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With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is
possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes.
A very 
rst step towards elucidating hidden patterns and understanding themassive data is the application of clustering techniques.
Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In
many cases, nonlinear relations can model the biological relationship more precisely and re�ect critical patterns in the biological
systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before,
we designed the nonlinear�-pro
les clustering method, which can be seen as the nonlinear counterpart of the�-means clustering
algorithm.	emethod has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the
estimation of cluster pro
les. Results from extensive simulation studies showed that �-pro
les clustering not only outperformed
traditional linear �-means algorithm, but also presented signi
cantly better performance over our previous General Dependency
Hierarchical Clustering (GDHC) algorithm.We further analyzed a gene expression dataset, onwhich�-pro
le clustering generated
biologically meaningful results.

1. Introduction

In recent years, large amounts of high dimensional data
have been generated from high-throughput expression tech-
niques, such as gene expression data using microarray or
deep sequencing [1], and metabolomics and proteomics data
using liquid chromatography-mass spectrometry (LC-MS)
[2]. Mining the hidden patterns inside these data leads to
an enhanced understanding of functional genomics, gene
regulatory networks, and so forth [3, 4]. However, the com-
plexity of biological networks and the huge number of genes
pose great challenges to analyze the big mass of data [5, 6].
Clustering techniques has usually been applied as a 
rst step
in the data mining process to analyze hidden structures and
reveal interesting patterns in the data [7].

Clustering algorithms have been studied extensively in
the last three decades, with many traditional clustering tech-
niques successfully applied or adapted to gene expression
data, which led to the discovery of biologically relevant
groups of genes or samples [6]. Traditional clustering algo-
rithms usually process data on the full feature space while
emerging attention has been paid to subspace clustering. Tra-
ditional clustering algorithms, such as�-means and expecta-
tion maximization (EM) based algorithms, mostly use linear
associations or geometric proximity to measure the sim-
ilarity/distance between data points [8].

When applying traditional clustering algorithms to the
domain of bioinformatics, additional challenges are faced due
to prevalent existence of nonlinear correlations in the high
dimensional space [9]. However, nonlinear correlations are
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largely untouched in contrast to the relative mature literature
of clustering using linear correlations [5, 10–12]. 	ere are
several factors making nonlinear clustering di�cult. First, a
pair of nonlinearly associated data points may not be close to
each other in high-dimensional space. Second, it is di�cult to
e�ectively de
ne a cluster pro
le (i.e., the “center” of a cluster)
to summarize a cluster given the existence of nonlinear
associations. 	ird, compared to measures that detect linear
correlations, nonlinear association measures lose statistical
power more quickly with the increase of random additive
noise. Fourth, given the high dimensions, computationally
expensive methods, for example, principal curves [13, 14], are
hard to be adopted even though they can model nonlinear
relationships.

In this paper, we try to address these problems by
developing a clustering method that can group data points
with both linear and nonlinear associations. We name this
method “�-pro
les clustering.” Our method is based on
the previously described nonlinear measure: the Distance
Based on Conditional Ordered List (DCOL) [15, 16]. 	e key
concept is to use data point orders in the sample space as the
cluster pro
le. We have previously described a hierarchical
clustering scheme named General Dependency Hierarchical
Clustering (GDHC). However the computation of GDHC
is very intensive. 	e new �-pro
les clustering method is
much more e�cient, representing a ∼20-fold reduction in
computing time. Conceptually, it is the nonlinear counter-
part of the popular �-means clustering method, while the
existingGDHC is the nonlinear counterpart of the traditional
hierarchical clusteringmethod. Another key advantage of the
�-pro
les clustering method is that, by building statistical
inference into the iterations, noise genes that do not belong
to any cluster will not interfere with the cluster pro
le
estimation, and they are naturally le� out of the 
nal results.

