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CHAPTER I 

INTRODUCTION

The use of electromagnetic scattering  information to id e n t ify  or 

c la s s ify  targets  has been studied by numerous researchers [ 1 ] ,  The 

K-pulse concept [2 ]  can be applied to th is  problem. Target imaging is  

another p o ss ib lity  fo r  the application of the K-pulse. As discussed in 

[ 2 ] ,  one may model or simulate ta rg e t responses at N aspects and

po la riza tions  by a l in e a r  d is tr ib u te d  parameter network with N acessible

ports . The normalized complex echo signal spectrum Em(s) at port m can

be factored in to  a frac t io n  of two e n t ire  functions,

M s )
V s > * 1 •  ( 1 - 1)

i f  the network contains lumped elements connected by f i n i t e  delays. The 

argument that Em(s) is  a frac t io n  of two e n t ire  functions is fu r th e r  

supported by the work of Marin [ 3 ] .  Marin showed tha t the operator 

Inverse to the In tegra l operator of the m agnetic -fie ld  formulation 1s a 

memorphic function in the e n t ire  complex plane. Since a memorphic 

function can be factored In to  a frac t io n  of two e n t ire  functions [see 

Appendix D], Fm(s) and K(s) are e n t ire  functions of exponential type. 

Thus, they are t1me-Hm1ted [ 4 ] .  The Inverse Laplace transform of K(s) 

in to  the time domain 1s k ( t )  -  the K-pulse [ 2 ] .  Roth Em(s) and Fm(s) 

are aspect and p o la riza tio n  dependent. But K(s) is  aspect and 

p o la r iza tio n  independent.
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The K-pulse concept 1s s im ila r  to pole-zero cancella tion 1n system 

control theory. However, the applications 1n the control theory deal 

mainly with a f i n i t e  number of poles and zeros. The poles are only 

moved to  more su itab le  locations 1n the complex frequency plane. In 

th is  d is s e r ta t io n , zero -insertion  by the K-pulse to completely cancel 

the resonance contributed by a l l  the poles of the ta rg e t 1s the ideal 

concept. In other words, the "system" response due to the K-pulse 

e xc ita t io n  exh ib its  no resonance. A fte r  K(s) 1s m u lt ip lied  onto 

Equation ( 1 .1 ) ,  the system response is  Fm(s) which 1s an e n t ire  function  

of exponential type; I . e . ,  a t1me-lim1ted function.

Concepts s im ila r  to the K-pulse were employed in communication 

theory long before Kennaugh and Richmond [ 5 ]  presented th e ir  paper 1n 

Washington D.C. 1n 1972. Gerst and Diamond [4 ]  shaped the Input 

waveform to e lim inate  the Intersymbol In ter fe ren ce . La te r , Campbell et 

a l .  [ 6 , 7 ]  extended the theory. The application  of the theory in 

electromagnetic scatter ing  was formalized by Kennaugh [ 8 ]  in 1975. The 

concept was not presented to the public u n ti l  Kennaugh's paper [ 2 ]  in 

1981. Recently, Kennaugh, M offa tt and Wang [ 9 ]  had demonstrated the 

K-pulse fo r  non-uniform transmission l in e s .  Kim, Wang and M offa tt [1 0 ]  

used some resu lts  of Gerst and Diamond [4 ]  to obtain the K-pulse of a 

c irc u la r  loop. Rothwell et a l . [ 1 1 ]  discussed a ta rg e t d iscrim ination  

scheme using the Ext1nct1on-pulse (E-pulse) which was based on the 

natural frequencies of the ta rg e t considered. A dlsscuslon of the 

re la tionsh ip  between the K-pulse and the E-pulse can be found 1n the 

Appendix C.

2



Although Kennaugh had suggested several techniques to estimate the 

K-pulse, one technique was never f u l ly  applicable  to a l l  the targets  

te s te d . This d isserta tion  presents an approach to obtain the 

approximate K-pulse of a ta rg e t from scatte r ing  Inform ation, without 

requiring a p r io r i  complex natural resonance (pole) Inform ation. 

S p e c if ic a l ly ,  the derivation  1s based on the impulse response [12,131 of 

the ta rg e t .  For complicated ta rg e t geometries, only measured 

information is  a v a i la b le .  Thus, Impulse and frequency responses of the 

targets  are the commonly a v a ilab le  information to work w ith . Using a 

K-pulse model, the K-pulse response is obtained by convolving with the 

impulse response. The energy outside the K-pulse response is  minimized 

using some optim ization schemes with respect to the unknowns in the 

assumed K-pulse model, u n ti l  the energy content 1s considered minimum. 

The dominant poles of the ta rg e t can also be extracted from the 

approximate K-pulse. A method to obtain these dominant poles is  also 

presented.

In th is  d is s e r ta t io n , the approaches to obtain the approximate 

K-pulse and the dominant poles are discussed in Chapter I I .  Then, both 

exact and Fourier synthesized impulse responses are used as examples in  

Chapter I I I  to v e r i fy  the methods developed in Chapter I I .  Chapter IV 

discusses a way to obtain the duration of the K-pulse without knowing 

the circumnavlgatlonal path on the ta rg e t ,  which 1s used to deduce the 

K-pulse duration fo r  simple geometries. Chapter IV is necessary as 1t 

1s very d i f f i c u l t  to  f ind  the c1rcumnavlgatlonal path i \  r  d complicated 

geometrical shape. The targets  used fo r  v e r i f ic a t io n  in Chapter I I I  and
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IV include a grounded d ie le c t r ic  s lab , a low Q ta rg e t model, a s tra ig h t  

w ire , a c irc u la r  loop, a sphere, and a d isk . The la s t  four targets  are 

p e rfe c tly  conducting s tructures . A fte r  v e r i f ic a t io n ,  the methods are 

tested with quasi noisy data and experimental data. These resu lts  are 

presented in Chapter V. The whole d isserta tio n  1s then concluded with  

Chapter V I,  together with some recommendations fo r  fu ture  studies. Four 

Appendices are added to c la r i f y  a few Issues. Appendix A describes the 

procedures and indicators 1n using the K-pulse estimation method 

discussed in th is  d is s e r ta t io n . The c irc u la r  loop 1s used as the 

i l lu s t r a t in g  example. Appendix B discusses how the K-pulse can be used 

fo r  ta rget d iscrim in ation . As mentioned before, a discussion of the 

K-pulse and the E-pulse waveforms 1s presented 1n Appendix C. Appendix 

D is the proof that a memorphic function 1n the e n t ire  complex plane can 

be factored in to  a fra c t io n  of two e n t ire  functions.

In th is  d iss e r ta t io n , functions with cap ita l le t te r s  are reserved 

to  represent the Laplace transform of the corresponding lower case time 

functions. Most of the impulse responses are p lo tted  together with the 

K-pulse responses. This 1s done so that the two responses can be 

compared simultaneously. The Impulse responses are given as dash lines  

and the K-pulse responses as so lid  lines  when both responses appear on 

the same p lo t .  Also, a l l  the I n i t i a l  guesses fo r  the unknowns are 

u n ity ,  unless otherwise s ta ted . The f i r s t  diamond 1n every K-pulse p lot  

1s always a un it impulse. This 1s highlighted by an arrow 1n the 

f ig u re s . The normalization of using a un it Impulse at t=0 fo r  the 

K-pulse can be considered as an Impulsive e x c ita t io n  of the ta rg e t by
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the f i r s t  impulse function . Then, the la te r  part of the K-pulse is  

added in order to cancel a l l  the resonances. Any other type of desired 

"exc ita tion"  waveform can be convolved with th is  K-pulse to obtain the 

proper K-pulse "exc ita tio n"  waveform.
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CHAPTER I I  

THEORY

In th is  chapter, the method of estimating the K-pulse of the ta rg et  

using the impulse response is  described f i r s t .  Then the po le -extraction  

scheme is  presented.

A. K-PULSE DERIVATION

The K-pulse as defined by Kennaugh in [2 ]  i s ,  a t im e - l im ite d

waveform of e x c ita t io n  which produces t im e - l im ite d  waveforms of response

fo r  a l l  aspects and p o la r iza tio n s . The K-pulse 1s not unique in form

unless i t  contains only zeros which coincide with the poles of the

ta rg e t [1 4 ] .  This is  to ru le  out the p o s s ib i l i ty  tha t a l in e a r

combination of deriva tives  of the K-pulse as another possible K-pulse,

as the d i f fe r e n t ia t io n  process adds zeros which are not poles of the

ta rg e t .  The duration of the K-pulse being minimum 1s a necessary

condition. The whole approach described in th is  d isserta tio n  1s based

on the l a t t e r  part of the d e f in i t io n  of the K-pulse; namely, the K-pulse

response of the ta rg e t is  t1me-lim1ted. Assuming the K-pulse as some

function , the energy content outside the duration of the K-pulse

response of the ta rget is  minimized with respect to a set of unknowns.

The assumed model of the K-pulse 1s

N
k ( t )  = 5 ( t )  + I  an6 (t -n x )  , (2 .1 )

n=l
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with t = T/N, where T is  the duration of the K-pulse; N is  the number of 

delta  functions; and the an 's are unknown real constants. Define J, the 

cost function , to be the energy outside the K-pulse response duration;

where h ( t )  is the impulse response of the ta rg e t ,  Tr is  the duration of 

K-pulse response, Tq is  the c u to ff  time representing an a r b i t r a r i l y  long 

duration , and denotes convolution.

By minimizing the cost function J, the c o e ff ic ie n ts  of Equation 

(2 .1 )  can be found. The reason why impulsive functions are chosen as 

basis functions is that they are eas ily  evaluated in the convolution 

in te g ra l .  Any other basis function requires actual ca lcu la tion  of the 

convolution in te g ra l .  Also, the impulses can be treated  as samples of a 

continuous function. Thus, the impulsive representation is  f a i r l y  

general.

The cost function J can be put in to  a quadratic form. This w i l l  be 

shown next. The convolution of the K-pulse model with the Impulse 

response is

(2 . 2 )

N
k ( t ) * h ( t )  = 6 ( t ) + I  an 5 (t-n x ) * h ( t )  •

n=l
(2 .3 )

Or
N

k ( t ) * h ( t )  = h ( t )  + I  anh ( t -n x )  , (2 .4 )
n=l

oo
because, /  6 (s -n x )h (t-s )d s  = h ( t -n x )  . (2 .5 )
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The square of Equation (2 .4 )  gives

C k ( t ) * h ( t ) ]2  = h * ( t )  + 2 h (t )  I  a h ( t -n x )

N N " ”1
+ I  I  an3mh (t-n x )h (t -m x ) .

n=l m=l

Then the cost function given by Equation (2 .2 )  becomes

Tr N J
J = /  L h2 ( t ) d t  + 2  I  an /  h ( t )h ( t -n x )d t

Tr n=l TR

N N T,
+ I  I  anam I  h ( t -n x )h (t -m x )d t  . 

n=l m=l T r

(2. 6 )

(2 .7 )

Matrices are defined to  s im plify  the algebraic manipulations. 

The matrices are

A = (2. 8)

H =

h ( t -x )

h ( t -2 x )

h(t-N x)

(2 .9 )
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where 1s the transpose of H,

Tr
S -  J L h (t)H  dt , (2 .11 )

Tr

and

Tr  o
8 -  J h ( t )  dt . (2 .12 )

Tr

Using the above m atrices, the cost function 1n Equation (2 .7 )  can be 

expressed as

J = A%A + 2ATS + 3 , (2 .13 )

which 1s a quadratic form . To find  the extremum of a cost function ,  

the gradient with respect to each an (Va) 1s equated to zero; I . e . ,

7 J = 2<tA + 2S = 0 . (2 .14)
a

Thus, A can be evaluated via the follow ing equation:

A = -  4_1S , (2 .15 )

where is  the Inverse of 4.

In most problems tha t were considered, 4 is  111-conditioned or

s ing u la r . This 1s because when N 1s la rg e , some of the elements 1n the

matrix become very sm all, especia lly  the elements 1n the lower r ig h t

corner. Thus, Equation (2 .15 ) cannot be used d i r e c t ly .  Optimization

schemes may be used to search fo r  the minimum point of the cost function

with respect to the unknowns. The facts that 1) J can be expressed as a



quadratic form, 2) $ is  not a null matrix and 3)

V?J = 24 , (2 .16)
a

mean there ex is ts  a unique global minimum or maximum point [1 5 ] ,  One 

good check to determine i f  T and T r are chosen properly is whether *  1s 

sem i-positive d e f in i te .  The optim ization schemes employed 1n th is  

d isserta tio n  are conjugate gradient [1 5 ] ,  Powell-F letcher [1 5 ]  and 

steepest decent [1 5 ] .  The former two methods are programmed as 

subroutines in the IBM System/360 S c ie n t i f ic  Subroutine Package version 

I I I .  All three methods use the same Idea of tes tin g  fo r  the steepest 

decent d irec tio n  and making a step. They only d i f f e r  in the te s tin g  and 

stepping s tra tegy . The three methods are incorporated so tha t the 

methods can be inter-checked fo r  the minimum of the cost function . The 

Powel1-F lectcher scheme seems to converge the fa s te s t .  The conjugate 

gradient scheme is  1n the middle. The steepest decent scheme 1s 

programmed so tha t the steps are contro lled  by the user to step 

cautiously when the minimum is  close by.

B. POLE EXTRACTION

As th is  approach 1s minimizing the energy excited by the natural 

resonances 1n the s ig n a l,  the dominant zeros of the K-pulse waveform 

should coincide with the dominant poles of the ta rg e t .  Also, a l l  

waveform data manipulated by the computers are usually only samples of 

the continuous waveforms. Equation (2 .1 )  can be viewed to represent 

6 ( t ) plus samples of a continuous function . To obtain the zeros of the
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continuous function , a s tra ig h t l in e  In te rp o la t io n  model 1s assumed 

between the samples of the continuous function. Then

ke ( t )  = 6 ( t )  + kc ( t )  , (2 .17 )

where kc ( t )  1s a continuous function with s tra ig h t  lines  jo in in g  a l l  the  

an 's .  One such example 1s shown 1n Figure 2 .1a . The reason why 

s tra ig h t  l in e  In te rp o la t io n  and extrapo lation  are used 1s Kc (s) can be 

e as ily  found fo r  the l in e a r ly  In terpo la ted  function kc ( t ) .  This 1s 

s u f f ic ie n t ly  accurate provided the sampling c r i t e r i a  1s s u f f ic ie n t ly  

s a t is f ie d .  From experience, 1f the sampling used 1s at leas t four times 

the required Nyqulst ra te ,  then s tra ig h t l in e  In te rp o la t io n  1s adequate. 

With th is  s tra ig h t  l in e  In te rp o la t io n ,  the d i f fe r e n t ia t io n  ru le  of the 

Laplace transform can be applied very conveniently to obtain an 

expression fo r  Kc(s) which 1s the Laplace transform of the continuous 

portion of the K-pulse kc ( t ) .  Then the zeros of the Ke (s ) can be 

obtained via some zero-f1nd1ng numerical subroutines. N atura lly  other 

types of In te rp o la t io n  can be applied. This might reduce the number of 

samples required to approximate the continuous portion of the K-pulse. 

However th is  1s the same as expanding the continuous portion of the 

K-pulse 1n a set of basis function . Unless there are some Indications  

as to what the K-pulse might look l i k e ,  there does not seem to  be much 

advantages with th is  a lte rn a te  approach. Besides, even with a 

continuous function , the computer can only work with the samples of the 

function .

D if fe re n t ia t in g  the l in e a r ly  In terpo la ted  and extrapolated kc ( t )  

(Figure 2 .1 b ) ,
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(N -l)r  N r  t i m e

(a )  l in e a r  In te rp o la t io n  and extrapo lation  (a0 ) of samples,

Oo T m

a2-a,

a4- a 3
a3-a 2

q n- .  “ a

r  2 t3 't  4ir n  (N-DTlyr

b r - t j - 1 °«-tQ
"a., r

TIME

(b) The d e r iv a t iv e  of the top f ig u re .

Figure 2 .1 .  An I l lu s t r a t io n  of l in e a r  In te rp o la t io n  and extrapolation  
( ao) of samples and th e i r  d e r iv a t iv e s .
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dt ‘ c W  = V (t) " aN5^ “T)

♦ 7 i (v v i K /2 » - 'i r 1̂  ■ '2-18>
n=l

where the a^'s are samples of the continuous function fo r  n = 1, 2,

N; aQ 1s the l in e a r  pro jection from a^ and a2 ; p x/ 2 ^  the 

rectangular pulse function [1 6 ];  T 1s the duration of the K-pulse. By 

taking the Laplace transform of Equation ( 2 . IB ) ,

1 e ”ST N

kc ( ‘ >3 -  V V ' ST + I  <an -  an - l ’ e<1' n)ST < * •” >
n=l

Or

kc ( t ) ]  = sKc (s )  . (2 .20 )

Then, the K-pulse spectrum 1s

Ke (s ) = 1 + Kc (s) • (2 .21)

Or

V  aNe r l  -  e“Sx,  N ( . .
K (s ) = 1 + -------------------- + ̂ — ~ Y   I  (a -  a ,)e^  ^
e s S T n=l 0 n_1 (2-22)

The complex frequencies (s i )  which s a t is fy  Ke (s-j) = 0, are the zeros of 

the K-pulse. These, 1n tu rn , are also the poles of the ta rg e t .  The 

roots of Equation (2 .22 ) are numerically evaluated using the Secant 

method [1 7 ] .
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CHAPTER I I I  

APPLICATION TO THEORETICAL OATA

In th is  chapter, the theory 1n the previous chapter 1s applied to  

the o re tic a l data. There are a ltogether seven examples. A plane wave 

normally Incident on a grounded d ie le c t r ic  slab was one of the examples 

discussed in Kennaugh's paper [2 ]  to  demonstrate the K-pulse. This 

ta rg e t 1s also employed 1n th is  d isserta tion  to I l l u s t r a t e  the v a l id i ty  

of the technique described 1n the la s t  chapter. F i r s t ,  the re su lt  of 

using the exact impulse response of the grounded d ie le c t r ic  slab 1s 

presented. Then the technique 1s checked with band-Hmlted data. A 

Fourier synthesized Impulse response for the same grounded d ie le c t r ic  

slab 1s used as a second example. The words "Fourier synthesized" 

implies th a t the impulse response data are generated in the frequency 

domain f i r s t ,  then a d iscre te  Fourier transformation 1s used to  obtain  

the data 1n the time domain. A Kalser-Bessel function [1 8 ] 1s used to  

weight the frequency data before transformation to  reduce the Glbb's 

phenomena. The th i rd  example 1s a Fourier synthesized Impulse response 

of a low Q model suggested by Kennaugh [1 9 ] .  This example 1s to  

i l l u s t r a t e  tha t 1f the Impulse response at la te  time contains 

contributions from a lo t  of the poles, then even fo r  a low Q s tru c tu re ,  

the K-pulse can be approximated very n ic e ly . The exact K-pulse fo r  the 

previous three examples are known, tha t 1s why they are presented f i r s t .  

