 / 11}(n)$

Since this is the range of dimensions that influences $M(n)$, no improvements for $M(n)$ were obtained. We obtained great improvements for all dimensions $n>3 / a^{2}-16$, making the semidefinite programming bound competitive with the other methods (like Theorem 6.11) for more dimensions. Asymptotically, the semidefinite programming bounds behave badly, loosing even to Gerzon's bound.

In particular, we improved the range of dimensions for which the bound remains stable, showing that $n=3 / a^{2}-16$ from Theorem 6.6 is not optimal. Table 6 shows how much this range is increased for the values of a considered. This observation motivates the following two questions, where a is such that $1 / a$ is an odd integer:
(1) What is the smallest n such that $M_{a}(n)=\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right) / 2$?
(2) What is the smallest n such that $M_{a}(n)>\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right) / 2$?

Question (1) is the more interesting of the two since if the smallest n is $1 / a^{2}-2$, then Gerzon's bound is attained. Theorem 6.3 makes progress in this direction, showing that Gerzon's bound is also attained if the smallest n is at most $3 / a^{2}-16$; this is known not to be the case for many a (due to the nonexistence of some tight spherical 5-designs, as mentioned after Theorem 6.1), which implies $M_{1 / 7}(n) \leq 1127$ for $n \leq 131$ and $M_{1 / 9}(n) \leq 3159$ for $n \leq 227$. Table 6 also suggests that the constraint $n \leq 3 / a^{2}-16$ in Theorem 6.3 may not be optimal.

Question (2) seems interesting because Table 6 shows that $n=3 / a^{2}-15$ is not a good candidate solution. In fact, the smallest n is likely much larger, as suggested by Conjecture 6.9 for $M_{1 / 5}(n)$ and the construction described after Corollary 6.14. Using this construction, we know that $\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right) / 2$ is achieved when $n=\left(1 / a^{2}-2\right)(1 / a-1)^{2} / 2+1$, which corresponds to the dimensions 185,847 , 2529, and 5951 for $a=1 / 5,1 / 7,1 / 9$, and $1 / 11$ respectively.
Table 2 Upper bounds for $M_{1 / 5}(n)$ by diverse methods, including new results with $\Delta_{6}(G)^{*}$

	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	Thm $6.12[33]+\Delta_{5}(G)^{*}$	Thm $6.12[33]+\Delta_{6}(G)^{*}$	Thm 6.12 [33] + Thm 6.10 [18]
60	276	276	276	276			
65	326	276	276	276	469		920
70	398	301	278	276	499	472	989
75	494	346	312	305	532		1057
80	626	397	348	336	568	532	1126
85	816	456	388	369	604		1195
90	1120	526	431	404	643	598	1264
95	1556	609	479	442	679		1333
100	1790	710	532	482	721	667	1402
105	2077	836	591	525	763		1471
110	2437	994	657	572	805	742	1540
115	2904	1203	732	621	850		1609
120	3532	1489	817	675	898	820	1677
125	4419	1905	915	734	946		1746
130	5770	2565	1028	797	1000	904	1815
135	8076	3206	1160	866	1054		1884
140	12,896	3759	1317	942	1111	997	1953
145	29,280	4450	1508	1025	1174	1045	2022
150		5307	1742	1117	1237	1093	2091
155		6131	2038		1309	1147	2160
160		6989	2424	1334	1384	1204	2229
165		8005	2948		1465	1261	2298
170		9166	3699	1608	1555	1324	2367
175		10,401	4868		1654	1393	2436

Table 2 continued

The best bound in each dimension is in boldface
Table 3 Upper bounds for $M_{1 / 7}(n)$ by diverse methods, including new results with $\Delta_{6}(G)^{*}$