2. Methods

2.1. Distance Based on Conditional Ordered List (DCOL). We

rst consider the de
nition of Distance Based onConditional
Ordered List (DCOL) in two-dimensional space. Given two
random variables� and� and the corresponding data points
{(��, ��)}�=1,...,�, a�er sorting the points on �-axis to obtain

{(�∗� , �
∗
� ) : �∗1 ≤ �∗2 ≤ ⋅ ⋅ ⋅ ≤ �∗� } (1)

the DCOL is de
ned as

�col (� | �) = 1
(� − 1)

�
∑
�=2

������ − ��−1
���� . (2)

Intuitively, when � is less spread in the order sorted on �,
�col(� | �) is small. We can use �col(� | �) to measure the
spread of conditional distribution � | � in a nonparametric
manner [16].

	e statistical inference on �col(� | �) can be conducted
using a permutation test. Under the null hypothesis that �
and � are independent of each other, the ordering of the data
points based on � is simply a random reordering of �. 	us
we can randomly permute {(��)}�=1,...,� � times and calculate

the sum of distances between adjacent � values in each per-
mutation.	en we can 
nd the mean and standard deviation
from the � values sampled from the null distribution. 	e
actual �col(� | �) can then be compared to the estimated
null distribution to obtain the � value. Notice this process
does not depend on �. 	e permutation can be done once
for � and the resulting null distribution parameters apply to
any�, which greatly saves computing time.

2.2. De
ning a Cluster Pro
le and Generalizing DCOL to
HigherDimensions. LetU be a�-dimensional randomvector
(�1, �2, . . . , ��), where each �� is a random variable; then
an instance of random vector U can be seen as a point in the
�-dimensional space. Assuming instances of random vector
U are sorted in the �-dimensional space, then �col(� | U)
can be computed according to (2) for any random variable �.
	erefore, the key problem is to de
ne the order of a series of
�-dimensional points.

When� is one-dimensional, we can easily prove that a list
of numbers (�1, �2, . . . , ��) is sorted if and only if ∑��=2 |�� −
��+1| isminimized.We generalize this to�-dimensional space
and de
ne instances (u1, u2, . . . , u�) as sorted if and only if the
sum of distances between the adjacent �-dimensional points
is minimized. Sorting the points is equivalent to 
nding
the shortest Hamiltonian path through the � points in �
dimensions, the solution of which is linked to the Traveling
SalesmanProblem (TSP) [17].Manymethods exist for solving
the TSP [17].

If we consider the � random variables as � genes, we have
e�ectively de
ned a pro
le for the cluster made of these �
genes. Using this pro
le, we can compute the �col(� | U) for
any gene � and determine if the gene is close to this cluster,
which serves as the foundation of the�-pro
le algorithm.

2.3. �e �-Pro
les Algorithm. In this section, we outline
the DCOL-based nonlinear �-pro
les clustering algorithm.
First, we de
ne the gene expression data matrix ��×�, where
� samples are measured for � genes and each cell ��� is the
measured expression level of gene � on sample �. Each row
represents the expression pattern of a genewhile each column
represents the expression pro
le of a speci
ed sample.

	e �-pro
les clustering process is analogous to the
traditional �-means algorithm overall. However there are
two key di�erences: (1) Di�erent from the �-means cluster-
ing algorithm, we use the data point ordering (Hamiltonian
path) as the cluster pro
le rather than the mean vector
of all data points belonging to this cluster; (2) during the
iterations, the association of each point to its closest cluster
is judged for statistical signi
cance. Points that are not
signi
cantly associated with any cluster cannot contribute to
the estimation of the cluster’s pro
le.

Due to the random initialization of clusters, we use a
loose � value cuto� at the beginning and decrease it iteration
by iteration as the updated cluster pro
les become more
stable and re�ect the authentic clusters more reliably as the
clustering process progresses.

(a) To start, we compute the null distribution of DCOL
distances for each gene (row) and obtain two parame-
ters, mean �� and standard deviation ��, for each gene
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Figure 1: Illustration of the four functions used in simulations.

simultaneously by permuting columns of the matrix
500 times. 	e gene-speci
c null distribution param-
eters are used to compute the � values of the DCOL
whenever assigning a gene to the closest cluster.

(b) Initialize � clusters by generating � random orders
as cluster pro
les; set � value cuto� to upper bound.

(c) For each row vector, compute its DCOL distance to
each cluster according to corresponding cluster pro-

le�col(�� | U�), where�� is the �th gene andU� is the
�th cluster. Assign it to the closest cluster if the DCOL
is statistically signi
cant in terms of � value. In this
step, we are implicitly computing� � values for each
gene and taking theminimum.	uswe need to adjust
the � value cuto� to address the multiple testing
issue. We assume each cluster pro
le is independent
of the others.	en it follows that, for each gene, the�

� values are independent. Under the null hypothesis
that the gene is not associated with any of the clusters,
all the � values are i.i.d. samples from the standard
uniform distribution. 	us the nominal � value

cuto� � is transformed to �� = 1 − (1 − �)1/	.
(d) When all gene vectors have been assigned, recalculate

the pro
le of each cluster using a TSP solver.