The exact K-pulses fo r  the la s t  four examples 1n th is  chapter are
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unknown, thus the K-pulses obtained can only be checked by th e i r  zero 

strings and aspect-independent property. The la s t  examples are a l l  

three dimensional simple geometries (see Figure 3 .1 ) .  (For the 

convenience of the reader, a l l  tables and figures of Chapter I I I  are 

grouped together at the end of the chapter.)  The resu lts  of two high Q 

structures (a th in  conducting s tra ig h t  wire and a th in  conducting 

c irc u la r  loop) are presented next. F in a l ly ,  two low 0 structures (a 

conducting sphere and a conducting disk) are used as examples.

A. EXAMPLE I

A plane wave 1s normally Incident on a grounded d ie le c t r ic  slab. 

The grounded d ie le c t r ic  slab has a thickness of L and a r e la t iv e  

p e rm it t iv i ty  of four. A ll diamonds 1n Figures 3 .2 ,  3 .3 ,  3 .4  and 3.5  

represent Impulses. The Impulse response of the grounded d ie le c t r ic  

slab 1s shown in Figure 3 .2 .  As shown 1n Figure 3 .2 ,  the ta rg e t  

response 1s resonating with decaying posit ive  and negative Impulses.

The ta rg e t response 1s desired to have a f i n i t e  duration . To s ta r t  the 

optim ization process, tw enty-s ix  un it impulses are used as i n i t i a l  

guesses fo r  the K-pulse. Since any I n i t i a l  guess of the unknowns 1s as 

good as any value, one is  chosen to  be such value. The duration of the 

K-pulse (T) is  chosen as 2L/v , which 1s the round t r i p  time to  and from 

the ground plane, "v" 1s the speed of l ig h t  t r a v e l l in g  1n the 

d ie le c t r ic  s lab. The response of the grounded d ie le c t r ic  slab to these 

Impulses 1s shown 1n Figure 3 .3 .  This I n i t i a l  K-pulse gives r is e  to  

more resonating Impulses (see Figure 3 .3 )  than the Impulse response
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(Figure 3 .2 ) .  The impulse at 2L/v is  contributed by the input impulses 

at t=0 and t=2L/v together. A ll the impulses a f te r  2L/v are 

undesirable. As a r e s u lt ,  the duration of the K-pulse response ( T r )  and 

the c u to ff  time of In teg ra tio n  (Tq ) are chosen to be 2.04L/V and 12L/v, 

resp ec tive ly . A fte r  specified  number of optimization steps, the K-pulse 

resu lts  as in Figure 3 .4 ; the K-pulse response is  shown in Figure 3 .5 .  

(Appendix A contains a more d e ta il  discussion on the optim ization  

process and the convergent in d ic a to rs .)  The weightings of a l l  

tw enty-s ix  un it impulses in the i n i t i a l  K-pulse, except two, are reduced 

to  zero. The combination of the two remaining impulses, one at t=0 and 

one at t=2L/v converges to S (t)  + ( 1 / 3 ) 6 ( t - 2 L /v ) , which is the exact 

K-pulse [2 ]  fo r  th is  geometry. All the undesirable resonating impulses 

in the response due to the i n i t i a l  K-pulse guess are elim inated in the 

optim ization process as shown 1n Figure 3 .5 . A l l ,  except two, of the 

impulses in the optimized K-pulse response, are reduced numerically to  

zero. The remaining impulse at t=0 has a value of -1 /3  and the other 

impulse at t=2L/v has a value of -1 . This K-pulse response converges to  

- ( 1 / 3 ) 6 ( t )  -  6 ( t -2 L /v ) ,  which 1s the exact K-pulse response [ 2 ] .  Two 

other i n i t i a l  guesses fo r  the K-pulse as shown 1n Figure 3.6 are also  

employed to s ta r t  the optim ization process. The same K-pulse and 

K-pulse response as in Figures 3.4 and 3.5 are obtained. This fu rth er  

supports the fac t that th is  theory 1s independent of the i n i t i a l  K-pulse 

guess supplied to s ta r t  the optim ization process.
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B. EXAMPLE I I

The plane wave normally Incident on a grounded d ie le c t r ic  slab can 

be put in to  a transmission l in e  model [ 2 ] .  The model consists of a 

shorted length (L) of l in e  which is appended to a s e m i- in f in i te  l in e  of 

twice the in t r in s ic  impedance. The resu lting  tra n s fe r  function 1s given 

by
_ I  _ e -2sL/c

h(s) -  " V  - ; 2V l7 c  ( 3 * 1)
1 + -j  -  e ^SL/C

Frequency data are generated with the above expression, over the 

frequency band of kL = 0 .0 1 tt(0 .0 1 tt)100tt, where k is  the wave number.

The notation employed fo r  the bandwidth is :  1) the f i r s t  number is the

lowest frequency used, 2) the second number which is  1n brackets 1s the

frequency Increment and 3) the la s t  number is  the highest frequency 

used. The Fourier synthesized Impulse response of the grounded 

d ie le c t r ic  slab 1s shown 1n Figure 3.7 fo r  a duration of 6L/v . I ts  

amplitude has been reduced by a fac to r  of ten a f te r  the d iscre te  Fourier  

transform process. Since the Impulse response is  bandllm lted, the 

impulses 1n Figure 3.2 now have f i n i t e  r is e  and f a l l  times. The 

o s c i l la t in g  Impulses a f te r  2L/v are s t i l l  the Important features in 

Figure 3 .7 . The duration of the K-pulse is  chosen as 2L/v. The 

duration of the K-pulse response is  chosen as 2 .05L/V . The reason why 

the K-pulse response duration 1s not chosen as 2L/v 1s to account fo r

the f i n i t e  r is e  and f a l l  time of the bandlimlted impulse. The cu to ff

time fo r  the In tegra tion  1s 8L/v . Eleven un it Impulses are used to  

s ta r t  the optim ization process. The response due to th is  i n i t i a l  input
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1s shown 1n Figure 3 .8 . This f ig ure  shows a lo t  of resonating Impulses 

a f te r  2.05L/V. The approximate K-pulse obtained a f te r  optim ization 1s 

shown 1n Figure 3 .9 . Again, only two Impulses remain numerically 

s ig n if ic a n t  a f te r  optim ization -  the un it Impulse at t=0 and the 

0.3328535 impulse at t= 2L /v . The percentage of d iffe rence  1s 0.14% for  

the Impulse at t= 2L /v . The optimized K-pulse response, which 1s shown 

1n Figure 3 .10 , has only a small residue a f te r  t= 2 .1 L /v .  Although only 

a duration of 6L/v 1s shown 1n Figure 3 .10 , the amplitude of the signal 

at la te r  times 1s n e g lig ib le .  This response has a duration of 2.1L/v  

Instead of 2L/v because the bandwidth of the Impulse response is  

l im ite d .  However, the time between the peaks of the f i r s t  two Fourier  

synthesized Impulses 1s s t i l l  2L/v. The poles associated with the 

approximate K-pulse are -1.1001 + (2n+l)ir versus -1.0986 + (2n+ l)n  from 

the exact K-pulse, where n 1s an In teg er . These poles are normalized to  

2L/v; I . e . ,  to  obtain the actual values of the natural resonances, 

m ultip ly  the above pole values by twice the thickness of the slab (L) 

and divide by the speed of l ig h t  1n the d ie le c t r ic  medium.

C. EXAMPLE I I I

The following expression [19 ] is  used as a f i r s t  check on the 

concept of using Impulses to represent samples of a continuous waveform:

______________ (s L /c )2_________________

-1 + (sL /c ) + ( sL /c ) 2 + exp(-sL /c ) * ( 3»2 )

This H(s) can be decomposed in to  a frac t io n  of two e n t ire  functions [ 2 ] .
a

Using l 'H o p l ta l 's  ru le ,  H(s) can be proven not to have any zero. Since
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H(s) has no zero, 1t is  decomposed in to  R(s) which is the K-pulse 

response in the s-domain,

R(s) -  1 , (3 .3 )

and K(s) which is  the complex frequency spectrum of the K-pulse,

, , exp (-sL /c ) -  1 1 , , ,
K(s) “ ( s L /c )2 + (sL /c ) + 1 * (3 ’ 4)

which is  also the reciprocal of H (s ).

Inverse Laplace transforming Equation ( 3 .4 ) ,  the K-pulse in the 

time domain consists of a de lta  function at t=0 and a l in e a r  decaying 

function of duration L /c . The maximum value of the decaying function is  

one. The synthesized Impulse response [ h ( t ) ]  1s obtained via fas t  

Fourier transform on the data generated from Equation ( 3 .2 ) .  The 

bandwidth used to generate th is  waveform 1s kL = 0 . 2 tt( 0 . 2 tt)400 tt. The 

number of samples used to approximate the continuous portion of the 

K-pulse [k c ( t ) ]  1s 200. The duration of the K-pulse 1s chosen to be 

L /c . The duration of the K-pulse response is chosen as 0.025L/C, since 

an Impulse function [Equation ( 3 .3 ) ]  now has a f i n i t e  r ise  and f a l l  time 

due to bandllmlted data. The cu to ff  time fo r  In tegra tion  1s 2L/c.

A fte r  op tim ization , samples of the optimized K-pulse are p lo tted  against 

the exact K-pulse 1n Figure 3 .11. The f i r s t  diamond at t=0 is  

representing an Impulse, which 1s h ighlighted by an arrow; the rest of 

the diamonds are representing samples of the continuous portion of the 

K-pulse [k c ( t ) ] .  I t  can be seen tha t the optimized K-pulse gives a very 

good approximation to the exact K-pulse. The Fourier synthesized 

Impulse response generated with Equation (3 .2 )  and the optimum K-pulse
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response are shown 1n Figure 3 .12. The energy contained 1n the K-pulse 

response 1s almost l im ited  only to the Fourier synthesized Impulse. The 

energy th a t spread over In f i n i t y  1n the Impulse response 1s reduced 

almost to zero. This energy spread can also be considered as the energy 

contributed by the In f in i t e  pole s t r in g .  Thus, the pole-zero  

cancella t ion  concept 1s estab lished. Table 3.1 l i s t s  the f i r s t  ten 

poles from Equation (3 .2 )  and f i r s t  ten zeros of Equation (2 .2 2 )  with  

the proper an 's from the optimized K-pulse fo r  comparison. The zeros 

and the poles are both normalized to  L /c . The zeros of the estimated 

K-pulse are very close to  the exact poles of the frequency response 

function H (s ). This example shows tha t even fo r  low Q ta rg e ts ,  1f the 

Impulse response at la te  time contains s u f f ic ie n t  contributions from the  

higher order poles, the exact K-pulse can be approximated f a i r l y  w e l l .  

S tarting  with the next example, the exact K-pulse 1s no longer known.

D. EXAMPLE IV

A conducting s tra ig h t  wire of length L with length to  radius ra t io  

of 2000, is  chosen as the next example. The frequency response data are 

generated from a moment method solution [2 0 ] ,  The bandwidth of the 

responses 1s kL = 0 .08n(0 .08n)8n. A fte r  d iscre te  Fourier transforming  

the frequency data, the maximum magnitude of the Impulse responses are 

normalized to one. A ll data in th is  example are taken at e=90°, 

4>-polar1zat1on. The geometries are shown 1n Figure 3 .1 .  The K-pulse in 

Figure 3.13 1s derived from the Fourier synthesized Impulse response at

20



<t>=30°. The duration of the K-pulse is  chosen to  be 2L/c. The energy 

between 5L/c and 9L/c is  being minimized. The number of samples chosen 

fo r  the continuous portion of the K-pulse [kc ( t ) ]  is  100. The i n i t i a l  

guesses fo r  the samples are u n ity . The Impulse and the K-pulse 

responses of the wire at <j>=30° are compared 1n Figure 3 .14. The high

energy resonance a f te r  4L/c has been grea tly  reduced. I t  is  also

In te re s t in g  to note tha t the duration of the K-pulse response does not 

have to  be known exactly  to obtain the K-pulse, as the optim ization 1n 

th is  example is  specified  to  perform minimization beginning at 5L/c 

Instead of 4L /c , which 1s the more accurate estimation of the K-pulse 

response duration. The aspect Independence of the K-pulse obtained can 

be shown by convolving the obtained K-pulse with other aspect angles. 

Figures 3.15 and 3.16 show the comparison of the Impulse and the K-pulse 

responses of the wire at <j>=60° and 90°, resp ec tive ly . At <|>=60o, the

K-pulse response shows very l i t t l e  energy a f te r  3L/c. At <{>=90°, the

K-pulse response Indicates very l i t t l e  resonance a f te r  2 .6L/C. The 

reason why at broadside the K-pulse does not terminate at 2L/c 1s again 

due to  the l im ited  bandwidth of the data. I t  takes f i n i t e  time to  s ta r t  

and end a s1gnal.

I n i t i a l l y ,  the number of samples (N) employed 1s 50. The Increase  

of sampling from 50 to  100 does not have a dras tic  e f fe c t  on the shape 

of the K-pulse. Moreover, the accuracy of the poles obtained from N=50 

Improves when N 1s Increased to  100; the energy content outside the 

K-pulse response also decreases. A ll these are Indicators  tha t the 

K-pulse obtained is  stepping in the r ig h t d ire c t io n . I f  the number of
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samples (N) is  reduced to less than 50 in th is  case, one should watch 

out fo r  the v io la t io n  of the c r i te r io n  fo r  s tra ig h t  l in e  In te rp o la t io n  

of the samples. The poles obtained with the K-pulse in Figure 3.13 are 

compared with those obtained by Kennaugh [19 ]  In Table 3 .2 . The poles 

are normalized to  L /c . The poles are more accurate 1n the Imaginary 

parts than the real parts . This th in  wire example was also discussed by 

Kennaugh [ 2 ] .  The K-pulse that was shown 1n [2 ]  1s not t im e - l im ite d ;  

whereas, Figure 3.13 1s t1me-Hm1ted. I t  is believed tha t Prof.

Kennaugh only Intended to i l l u s t r a t e  tha t i f  the K-pulse is ever needed 

fo r  actual e x c ita t io n  of ta rg e ts ,  1t can be approximated by impulsive 

and step functions. The pole-zero cancella tion  concept 1s s t i l l  

embedded in his K (s).

E. EXAMPLE V

The second high Q geometry to be examined, is  the conducting
_3

c irc u la r  loop with wire radius (a) to  loop radius ( r )  r a t io  of ttxIO . 

The frequency data are generated using a moment method program [10 ] over 

the bandwidth kr = 0 . 02ir(0.02 tt) 4 tt. A fter  these frequency data are 

discrete  Fourier transformed in to  the time domain, the maximum magnitude 

of the Impulse responses are normalized to one. The K-pulse in Figure 

3.17 is  derived from the Fourier synthesized impulse response at 0=45°,
A

0-polar1zat1on. The geometries are shown 1n Figure 3 .1 .  The duration  

of the K-pulse (T) is  chosen to  be 2irr/c . The number of samples (N) to
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represent the continuous portion of the K-pulse 1s 100. The duration of 

the K-pulse response 1s chosen to be 5Ttr/c. A fte r  op tim iza tion , the 

resu lt ing  K-pulse response has l i t t l e  energy a f te r  4iTr/c. This 1s 

contrasted with the high o s c i l la t io n  of the Impulse response 1n Figure 

3 .18 . Again even though the exact K-pulse response duration 1s not 

supplied fo r  minimization of energy, the proper K-pulse response 

duration shows up 1n Figure 3.18 to be 4irr/c a f te r  op tim ization . The 

convolution of the approximate K-pulse with three other Impulse 

responses -  0=0°, <j>-polarizat1on; 0=45°, <j>-polarizat1on; 9=90°, 

<|»-polar1zation are shown 1n Figures 3 .19 , 3.20 and 3.21 resp ective ly .  

Again, the respective Impulse responses are also p lo tted  1n the same 

figures using dash l in e s .  The energy content 1n the K-pulse responses 

at la te  time -  2 .4u r/c  1n Figure 3 .19; 4iir/c in Figures 3.20 and 3 .21 ,  

is  very small. Again the aspect and p o la r iza tio n  Independent property  

of the K-pulse 1s confirmed. In f a c t ,  the I n i t i a l  t rys  of optim ization  

using N=50 fo r  0=45°, both 0 and <}> po la riza tio n s  gave s im ila r  K-pulses 

(see Appendix A). This is  only t ru e ,  1f s im ila r  poles are excited by 

the two d i f fe re n t  impulse responses.