n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	Thm 6.11 [18]	n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	Thm 6.11 [18]
125	1128	1128	1128	1128	4151	265	49,145	19,501	7254	3465	8797
130	1128	1128	1128	1128	4317	270	72,667	22,466	8584	3717	8963
135	1218	1128	1128	1128	4482	275	135,319	26,319	10,427	3998	9129
140	1387	1128	1128	1128	4648	280		31,427	13,008	4311	9295
145	1593	1128	1128	1128	4814	285		36,793	13,442	4663	9461
150	1850	1163	1128	1128	4980	290		44,064	13,893	5062	9627
155	2178	1262	1128	1128	5146	295		54,538	14,363	5519	9793
160	2611	1381	1135	1128	5312	300		70,925	14,853	6045	9959
165	3211	1517	1188	1128	5478	305		100,201	15,364	6660	10,125
170	4098	1670	1271	1131	5644	310			15,897	7386	10,291
175	5199	1846	1361	1195	5810	315			16,453	8257	10,457
180	5582	2051	1458	1264	5976	320			17,035	9322	10,623
185	6006	2290	1564	1336	6142	325			17,644	10,653	10,789
190	6477	2575	1679	1412	6308	330			18,309	12,364	10,955
195	7005	2919	1805	1492	6474	335			19,106		11,121
200	7597	3342	1944	1578	6640	340			20,053	17,840	11,287
205	8269	3878	2097	1668	6806	345			21,178		11,453
210	9035	4575	2267	1765	6972	350			22,494	20,168	11,619
215	9918	5522	2457	1868	7138	355			23,893		11,785
220	10,946	6880	2670	1978	7304	360			25,410	21,307	11,951
225	12,158	8548	2911	2096	7470	365			27,077		12,117
230	13,608	9314	3187	2223	7636	370			28,923	22,525	12,283
235	15,374	10,181	3504	2359	7802	375			30,981		12,449

Table 3 continued

n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	$\operatorname{Thm} 6.11[18]$	n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$
240	17,571	11,171	3872	$\mathbf{2 5 0 7}$	7968	380		33,291	23,833
245	20,378	12,315	4307	$\mathbf{2 6 6 7}$	8134	385	$\mathbf{1 2 , 6 1 5}$		
250	24,090	13,652	4827	$\mathbf{2 8 4 0}$	8300	390	35,904		
255	29,230	15,238	5460	$\mathbf{3 0 3 0}$	8466	395	38,885	25,239	$\mathbf{1 2}$
260	36,818	17,150	6247	$\mathbf{3 2 3 7}$	8632	400	42,316	46,310	26,756

[^3]Table 4 Upper bounds for $M_{1 / 9}(n)$ by diverse methods, including new results with $\Delta_{6}(G)^{*}$

| n | $\Delta_{3}(G)^{*}[5,27]$ | $\Delta_{4}(G)^{*}$ | $\Delta_{5}(G)^{*}$ | $\Delta_{6}(G)^{*}$ | Thm $6.11[18]$ | n | $\Delta_{3}(G)^{*}[5,27]$ | $\Delta_{4}(G)^{*}$ | $\Delta_{5}(G)^{*}$ | $\Delta_{6}(G)^{*}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Thm 6.11[18]

[^4]Table 5 Upper bounds for $M_{1 / 11}(n)$ by diverse methods, including new results with $\Delta_{6}(G)^{*}$

n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	Thm 6.11 [18]	n	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$	Thm 6.11 [18]
345	7140	7140	7140	7140	28,011	425	30,885	11,309	7319	7140	34,506
350	7426	7140	7140	7140	28,417	430	31,817	12,186	7494	7140	34,912
355	8028	7140	7140	7140	28,823	435	32,789	13,185	7730	7140	35,318
360	8715	7140	7140	7140	29,229	440	33,804	14,332	8036	7140	35,724
365	9506	7140	7140	7140	29,635	445	34,863	15,665	8407	7140	36,130
370	10,426	7140	7140	7140	30,041	450	35,971	17,232	8808	7144	36,536
375	11,511	7140	7140	7140	30,447	455	37,129	19,100	9239	7190	36,942
380	12,809	7140	7140	7140	30,853	460	38,342	21,365	9703	7285	37,348
385	14,389	7180	7140	7140	31,259	465	39,613	24,170	10,205	7427	37,754
390	16,354	7353	7140	7140	31,665	470	40,948	27,732	10,749	7618	38,160
395	18,866	7692	7140	7140	32,071	475	42,349	32,408	11,341	7859	38,566
400	22,187	8154	7140	7140	32,477	480	43,823	38,495	11,986	8142	38,972
405	26,786	8661	7140	7140	32,883	485	45,376	39,896	12,695	8442	39,378
410	28,304	9221	7140	7140	33,289	490	47,012	41,346	13,474	8758	39,784
415	29,130	9841	7146	7140	33,695	495	48,741	42,853	14,337	9091	40,190
420	29,990	10,533	7204	7140	34,100	500	50,569	44,424	15,296	9443	40,595