(e) Repeat steps (c) and (d) until the cluster pro
les no
longer change or the maximum iteration is reached.
We start with a loose � value cuto�. In each iteration
we reduce the � value cuto� by a small amount, until
the target � value cuto� is reached.

	e above procedure is conditioned on a given �, the
number of clusters. We used gap statistics for determination
of �. Other options such as prediction strength or 
nding
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Figure 2: Simulation results with nonlinear data.

the elbow of the variance-cluster number plot are also
available. Here we replace the sum of variances by the sum
of negative log� values.

2.4. Simulation Study. Wegenerated simulation datasets with
100 samples (columns) and� gene clusters, each containing
100 genes (rows). Another 100 pure noise genes were added
to the data. � was set to 10 or 20 in separate simulation
scenarios. Within each cluster, we set the genes (rows) to be
either linearly or nonlinearly correlated using di�erent link
functions, including (1) linear, (2) sine curve, (3) box wave,
and (4) absolute value (Figure 1).

Clusters were generated separately using three di�erent
mechanisms, namely, (1) the hidden factor data generation
approach, (2) 1-dependent approach, and (3) 2-dependent
approach.

In the hidden factor approach, for each cluster, we 
rst
generated the expression levels of a single controlling factor �
by sampling the standard normal distribution. 	en for each
gene, a functionwas randomly drawn from the four functions
mentioned above (Figure 1). 	e gene was generated as the
function of the hidden controlling factor plus certain level of

noise from the normal distribution: �(new) = �(�) +  .
In the 1-dependent approach, the expressions of genes

in a cluster were generated sequentially. 	e 
rst gene was
generated by sampling the standard normal distribution.
From the second gene on, we 
rst randomly chose one
gene that was already generated and randomly chose one
function from the four available functions (Figure 1).We then
generated the new gene as the function of the previously

generated gene: �(new) = �(�(selected)). A�er the expression
of all genes in a cluster was generated, certain level of noise
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Figure 3: An example of confusionmatrices shown as images. Cleaner pictures indicate better agreement between true clusters and clustering
results. 	e le�-most column of each subplot represents the pure noise gene group. (a) �-pro
les clustering result. (b) GDHC result. (c) �-
means result.

was generated from the normal distribution and added to the
gene expression pro
les.

	e 2-dependent approach is similar to the 1-dependent
approach. 	e di�erence is that, for each new gene, two
previously generated genes were randomly selected, and
two functions were randomly chosen. 	e new gene was

generated as the summation: �(new) = !1�(�(selected 1)) +
!2�(�(selected 2)). 	e !’s were sampled from the uniform
distribution between−1 and 1. Again certain level of noise was

generated from the normal distribution and added to the gene
expression pro
les.

3. Results and Discussions

3.1. Simulation Results. In the simulation experiments, we
compared the �-pro
les algorithm with General Depen-
dency Hierarchical Clustering (GDHC) and the traditional
�-means clustering algorithm. 	e GDHC was paired with
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the dynamic tree cutting method to cut the trees into clusters
[18]. We used the e�cient TSP R library to compute the
cluster pro
les [19]. We adopted the external evaluation
metric Adjusted Rand Index (ARI) [20] to compare the
clustering results with the true cluster memberships to judge
the performance of the methods.

In Figure 2, the average ARI values were plotted against
the noise level. Higher ARI values indicate better cluster-
ing performance. 	e 
gure contains three columns and
two rows with each column representing a data generation
mechanism and each row representing a di�erent number of
clusters. In the le� column, data was generated by the hidden
factor mechanism, where all features in a true cluster were
linearly/nonlinearly linked to a latent factor. In columns 2 and
3, features in each cluster were generated using 1-dependent
and 2-dependent mechanism, respectively. In such a genera-
tion mechanism, genes generated later depend on previously
generated genes in the same cluster [15]. In themeantime, the

rst row shows results from data with 10 clusters, while the
second row shows results from data with 20 clusters.