The poles obtained from the K-pulse 1s compared with the poles 

given by K1m et a l . [1 0 ]  1n Table 3 .3 . These poles are normalized to  

2 u r/c . The real parts of the estimated poles are not as accurate at the 

high frequency end as the ones at the low frequency. This 1s probably 

due to the l im ite d  bandwidth of the Impulse response used. However the 

Imaginary parts are consistently  accurate. As N 1s Increased, s im ila r  

properties described previously 1n Example IV about the s im i la r i ty  of
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K-pulse shapes, be tte r  accuracy of the poles and reduction of energy 

content outside the duration of K-pulse response are also exhibited by 

the loop. Kim et a l . [1 0 ]  also obtained a K-pulse fo r  the c irc u la r  

loop with the same geometry. However, i t  is very d i f f i c u l t  to  compare 

with th e ir  re s u lt .  Their K-pulse is  bandlimited. While the K-pulse 

described here i t s e l f  is  not bandlim ited, the impulse response i t  used 

is  bandlimited. Also, i f  not a l l  the poles are excited at la te  time in 

the impulse repsonse (due to l im ited  bandwidth), then the K-pulse 

obtained here cannot claim uniqueness. Nevertheless, the duration of 

the K-pulse responses at the d i f fe re n t  aspects and po la riza tions  are 

very close to Kim et a l . ' s  [10 ] re s u lts .  Appendix C contains a more 

d e ta il  discussion on the two K-pulse models. The next two examples 

involves low Q s tructures.

F. EXAMPLE VI

The f i r s t  low Q geometry to  be discussed is  the conducting sphere. 

The frequency data used in th is  example are generated from the Mie 

s o lu tion . Since th is  is  a low Q s tru c tu re , the choice of Tr (the  

K-pulse response duration) must be chosen very c a re fu l ly .  I f  too large  

a value is  chosen, the energy content to be minimized w i l l  be very small 

and only the very dominant poles w i l l  be excited . I f  too small a value 

1s chosen, the energy to  be minimized may contain contributions other 

than the poles -  the e n t ire  function in the early  time [2 1 ] ,  resu lt ing  

in wrong pole values. The K-pulse 1n Figure 3.22 is  obtained from the 

backscattered Fourier synthesized impulse response generated with a
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frequency bandwidth of kr = 0 .1 (0 .1 )6 6 .  Note that "r" is the radius of 

the sphere. The duration of the K-pulse (T) is chosen to be 27rr/c. The 

duration of the K-pulse response is  about 3.87ir/c. The number of 

samples to approximate the continuous portion of the K-pulse is 200. 

Figure 3.23a compares the K-pulse and the impulse responses of the 

sphere fo r  the backscattered case. Since the s tructure  has a low 0, the 

e f fe c t  of the K-pulse on the small resonance cannot be seen c le a r ly  in 

Figure 3.23a. The amplitude scale in Figure 3.23b is 100 times that of

Figure 3.23a. A ll the amplitude scales in the "b" designated figures

are expanded 100 times r e la t iv e  to  those of the "a" designated figures  

in the follow ing discussions, unless otherwise s ta ted . Figures 3.24 

through 3.27 are generated from a bandwidth of kr = 0 .1 (0 .1 )3 3 .5 .

Figure 3.24 is  the same as Figure 3 .23, except these backscattered data

have a smaller bandwidth. Figures 3.25 and 3.26 use data from b is ta t ic

scatter ing  at <|>=90o, v e r t ic a l ly  and h o rizo n ta lly  po larized ,  

resp ec tive ly . Figure 3.27 uses b is ta t ic  scattering  at <J>=180°, fo r  

v e r t ic a l ly  polarized data. Again, at la te  time -  3 .8 irr/c  1n Figure 

3.24 , 4 .2 irr /c  1n Figures 3.25 and 3 .26 , 4Tir/c in Figure 3 .27 , the energy

content is smaller than those 1n the Impulse responses.

The zeros of the K-pulse 1n Figure 3.22 is  compared with Kennaugh's

resu lt  [2 ]  in Table 3 .4 .  The poles are normalized to 2-nr/c.  The f i r s t

six poles compare w e ll ;  whereas, the higher order poles do not. Using 

the contribution of residues and poles discussed by Chen [22 ] to compare 

with the la te  time signal of Figure 3.23b beginning at 3 .6 ir r /c , the 

contribution of the f i r s t  six pairs of poles and residues seems
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s u f f ic ie n t  to represent the la te  time function. This suggests that the 

method discussed 1n th is  d isserta tion  can obtain the poles only 1f they 

are exc ited . Or the K-pulse for th is  example 1s not unique, u n t i l  the 

other poles of the sphere are included. A c tu a lly , applying th is  method 

to  a low Q structure 1s not very usefu l, as th is  method requires a 

minimization of energy content outside the duration of the K-pulse 

response. And there 1s very l i t t l e  energy 1n the la te  time of the 

Impulse response of a low Q structure  to be manipulated. Kennaugh [2 ]  

suggested a b e tte r  method to obtain the poles of the low Q structures  

using the Geometrical Theory of D if fra c t io n  [2 3 ] .

G. EXAMPLE V II

The la s t  th eo re tica l example to be discussed 1s the conducting 

c irc u la r  d isk. The frequency data are generated from an eigenfunction  

solution [24 ] over a bandwidth of kr = 0 .1 6 (0 .1 6 )1 6 . In th is  case, r 1s 

the radius of the d isk . A fte r  d iscrete  Fourier transform is  performed 

on these frequency data, the impulse responses are normalized to a 

maximum magnitude of one. The K-pulse shown in Figure 3.28 is  obtained 

by minimizing the K-pulse response (0=45° and 0-polar1zed) outside 

4 n r /c . The number of samples (N) used to represent the continuous 

portion of the K-pulse 1s 100. Figures 3 .29 , 3 .30 , 3.31 and 3.32 show 

the comparison between the impulse and K-pulse responses of the disk at
A A A

0=45°, 0-polar1zed; 0=0°, 0-po larlzed; 0=45°, <{>-polar1zed; and 0=90°,
A

<fr-polarized, resp ective ly . Again the amplitude scales of the "b" 

designated plots are 100 times those of the "a" designated p lo ts . The
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durations of the K-pulse responses are around 4Trr/c, 2 .4 ir r /c , 47rr/c and 

4irr/c fo r  Figures 3 .29 , 3 .30 , 3.31 and 3 .32 , resp ective ly . The energy 

contained outside the K-pulse response is very small. I f  the impulse 

response at 9=45°, ^ -po la r iza tio n  is used to obtain the K-pulse, Figure 

3.33 is  the resu lt ing  K-pulse with the number of sampling s t i l l  at 100.
A

The responses of the disk to th is  K-pulse at 9=45°, <t>-polar1zation;
A A /v

9=0°, 9 -p o la r iza t io n ;  9=45°, 9 -po lar1zation; 9=90°, <j)-polar1zation are

shown in Figures 3 .34 , 3 .35 , 3.36 and 3 .37, resp ective ly . The results

of th is  K-pulse are compatible with the K-pulse derived from the 9=45°, 

and 9 -p o la r iza t io n . The energy content outside the K-pulse responses 

duration is  very small. The reason fo r  the two d i f fe re n t  K-pulses is  as 

discussed 1n the previous example. There are two s u f f ic ie n t  conditions  

fo r  two d i f fe re n t  K-pulses from two d i f fe re n t  impulse responses of the 

same ta rg e t .  The f i r s t  condition 1s in s u f f ic ie n t  po le -ex c ita t io n  in the 

la te  tim e. The second condition is  d i f fe re n t  poles are excited in the 

Impulse responses. Both conditions seem to be s a t is f ie d  in th is  case, 

as discussed 1n the follow ing paragraph. Consequently, i t  is not easy 

to  d istingu ish  low 0 targets  using the energy content at la te  t im e, but 

the dominant complex natural resonances are s t i l l  very useful 

in form ation.

The poles of the two K-pulses are l is te d  together with the poles 

extracted by Lee [2 5 ]  1n Table 3 .5 . The poles are normalized to 2irr/c. 

Starting  with the s ixth  pole fo r  the f i r s t  K-pulse (Figure 3 .28) and the 

f i f t h  pole fo r  the second K-pulse (Figure 3 .3 3 ) ,  the poles do not seem 

to  match. In fa c t ,  the real parts do not fo llow  the same trend as
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obtained by Lee. The same behaviour was exhibited in the previous 

example. The explanation is  in s u f f ic ie n t  pole e x c ita t io n  at la te  tim e. 

Since the disk 1s a low Q s tru c tu re , not a l l  poles are expected to  

contribute  at la te  tim e. The fourth poles of the f i r s t  K-pulse 

( 0-polar1zation) seems to  be out of place. A c tu a lly , th is  pole compares 

f a i r l y  well with the f i r s t  pole l is te d  by Lee [25 ] as the broadside 

pole — -6 .535 + 31.757j . This suggests that 0-polar1zat1on at 0=45° 

excites the broadside pole s t r in g ,  but not the <j>-polar1zat1on at 0=45°. 

Consequently, two d i f fe re n t  K-pulses are obtained fo r  the d i f fe re n t  

po la riza tions  at 0=45°. Comparing Figures 3.29b through 3.32b with  

3.34b through 3.37b, the K-pulse derived from 0 -po lariza tion  (Figure  

3.28) seems to perform b e tte r  1n minimizing the energy outside the 

duration of the K-pulse responses.
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Table 3.1

A Comparison of the F irs t  Ten Exact Poles and Estimated Zeros

1n the s-domain (Upper Left Half Plane)

fo r  the Simulated Model in Equation (3 .2 )

Exact Poles Estimated Zeros

1) -3.6326 + 5.2336j -3.6339 + 5.2321j

2) -5.0874 + 11.8318j -5.0887 + 11.8302j

3) -5.8978 + 18.2771j -5.8993 + 18.2749j

4) -6.4689 + 24.6586j -6.4708 + 24.6557j

5) -6.9115 + 31.0086j -6.9139 + 3 1 .0050j

6) -7.2733 + 37.3405j -7 .2764 + 37.336 0j

7) -7.5795 + 43.6610j -7.5832 + 43.6556j

8) -7.8448 + 49.9738j -7.8493 + 49.9675j

9) -8.0791 + 56.2811j -8.0842 + 56.2740j

10) -8.2887 + 62.5843j -8.2952 + 62.5769j
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Table 3.2

A Comparison of the F i rs t  Six Exact Poles and Estimated Zeros

in the s-domain (Upper Left Half Plane)

fo r  the Conducting Thin S tra ight Wire

Exact Poles Estimated Zeros

1) -0 .161 + 3.013j -0 .183 + 2.962j

2) -0 .219 + 6.133j -0 .278 + 6.058j

3) -0 .262 + 9.256j -0 .344 + 9 . 180j

4) -0 .294  + 12.383j -0 .393 + 12 .314j

5) -0 .320 + 15 .512j -0 .423 + 15.448j

6) -0 .343 + 18.642j -0 .482 + 18.591j
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Table 3.3

A Comparison of the F i rs t  Ten Exact Poles and Estimated Zeros

in the s-domain (Upper Left Half Plane)

fo r  the Conducting Thin C ircu lar  Loop

Exact Poles Estimated Zeros

1) -0.423 + 6.509j -0 .474 + 6.509J

2) -0 .606 + 12.871j -0 .674 + 12.891j

3) -0 .745 + 19.21l j -0 .796 + 19.248j

4) -0 .862 + 25.541j -0 .949 + 25.560j

5) -0 .965 + 31.864j -1 .055 + 31.892j

6) -1 .059 + 38.183j -1 .318 + 38.803j

7) -1 .145 + 44.499j -1 .548 + 45.326j

8) -1 .226 + 50.812j -1 .786 + 51.702j

9) -1 .302 + 57.124j -1.977 + 58.019J

10) -1 .374 + 63.434j -2 .124 + 64.319j
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Table 3.4

A Comparison of the F i rs t  Ten Exact Poles and Estimated Zeros

1n the s-domain (Upper Left Half Plane)

fo r  the Conducting Sphere

Exact Poles Estimated Zeros

1) -3 .142 + 5.441j -3 .098 + 5.447j

2) -4.411 + 11.35 4j -4 .013 + 11.444j

3) -5 .297 + 17.328j -5 .204 + 18.016j

4) -5 .994 + 23.342j -6 .002 + 24.258j

5) -6 .585 + 29.380j -6 .756 + 30.077j

6) -7 .094 + 35.450j -6 .908 + 35.622j

7) -7 .546 + 41.532j -6 .656 + 4 1 .562j

8) -7.961 + 47.627j -6 .473 + 47.785j

9) -8 .338 + 53.740j -6 .382 + 54.081j

10) -8 .683 + 59.860j -6.331 + 60.400J
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Table 3.5

A Comparison of the Estimated F irs t  Ten Poles

in the s-domain (Upper Left Half Plane)

fo r  the Conducting C ircu la r  Disk

Lee F irs t  K-pulse Second K-pulse

1) -3 .178 + 7 .595j -3 .074 + 7.685j -3 .036 + 7 .612j

2) -3 .789 + 14.339j -3.941 + 14.471j -3.931 + 14.425J

3) -4 .239 + 20.934j -4 .434 + 2 0 .923j -4 .386 + 21.158j

4) -4 .605 + 27.462j -6 .405 + 28.179j -4 .533 + 27.781j

5) -4 .918 + 33.949j -4 .959 + 33.996j -4 .035 + 33.880j

6) -5 .194 + 40.410J -4.929 + 43.121j -4 .030 + 40.762j

7) -5 .442 + 46.850j -4.962 + 49.949j -4 .154 + 47.317j

8) -5 .668 + 53.276j -4.355 + 57.046j -4 .259 + 53.785j

9) -5.877 + 59.690J -4.364 + 64.109j -4 .372 + 6 0 .208j

10) -6 .072 + 66.095j -4.503 + 70.886j -4.467 + 66.600j
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K-pulse estim ation. The o r ien ta tio n  geometry is  also 
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Figure 3 .5 .  Response of the grounded d ie le c t r ic  slab to  the K-pulse 
shown in Figure 3 .4 .  (each diamond's height represents 
the weighting of an impulse).
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Figure 3 .6 . Two other I n i t i a l  guesses fo r  the K-pulse which a f te r  
optim ization y ie ld  the same K-pulse as Figure 3 .4 .
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d ie le c t r ic  slab to a normally incident plane wave.
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incident of the K-pulse shown in Figure 3 .9 .
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Figure 3 .1 3 .  K-pulse obtained using the Fourier synthesized impulse 
response of the conducting s tra ig h t  wire at <j»=30° with  
kL = 0 . 087r(0. 08tt)Stt.
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Figure 3 .15. Impulse response and response to the K-pulse shown in
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Figure 3 .17. K-pulse obtained using the Fourier synthesized impulse 

response of the conducting c irc u la r  loop at 0=45°, 

0-polar1zat1on with kr = 0 .0 2 ir (0 .0 2 ir )4TT .
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Figure 3 .19 . Impulse response and response to the K-pulse shown in

Figure 3.17 fo r the conducting c irc u la r  loop at 9=0°,

^ -p o la r iza tio n  with kr = 0.02Ti(0.027r)4TT.
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^ -po lariza tio n  with kr = 0.02u(0.02Tt)4Tt.
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Figure 3 .21. Impulse response and response to the K-pulse shown 1n
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54



A
M

P
L

IT
U

D
E

C\J

TI ME ( 27r-T -)

Figure 3 .22. K-pulse obtained using the Fourier synthesized impulse 
response of the conducting sphere in the backscattered 
d irec tio n  with kr = 0 .1 (0 .1 )6 6 .
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Figure 3 .23. Impulse response and response to the K-pulse shown in
Figure 3.22 fo r  the conducting sphere in the
backscattered d irec tion  with kr = 0 .1 (0 .1 )6 6 .
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(b) The amplitude scale is  expanded by 100. 

Figure 3 .23. Continued.

57



R
M

P
L

IT
U

D
E

Otn

©r\j

o,

TI ME (2xP I xR/ C)

IMPULSE RESPONSE 
RESPONSE TO THE 
OPTIMIZED K-PULSEro

o

o
if* -185.4

(a)  No expansion of the amplitude scale.

Figure 3.24. Impulse response and response to  the K-pulse shown in
Figure 3.22 fo r  the conducting sphere in the
backscattered d irec tion  with kr = 0 .1 (0 .1 )3 3 .5 .
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(b) The amplitude scale is  expanded by 100. 

Figure 3 .24. Continued.
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Figure 3.25. Impulse response and response to  the K-pulse shown in 
Figure 3.22 fo r  the conducting sphere at a b ls ta t lc  
angle of 4>=90°, v e r t ic a l  p o la r iza tio n  with  
kr = 0 .1 (0 .1 )3 3 .5 .
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Figure 3 .25. Continued.
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Figure 3 .26. Impulse response and response to  the K-pulse shown in 
Figure 3.22 fo r  the conducting sphere at a b is ta t ic  
angle of <j>=90°, horizontal p o la r iza tio n  with  
kr = 0 .1 (0 .1 )3 3 .5 .
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(b) The amplitude scale is  expanded by 100.

Fiogure 3 .26. Continued.
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Figure 3 .27 . Impulse response and response to  the K-pulse shown 1n 
Figure 3.22 fo r  the conducting sphere at a b ls ta t lc  
angle of 4>=180°, v e r t ic a l  p o la r iza tio n  with  
kr = 0 .1 (0 .1 )3 3 .5 .
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Figure 3 .27. Continued.
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Figure 3 .28 . K-pulse obtained using the Fourier synthesized impulse 

response of the conducting c irc u la r  disk at 0=45°,
a

6-po lariza tion  with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .29. Impulse response and response to the K-pulse shown in

Figure 3.28 fo r  the conducting c irc u la r  disk at 0=45°,

0 -po lar iza tion  with kr = 0 .1 6 (0 .16 )16 .
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(b) The amplitude scale is  expanded by 100.

Figure 3 .29 . Continued.
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Figure 3 .30 . Impulse response and response to  the K-pulse shown 1n

Figure 3.28 fo r  the conducting c irc u la r  disk at 0=0°,

0-polar1zat1on with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .30. Continued.
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Figure 3 .31. Impulse response and response to  the K-pulse shown in

Figure 3.28 fo r  the conducting c irc u la r  disk at 9=45°,

({(-polarization with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .31 . Continued.
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Figure 3 .32. Impulse response and response to the K-pulse shown 1n

Figure 3.28 fo r  the conducting c irc u la r  disk at 8=90°,

^ -po lar iza tio n  with kr = 0 .1 6 (0 .16 )16 .
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(b) The amplitude scale is expanded by 100.