The best bound in each dimension is in boldface

Table 6 By considering $\Delta_{k}(G)^{*}$ for $k \geq 4$ we find out that the maximum dimension n for which the bound $M_{a}(n) \leq\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right) / 2$ is valid is larger than $3 / a^{2}-16$ as given by Theorem 6.6 and $\Delta_{3}(G)^{*}$; the table shows the improved dimensions

a	$\left(1 / a^{2}-2\right)\left(1 / a^{2}-1\right) / 2$	$\Delta_{3}(G)^{*}[5,27]$	$\Delta_{4}(G)^{*}$	$\Delta_{5}(G)^{*}$	$\Delta_{6}(G)^{*}$
$1 / 5$	276	60	65	69	70
$1 / 7$	1128	131	145	158	169
$1 / 9$	3160	227	251	273	300
$1 / 11$	7140	347	381	413	448

We also improve the bounds computed by King and Tang [27] for $M_{1 / 5}(n)$ by replacing their theorem [27, Theorem 7] by Theorem 6.12 and by using $\Delta_{6}(G)^{*}$ to compute better bounds for $A(n,\{1 / 13,-5 / 13\})$. Lin and Yu [33] observed that $A(n,\{1 / 13,-5 / 13\}) \geq 3 n / 2-3$ and therefore there is a limit to the power of this approach: it will never be able to prove Conjecture 6.9 no matter how much we increase k. In general, it is not clear how good the bound $\Delta_{k}(G)^{*}$ can be for $M_{a}(n)$ if one allows k to increase; in contrast, de Laat and Vallentin [11, Theorem 2] show that their version of the Lasserre hierarchy for compact topological packing graphs converges to the independence number if enough steps are computed. Whether such a convergence result holds for $\Delta_{k}(G)^{*}$ is an open question; in any case, it takes days to compute $\Delta_{k}(G)^{*}$ for $k=6$, so one can expect that solving the resulting semidefinite programs for $k>6$ will be hard in practice.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Proof of the sufficiency part of Theorem 4.1

We now prove, for the sake of completeness, a theorem that, together with the linear transformation $L\left(A_{R}\right)$ used to compute the coordinates of the projection of a vector with respect to an orthonormal basis of $\operatorname{span}(R)$, amounts to the sufficiency part of Theorem 4.1, which is the direction used in this paper. It is a restatement of a proposition of Musin [37, Corollary 3.1].

Recall that P_{l}^{n} is the Gegenbauer polynomial of degree l in dimension n normalized so that $P_{l}^{n}(1)=1$. For $0 \leq m \leq n-2, t \in \mathbb{R}$, and $u, v \in \mathbb{R}^{m}$, the polynomial $P_{l}^{n, m}$ is the $(2 m+1)$-variable polynomial

$$
\begin{equation*}
P_{l}^{n, m}(t, u, v)=\left(\left(1-\|u\|^{2}\right)\left(1-\|v\|^{2}\right)\right)^{l / 2} P_{l}^{n-m}\left(\frac{t-u \cdot v}{\sqrt{\left(1-\|u\|^{2}\right)\left(1-\|v\|^{2}\right)}}\right) \tag{14}
\end{equation*}
$$

where $\|v\|=\sqrt{v \cdot v}$. If we use the convention $\mathbb{R}^{0}=\{0\}$, then $P_{l}^{n}(t)=P_{l}^{n, 0}(t, 0,0)$. Fix $d \geq 0$, let \mathcal{B}_{l} be a basis of the space of m-variable polynomials of degree at most l (e.g. the monomial basis), and write $z_{l}(u)$ for the column vector containing the polynomials of \mathcal{B}_{l} evaluated at $u \in \mathbb{R}^{m}$. The matrix $Y_{l}^{n, m}$ is the matrix of polynomials

$$
Y_{l}^{n, m}(t, u, v)=P_{l}^{n, m}(t, u, v) z_{d-l}(u) z_{d-l}(v)^{T} .
$$

Theorem A. 1 (Musin [37]) Let $R \subseteq S^{n-1}$ with $m=\operatorname{dim}(\operatorname{span}(R)) \leq n-2$ and let E be an $m \times n$ matrix whose rows form an orthonormal basis for $\operatorname{span}(R)$. Fix $d \geq 0$ and, for each $0 \leq l \leq d$, let F_{l} be a positive semidefinite matrix of size $\binom{d-l+m}{m} \times\binom{ d-l+m}{m}$. Then $K: S^{n-1} \times S^{n-1} \rightarrow \mathbb{R}$ given by

$$
K(x, y)=\sum_{l=0}^{d}\left\langle F_{l}, Y_{l}^{n, m}(x \cdot y, E x, E y)\right\rangle
$$

is a positive, continuous, and $\mathrm{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$-invariant kernel.
First we prove that the polynomials $P_{l}^{n, m}$ satisfy the following positivity property [37, Theorem 3.1].