For GDHC, we used the dynamic tree cutting method
[18] to cut each tree. Various values of minimum cluster
size were tested. For �-pro
les clustering, we started with
a � value cuto� of 0.2 and gradually reduced the cuto� to
0.05 with the iterations. We ran each setting (cluster size,
data generation scheme) 20 times and plotted the average
results in Figure 2. We can see obviously that both�-pro
les
and GDHC outperformed linear relation-based �-means
clustering algorithm signi
cantly in all cluster parameter
settings. �-pro
les also did a better job than GDHC in
recovering the true clusters. We allowed four minimum
cluster size levels in the dynamic tree cutting, 50%, 75%, 95%,
and 100%, of the true cluster size. Generally the 50% setting
performed the best.

Figure 3 shows the confusion matrices of an example
clustering result as images. We can see the composition of
the reported clusters by the three di�erent clustering algo-
rithms. Cleaner images indicate better agreement between
true clusters and the detected clusters. When looking into all
three confusion matrices, we can see that in each reported
cluster our proposed method discovered a dominant group
with only a little impurity. However, in traditional �-means
clustering, the reported clusters were mostly composed of
several small groups, which rendered it of little use when the
data contains much nonlinear relations. GDHC performed
much better than �-means with 4 reported clusters (rows)
composed mostly of elements from the same true clusters.
Clearly, the new �-pro
les clustering method achieved the
best performance in the simulations.

	e�-pro
les and GDHC clustering methods were both
based on DCOL, which detects both nonlinear and linear
relationships, although it has lower power to detect linear
relationship compared to correlation coe�cient. Next we
studied how the methods behave when the true relationships
are all linear.We used the same hidden factor data generation
scheme but allowed only linear relations in the data genera-
tion, which means all genes in the same cluster were linearly
related to the same hidden factor. We simulated data with 10
clusters, each containing 100 genes, plus an additional 100
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Figure 4: Simulation results from data with linear associations only.
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Figure 5: Selecting the number of clusters for the Spellman dataset
by plotting sum of negative log� values against the number of
clusters.

pure noise genes. �-pro
les achieved similar performance
to �-means when the noise was at low to moderate levels
(Figure 4). 	is is likely due to the fact that �-means does
not involve statistical testing to exclude noise genes from the
clusters.

Besides being a more e�ective nonlinear clustering
method, the �-pro
les method is also more e�cient com-
pared to GDHC. On a data matrix with 2000 rows and 100
columns, the average computing time of �-pro
les was ∼30
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Figure 6: Signi
cance levels of GO slims terms. Brighter colors indicate signi
cance using the hypergeometric test for overrepresentation
analysis.

seconds on a laptop with i7-3537U CPU and 6Gb memory,
while the GDHC used ∼600 seconds.

3.2. Real Data Analysis. We conducted data analysis on
the Spellman yeast cell cycle data, which consists of four
time series synchronized by di�erent chemical reagents, each
covering roughly two cell cycles [21]. One of the time series,
the cdc15 data, contains a strong oscillating signal [22]. We
removed the cdc15 dataset and used the data of the three
remaining time series.	e data matrix consists of 49 samples
(columns) and 6178 genes (rows).

We applied the �-pro
les clustering method using a
series of� values. With each� value, we retained the 
nal �
value�� of every gene.We then took the negative sum of log�
values ∑� − log(��) at every � and plotted the value against
�. An elbow was observed at around 30 (Figure 5). 	us we
chose � = 30 for subsequent analyses.

Among the 6178 genes under study, 4874 were clustered
into 30 clusters. 	e minimum cluster size was 59, and
the maximum cluster size was 328. We then judged the
performance of the methods using functional annotations.
For this purpose, we resorted to Gene Ontology [23]. We
used a set of GO terms that categorize genes into broad

functional categories, the GO slim terms from the Saccha-
romyces Genome Database (SGD) [24]. Some of the GO slim
terms are too broad; we limited our analysis to terms with
2000 annotated genes or less. We found that almost all the
clusters are associated with certain GO slim terms using the
hypergeometric test [25] for overrepresentation (Figure 6).