Figure 3 .32. Continued.
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Figure 3 .33 . K-pulse obtained using the Fourier synthesized impulse

response of the conducting c irc u la r  disk at 0=45°,

^ -po la r iza tio n  with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .34 . Impulse response and response to the K-pulse shown in 

Figure 3.33 fo r  the conducting c irc u la r  disk at 8=45°,
A

4>-polar1 z a t 1on with kr « 0 .1 6 (0 .1 6 )1 6 .
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(b) The amplitude scale is  expanded by 100.

Figure 3 .34 . Continued.
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Figure 3 .35 . Impulse response and response to  the K-pulse shown 1n 

Figure 3.33 fo r  the conducting c irc u la r  disk at 0=0°,
/S

0 -po lar iza tlon  with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .35. Continued.
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Figure 3 .36 . Impulse response and response to the K-pulse shown 1n 

Figure 3.33 fo r  the conducting c irc u la r  disk at 0=45°,
A

6-polar1zation with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3.36. Continued.
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(a ) No expansion of the amplitude scale.

Figure 3 .37. Impulse response and response to the K-pulse shown in

Figure 3.33 fo r  the conducting c irc u la r  disk at 8=90°,

<{>-polarization with kr = 0 .1 6 (0 .1 6 )1 6 .
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Figure 3 .37. Continued.
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CHAPTER IV

ESTIMATION OF THE DURATION OF THE K-PULSE

One of the necessary conditions fo r  a unique K-pulse 1s th a t I t s  

duration must be minimal [ 2 ] ,  Consider the fo llow ing example. Let k ( t )  

be the K-pulse of a ta rg e t with duration T. Now le t

)= k ( t ) + a k ( t - T j )  (4 .1 )

which has a duration of T + T^; a and Tj are a rb it ra ry  constants. This 

K-pulse w i l l  also cancel the poles of the ta r g e t ,  because the Laplace 

transform of k j ( t )  gives

K j(s )=  K(s)[1  + a e ' ST l]  . (4 .2 )

and K j(s )  has not only the zeros of K(s) but a lso ,

sn = ( l / T j J I X a )  + j (2 n + l ) i r ]  (4 .3 )

where n 1s an in teg e r .  I f  T j is  not zero, then any value of a w i l l  

s t i l l  cancel the poles of the ta rg e t .  As there are an In f i n i t e  number 

of choices fo r  a , there are also an I n f i n i t e  set of functions tha t w i l l  

cancel the poles. Consequently, to  have a unique K-pulse, I t s  duration  

1s of minimal 1s a necessary condition. For simple geometries, the 

duration of the K-pulse (T) is  chosen to  be the c1rcumnav1gat1onal path 

length over the v e lo c ity .  For example, fo r  the c irc u la r  loop, sphere 

and c irc u la r  disk the K-pulse duration 1s 2wr/c, where r  Is  the radius.
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In other words, T corresponds to the circumference over the ve loc ity  of 

the wave. For the s tra ig h t  wire and the grounded d ie le c t r ic  slab 

T=2L/v, where L 1s the length of the wire or the thickness of the slab. 

For more complicated geometries, th is  type of in te rp re ta t io n  is  not 

easy. Another approach is needed, and one method is described in th is  

chapter.

The d iffe rence  between the imaginary parts of neighboring poles fo r  

a plane wave normally incident on the grounded d ie le c t r ic  slab is  jvtt/ L .  

The time corresponding to  th is

Aw = vir/L (4 .4 )

d iffe rence  frequency is  T = 2L/v. Table 4.1 l i s t s  the d ifference  

between the imaginary parts of consecutive poles fo r  the f iv e  targets  

discussed in the previous chapter. (For the convenience of the reader, 

211 tables and figures of Chapter IV are grouped together at the end of 

the chapter.)  The d iffe rence  in radian frequency fo r  the wire 

approaches ir. The other targets  have th e ir  d iffe rence  in radian 

frequency approaching 2tt. The time corresponding to  th is  d ifference  of 

frequency is  L/c fo r  Equation ( 3 .2 ) ;  2L/c fo r  the w ire; 2nr/c fo r  the 

loop, sphere and disk. These are a l l  the proper values fo r  the duration  

of the K-pulse. Calculated from Table 4 .1 ,  the times corresponding to  

the f i r s t  differences are 0.952L/C, 2 .014L/c , 1.975Trr/c, 2 .013irr/c ,  

1.863irr/c , fo r  the low Q model [Equation ( 3 . 2 ) ] ,  w ire , loop, sphere and 

d isk , resp ective ly . They are very close to the true  K-pulse duration. 

These are a l l  summarized in Table 4 .2 .  I t  appears the K-pulse duration  

is  re la ted  to the density of the poles.
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Since the main concept 1n th is  d isserta tion  1s based on 

minimization of the energy due to the natural resonances, the K-pulse 

obtained with any duration longer than the proper duration w i l l  contain  

the dominant pole In form ation, More genera lly , the K-pulse obtained 

with non-m1n1mal duration w i l l  have the following Laplace transform:

' 4- 5>

where Gm(s) 1s any e n t ire  function of exponential type fo r  va riab le  s,

and Tn 1s the duration of 9m( t )»  which 1s the Inverse Laplace transform

of G (s ,T  ) .  Note tha t "m" and "n" are used to  represent the In f in i t e  m n

number of e n t ire  functions and durations. In other words, the poles

associated with K(s) w i l l  always remain 1n K (s ) as the guess of the' '  mn
K-pulse duration 1s changed. They would remain unchanged u n ti l  the

guess of the K-pulse duration 1s less than the proper K-pulse duration.

When the guess of the K-pulse duration 1s less than the proper K-pulse

duration , e i th e r  the minimization process w i l l  not converge or the pole

strings w i l l  be t o t a l l y  d i f fe r e n t  from those of the true  K-pulse. Using

th is  Information and the density of the poles, the duration of K-pulse

can be estimated. Also 1f T =0, then G (s) 1s a real constant, ann m

exponential function of s, or a polynomial of s. A ll of these w i l l  not 

a f fe c t  the resu lt  of estimating the duration of the K-pulse because of 

the K-pulse model employed 1n th is  d is s e r ta t io n . The constant, of 

course, w i l l  not a f fe c t  the pole s tr in g  obtained. The exponential 

function of s w i l l  give a time s h i f t  fo r  k ( t ) ,  but the K-pulse model 1s 

forced to s ta r t  at time zero. Besides, th is  pole s tr in g  w i l l  always
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have the real parts being zero and can be Ignored. L a s t ly ,  a polynomial 

of s fo r  Gm(s) cannot occur because only impulsive s in g u la r it ie s  are 

allowed 1n the model.

The optim ization process is  s tarted  with a reasonable guess of the 

duration of K-pulse (Tgj ) .  I t  1s b e tte r  fo r  th is  guess to be longer 

than the true duration as opposed to a shorter duration. A reasonable 

estimate seems to be the period of the damped sinusoid exhibited by the 

dominant natural resonance of the ta rg e t at la te  tim e. A fte r  the f i r s t  

guess K-pulse [kgj ( t ) ]  is  obtained, the value of the K-pulse duration  

guess (Tg j) is  Increased to some other guess (T^^) and ^ts  corresponding 

K-pulse [kg2( t ) ]  1s obtained. The dominant pole strings are compared.

I f  the two strings are t o t a l l y  d i f fe r e n t ,  then the second guess (T^^) 

needs to be Increased to a th i rd  guess (Tg.j) to  obtain a corresponding 

K-pulse [k ^ ( t ) ] .  This process is repeated u n t i l  the two consecutive 

pole strings have some s im ila r  poles. Then the d iffe rence  of the radian 

frequency ( Aco) between consecutive and more dominant poles but common 1n 

both strings are ca lcu la ted . The value of a b e t te r  guess fo r  the 

duration of the K-pulse (T) is  then 2 tt/a<d.

The above procedure 1s checked with the f iv e  targets  discussed in 

the previous chapter. The high Q structures are discussed before the 

low Q s tructu res . The density of samples fo r  the continuous portion of 

the K-pulse 1s taken to be 50 samples/T. From experience, the choice of 

50 samples/T seems to be a good s ta rt in g  point fo r  the optim ization  

process. The f i r s t  and second guesses are assumed to be 1.5T and 2T, 

resp ec tive ly . The th i rd  guess fo r  the K-pulse duration 1s 0.5T. This
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th i rd  guess 1s used to confirm tha t T 1s the proper K-pulse duration.

To s ta r t  the optim ization process a l l  the I n i t i a l  guesses of the 

unknowns 1n the K-pulse model are specified  as u n ity .

The th in  s tra ig h t wire 1s the f i r s t  example to  be discussed. The

duration of the f i r s t  guess K-pulse 1s 3L/c (Twj ) .  The duration of the

K-pulse response 1s 5L/c (TR) and the cu to ff  time fo r  the In teg ra tio n  1s 

9L/c (Tq). The bandwidth of the Fourier synthesized Impulse responses 

used 1s kL = 0 . 0 8 tt( 0 . 0 8 tt) 8 tt. A fter  tw en ty -f ive  steps of optim ization  

using the Impulse response of the s tra ig h t  wire at <j>=30°,
A

^ -p o la r iza t io n , the K-pulse Ckwi ( t ) l  f ° r the f i r s t  K-pulse duration  

guess 1s shown 1n Figure 4 .1 .  The energy 1n the K-pulse response 

outside 4L/c 1s very small as shown 1n Figure 4 .2 .  This K-pulse

response 1s d i f fe re n t  from what 1s shown 1n Figure 3 .14 , because the

durations of the K-pulses are d i f fe r e n t ,  kw2 ( t )  1° f ig u re  4 .3  1s 

derived s im ila r ly  except I t s  duration T ^  1s chosen to be 4L/c and only 

ten steps of optim ization are spec if ied . The K-pulse response of the 

wire at 4>=30° 1s shown 1n Figure 4 .4 .  The energy content a f te r  5L/c is  

again very small. Comparing the zero strings of kwj ( t )  and kw2 ( t )

(Table 4 . 3 ) ,  the f i r s t  approximation of the duration of the K-pulse (T) 

1s calculated to be 2.009L/C, which 1s very close to the tru e  T (2 L /c ) .  

I f  the duration of the K-pulse 1s chosen to be 2L/c , the K-pulse as 1n 

Figure 3 . 1 3  w i l l  re s u lt .  The responses fo r  the s tra ig h t  wire at the 

d i f fe r e n t  aspect angles w i l l  be as shown 1n Figures 3 . 1 4 ,  3 . 1 5 ,  3 . 1 6 .

The energy of the K-pulse responses 1n la te  time at the various angles

w i l l  be very small. For a f in a l  check, the guess duration of the
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K-pulse (T 3 ) is  chosen to be L /c . A fte r  tw e n ty -f iv e  steps of 

o p tim iza tion , no reduction in energy is  shown outside the K-pulse 

response as shown 1n Figure 4 .5 .  Not s u rp r is in g ly , the "K-pulse" 

obtained (Figure 4 .6 )  does not have any zero s im ila r  to the K-pulses 

obtained previously. The reason why K-pulse 1s in quotations fo r  Figure 

4.6  1s the waveform obtained no longer contains the natural resonance 

Information of the ta rg e t .

The loop exh ib its  resu lts  s im ila r  to those obtained fo r  the w ire .  

The f i r s t  guess of the K-pulse duration (T^ j)  1s 3Ttr/c. The duration of 

the K-pulse response (TR) is  8 ur/c and the c u to ff  time (T^) fo r  

In teg ra tio n  is  12irr/c. The bandwidth of the Fourier synthesized impulse 

response used 1s kr = 0 .02tt(0.02tt)4tt. A fte r  tw en ty -f ive  steps of 

o p tim iza tion , the f irs t ,  guess K-pulse D ^ C t ) ]  Is  obtained as shown 1n 

Figure 4 .7 .  The Impulse response used is  at 0=45°, 0-p o la r iz a t io n .  The 

corresponding K-pulse response 1s shown 1n Figure 4 .8 .  The energy 

content outside 4ur/c 1s minimized. A fte r  ten steps of op tim iza tion ,  

the second guess K-pulse as shown 1n Figure 4 .9  1s obtained with

the duration of the K-pulse (T^ j)  increased to 4irr/c ( T ^ ) *  T,ie 

response due to contrasted with the Impulse response in Figure

4 .10 . The signal amplitude 1s small at the la te  tim e. The zeros 

derived from both K-pulses are compared 1n Table 4 .4 .  The f i r s t  

approximation to  the K-pulse duration (T) is  calculated to be 1 .983irr/c ,  

which 1s very close to  the true  duration of 2 ttr / c .  Using a K-pulse 

duration of 2 irr/c , Figure 3.17 shows the K-pulse with the proper 

duration. Then the responses of the loop at d i f fe r e n t  angles to th is
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K-pulse are shown 1n Figures 3.18 to 3 .21. All the K-pulse responses 

have very l i t t l e  energy remaining. I f  the duration of the K-pulse is

chosen to be irr /c , a f te r  tw e n ty -f iv e  steps of op tim iza tion , no

minimization of energy is  achieved as shown 1n Figure 4 .11 , in d ica ting  

the choice of T is  wrong. Again the "K-pulse" (Figure 4 .12) obtained 

has no dominant zero s im ila r  to  any of the dominant zeros obtained from

the other three K-pulses.

Next the discussion turns to the low Q structures -  the low Q model 

[Equation ( 3 . 2 ) ] ,  the sphere, and the d isk . The method of minimization  

of the energy at la te  time 1s not expected to work well fo r  the low Q 

s tru c tu res , as the energy contributed by th e ir  natural resonances is  

small even before the optim ization begins. Nevertheless, 1t is  

in te re s t in g  to  see how the method to obtain the K-pulse duration behaves 

fo r  the low Q s tructu res . The impulse response used fo r  Equation (3 .2 )  

has a bandwidth of kL = 0 . 0 5 tt( 0 . 0 5 tt) 1 0 0 tt. The i n i t i a l  guesses fo r  the 

K-pulse duration (Te j)»  the K-pulse response duration (TR) and the 

c u to ff  time (Tj,) fo r  In teg ra tio n  are 1 .5L /c , 0 .5L/C , 2.92L/C, 

resp ec tive ly . A fte r  ten steps of op tim ization , the f i r s t  K-pulse kgj ( t )  

as shown in Figure 4.13 is  obtained. The K-pulse response is  shown in 

Figure 4 .14 . Increasing the K-pulse duration (T ^) to 2L/c ( T ^ ) *  

second K-pulse ^ ( t )  as shown 1n Figure 4.15 1s obtained a f te r  ten 

steps of op tim iza tion . The response to ^ ( t )  is  shown 1n Figure 4 .16.  

Comparing the dominant zeros of ^ ( t )  and k ^ f t )  (Table 4 .5 ) ,  the f i r s t  

approximation to  the K-pulse duration is  calculated to be 0.948L/C which 

compares well with the true  value of L /c . Using a value of L/c fo r  the
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K-pulse duration, the K-pulse as shown 1n Figure 3.11 w i l l  re su lts ,  and 

response of the model to th is  K-pulse 1s shown in Figure 3 .12. The 

zeros of th is  K-pulse compare well with the poles of the model. Figure  

4.17 shows the "K-pulse" with the guess of K-pulse duration (Te3) being 

0 .5 L /c . The K-pulse response as shown 1n Figure 4.18 shows the 

optim ization process 1s walking 1n the proper d ire c t io n . But a 

comparison of the zeros associated with Figure 4.17 and the other 

K-pulses fo r  Equation (3 .2 )  shows that these zeros obtained with K-pulse 

duration of 0 .5L/c  are not even close.

For the next two low Q s tru ctu res , the duration of the K-pulse 

response must be known very accurate ly , as the energy contributed by the 

natural resonances 1n the la te  time is  qu ite  small. I f  the K-pulse 

response duration ( T r )  1s chosen too la rg e , the contribution can only 

come from the f i r s t  complex p o le -p a lr .  The b e tte r  1s the estimate of 

the duration of the K-pulse response; the b e tte r  1s the number of real 

poles a v a i la b le .  The amplitude of the K-pulse and impulse responses for  

these two targets  are shown with a magnification of 100. The number of 

optim ization steps specified  fo r  each p lot 1n the remainder of th is  

section 1s tw e n ty -f iv e .

The fourth example fo r  th is  chapter 1s the conducting sphere. The 

Impulse response of the backscattered f ie ld  of the sphere is  generated 

with a bandwidth of kr = 0 .1 (0 .1 )3 3 .5 .  The duration of the K-pulse 

response ( T r )  and the cu to ff  time fo r  the In teg ra tio n  (Tc) are chosen to  

be 4nr/c and 10wr/c, resp ective ly . For the K-pulse duration (Tsj )  guess 

of 3 irr/c , the K-pulse [k s j ( t ) ]  is  as shown 1n Figure 4 .19 , a f te r
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optim ization . The response of the sphere 1n the backscattered d irec tion  

is  obtained and shown in Figure 4 .20 . For the K-pulse duration ( T ^ )  

guess of 4 irr/c , the second guess K-pulse ^ ( t )  as shown in Figure 4.21 

and the sphere response (Figure 4 .22) to  th is  K-pulse are then produced. 

Comparing the zeros of ^ ( t )  and ^ ^ ( t )  (Table 4 .6 ) ,  the f i r s t  

approximation fo r  the duration of the sphere's K-pulse 1s 2 .254nr/c  

comparing with the true  value of 2nr/c . The reason that th is  number 1s 

not as good as before 1s the low Q property of the sphere. Using 

T=2irr/c, the K-pulse with the proper K-pulse duration can be obtained as 

1n Figure 3 .22. The responses of the sphere at various angle to th is  

K-pulse are shown 1n Figures 3.23 to  3 .27. The poles obtained from the 

K-pulse confirm the duration of the sphere to be 2Trr/c. Again when the 

duration of the K-pulse (Tg3) is chosen as u r /c , the zeros from the 

"K-pulse" (Figure 4 .23) do not resemble those obtained fo r  the sphere 

previously, even though the K-pulse response (Figure 4 .24) exh ib its  some 

energy reduction at la te  tim e.