Proposition A. 2 (Musin [37]) For $0 \leq m \leq n-2$, let E be an $m \times n$ matrix whose rows form an orthonormal set in \mathbb{R}^{n} and C be a finite subset of S^{n-1}. Then, for every nonnegative integer l, the matrix $\left(P_{l}^{n, m}(x \cdot y, E x, E y)\right)_{x, y \in C}$ is positive semidefinite.

Proof If $l=0$ then all polynomials evaluate to 1 and the proposition holds, so we assume $l \neq 0$. Let L be the space spanned by the rows of E and z be a unit vector in L^{\perp}. For each $x \in C$, write $x=x_{1}+x_{2}$ with $x_{1} \in L$ and $x_{2} \in L^{\perp}$. If $\left\|x_{2}\right\|>0$, then let $\bar{x}=x_{2} /\left\|x_{2}\right\|$, otherwise write $\bar{x}=z$. If $\left\|x_{2}\right\|,\left\|y_{2}\right\| \neq 0$, then

$$
\bar{x} \cdot \bar{y}=\frac{x_{2} \cdot y_{2}}{\left\|x_{2}\right\|\left\|y_{2}\right\|}=\frac{x \cdot y-x_{1} \cdot y_{1}}{\sqrt{\left(1-\left\|x_{1}\right\|^{2}\right)\left(1-\left\|y_{1}\right\|^{2}\right)}}
$$

Since the rows of E are orthonormal, we have $x_{1} \cdot y_{1}=(E x) \cdot(E y)$ and hence $\left\|x_{2}\right\|^{l}\left\|y_{2}\right\|^{l} P_{l}^{n-m}(\bar{x} \cdot \bar{y})=P_{l}^{n, m}(x \cdot y, E x, E y)$.

If, say, $\left\|x_{2}\right\|=0$, then $\left\|x_{2}\right\|^{l}\left\|y_{2}\right\|^{l} P_{l}^{n-m}(\bar{x} \cdot \bar{y})=0$, while $P_{l}^{n, m}(x \cdot y, E x, E y)$ is also 0 as can be seen from (14) since $x \cdot y-x_{1} \cdot y_{1}=x_{2} \cdot y_{2}=0$.

Now $\{\bar{x}: x \in C\}$ is contained in an embedding of S^{n-m-1} into S^{n-1} and by Schoenberg's theorem [43] we have that $\left(P_{l}^{n-m}(\bar{x} \cdot \bar{y})\right)_{x, y \in C}$ is positive semidefinite. Since $\left(\left\|x_{2}\right\|^{l}\left\|y_{2}\right\|^{l}\right)_{x, y \in C}$ is positive semidefinite, so is $\left(\left\|x_{2}\right\|^{l}\left\|y_{2}\right\|^{l} P_{l}^{n-m}(\bar{x} \cdot \bar{y})\right)_{x, y \in C}$, and we are done.

Proof of Theorem A. 1 Since all entries of $Y_{l}^{n, m}$ are polynomials, K is continuous, and since $x \cdot y, E x$, and $E y$ are invariant under the action of $\operatorname{Stab}_{\mathrm{O}(n)}(\operatorname{span}(R))$ on (x, y), K is invariant. To prove positivity, let C be a finite subset of S^{n-1} and $w: C \rightarrow \mathbb{R}$ be
a function. We have

$$
\sum_{x, y \in C} w_{x} w_{y} K(x, y)=\sum_{l=0}^{d}\left\langle F_{l}, \sum_{x, y \in C} w_{x} w_{y} Y_{l}^{n, m}(x \cdot y, E x, E y)\right\rangle
$$