From Figure 6, we see clearly that several clusters, includ-
ing clusters 2, 5, 7, and 12, are highly associated with cell
cycle related processes, which are clustered in the lower 1/3
region of the plot (Figure 6). We then plotted the heatmaps
of the expressions of the genes in these clusters, which indeed
showed strong periodical behavior. An example, cluster 2, is
presented in Figure 7.We notice the genes in this cluster were
mostly periodic genes, yet they exhibit di�erent phase shi�s.
Such genes may not be clustered together using traditional
methods based on linear associations.

	e GO slim terms are broad functional categories and
do not o�er enough detail. We further analyzed the data
using a set of 430 selected representative GO terms. 	e
approaches to select these terms were previously described
in [26, 27]. Essentially the selected terms were relatively
speci
c, yet they were still of reasonable size. We conducted
hypergeometric test for overrepresentation of these GO
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Table 1: Biological pathways signi
cantly associated with clusters 2, 5, 7, and 12.

Cluster # genes GO Biological Process ID# " value∗ Name of GO term

2 228

GO:0051301 1.03# − 07 Cell division

GO:0006468 0.0001307 Protein phosphorylation

GO:0010696 0.00163665 Positive regulation of spindle pole body separation

GO:0030473 0.00584256 Nuclear migration along microtubule

GO:0005977 0.00628021 Glycogen metabolic process

5 116

GO:0006301 5.94# − 06 Postreplication repair

GO:0043570 1.87# − 05 Maintenance of DNA repeat elements

GO:0006272 4.90# − 05 Leading strand elongation

GO:0000070 0.00043025 Mitotic sister chromatid segregation

GO:0009263 0.00067342 Deoxyribonucleotide biosynthetic process

GO:0006298 0.00074914 Mismatch repair

GO:0007131 0.00077629 Reciprocal meiotic recombination

GO:0045132 0.00300391 Meiotic chromosome segregation

GO:0006284 0.0034725 Base-excision repair

GO:0006273 0.0041114 Lagging strand elongation

GO:0006348 0.00415626 Chromatin silencing at telomere

GO:0009200 0.00485315 Deoxyribonucleoside triphosphate metabolic process

GO:0051301 0.00750912 Cell division

7 69

GO:0006334 4.57# − 12 Nucleosome assembly

GO:0030473 6.32# − 05 Nuclear migration along microtubule

GO:0030148 0.00299059 Sphingolipid biosynthetic process

GO:0000032 0.00650292 Cell wall mannoprotein biosynthetic process

GO:0009225 0.00774684 Nucleotide-sugar metabolic process

12 155

GO:0007020 1.07# − 05 Microtubule nucleation

GO:0000070 0.0006474 Mitotic sister chromatid segregation

GO:0006284 0.00078868 Base-excision repair

GO:0006493 0.00078868 Protein O-linked glycosylation

GO:0006273 0.00099378 Lagging strand elongation

GO:0006337 0.00099378 Nucleosome disassembly

GO:0000724 0.00151593 Double-strand break repair via homologous recombination

GO:0000086 0.00242563 G2/M transition of mitotic cell cycle

GO:0006368 0.00243303 Transcription elongation from RNA polymerase II promoter

GO:0006338 0.0038366 Chromatin remodeling

GO:0008156 0.00743106 Negative regulation of DNA replication
#Total number of GO Biological Process terms under study: 430.
∗
 value threshold: 0.01.

terms in each of the 30 clusters. We found almost all the
clusters signi
cantly overrepresent somebiological processes.
As examples, we show biological processes associated with
clusters 2, 5, 7, and 12, which are clearly cell cycle related
based on the GO slim analysis (Table 1). Many clusters
clearly showed no periodical behavior. 	ey were strongly
associated with functional categories such as metabolism
and signal transduction. 	e results are listed online at
http://web1.sph.emory.edu/users/tyu8/KPC.

4. Conclusion

In this paper, we described a new nonlinear clustering
method named �-pro
les clustering. We incorporated sta-
tistical inference into the algorithm to remove the impact

of noise genes due to their common existence in real world
microarray data. 	e algorithm is e�cient due to the quality
of the Distance Based on Conditional Ordered List (DCOL).
	e algorithm outperformed our previous General Depen-
dency Hierarchical Clustering (GDHC) algorithm and the
traditional �-means clustering algorithm in our simulation
studies. It generatedmeaningful results in real data analysis. It
can be used in the analysis of high-throughput data to detect
novel patterns based on nonlinear dependencies.
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Figure 7: An example cluster with mostly periodically expressed genes.
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