The la s t  example discussed in th is  chapter 1s the conducting 

c irc u la r  d isk. The Impulse response whose bandwidth 1s 

kr = 0 .1 6 (0 .16 )16  at 9=45°, and 9-polar1zat1on is  used. The K-pulse 

response duration (TR) and the c u to ff  time (T^) are chosen to  be 4nr/c  

and 8 n r /c , resp ec tive ly . The f i r s t  guess K-pulse [kd^ ( t ) ]  and the
a

response of the c irc u la r  disk at 0=45°, and 0-polar1zat1on to  th is

K-pulse with a K-pulse duration (Td l ) of 3Tir/c are shown 1n Figures 4.25

and 4 .2 6 , resp ec tive ly . When the second guess of the K-pulse duration

(T .„ )  1s chosen to be 4 n r /c ,  K-pulse [ k . _ ( t ) ]  as 1n Figure 4.27 is
dZ 02

92



obtained. The corresponding response of the disc at 0=45°, and
A

0-pola1zat1on to th is  K-pulse 1s shown 1n Figure 4 .28 . Comparing the 

zeros of k ^ ( t )  and kd2 ( t )  (Table 4 .7 ) ,  the f i r s t  approximation to the 

K-pulse duration (T) 1s 2.176Trr/c, which compares f a i r l y  well with the 

tru e  value of 2Trr/c. Again, because the disk 1s a low Q s tru c tu re , the 

f i r s t  approximation 1s not very close. I f  T 1s chosen to  be 2 n r /c ,  then 

the K-pulse and the d isc 's  responses to the K-pulse are shown as 1n 

Figures 3.28 through 3.32. Again the zero s tr in g  of the K-pulse 

v e r i f ie s  the proper K-pulse duration. Figures 4.29 and 4.30 show the 

"K-pulse" and the response of the disc at 0=45°, 0=polar1zat1on to the 

"K-pulse" when the K-pulse duration 1s chosen to be irr/c. Although some 

energy reduction can be seen, the zero s tr in g  departs t o t a l l y  from the 

other zero s tr in g s . This means the duration of the K-pulse 1s chosen 

too smal1 .

This chapter has presented a procedure to obtain the approximate 

duration of the K-pulse. The method works b e tte r  with high Q 

geometries, even when the K-pulse response durations are not known very 

accurate ly . The procedure works reasonably well with low Q structures  

i f  the proper K-pulse response durations are known. The reason fo r  th is  

discrepancy l ie s  1n the concept of minimizing energy outside the K-pulse 

response duration. When the energy content at la te  time 1s low already 

as 1n the low Q s tructu res , the optim ization process w i l l  not be able to  

perform as well as the Impulse responses with high energy content at 

la te  tim e. Nevertheless, th is  1s a very good procedure fo r  estimating  

or checking the proper duration of the K-pulse.
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Table 4.1

Radian Frequency Difference Between Consecutive Poles

Equation (3 .2 ) Wi re Loop Sphere Disk

1 ) 6.598 3.120 6.362 5.913 6.744

2 ) 6.445 3.123 6.340 5.974 6.595

3) 6.382 3.127 6.330 6.014 6.528

4) 6.350 3.129 6.323 6.038 6.487

5) 6.332 3.130 6.319 6.070 6.461

6 ) 6.321 - 6.316 6.082 6.441

7) 6.313 - 6.313 6.095 6.426

8 ) 6.307 - 6.311 6.113 6.414

9) 6.303 - 6.310 6 . 1 2 0 6.404
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Table 4.2

Summary of Radian Frequency Differences and I ts  Corresponding Time

Equation Wire Loop Sphere Disk(3.ii —  — —  —
Radian 
Frequency
Difference 2 tt w 2tt 2* 2*
Approaching

Corresponding L/c 2L/c 2Trr/c 2irr/c 2nr/c
Time

F irs t  Radian 6.598 3.120 6.362 5.913 6.744
D ifference

Corresponding 0.952L/C 2.014L/C 1.975irr/c 2.013Trr/c 1.863Trr/c
Time
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Table 4.3

A Comparison of the Zeros Obtained Using Two K-pulses with

D if fe re n t  Durations (The Target is  a S tra ight Wire)

K-pulse Estimate [kwi ( t ) ]  K-pulse Estimate [kW2 ( t ) ]

(Duration = 3L/c) (Duration = 4L/c)

1) -0 .649 + 2.099j

2 ) - - 0 . 1 0 2  + 1.304j

3) -0 .184  + 2.977j -0 .178 + 2.967j

4) - -0 .404 + 4.301j

5) -0 .234 + 6 . 105j -0 .260  + 6.093j

6 ) - -0 .587 + 7.475j

7) -0 .316 + 9 . 200j -0 .318 + 9.194j
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Table 4.4

A Comparison of the Zeros Obtained Using Two K-pulses with

D if fe re n t  Durations (The Target is  a C ircu la r  Loop)

K-pulse Estimate [ k j j i ( t ) ]  K-pulse Estimate [ k ^ t ) ]

(Duration = 3ur/c ) (Duration = 4irr/c)

1) -  -0.451 + 2 .718j

2) -1 .187 + 3.232j

3) -0 .432 + 6.520j -0 .442 + 6.510j

4) - -1.101 + 9 . 438j

5) -0 .557 + 12.859j -0 .634 + 12.881j

6 ) - -1 .218 + 16.044j

7) -0 .779 + 19.246j -0 .789 + 19.229J
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Table 4.5

A Comparison of the Zeros Obtained Using Two K-pulses with

D if fe re n t  Durations [The Simulated Model 1n Equation ( 3 .2 ) ]

K-pulse Estimate [ke j ( t ) ]  K-pulse Estimate [ke2 ( t ) ]

(Duration = 1 .5L /c) (Duration = 2L/c)

1 ) -3 .639 + 5.201j -3 .356 + 5.380j

2 ) -5 .034  + 11.830j -3 .860 + 11.633j

3) -6 .197 + 17.960j -4 .379 + 18.417j

4) -5 .659 + 24.707j -4 .358  + 24.659j

5) -6 .125 + 33.393j -4 .310 + 31.174J
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Table 4.6

A Comparison of the Zeros Obtained Using Two K-pulses with

D if fe re n t  Durations (The Target is a Conducting Sphere)

K-pulse Estimate [k s i ( t ) ]  K-pulse Estimate [k S2 ( t ) ]

(Duration = 3irr/c) (Duration = 4nr/c )

1 ) - -1 .478 + 4.036j

2 ) -2 .998 + 5.287j -3 .405 + 5.419J

3) -4 .700  + 10.862j -2 .047 + 10.414j

4) -3 .518 + 16.428j -2 .291 + 16.359j

5) -4 .197 + 2 2 .252J -2 .510 + 22.313j
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Table 4.7

A Comparison of the Zeros Obtained Using Two K-pulses with

D if fe re n t  Durations (The Target is a C ircu lar  Disk)

K-pulse Estimate [ k ^ i f t ) ]  K-pulse Estimate [ k ^ t ) ]

(Duration = 3Trr/c) (Duration = 4irr/c

1) - -0 .808 + 3.180j

2) -1 .522  + 4.082j -

3) -3 .040  + 7 . 793j -3 .048 + 7.411J

4) - -2 .219 + 8.513j

5) -3 .662 + 13.566J -2 .222 + 13.697j
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Figure 4 .1 .  K-pulse obtained using the Fourier synthesized Impulse
response of the conducting s tra ig h t  wire at $=30° with
kL = 0.08 t t (0 .08 i t )8 t t . The K-pulse duration 1s 3L/c.
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Figure 4 .2 .  Impulse response and response to  the K-pulse shown 1n
Figure 4 .1  fo r  the s tra ig h t wire at 4>-30° with
kL = 0 .08T r(0 .08 ir)8 ir.
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Figure 4 .3 .  K-pulse obtained using the Fourier synthesized impulse
response of the conducting s tra ig h t wire at 4>=30° with
kL = 0.08Tr(0.08iT)8TT. The K-pulse duration is  4L/c.
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Figure 4 .4 .  Impulse response and response to the K-pulse shown in
Figure 4 .3  fo r  the s tra ig h t wire at <j»=30° with
kL = 0 .08 ir (0 .08T i)8 ir .
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Figure 4 .5 .  Impulse response and response to  the "K-pulse" shown 1n
Figure 4 .6  fo r the s tra ig h t  wire at <j>=30° with
kL a 0.08Tr(0.087r)87r.
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Figure 4 .6 .  "K-pulse" obtained using the Fourier synthesized Impulse
response of the conducting s tra ig h t  wire at <f>=30° with
kL = 0 .08 t t (0.08 t t )8 t t . The "K-pulse" duration Is  L /c .
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Figure 4 .7 .  K-pulse obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  loop at 9=45° and 

e -po lar lza tlon  with kr = 0 . 0 2 tt( 0 . 0 2 it) 4 tt. T1}e K-pulse 

duration Is 3irr/c.
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Figure 4 .8 .  Impulse response and response to  the K-pulse shown in 

Figure 4.7 fo r  the c irc u la r  loop at 0=45° and 

6-polar1zat1on with kr = 0 .02Tr(0 .02n)4ir.
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Figure 4 .9 .  K-pulse obtained using the Fourier synthesized impulse 

response of the conducting c irc u la r  loop at 0=45° and 

6 -po lar lza tlon  with kr = 0 .0 2 tt(0 .0 2 tt) 4 tt. The K-pulse 

duration is  4irr/c .

109



R
M

P
L

IT
U

D
E

O

O -

O

o

o
IMPULSE RESPONSE 
RESPONSE TO THE 
OPTIMIZED K-PULSEo

00

o
I

Figure 4 .10 . Impulse response and response to the K-pulse shown 1n

Figure 4 .9  fo r  the c irc u la r  loop at 8=45° and

0 -po lar iza tion  with kr = 0 .02T r(0 .02 ir)4 ir.
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Figure 4 .11 . Impulse response and response to  the "K-pulse" shown in 

Figure 4.12 fo r  the c irc u la r  loop at 0=45° and
A

e-po lar iza tion  with kr = 0.02ir(0.02ir)4n.
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Figure 4 .12 . "K-pulse" obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  loop at 9=45° and 

0-polar1zat1on with kr = 0 .0 2 tt(0 .0 2 tt) 4 tt. The "K-pulse" 

duration 1s n r /c .
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Figure 4 .13 . K-pulse obtained using the Fourier synthesized Impulse
response of the simulated model given in Equation ( 3 .2 ) .
The K-pulse duration is  1.5L/C.

113



A
M

P
L

IT
U

D
E

CD

O

CD

O

-  -J 
o -

o

o,

( L / C)ro

IMPULSE RESPONSE 
RESPONSE TO THE 
OPTIMIZED K-PULSE

Figure 4 .14 . Impulse response and response to the K-pulse shown in
Figure 4.13 fo r  the simulated model given in Equation
( 3 .2 ) .  (kL = 0.05 k ( 0.05 k ) 100 k ).
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Figure 4 .15 . K-pulse obtained using the Fourier synthesized impulse
response of the simulated model given in Equation ( 3 .2 ) .
The K-pulse duration 1s 2L/c.
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Figure 4 .16 . Impulse response and response to the K-pulse shown 1n
Figure 4.15 fo r the simulated model given in Equation
( 3 .2 ) .  (kL = 0. 05 t t (0 . 05 i t )100 t t ).
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Figure 4 .17 . "K-pulse" obtained using the Fourier synthesized impulse
response of the simulated model given 1n Equation ( 3 .2 ) .
The "K-pulse" duration is 0.5L/C.
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Figure 4 .18 . Impulse response and response to the "K-pulse" shown in
Figure 4.17 fo r  the simulated model given in Equation
( 3 .2 ) .  (kL = 0 . 05ir(0.05n) IOOtt) .
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Figure 4 .19. K-pulse obtained using the Fourier synthesized impulse 
response of the conducting sphere in the the 
backscattered d irec tio n  with kr = 0 .1 (0 .1 )3 3 .5 .  The 
K-pulse duration is  3ur/c .
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Figure 4 .20 . Impulse response and response to the K-pulse shown In 
Figure 4.19 fo r  the conducting sphere 1n the 
backscattered d irec tio n  with kr = 0 .1 (0 .1 )3 3 .5 .  The 
amplitude scale is  expanded by 100.

120



flM
PL

 
I 

TU
I1

F

in • -1
“ J

i

°

in
o

\

o

Figure 4 .21 . K-pulse obtained using the Fourier synthesized Impulse 
response of the conducting sphere 1n the backscattered  
d ire c tio n  with kr = 0 .1 (0 .1 )3 3 .5 .  The K-pulse duration  
1s 4irr/c.
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Figure 4 .22 . Impulse response and response to  the K-pulse shown 1n 
Figure 4.21 fo r  the conducting sphere in the 
backscattered d irec tion  with kr = 0 .1 (0 .1 )3 3 .5 .  The 
amplitude scale is  expanded by 100.
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.2 3 . "K-pulse" obtained using the Fourier synthesized Impulse 
response of the conducting sphere 1n the backscattered  
d irec tio n  with kr = 0 .1 (0 .1 )3 3 .5 .  The "K-pulse" duration  
1s n r /c .
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Figure 4 .24 . Impulse response and response to the "K-pulse" shown 1n 
Figure 4.23 fo r  the conducting sphere 1n the 
backscattered d irec tion  with kr = 0 .1 (0 .1 )3 3 .5 .  The 
amplitude scale 1s expanded by 100.
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Figure 4 .25 . K-pulse obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  disk at 9=45°, 

9-polar1zat1on with kr = 0 .1 6 (0 .1 6 )1 6 . The K-pulse 
duration 1s 3nr/c .
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Figure 4 .26 . Impulse response and response to the K-pulse shown in 

Figure 4.25 fo r  the conducting c irc u la r  disk at 0=45°, 

0-polar1zat1on with kr *  0 .1 6 (0 .1 6 )1 6 . The amplitude 
scale 1s expanded by 100.
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Figure 4 .27 . K-pulse obtained using the Fourier synthesized Impulse

response of the conducting c irc u la r  disk at 9=45°,*
e-p o lar lza tlo n  with kr = 0 .1 6 (0 .1 6 )1 6 . The K-pulse 

duration 1s 4nr/c .
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Figure 4 .28. Impulse response and response to  the K-pulse shown 1n 

Figure 4.27 fo r  the conducting c irc u la r  disk at 8=45°, 

8-polar1zat1on with kr = 0 .1 6 (0 .1 6 )1 6 . The amplitude 

scale is  expanded by 100.
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Figure 4 .29 . "K-pulse" obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  disk at 0=45°,
A

e-p o lar lza tio n  with kr = 0 .1 6 (0 .1 6 )1 6 . The "K-pulse" 

duration 1s Trr/c.
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Figure 4 .30 . Impulse response and response to  the "K-pulse" shown 1n 

Figure 4.29 fo r  the conducting c irc u la r  disk at 0=45°, 

0-polar1zat1on with kr = 0 .1 6 (0 .1 6 )1 6 . The amplitude 

scale 1s expanded by 100.
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CHAPTER V

APPLICATION TO NOISY ANO MEASURED DATA

In th is  chapter, the theory discussed in Chapter I I  is  applied to  

simulated noisy data and measured data. The simulated noisy data are 

generated by the addition of white Gaussian noise of zero mean to the 

th eo re tic a l data. The Gaussian noise 1s generated with the subroutine 

GAUSS in IBM System/360 S c ie n t i f ic  Subroutine Package Version I I I .  The 

th eo re t ica l data fo r  the c irc u la r  loop are used fo r  th is  study. The 

measured data are from two f i n i t e  c irc u la r  waveguides, whose geometries 

are the same and shown 1n Figure 5 .1 . (For the convenience of the 

reader, a l l  tables and figures of Chapter V are grouped together at the 

end of the chapter.)  One of the c irc u la r  waveguides has both ends 

opened. The other waveguide has the end at <j>=180o shorted. The 

measurement of the geometries was done on the Ohio State University  

Compact Range R e f le c t iv i ty  F a c i l i t y  [2 6 ] .

The th e o re tic a l c irc u la r  loop data are the same as in the previous 

chapters. The r a t io  of the wire radius (a) to  the loop radius ( r )  is
_3

ttxIO . The bandwidth of the data is  kr = 0 . 02Tr(0.02ir)4Tt. The aspect 

angle and p o la r iza tio n  of the Impulse response used are 0=45° and
A
0-polar1zat1on, resp ec tive ly . The noise 1s added independently In to  the 

real and imaginary parts of the frequency data before d iscre te  Fourier  

transforming the data In to  the time domain. The maximum amplitude of 

the real and imaginary parts in the frequency data are about 0.36V and
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0.62V, resp ec tive ly . For the f i r s t  te s t  the added Gaussian noise has a 

zero mean and a standard deviation of 0.01V.

The Impulse response obtained from the polluted data is  shown in 

Figure 5 .2 .  The p e r io d ic ity  at la te  time of the Impulse response is  

about 2 irr /c , which is  the proper K-pulse duration (T ) .  The optim ization  

process is  s tarted  with 50 as the number of samples (N) to respresent 

the continuous portion of the K-pulse. The energy is  minimized over the 

period from 6nr/c to 12Ttr/c. A fte r  ten steps of Powel 1-F le tcher type of 

m inim ization, the value of N is  increased to  100, and the K-pulse 

response duration 1s reduced to 5Trr/c. The c u to ff  time fo r  the 

in teg ra tio n  1s s t i l l  12Ttr/c. A fte r  another ten steps of the Powell-  

Fletcher type of op tim iza tion , the resu lt ing  K-pulse 1s shown in Figure 

5 .3 .  Again the f i r s t  diamond is an Impulse, which is  h ighlighted by an 

arrow, the other one hundred diamonds are samples of a continuous 

function . The Impulse response and the response to the K-pulse 1n
A

Figure 5.3 fo r  the loop at 8=45° and 8-polar1zation are p lo tted  1n 

Figure 5 .4 .  The energy content remaining 1n the K-pulse response la te r  

than t=4rir/c  appears to be contributed by the noise component, as the 

amplitude is  in the noise le v e l .