To show this quantity is nonnegative, we will show that for all $l=0, \ldots, d$ the matrix $\sum_{x, y \in C} w_{x} w_{y} Y_{l}^{n, m}(x \cdot y, E x, E y)$ is positive semidefinite. For this, write it as a product of matrices: if B is the matrix whose columns are given by $z_{d-l}(E x)$ for $x \in C$, then

$$
\begin{aligned}
& \sum_{x, y \in C} w_{x} w_{y} Y_{l}^{n, m}(x \cdot y, E x, E y) \\
& =\sum_{x, y \in C} w_{x} w_{y} z_{d-l}(E x) z_{d-l}(E y)^{T} P_{l}^{n, m}(x \cdot y, E x, E y) \\
& =B\left(P_{l}^{n, m}(x \cdot y, E x, E y)\right)_{x, y \in C} B^{T}
\end{aligned}
$$

and, since the matrix $\left(P_{l}^{n, m}(x \cdot y, E x, E y)\right)_{x, y \in C}$ is positive semidefinite by Proposition A.2, we are done.

References

1. Bachoc, C., Nebe, G., de Oliveira Filho, F.M., Vallentin, F.: Lower bounds for measurable chromatic numbers. Geom. Funct. Anal. 19(3), 645-661 (2009)
2. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909-924 (2008)
3. Bannai, E., Munemasa, A., Venkov, B.: The nonexistence of certain tight spherical designs. Algebra Anal. 16(4), 1-23 (2004)
4. Barg, A., Wei-Hsuan, Y.: New bounds for spherical two-distance sets. Exp. Math. 22(2), 187-194 (2013)
5. Barg, A., Yu, W.-H.: New bounds for equiangular lines. In: Discrete Geometry and Algebraic Combinatorics, Volume 625 of Contemporary Mathematics, pp. 111-121. Amer. Math. Soc., Providence, RI (2014)
6. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)
7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65-98 (2017)
8. Bukh, B.: Bounds on equiangular lines and on related spherical codes. SIAM J. Discrete Math. 30(1), 549-554 (2016)
9. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99-148 (2007)
10. de Laat, D.: Moment methods in energy minimization: new bounds for Riesz minimal energy problems. Trans. Am. Math. Soc. 373, 1407-1453 (2020)
11. de Laat, D., Vallentin, F.: A semidefinite programming hierarchy for packing problems in discrete geometry. Math. Program. 151(2, Ser. B), 529-553 (2015)
12. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, vi+97 (1973)
13. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedic. 6(3), 363-388 (1977)
14. Dostert, M., Guzmán, C., de Oliveira Filho, F.M., Vallentin, F.: New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput. Geom. 58(2), 449-481 (2017)
15. Fieker, C., Hart, W., Hofmann, T., Johansson, F.: Nemo/Hecke: computer algebra and number theory packages for the Julia programming language. In: ISSAC' 17 —Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation, pp. 157-164. ACM, New York (2017)
16. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2013)
17. Gijswijt, D.C., Mittelmann, H.D., Schrijver, A.: Semidefinite code bounds based on quadruple distances. IEEE Trans. Inform. Theory 58(5), 2697-2705 (2012)
18. Glazyrin, A., Wei-Hsuan, Y.: Upper bounds for s-distance sets and equiangular lines. Adv. Math. 330, 810-833 (2018)
19. Greaves, G.R.W.: Equiangular line systems and switching classes containing regular graphs. Linear Algebra Appl. 536, 31-51 (2018)
20. Greaves, G.R.W., Koolen, J.H., Munemasa, A., Szöllősi, F.: Equiangular lines in Euclidean spaces. J. Comb. Theory Ser. A 138, 208-235 (2016)
21. Greaves, G.R.W., Syatriadi, J., Yatsyna, P.: Equiangular lines in low dimensional euclidean spaces (2020). arXiv preprint arXiv:2002.08085
22. Greaves, G.R.W., Yatsyna, P.: On equiangular lines in 17 dimensions and the characteristic polynomial of a Seidel matrix. Math. Comput. 88(320), 3041-3061 (2019)
23. Gvozdenović, N., Laurent, M., Vallentin, F.: Block-diagonal semidefinite programming hierarchies for 0/1 programming. Oper. Res. Lett. 37(1), 27-31 (2009)
24. Haantjes, J.: Equilateral point-sets in elliptic two- and three-dimensional spaces. Nieuw Arch. Wiskunde 2(22), 355-362 (1948)
25. Jiang, Z., Tidor, J., Yao, Y., Zhang, S., Zhao, Y.: Equiangular lines with a fixed angle (2019). arXiv preprint arXiv:1907.12466
26. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281-1292 (2017)
27. King, E.J., Tang, X.: New upper bounds for equiangular lines by pillar decomposition. SIAM J. Discrete Math. 33(4), 2479-2508 (2019)