To see how well the the K-pulse obtained (Figure 5 .3 )  stops the 

resonance at la te  t im e, th is  K-pulse 1s convolved with the noiseless 

impulse responses. By e lim inating  the noise fa c to r ,  the K-pulse 

response can be be compared with the resu lts  1n Chapter I I I .  Figure 5.5  

contains both the impulse response and the response to  the K-pulse shown 

in Figure 5.3 fo r  the loop at 0=45° and 8 -po lar iza tion  without noise.
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The energy content a f te r  t=47rr/c Is very small. Figure 5 .6  1s the 

Impulse response and the response to the K-pulse shown 1n Figure 5.3 fo r
A

the loop at 9=0° and <|>-polar1zat1on. Again the K-pulse response has 

very l i t t l e  energy a f te r  2 .4 irr /c . The Impulse response and the response
A

to the K-pulse shown 1n Figure 5.3 fo r  the loop at 9=45°, <|>-polar1zed 

are p lotted  1n Figure 5 .7 . There 1s only a small residue of energy 

a f te r  4 irr/c . The response to  the K-pulse shown 1n Figure 5 .3 and the 

Impulse response fo r the loop at 9=90°, <|>-polar1zation are shown 1n 

Figure 5 .8 .  The amplitude of the K-pulse response signal a f te r  S-nr/c 1s 

grea tly  reduced. I f  Figures 5.5 through 5.8 are compared with Figures 

3.18 through 3 .21 , resp ec tive ly , the K-pulse obtained here 1s performing 

very com petitively as the K-pulse 1n Figure 3.17 does. That 1s why 1t 

1s not surprising to see the dominant zeros of th is  K-pulse (Figure 5 .3 )  

compare very well with the true  poles of the c irc u la r  loop as shown in  

Table 5 .1 . The noise level specified  in th is  example is  f a i r l y  close to  

the noise level encountered at the O.S.U. compact range f a c i l i t y .

This can be seen by comparing the K-pulse response at la te  time in 

Figure 5.4 with Figure 5.24 where the noise amplitude 1s f lu c tu a tin g  

between ± 0.03V.

In the second example, the noise level of the signal 1s increased 

f iv e  times. This 1s to evaluate the K-pulse estimation technique when 

the signal is  corrupted by a large amount of noise. The frequency 

response fo r  the same c irc u la r  loop at 9=45°, 9-polar1zat1on 1s again 

corrupted with white Gaussian noise of zero mean with standard deviation  

of 0.05V. The Impulse response 1s shown in Figure 5 .9 . The p e r io d ic ity
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of the signal at la te  time 1s s t i l l  around 2 * r /c .  Thus, the K-pulse 

duration (T) 1s s t i l l  chosen as 2 » r /c .  The K-pulse response duration 1s 

chosen as 5nr/c . The c u to ff  time fo r  In teg ra tio n  1s 12wr/c. The number 

of samples (N) used to  represent the continuous portion of the K-pulse 

1s 100. A fte r  s ix  steps of Powell-Fletcher m inim ization, the K-pulse as 

shown 1n Figure 5.10 1s obtained. The Impulse response and response to  

the K-pulse shown 1n Figure 5.10 fo r  the loop at 0=45°, and
A

e -p o la r lza t lo n  are shown 1n Figure 5 .11 . The K-pulse response a f te r  

4irr/c 1s Indeed very noisy. To check the approximate K-pulse, 1t 1s 

again convolved with noiseless data. The K-pulse 1s f i r s t  convolved
A

with the noiseless Impulse response at 9=45°, 0-polar1zat1on. The 

re su lt  is  contrasted with the Impulse response 1n Figure 5 .12 . There 

are s t i l l  some residues a f te r  4 irr/c . This 1s to  be expected, as the 

noise level of the Impulse response employed to  obtain the K-pulse has 

been Increased. The performance of the technique 1s expected to  

degrade. S im ilar  la te  time behaviour 1s exhibited at the other aspect 

angles and p o la r iza tio n s . Figure 5.13 shows the Impulse response and 

the response to  the K-pulse shown 1n Figure 5.10 fo r  the loop at 0=0°,
A
♦ -p o la r iz a t io n . Figures 5.14 and 5.15 show both the Impulse response 

and the response to  the K-pulse shown 1n Figure 5.10 fo r  the loop at
A

♦ -p o la r iza t io n  with 0=45° and 90°, resp ec tive ly . Even though Figures 

5.12 through 5.14 have some residue at la te  t im e, the m ajority  of the 

energy contained in the la te  time of the Impulse response has been 

reduced. The f i r s t  few dominant poles are probably a va ilab le  from the 

zeros o f the K-pulse 1n Figure 5 .10. This 1s confirmed 1n Table 5 .1 .
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In f a c t ,  the f i r s t  two zeros are very close to  the tru e  poles. 

Furthermore, a l l  of the Imaginary parts of the zeros are very close to  

the corresponding tru e  poles.

In th is  next example, some backscattered measurement data are 

examined. The ta rg e t 1s a f i n i t e  c irc u la r  waveguide with open ends.

The geometry of the waveguide 1s shown 1n Figure 5 .1 .  The measurement 

1s taken over the bandwidth of kr = 1 .32(0 .00665)12 , where r  1s the 

radius of the waveguide. At <|>=0o, 0=0°, a moment method solution [27 ]

1s used to supplement the measured frequency data making the e f fe c t iv e  

bandwidth of the data as kr=12. The Impulse response fo r  the open-ended 

f i n i t e  c irc u la r  waveguide at $=0°, 0=0° 1s shown 1n Figure 5 .16 . Figure 

5.16 shows th a t there are two major scattering  centres 1n the Impulse 

response -  one at the fro n t of the waveguide at t« 0 ;  the other at the 

back of the waveguide at t=6.8Trr/c. The e a r l ie r  portion (0<t<67rr/c) of 

Figure 5.16 can be viewed as the return from a s e m i- In f in i te  c irc u la r  

waveguide, since the e f fe c t  from the back of the waveguide cannot be 

w ith in  th is  early  period. The amplitude at la te r  time (t> 6 irr /c )  of the 

Impulse response, of course, 1s the character of the f i n i t e  open-ended 

f i n i t e  c irc u la r  waveguide. Thus, the Impulse response can be divided  

In to  sections to  Is o la te  each of these mechanisms. In other words, th is  

example can be fu r th e r  divided In to  two sub-sections -  one fo r  the 

semi - I n f i n i t e  c irc u la r  waveguide (0 < t< 6 ir r /c ) , another fo r  the f i n i t e  

c ir c u la r  waveguide ( t> 6 n r /c ) .  The portion of the Impulse response 

re la ted  to  the s e m i- In f in i te  c irc u la r  waveguide 1s analyzed f i r s t .  Then 

the analysis of the Impulse response fo r  the la te  time of the f i n i t e  

c irc u la r  waveguide 1s discussed.
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The early  portion of the impulse response of the f i n i t e  c irc u la r  

waveguide is  p lo tted  in Figure 5 .17. The approximate p e r io d ic ity  1s 

trr/c; th e re fo re , the K-pulse duration 1s chosen as irr/c . The energy 1s 

minimized between 3irr/c to 5irr/c. A fte r  f iv e  steps of Powel 1-F letcher  

m inim ization, the K-pulse is as shown 1n Figure 5 .18. The response to  

the K-pulse shown in Figure 5.18 and Impulse response fo r  the 

s e m i- in f in i te  c irc u la r  waveguide at <j>=0°, 0=0° are shown 1n Figure 5 .19. 

The p e r io d ic ity  between 3ur/c to 5irr/c is  gone. The residual amplitude 

at la te  time seems to be contributed by noise. The zeros of the K-pulse 

are l is te d  1n Table 5 .2 .  Two of them are s im ila r  to what M offa tt et a l .  

[2 8 ]  presented as complex natural resonances of a s e m i- In f in i te  c irc u la r  

waveguide extracted using ra tiona l function approximants; namely, 

-2 .07 6+ 1 1 .266j and -5 .0146+38.590j.

Measurements were also performed on a s im ila r  c irc u la r  waveguide 

with one end closed. The same bandwidth of kr = 1.32(0.00665)12 is 

used, where r 1s the radius of the waveguide. S im ila r ly ,  a moment 

method solution [27 ]  1s supplemented in the lower frequency range to  

give the Impulse response at <j»=0°, 0=0° a bandwidth of kr=12. The 

closed end 1s at <|>=180o. Since the early  time (0<t<6nr/c) of th is  

Impulse response does not contain the e f fe c t  of the closed end, th is  

section of the impulse response (Figure 5.20) can also be considered as 

the e f fe c t  of the s e m i- in f in i te  c irc u la r  waveguide. However, the 

Impulse response of the c irc u la r  waveguide with one closed end seems to  

have a s l ig h t  e r ro r .  The amplitude is  decaying u n ti l  about 3 .4 n r /c ,  

then the signal seems to  be growing. There are some energy re f le c t io n
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from the back before the wave reaches the shorted end of the c irc u la r  

waveguide. This may be due to  the alignment of the c irc u la r  waveguide 

at the time of the experiment. Figure 5.21 1s the Impulse response and 

the response due to the K-pulse of Figure 5.18 fo r  the s e m i- In f in i te  

c irc u la r  waveguide at <f>=0° using the data of the f i n i t e  c irc u la r  

waveguide with one closed end. The K-pulse of Figure 5.18 1s doing a 

reasonable job of term inating the resonances except between 4irr/c to 

6 itr /c . Taking the e rro r  described e a r l ie r  In to  consideration, the 

s lig h t  Increase in energy between 4Ttr/c to 6Trr/c can be regarded as 

measurement e rro r rather than a problem with the K-pulse. However, th is  

K-pulse does not completely terminate the la te  time resonance of the 

open-ended c irc u la r  waveguide at <J>=0°, 0=0° (Figure 5 .2 2 ) .  In other 

words, the type of resonance exhib ited  by the s e m i- In f in i te  c irc u la r  

waveguide is  d i f fe re n t  from the f i n i t e  c irc u la r  waveguide at la te  time.

To find  the K-pulse to k i l l  the resonance at the la te  time of the 

open-ended c irc u la r  waveguide, the impulse response of the waveguide at 

<j>=0°, 0=0° (Figure 5.16) 1s restudied. The p e r io d ic ity  of the Impulse 

response at la te  time 1s s t i l l  irr /c , so the K-pulse duration 1s also 

chosen as such. The energy between lOnr/c and 16irr/c 1s minimized with  

steps of Powell-Fletcher Scheme. A fte r  three steps of op tim iza tio n , the 

K-pulse shown 1n Figure 5.23 1s obtained. The Impulse response and the 

response to the K-pulse shown 1n Figure 5.23 fo r  the f i n i t e  open-ended 

c irc u la r  cy linder are compared 1n Figure 5 .24 . The amplitude of the 

K-pulse response a f te r  8 .8 u r /c  1s in the noise le v e l .  The noise level 

judging from the very la te  time amplitude 1s f lu c tu a t in g  between ±0.02V.
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There 1s a l i t t l e  hump at about H u r /c  which 1s very close to  

13.6Trr/c, the second time tha t the signal trav e ls  to and from the back 

of the waveguide. There also seems to be a s l ig h t  hump around 2 0 .4 n r /c ,  

the th ird  time th a t the Impulsive signal goes to the back of the 

waveguide and returns. The K-pulse (Figure 5 .23) does not cancel th is  

mechanism because the K-pulse duration is  chosen as irr/c . To k i l l  th is  

mechanism requires the duration of the K-pulse be Increased to 6 .4 irr /c .  

Since the magnitude of th is  mechanism is  not la rg e , i t s  contribution is 

neglected. The poles associated with the la te  time are l is te d  1n Table 

5 .2 .

The convolution of the K-pulse (Figure 5.23) with the <f»=0°, 0=0° 

impulse response of the c irc u la r  waveguide with one closed end at 

4>=180°, is  shown in Figure 5 .25. I t  1s not surprising to  see tha t the 

ampltude of the K-pulse response at la te  time ( t> l l7 r r /c )  has been 

greatly  reduced. For th is  configuration , the signal received is  very 

s im ila r  to  the b1 s ta t ic  scatter ing  at <t>=180°, 0=0° fo r  an open-ended 

c irc u la r  waveguide with twice the length. The wave at the o rig in  1s 

a c tu a lly  the same 1n the two cases because of Image theory. Therefore, 

the contributors to the resonance come from the d i f fe r e n t  waveguide 

modes excited . According to C. C. Huang's [2 9 ]  c a lc u la t io n , there can 

be as many as 40 d i f fe re n t  modes excited Inside the waveguide. 

Consequently, there 1s a lo t  of energy between t= 6 .8 irr /c  and t= l l i r r /c  1n 

the K-pulse response. I t  1s also In te re s t in g  to note th a t there is  a 

l i t t l e  hump around t= 1 5 .6 irr /c ,  which 1s the second round t r ip  time fo r  

the signal to trav e l to the closed end and back.
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A few words about the convergence of the K-pulses obtained in th is  

chapter is  discussed next. Using the impulse response at <J>=0°, 0=0° for  

the c irc u la r  waveguide with one closed end, the K-pulse obtained from 

the la te  time ( t> l lT tr /c )  has a shape very s im ila r  to the K-pulse 

presented in Figure 5 .23. One can only expect them to be very c lose, as 

noise 1s Involved. I t  is very u n lik e ly  tha t they would be the same. 

Since the early  time (0<t<3nr/c ) of th is  Impulse response has some 

s l ig h t  e rro rs , the K-pulse obtained from the early  time is  quite  

d i f fe r e n t  from Figure 5 .18. Other aspect measurements are also 

a v a i la b le ;  but the bandlimlted data does not seem to ex h ib it  a lo t  of 

resonance.

In th is  chapter, the K-pulse estimation technique performs well 

with the quasl-noisy data. In fa c t ,  fo r  a noise level th a t  is  s im ila r  

to  the O.S.U. compact range f a c i l i t y ,  the technique works extremely 

w e ll .  The dominant poles extracted are very close to the exact values. 

Even for very noisy data, the f i r s t  two poles are s t i l l  a va ilab le  from 

the approximate K-pulse. The Imaginary parts fo r  a l l  the poles 

extracted are very close to the corresponding exact Imaginary parts of 

the poles. Also, th is  chapter has demonstrated tha t by Is o la t in g  the 

resonant mechanism 1n the time domain, the poles and the K-pulses 

associated with each scatter ing  mechanism can be extracted . Using the  

f i n i t e  c irc u la r  waveguide data, the K-pulse associated with the 

s e m i- In f in i te  c irc u la r  waveguide has been derived by Is o la t in g  that  

portion corresponding to the s e m i- in f in i te  c irc u la r  waveguide.
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Table 5.1

A Comparison of the F irs t  Six Exact Poles and Estimated Zeros in the 

s-domain (Upper Left Half Plane) fo r  the Thin C ircu la r  Loop

Exact a - 0.01V o = 0.05V

1) -0 .423 + 6 . 509j -0 .459 + 6 . 500j -0 .433 + 6 . 340j

2) -0 .606 + 12.871j -0 .639 + 12.883j -0 .590 + 12.710J

3) -0 .745 + 19.211j -0 .715 + 1 9 .320j -0 .332 + 1 9 .170j

4) -0 .862 + 25.541j -0 .972 + 25.605j -1 .405 + 26.104j

5) -0 .965 + 31.864j -1 .348 + 32.516j -1 .836 + 33.032j

6) -1 .059 + 38.183j -1 .727 + 38.933j -2.738 + 39.308j
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Table 5.2

The F irs t  Five Estimated Poles 1n the s-doma1n (Upper Left Half Plane)

fo r  the F in ite  C ircu lar  Waveguide

Early Time

1) -1 .319 + 11.457j

2) -6 .815 + 25.319J

3) -4 .074  + 36.246j

4) -5 .668 + 52.065j

5) -6 .790 + 6 5 .024j

Late Time 

0.384 + 13.728j  

6.532 + 28.861j  

7.084 + 4 0 .139j 

7.564 + 54.135j  

8.409 + 67.192j
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Figure 5 .1 .  An I l lu s t r a t io n  of the geometry of a f i n i t e  c irc u la r  
waveguide.
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Figure 5 .2 .  Fourier synthesized impulse response of the c irc u la r  loop
A

at 0=45°, e-polarizat1on with Gaussian noise N (0 ,0 .01V ).  

(k r  *  0 .0 2 *(0 .0 2 n )4 n ) .
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Figure 5 .3 .  K-pulse obtained using the Impulse response shown 1n 
Figure 5 .2 .
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Figure 5 .4 .  Impulse response and response to  the K-pulse shown 1n
*

Figure 5.3 fo r  the c irc u la r  loop at 0=45°, 0-polar1zat1on

with Gaussian noise N (0 ,0 .01V ). (k r  « 0.02h (0.02 i t )4i t ).
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Figure 5 .5 .  Impulse response and response to  the K-pulse shown in
A

Figure 5.3 fo r  the c irc u la r  loop at 6=45°, 6-polar1zat1on

with no noise, (k r = 0.02h (0 .02 t t )4 t t ).
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Figure 5 .6 . Impulse response and response to  the K-pulse shown 1n
A

Figure 5.3 fo r the c irc u la r  loop at 0 *0 ° , ^ -p o la r iza t io n

with no noise, (kr = 0 .02 ir(0 .02n)4n).
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Figure 5 .7 .  Impulse response and response to  the K-pulse shown 1n
a

Figure 5.3 fo r  the c irc u la r  loop at 8=45°, ^ -p o la r iza t io n

with no noise, (kr *  0 . 02u( 0 .02ir)4tt) .
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Figure 5 .8 .  Impulse response and response to  the K-pulse shown 1n
A

Figure 5.3 fo r  the c irc u la r  loop at 6*90°, ^ -p o la r iza tio n

with no noise, (k r  *  0 . 02-n( 0 . 02n)4n) .
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Figure 5 .9 . Fourier synthesized impulse response of the c irc u la r  loop

at 9=45°, 0-polar1zat1on with gaussian noise N (0 ,0 .05V ).
(k r  * 0.02 t t (0 .02 t t )4 t t ).
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Figure 5 .10 . K-pulse obtained using the impulse response shown 1n 
Figure 5 .9 .
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Figure 5 .11 . Impulse response and response to  the K-pulse shown in
A

Figure 5.10 fo r  the c irc u la r  loop at 0=45°, e-polar1zation

with Gaussian noise N (0 ,0 .05V ). (k r  *  0.02ir(0.02Tr)4n).
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Figure 5 .12 . Impulse response and response to  the K-pulse shown 1n
A

Figure 5.10 fo r the c irc u la r  loop at 6=45°, e -p o lar iza t io n

with no noise, (k r  *  0.02h (0.02 t t )4 t t ).
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Figure 5 .13 . Impulse response and response to  the K-pulse shown 1n
a

Figure 5.10 fo r  the c irc u la r  loop at 8=0°, 4>-polar1zat1on

with no noise, (k r  *  0 . 02tt( 0 . 02-it) 4ir) .
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Figure 5 .14. Impulse response and response to the K-pulse shown 1n

Figure 5.10 fo r  the c irc u la r  loop at 8=45°, <fr-polar1zat1on
with no noise, (k r  = 0. 02t t (0 . 02t t )4t t ).
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Figure 5 .15. Impulse response and response to  the K-pulse shown in
A

Figure 5.10 fo r  the c irc u la r  loop at 6=90°, 4>-polar1zat1on

with no noise, (k r  = 0 . 02n( 0 . 02ir)4w) .
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Figure 5 .16 . Fourier synthesized impulse response of the open ended
f i n i t e  c irc u la r  waveguide at 0=0°, <j>=0°, and v e rt ica l
p o la r iza tio n  with kr = 0 .00665(0.00665)12.
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Figure 5 .17 . Same waveform as 1n Figure 5 .16 , except the time scale is
given up to 7nr/c -  equivalent to  the Fourier synthesized
Impulse response of a s e m i- In f in i te  c irc u la r  waveguide at
<t>=0°, 0=0°, and v e rt ic a l p o la r iza tio n  with  
kr = 0.00665(0.00665)12.
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Figure 5 .18. K-pulse obtained using the impulse response shown in
Figure 5 .17.
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Figure 5 .19. Figure 5.17 and response to  the K-pulse shown 1n 
Figure 5.18 fo r  the waveform shown 1n Figure 5.17.

160



A
M

P
L

IT
U

D
E

O

CD

IO r(O

TIME (2*PIxR/C)
O

Figure 5 .20 . Fourier synthesized Impulse response of the f i n i t e
c i r c u l a r  waveguide with one open end at <j>=0°, and one 
closed end at <|»=180o. The data are measured at <J>a0 ° ,  9=0° 
and ve rt ica l p o la r iza tio n  with kr * 0.00665(0.00665)12.

161



A
M

PL
IT

U
D

E

CD

101
ID

PJ

T"*: iy 1

TIME ( 2 * P I * R / C )

IMPULSE RESPONSE 
RESPONSE TO THE 
OPTIMIZED K-PULSE

(D

CD

O

Figure 5 .21. Figure 5.20 and response to the K-pulse shown in
Figure 5.18 fo r the waveform shown in Figure 5.20.
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Figure 5 .22 . Impulse response and response to  the K-pulse shown in
Figure 5.18 fo r  the open ended f i n i t e  c irc u la r  waveguide 
at <j)=0°, 9=0° and v e rt ic a l p o la r iza tio n  with  
kr = 0.00665(0.00665)12.
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Figure 5 .23. K-pulse obtained using the Fourier synthesized impulse 
response of the open ended f i n i t e  c irc u la r  waveguide at 
4>=0 ° ,  9=0° and v e rt ic a l p o la riza tio n  with  
kr = 0.00665(0.00665)12.
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Figure 5 .24. Impulse response and response to  the K-pulse shown in
Figure 5.23 fo r  the open ended f i n i t e  c irc u la r  waveguide 
at $=0°, 0=0° and v e r t ic a l  p o la r iza tio n  with  
kr «= 0.00665(0.00665)12.
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Figure 5 .25 . Impulse response and response to  the K-pulse shown in  
Figure 5.23 fo r  the f i n i t e  c irc u la r  waveguide with one 
open end at <t>=0°, and one closed end at $=180°. The 
data are taken at <t»=0°, 0=0° and v e r t ic a l  po la riza tion  
with kr *  0.00665(0.00665)12.
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS

This d isserta tio n  has presented, fo r  the f i r s t  tim e, a method 

whereby the K-pulse of a ta rg e t can be approximated without a p r io r i  

knowledge of some of the complex natural resonances of the ta rg e t .  The 

only knowledge required 1s the Impulse response of the ta rg e t e ith e r  

obtained d ire c t ly  1n the time domain or as m ult ip le  frequency samples of 

the scattered f i e l d .  In the l a t t e r  case the Impulse response is  

obtained via Fourier synthesis. Even though the Impulse response w i l l  

be band-lim ited in p ra c t ic e , i t  does not a f fe c t  the generated K-pulse.

I t  1s f e l t  tha t the m aterial in th is  d isserta tion  represents a major 

advance 1n tha t fo r  the f i r s t  t im e, as demonstrated here in , i t  1s 

possible to obtain an estimate of the K-pulse of an a rb it ra ry  ta rg et  

from measured scattering  data. This means that measured data from a 

broadband r e f l e c t i v i t y  f a c i l i t y  such as the compact range at the 

ElectroScience Laboratory can be employed d ire c t ly  to obtain an estimate 

of the K-pulse.

The model used to obtain an estimate of the K-pulse 1s p a r t ic u la r ly  

simple -  only weighted delta  functions are used. The convolution 

involv ing th is  K-pulse model and the impulse response of the target 1s 

thus simple. These de lta  functions in the K-pulse model can be 

considered as samples of a continuous function provided the sampling 

c r i te r io n  is  s a t is f ie d .  There is  no evidence at th is  time that a more
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complicated model would Improve the estimate of the K-pulse. Besides, 

the fa c t  tha t the delta  functions can represent samples of a continuous 

function means a lo t  of the function can be modelled. Therefore, th is  

model 1s also qu ite  general. The unknown weights 1n the K-pulse model 

are obtained by minimizing the energy which, 1n tim e, l ie s  beyond the 

K-pulse response duration. The optim ization 1s performed by ava ilab le  

computer programs. For th is  reason, time and f in an c ia l considerations  

also d ic ta te  the need fo r  s im p lic ity  1n the model.

Once the K-pulse estimate has been obtained, the dominant complex 

natural resonances of the ta rg e t can also be determined from th is  

K-pulse estim ate. This 1s possible because the whole theory of th is  

d iss e rta t io n  1s based on minimizing the energy due to  the complex 

natural resonances of the ta rg e t .  This 1s also a new numerical 

procedure to  ex trac t the complex natural resonances of a ta rg e t .  Target 

Id e n t i f ic a t io n  can be performed using these complex natural resonances. 

I t  may well be th a t 1n the fu ture  the K-pulse and the ta rg e t responses 

to  the K-pulse w i l l  be viewed as the optimum canonical waveforms of the 

t a rg e t ,  l i k e  the Impulse, step and ramp responses now. This 

d isse rta t io n  presents the K-pulse estim ates, the responses to  the  

approximate K-pulse and the complex natural resonances fo r  the following  

geometries: 1) a plane wave normally Incident on a grounded d ie le c t r ic

s lab , 2) a th in  conducting s tra ig h t  w ire , 3) a simulated low Q model, 4) 

a th in  conducting c irc u la r  loop, 5) a conducting sphere, 6) a conducting 

c irc u la r  d isc , 7) two conducting c irc u la r  waveguides -  one with open 

ends, and the other with one closed end and one open end. The results
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of the f i r s t  s ix  targets show that the Imaginary parts of the complex 

natural resonances are always very close to  the true  values, but only 

the real parts of the more dominant complex natural resonances are close 

to  the th eo re tic a l values.

The duration of the K-pulse must be known and chosen reasonably 

close, 1n order to obtain an approximate K-pulse which has a close 

resemblance to the true  K-pulse. For simple geometries, the K-pulse 

duration 1s chosen to be the c1rcumnav1gat1onal path. For complicated 

geometries, the c1rcumnav1gat1onal path 1s not very obvious. A more 

general way to estimate the K-pulse duration 1s required. By using a 

conservative estimate fo r  the K-pulse duration, which 1s usually the 

p e r io d ic ity  of the damped sinusoid at la te  time of the Impulse response, 

the zero strings of K-pulses with d i f fe r e n t  durations are compared. The 

Imaginary parts of s im ila r  zeros from the K-pulses are used to obtain a 

b e tte r  approximation to  the K-pulse duration; namely, the d ifference  

between neighbouring common zeros. This approach seems to give a very 

close value to the true K-pulse duration fo r  high Q ta rg e ts ,  and also  

low Q structures whose la te  time responses possess substantia l pole 

contr ibutions . For other low Q s tru c tu res , the method s t i l l  estimates 

the K-pulse duration reasonably well 1f the duration of the K-pulse 

response 1s known reasonably w e l l .

A ll 1n a l l ,  th is  d isse rta t io n  has presented a very simple and 

general technique to get an estimate of the K-pulse fo r  an a rb it ra ry  

ta rg e t using the Impulse response of the ta rg e t .  The method works best 

with high Q structures but low Q structures can also be tre a te d . Now

169



tha t a general method to obtain the K-pulses 1s a v a i la b le ,  the 

applications of the K-pulse can be fu rth e r  In vestig ated . A fte r  a 

catalog of K-pulses 1s obtained fo r  some r e a l is t ic  ta rg e t models, a 

p rac tica l ta rg e t d iscrim ination system can be b u i l t  to  see one of the 

p rac tica l applications of the K-pulse concept. At the ElectroSclence  

Laboratory, the measurement performed with the compact range 1s 1n the 

frequency domain. The method described in th is  d is s e r ta t io n , operates 

on the Fourier synthesized frequency data or 1n the time domain. The 

Fourier synthesis always adds some numerical errors and human 

in te rp re ta t io n s . A method to determine the K-pulse of the ta rg e t  

d ire c t ly  from the frequency domain is very much pre fe rred , as the data 

are already acquired in the frequency domain. All these are some of the 

areas which can be fu rth e r  studied.
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APPENDIX A 

PROCEDURES TO ESTIMATE THE K-PULSE

In th is  appendix, the conducting c irc u la r  loop 1s used as a ta rg e t  

example to I l l u s t r a t e  the steps and Indicators 1n a r r iv in g  at the 

K-pulse shown 1n Figure 3 .17 . The duration of K-pulse (T) 1s assumed to  

be known (see Chapter IV , o therw ise). For the loop, the duration of the 

K-pulse 1s 2 irr/c , where r 1s the radius of the loop. To begin the  

process, an angle with a p a r t ic u la r  p o la riza tio n  at which the ta rg e t  

w i l l  ex h ib it  most of I t s  natural resonant behaviour 1s chosen. With
A

the loop, 0=45° at 0 -polar1zation 1s chosen. E ith er  the Impulse 

response or the frequency response 1s measured or generated. I f  the  

frequency response 1s measured or generated, then the synthesized 

impulse response is  obtained via fa s t  Fourier transform. I t  1s b e tte r  

to  s ta r t  the process with a smaller bandwidth to reduce N, the number of 

samples required to  approximate the continuous portion of the K-pulse.

I f  N is  small, the computation time 1s also sm aller. N a tu ra l ly ,  the  

sampling of the Impulse response must s a t is fy  the sampling theorem 1n 

order to  approximate the true  impulse response. The Impulse response 

shown 1n Figure A . l  has a bandwidth of kr = 0 . 0 2 it( 0 . 0 2 it) 4 tt.

The duration of the Impulse response 1s th e o re t ic a l ly  I n f i n i t e .

For other than very high Q ta rg e ts ,  the Impulse response damps quickly  

to  n eg lig ib le  values. The p rac tica l duration of the Impulse response 

should be long enough to Include a few "cycles" of contributions from 

the poles. Figure A .l  shows the duration of the Impulse response of the
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Figure A . l .  Fourier synthesized Impulse response of the conducting

c irc u la r  loop at 0=45°, 0 -p o la r iza t io n .

(k r  = 0.  0 2 tt( 0.  0 2 n ) 4 i r ) .
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loop at 9=45°, 9 -po lariza tion  to  be 12irr/c. This Includes f iv e  

"cycles". Since the loop is  a high 0 s tru c tu re , experience has shown 

th a t  the duration of the K-pulse response duration (TR) does not have to  

be known exac tly . This 1s because the la te r  cycles would also contain 

large contributions from the lower order poles. The range of time over 

which the energy of the K-pulse response is  to  be minimized can be any 

number of "cycles". For th is  example, the duration of the K-pulse 

response (TR) is  chosen to be 6nr/c ; the cu to ff  time fo r  In tegra tion  

(Tj,) is  10ur/c; and the number of samples (N) to  represent the  

continuous portion of the K-pulse [k ( t ) ]  is  50. The choice of N=50
v

seems to be a good s ta r t in g  value. I t  gives a reasonable approximation 

to  kc ( t )  and yet does not take too much cpu time before the bottom of 

the cost function 1s found. The choice of N cannot be too small fo r  

then i t  v io la tes  the sampling c r i te r io n  fo r  the Impulse response. The 

computer program w i l l  do the optim ization with the sampling rate  

dicta ted  by the K-pulse. In other words, the s ize of the matrix *  in 

Equation (2 .1 3 ) is  controlled by the user. Also 1f the number of 

samples is  too sm all, then the c r i te r io n  fo r  s tra ig h t  l in e  in terp o la t io n  

may be v io la te d . A good ru le  of thumb from experience is  to choose the 

sampling ra te  at least four times the ftyqulst ra te .

A fte r  performing a user-specified  number of searching steps, the

program w i l l  prompt the option of p lo t t in g  the K-pulse and the response

to  the K-pulse. I t  1s advisable at th is  time to  check fo r  jump

d is c o n tin u it ie s  in k ( t )  and energy reduction 1n the K-pulse response.c

I f  the impulse response has no jump d is c o n t in u it ie s ,  there is  no reason
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why there should be jump d isco n tin u it ie s  1n k ( t ) .  I f  the energy 

outside the K-pulse response 1s not less than the energy in the Impulse 

response, the program is  not going in the down-hill d ire c t io n .  E ither  

of these conditions, 1. e . ,  jump d isco n tin u it ie s  1n kc ( t )  or no energy 

reduction in the K-pulse response, may ind icate  tha t the choices of the 

K-pulse duration (T ) ,  the K-pulse response duration (TR) ,  the cu to ff  

time of the in teg ra tio n  (Tc ) ,  or the number of samples (N) to  represent 

the continuous portion of the K-pulse [k ( t ) ]  may be in e r ro r .  The 

geometry of the ta rg e t 1n re la t io n  to  the impulse response should be 

restudied, such tha t the proper T, TR, or N can be chosen. The

optim ization process 1s then repeated.

In the example, f i f t y  steps of Powel1-F le tch er search is  f i r s t  

s p e c if ie d . Then ten more steps of conjugate gradient and Powell- 

F1etcher search are used to  do repeated checks fo r  the bottom of the 

v a lle y .  The resu lt in g  K-pulse fo r  the loop (Figure A .2) 1s obtained.

The program now prompts the option of w r it in g  the c o e f f ic ie n ts .  Then 

the program prompts the option of convolving the K-pulse obtained with  

the Impulse response of the ta rg e t at another aspect angle using the  

sampling rate  d icta ted  by the impulse response. Before th is  option, the

computer program uses a sampling rate  tha t Is  specified  by the user to

minimize the number of ca lcu la t io n s . I t  is  a good Idea to convolve with

the same impulse response fo r  a fu r th e r  check on energy reduction. The

re su lt  fo r  the c irc u la r  loop 1s shown 1n Figure A .3.

At th is  stage, the aspect and p o la r iza tio n  Independent property of 

the K-pulse can be checked. Another check is  to use a d i f fe re n t  aspect
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Figure A .2. K-pulse obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  loop at 6=45°,

0 -po larizat1on . (k r  = 0 . 0 2 tt( 0 . 0 2 h) 4 tt) The number of 

samples used to represent the continuous portion of the 

K-pulse 1s 50.
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angle or p o la r iza tio n  to check the convergence of the K-pulse, by 

repeating the optim ization process. For th is  example, the impulse
A

response fo r  the loop at 0=45°, <t>-polarizat1on 1s used. The choices of

the K-pulse duration (T ) ,  K-pulse response duration (TR) ,  the cu to ff

time fo r  the in teg ra tio n  (T^) and the number of samples (N) to  represent

the continuous portion of the K-pulse [k ( t ) ]  are the same as what wasc

used previously. A fter  f i f t y  steps of Powell-F letcher and tw enty -f ive  

steps of conjugate gradient search, Figure A .4 is  obtained fo r  the 

K-pulse. The response to the K-pulse is shown in Figure A .5. The 

K-pulses shown 1n Figures A .2 and A .4 are nearly Id e n t ic a l .  This w i l l  

only be t ru e ,  i f  s im ila r  pole strings are excited fo r  the two d l f fe r n t  

impulse responses of a high Q ta rg e t .  Since the size of the matrix (<&) 

1s 50x50, the cpu time fo r  these steps 1s very short. F i f ty  steps of 

searching probably takes less than one minute of cpu tim e.