28. Larman, D.G., Ambrose Rogers, C., Seidel, J.J.: On two-distance sets in Euclidean space. Bull. Lond. Math. Soc 9(3), 261-267 (1977)
29. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Optim. 12(3), 756-769 (2002)
30. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28(3), 470-496 (2003)
31. Lemmens, P.W.H., Seidel, J.J.: Equiangular lines. J. Algebra 24, 494-512 (1973)
32. Lin, Y.R.: Saturated configuration and new large construction of equiangular lines (2018). arXiv preprint arXiv:1801.04502
33. Lin, Y.R., Yu, W.-H.: Equiangular lines and the Lemmens-Seidel conjecture. Discrete Math. 343, 111667 (2019)
34. Litjens, B., Polak, S., Schrijver, A.: Semidefinite bounds for nonbinary codes based on quadruples. Des. Codes Cryptogr. 84(1-2), 87-100 (2017)
35. Matoušek, J.: Mathematical and algorithmic applications of linear algebra. In: Thirty-Three Miniatures, Volume 53 of Student Mathematical Library. American Mathematical Society, Providence, RI (2010)
36. Musin, O.R.: The kissing number in four dimensions. Ann. Math. (2) 168(1), 1-32 (2008)
37. Musin, O.R.: Multivariate positive definite functions on spheres. In: Discrete Geometry and Algebraic Combinatorics, Volume 625 of Contemporary Mathematics, pp. 177-190. Amer. Math. Soc., Providence, RI (2014)
38. Nakata, M.: A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP,-QD and-DD. In: 2010 IEEE International Symposium on Computer-Aided Control System Design (CACSD), pp. 29-34. IEEE (2010)
39. Nebe, G.: Venkov, Boris: On tight spherical designs. Algebra i Analiz 24(3), 163-171 (2012)
40. Neumaier, A.: Graph representations, two-distance sets, and equiangular lines. Linear Algebra Appl. 114(115), 141-156 (1989)
41. Okuda, T., Yu, W.-H.: A new relative bound for equiangular lines and nonexistence of tight spherical designs of harmonic index 4. Eur. J. Comb. 53, 96-103 (2016)
42. Olga, V.K., Juan, C.: Generalizations of Schoenberg's theorem on positive definite kernels (2019). arXiv preprint arXiv:1904.02538
43. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96-108 (1942)
44. Schrijver, A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inform. Theory 51(8), 2859-2866 (2005)
45. Sloane, N.J.A. (ed.): The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org (2018)
46. Taylor, D.E.: Some topics in the theory of finite groups. PhD thesis, University of Oxford (1971)
47. van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335-348 (1966)
48. Yu, W.-H.: New bounds for equiangular lines and spherical two-distance sets. SIAM J. Discrete Math. 31(2), 908-917 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: D.d.L. was partially supported by NWO Rubicon Grant 680-50-1528. F.C.M was supported by Grant \#2017/25237-4, from the São Paulo Research Foundation (FAPESP) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) -Finance Code 001. F.V. was partially supported by the SFB/TRR 191 "Symplectic Structures in Geometry, Algebra and Dynamics", funded by the DFG. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Agreement Number 764759.

 David de Laat
 d.delaat @ tudelft.nl

 Fabrício Caluza Machado
 fabcm1@gmail.com
 Fernando Mário de Oliveira Filho
 fmario@gmail.com
 Frank Vallentin
 frank.vallentin@uni-koeln.de
 1 Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

 2 Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090, Brazil
 3 Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Cologne, Germany

[^1]: ${ }^{1}$ A measure $\mu \in \mathcal{M}\left(V^{2} \times I_{k-2}\right)$ is symmetric if $\mu\left(E \times E^{\prime} \times C\right)=\mu\left(E^{\prime} \times E \times C\right)$ for all Borel sets E, $E^{\prime} \subseteq V$ and $C \subseteq I_{k-2}$.

[^2]: ${ }^{2}$ The automorphism group $\operatorname{Aut}(G)$ of a graph $G=(V, E)$ is the group of permutations $\sigma: V \rightarrow V$ that respect the adjacency relation; that is, $\sigma(x)$ and $\sigma(y)$ are adjacent if and only if x and $y \in V$ are adjacent.

[^3]: The best bound in each dimension is in boldface

[^4]: The best bound in each dimension is in boldface