The number of samples (N) can be increased to  Improve the accuracy 

of the samples of kc ( t ) .  For the example, N 1s doubled and the K-pulse 

response duration (TR) is  reduced to 5rir/c. The Impulse response used
a

is the f i r s t  one which 1s at 0=45°, and 0-polar1zed. A fte r  ten steps of 

Powel1-F le tcher and conjugate gradient search, Figures 3.17 and 3.18 are 

obtained. The K-pulses shown in Figures A .2 and 3.17 do not show a 

dras tic  change in shape. The aspect and p o la r iza tio n  Independent 

properties are checked in Figures 3.19 through 3.21. The energy content 

a f te r  4nr/c 1n Figure 3.18 is  less than that shown in Figure A .3. With 

a fu rth e r  reduction of the natural resonance energy, the poles should be 

closer to the true poles. Table 3.3 is  repeated in Table A . l  fo r  an
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Figure A .4. K-pulse obtained using the Fourier synthesized Impulse 

response of the conducting c irc u la r  loop at 0=45°,
A

•{•-polarization. (kr = 0 .02tt(0 .0 2 tt)4 tt) . The number of 
samples used to represent the continuous portion of the 

K-pulse is  50.
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easy comparison. Table A . l  l i s t s  the f i r s t  ten poles 1n the upper 

l e f t - h a l f  plane fo r  the c irc u la r  loop. The poles are Indeed approaching 

the true poles. The process of Increasing N can be repeated u n t i l  the  

sampling of the K-pulse 1s the same as 1n the Impulse response, but the 

cost of the computer time w i l l  Increase. The bandwidth of the Impulse 

responses can also be increased to  give a more accurate estimation of 

the K-pulse. There is  obviously a t r a d e -o f f  between K-pulse accuracy 

and computer costs. The application  of the K-pulse w i l l  u lt im ate ly  

d ic ta te  the necessary accuracy.
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Table A .l

A Comparison of the F irs t  Ten Exact Poles and Estimated Zeros 1n the

s-domain (Upper Left Half Plane) fo r  the Conducting Thin C ircu lar  Loop

Exact Poles Estimated Zeros Estimated Zeros

(N=100) (N=50)

1) -0 .423 + 6 . 509j -0 .474 + 6 . 509j -0 .510 + 6.51Oj

2) -0 .606 + 12.871j -0 .674 + 12.891j -0.717 + 12.919j

3) -0 .745 + 19.21l j -0 .796 + 19.248j -0 .868 + 1 9 .295j

4) -0 .862 + 25.541j -0 .949 + 2 5 .560j -0 .989 + 25.691j

5) -0 .965 + 31.864j -1.055 + 31.892J -1.123 + 32.087j

6) -1 .059 + 3 8 .183j -1 .318 + 38.803J -1.469 + 39.015j

7) -1 .145 + 44.499j -1 .548 + 45.326j -1 .748 + 45.439j

8) -1 .226 + 50.812j -1 .786 + 51.702j -1 .975 + 5 1 .759j

9) -1 .302 + 5 7 .124j -1 .977 + 58.019J -2.149 + 5 8 .060j

10) -1 .374 + 63.434j -2 .124 + 64.319j -2 .289 + 6 4 .354j

181



APPENDIX B 

A TARGET DISCRIMINATION SCHEME

A s im ila r  ta rg e t d iscrim ination scheme had been discussed by 

M offa tt [3 0 ] ,  I t  is  now possible, however, to  apply the scheme without 

a p r io r i  knowledge of the ta rg e t poles. From Chapter I ,  the frequency 

response [Em( s ) ]  of a ta rg e t at a p a r t ic u la r  aspect angle and 

p o la r iza tio n  1s a memorphic function of complex frequency, 1t can be 

decomposed in to  a fra c t io n  of two e n t ire  functions of exponential type, 

(see Appendix D)

Fm(s)

Em's>= M7T (B-1)

where Fm(s) and K(s) are e n t ire  functions of exponential type. Since 

the K-pulse response of the ta rg e t at the m^ aspect and po la riza tio n  

[Fm( s ) ]  1s an e n t ire  function of exponential type, i t s  time waveform is  

t im e - l im ite d  [ 4 ] .  The simplest way to d iscrim inate targets  1s to  

compare the energy content in the la te  time of the K-pulse response. 

Target d iscrim ination via la te  time energy was also discussed by Chen

[3 1 ] .

Consider two conducting ta rg e ts ,  a th ick  c irc u la r  loop and a th in  

c irc u la r  loop, and le t  the radius of the th ick wire to  the th in  wire be 

it. I f  the th in  c irc u la r  loop 1s present and the hypothesis is  the th in  

c irc u la r  loop, then convolution of k ( t )  (Figure 3 .17) with the Fourier 

synthesized or measured impulse responses at any aspect angle and
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p o la r iza tio n  w i l l  have very l i t t l e  energy content 1n the la te  time 

(Figures 3.18 through 3 .2 1 ) .  I f  the th ick  c irc u la r  loop 1s present and 

the guess 1s s t i l l  the th in  c irc u la r  loop, then the convolution of k ( t )  

(Figure 3 .1 7 ) ,  the guessed ta rg e t K-pulse, with the Fourier synthesized 

or measured Impulse responses at any aspect angle or p o la r iza tio n  w i l l  

e xh ib it  large energy content 1n the la te  tim e. This 1s shown, 1n 

Figures B . l  and B .2, which are the responses of the th ick  loop to the 

K-pulse of the th in  loop at 9=30° and 60°, resp ec tive ly . Both Impulse
a

responses are 0-polar1zed and have a bandwidth of kr = 0 .0 4 2 (0 .04 2 )4 .2 .  

The energy content 1n the la te  portion of the response 1s la rge;  

th e re fo re , the hypothesis of the th in  loop 1s wrong.

Using the same Idea, a ta rg e t d iscrim ination scheme can be derived. 

The a v a i la b i l i t y  of K-pulses fo r  a set of targets  1s assumed 1n the 

fo llow ing discussion. A p a ra l le l  system 1s set up as in Figure B.3. A 

t a rg e t 's  broadband Fourier synthesized or measured impulse response 

[ e ^ ( t ) ]  is  given and the question of which one 1n the set does th is  

Impulse response belong to  1s ra ised . This ta rg e t 's  Impulse response 1s 

convolved with a l l  the K-pulses In d iv id u a lly  but simultaneously. The 

energy content 1n the la te  time is  compared among a l l  the K-pulse 

responses. The choice of the most probable ta rg e t 1s the one having the 

leas t energy content in the la te  tim e. Since la te  time 1s not well 

defined, the operation can employ the e lim ination  process. This 1s done 

by comparing the energy content from the c u to ff  time of in tegra tion  (T^) 

to  the K-pulse response duration (TR) backwards 1n reasonable 

Increments. Stepping backwards one Increment at a t im e, the higher
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Figure B . l .  Impulse response and response to the K-pulse shown in

Figure 3.17 fo r  the th ic k e r  conducting c irc u la r  loop at

0=30°, 0 -p o lar iza tio n  with kr = 0 .0 4 2 (0 .0 4 2 )4 .2 .
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Figure B.2. Impulse response and response to  the K-pulse shown 1n

Figure 3.17 fo r  the th ick e r  conducting c irc u la r  loop at

0=60°, 0 -po lar iza tlon  with kr = 0 .0 4 2 (0 .04 2 )4 .2 .
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energy content choices are discarded u n t i l  only one choice remains.

There are also ways of Id e n t ify in g  targets  using the natural .resonances 

of the targets  [3 2 -3 5 ] .  Using the poles derived from the K-pulse, these 

ta rg e t  Id e n t i f ic a t io n  methods can also be applied.

A word 1s 1n order concerning the e ffec ts  of noise on a f u l l  scale 

ta rg e t d iscrim ination system. Low Q targets  w i l l  present the most 

d i f f i c u l t y ,  as there 1s not much energy to  compare with at the la te  

t im e. Their broadband Fourier synthesized or measured Impulse responses 

are of short duration. Fo rtun ate ly , very few prac tica l targets  appear 

to  be low Q [3 6 ] .  K-pulses fo r  p rac tica l targets  w i l l  continue to  be 

obtained from the O.S.U. compact range f a c i l i t y  which supplies 

c lu t te r -H m lte d  rather than no1se-Hm1ted data. The proper place fo r  

assessment of noise e ffec ts  1s 1n the Id e n t i f ic a t io n  studies ra ther than 

K-pulse generation studies. All 1n a l l  th is  appendix provides a 

fe a s ib le  ta rg e t d iscrim ination scheme.
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APPENDIX C 

K-PULSE AND E-PULSE

Recently, a concept ca lled  "Extinctlon-Pulse" (E-pulse) [1 1 ] ,  which 

under certa in  conditions 1s closely associated with the K-pulse concept 

[2 ]  was discussed 1n the l i t e r a t u r e .  In th is  appendix, th is  

re la tio n sh ip  1s discussed. The d e f in i t io n  fo r  the K-pulse 1s given 1n 

Chapter I I .  An E-pulse 1s defined as a t ra n s ie n t ,  f i n i t e  duration  

waveform which ann ih ila tes  the contribution of a select number of the 

natural resonances 1n the la te  time response [1 1 ] .  Comparing the two 

d e f in i t io n s ,  1f 1) the E-pulse 1s chosen such tha t a l l  the natural 

resonances are a n n ih ila te d , 2) the E-pulse contains no zero other than 

those coinciding with the poles of the ta rg e ts , 3) the duration of the 

E-pulse 1s minimal, then 1t 1s the same as the K-pulse o r ig in a l ly  

defined by Kennaugh. The natural E-pulse model 1n [1 1 ]  1s,

where the gm (t) 's  are the basis functions, the cm's are real constants 

to  be determined and 2N 1s the number of poles to  be cancelled. The 

E-pulse [ee ( t ) ]  has a duration of Te . For a subsectlonal pulse basis 

function of duration y,

(C.l)
m=l

9m( t ) =  u [ t - ( m - l ) y ]  -  u(t-my) (C.2)
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where u ( t )  1s the un it  step function . The duration of the E-pulse (Te ) 

1s chosen as 2Nnir/a)i  [1 1 ] ,  where n 1s an In teger and w* 1s the Imaginary 

part of the pole-pa1r to  be cancelled. Equation ( C . l )  can be 

w rit te n  1n the s-doma1n as

l - e ”Sy 2N .
E (s)-  (— ---- ) I  (C.3)

m=l

where Tpn^/w*. Since N complex pole-pa1rs are to  be cancelled by 

Equation (C .3 ) ,  th is  function must also contain the corresponding 

complex ze ro -p a irs .

The above expression 1s ac tu a lly  s im ila r  to  the "Method of Zero 

Insertion  1n Transform Domain" discussed by Gerst and Diamond [4 ]  fo r  

lumped paramter system. One example discussed by them 1s

r es

s
f l - 6  \ 2N -e (s -S 4 )

K(s) =■ (— ------ > n [1-e 1 1' ]  (C.4)
1=1

where s^'s are the poles to be cancelled , e 1s an a rb it ra ry  number, and 

2N 1s the number of poles to  be cancelled. This Input waveform was also  

used by K1m et a l .  [1 0 ]  as a K-pulse model fo r  the c irc u la r  loop with  

the duration of the K-pulse, T=(2N+l)e. As pointed out by Gerst and 

Diamond [ 4 ] ,  the ( l - e " eS) /s  fa c to r ,  which 1s a pulse basis function , 1n 

Equation (C .4) can be replaced by any Laplace tranform function G(s) 

which has a f i n i t e  time duration. In other words, any other basis 

function can replace the pulse basis function 1n (C .4 ) .  Since e 1s 

a r b i t r a r y ,  i t  can be forced to  cancel one of the poles 1n the i* *1 

complex p o le -p a lr .  That 1s,
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*
- e ( s - S o )  - e ( s - S o )

1-e v * = 0  and 1-e v * = 0  , (C .5)

★
where s„ 1s the complex conjugate of s . Solving fo r  e ,  gives E*nir/u» ,

X» Jt Jc

which 1s the same as y 1n Equation (C .3 ) .  Therefore, Equation (C .4) can

be reduced by one term,

( l - e ~ eS\ 2N-1 - e(s -S1)
K(s) =  > n (1 -e  ' 1 ; ) , (C.6)

1*1

and the duration of K-pulse 1s now 2Ne. Substitu ting z * e " eS, the above

equation can be w r it te n  as,

,1-Zx 2N-1
K(S) = 1 + I  o z1" ]  , (C .7)

m=l

where the o^'s are functions of the poles. Performing the same 

operation to Equation (C .3 ) ,

a 2N-1 _
E (S )  = C j  (— > [ 1  + I (— 'z™ ]  .  ( C . 8 )

m=l

Since K(s) 1n Equation (C .7) 1s the same order of polynom ial of z as 

Ee (s) 1n Equation (C .8) and they both contain the same 2N zeros 1n order 

to  cancel the natural resonances, they are re la ted  by a real constant. 

Furthermore,

c 1+l
Oj = c j  • ( C * 9 )

The expression fo r  K(s) 1n Equation (C .6) shows e x p l ic i t ly  how the

poles are cancelled, which was concealed 1n Equation ( C . l )  and a l l  the 

theory behind 1t [1 1 ] .  Henceforth, a l l  reference to  the E-pulse model 

or the K-pulse model by K1m et a l .  w i l l  be referred  to  Equation (C .6 ) .  

This concludes the dlsscusslon tha t both the K-pulse model employed by
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Kim et a l .  [1 0 ]  and the E-pulse model [11 ]  come from the same expression 

used by Gerst and Diamond [ 4 ] .  However, there 1s a strong d is t in c t io n  

between the two app lica tions . Kim et a l .  take the 11 mlt of the number 

of subsectional pulse basis functions to a large number (6 0 );  whereas, 

Rothwell et a l .  only use a small number (less than 20) of subsectional 

basis functions.

Next, the K-pulse model from th is  d isserta tion  [Equation (2 .2 2 ) ]

and the other K-pulse model [Equation (C .6 ) ]  are compared. The

expression (C .6) has roots other than what was specified  ( s i ) .  Namely, 

j  2n 7r

are also zeros of Equation (C .6) fo r  a l l  In teger n. Equation (2 .22 )  

which is the Laplace transform of Equation (2 .17 ) does not have such a 

problem. To use Equation (C .6 ) ,  the poles of the ta rg e t must be known a 

p r io r i .  The approach presented in th is  d isserta tio n  does not have such 

a r e s t r ic t io n .  The only re s tr ic t io n  th is  method may have is  the  

bandlimlted Fourier synthesized Impulse responses used which l im i ts  the 

usable bandwidth of the K-pulse obtained.

The Inverse Laplace transform of Equation (2 .22 )  consists of an 

Impulse at t=0 and a continuous function spanning over the K-pulse 

duration [Equation (2 .1 7 ) ] .  The Inverse Laplace tranform of Equation 

(C .6) is  a set of rectangular pulses. Could they be related? There are 

two pieces of evidence th a t suggest they may be re la te d . I f  Equation 

(C .6) 1s divided by e and e is taken to the 11 mlt of zero as N 1s 

Increased to i n f i n i t y ,  the Inverse Laplace transform of Equation (C.6)
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is  an i n f i n i t e  set of impulses over the span of the K-pulse. This is  

because [16 ]

lim | -u ( t ) -u ( t -e )n
e-0 L   J = 6 ( t )  , (C. 11)

where u ( t )  is  the un it step function. On the other hand, the continuous 

portion of the K-pulse in Equation (2 .17 ) can also be viewed as an 

i n f i n i t e  set of impulses over the duration of the K-pulse. Hence they 

are both in f i n i t e  set of impulses.

The other evidence is  the in te rp re tio n  of Equation (C .10 ), as e 

approaches zero, the extra zeros w i l l  go to i n f i n i t y ,  leaving only the 

proper zeros in the f i n i t e  plane. Hence, i f  the zeros in the f i n i t e  

plane of both models described in Equation (2 .22 ) and Equation (C.6)  

correspond to a l l  the poles of the ta rg e t and none other, then the  

models must be re la te d . In summary, th is  appendix has shown th a t the 

E-pulse model used by Rothwell et a l . [1 1 ]  and the K-pulse model used by 

Kim et a l . [10 ] orignated from the same equation used by Gerst and 

Diamond [4 ]  as an example. There are also very strong evidences that  

th e i r  model is  also s im ila r  to the K-pulse model employed in th is  

d is s e r ta t io n .
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APPENDIX D

PROOF THAT A MEMORPHIC FUNCTION CAN BE FACTORED INTO 

A RATIO OF TWO ENTIRE FUNCTIONS*

The follow ing proof 1s reproduced from the notes by Prof. J. T. 

Scheik of the Mathematical Department at The Ohio State U n ivers ity : Let

r ( z )  be a memorphlc function 1n the complex plane. The poles of r ( z )  

are l is te d  as z - j ; i = 1, . . . ,  «. The higher order poles are also  

Included in the l i s t .  Next, an e n t ire  function f ( z )  is  defined such 

tha t i t s  zeros and th e i r  respective orders are the same as the poles of 

r ( z ) .  f ( z )  can be w r it te n  [37 ] as,

f ( z )  = zmeh (z )  n (l--Fj-)ePl<Z) ; ( D . l )
1=1

1 1 z k
where pi (z )  = I  £  fej-] ; (D .2)

k=l

m is  the order of the pole of r ( z )  at z=0; h (z ) 1s an e n t ire  function ,  

then

f ( z ) r ( z ) = g ( z ) .  (D .3)

g (z ) 1s an e n t ire  function , as a l l  the poles of r ( z )  are cancelled by 

f ( z ) ,  and g (z ) is now an a ly t ic  everywhere. For z *  z^ ,

r ( z ) = f j ^  (0.4)

This concludes the proof that a memorphic function r ( z )  can be w ritten  

as a quotient of two e n t ire  functions g (z) and f ( z ) .

*  S im ilar proof 1s probably given 1n some textbooks. I t  1s included 
here fo r  the readers whose In teres ts  are 1n the mathematical 
properties of the K-pulse.
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