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CHAPTER I
INTRODUCTION

The use of electromagnetic scattering information to identify or
classify targets has been studied by numerous researchers [1]. The
K-pulse concept [2] can be applied to this problem. Target imaging is
another possiblity for the application of the K-pulse. As discussed in
[2], one may model or simulate target responses at N aspects and
polarizations by a linear distributed parameter network with N acessible
ports. The normalized complex echo signal spectrum Ey(s) at port m can

be factored into a fraction of two entire functions,

Fm(s)
Em(S) = K(S) ’ (1.1)

if the network contains lumped elements connected by finite delays. The
argument that Ep(s) is a fraction of two entire functions is further
supported by the work of Marin [3]. Marin showed that the operator
inverse to the integral operator of the magnetic-field formulation is a
memorphic function in the entire complex plane. Since a memorphic
function can be factored into a fraction of two entire functions [see
Appendix D], Fp(s) and K(s) are entire functions of exponential type.
Thus, they are time-l1imited [4]. The inverse Laplace transform of K(s)
into the time domain is k(t) - the K-pulse [2]. BRoth Ep(s) and Fy(s)
are aspect and polarization dependent. But K(s) is aspect and

polarization independent.



The K-pulse concept is similar to pole-zero cancellation in system
control theory. However, the applications in the control theory deal
mainly with a finite number of poles and zeros. The poles are only
moved to more suitable locations in the complex frequency plane. In
this dissertation, zero-insertion by the K-pulse to completely cancel
the resonance contributed by all the poles of the target is the ideal
concept. In other words, the "system" response due to the K-pulse
excitation exhibits no resonance. After K(s) is multiplied onto
Equation (1.1), the system response is Fp(s) which is an entire function
of exponential type; i.e., a time-limited function.

Concepts similar to the K-pulse were employed in communication
theory long before Kennaugh and Richmond [5] presented their paper in
Washington D.C. in 1972. Gerst and Diamond [4] shaped the input
waveform to eliminate the intersymbol interference. Later, Campbell et
al. [6,7] extended the theory. The application of the theory in
electromagnetic scattering was formalized by Kennaugh [8] in 1975, The
concept was not presented to the public until Kennaugh's paper [2] in
1981, Recently, Kennaugh, Moffatt and Wang [9] had demonstrated the
K-pu]se for non-uniform transmission lines. Kim, Wang and Moffatt [10]
used some results of Gerst and Diamond [4] to obtain the K-pulse of a
circular loop. Rothwell et al. [11] discussed a target discrimination
scheme using the Extinction-pulse (E-pulse) which was based on the
natural frequencies of the target considered. A disscusion of the
relationship between the K-pulse and the E-pulse can be found in the

Appendix C.



Although Kennaugh had suggested several techniques to estimate the
K-pulse, one technique was never 7ully applicable to all the targets
tested. This dissertation presents an approach to obtain the
approximate K-pulse of a target from scattering information, without
requiring a priori complex natural resonance (pole) information.
Specifically, the derivation is based on the impulse response [12,137 of
the target. For complicated target geometries, only measured
information is avaiiable. Thus, impulse and frequency responses of the
targets are the commonly available information to work with, Using a
K-pulse model, the K-pulse response is obtained by convolving with the
impulse response., The energy outside the K-pulse response is minimized
using some optimization schemes with respect to the unknowns in the
assumed K-pulse model, until the energy content is considered minimum.
The dominant poles of the target can also be extracted from the
approximate K-pulse. A method to obtain these dominant poles is also
presented.

In this dissertation, the approaches to obtain the approximate
K-pulse and the dominant poles are discussed in Chapter II. Then, bhoth
exact and Fourier synthesized impulse responses are used as examples in
Chapter III to verify the methods developed in Chapter II. Chapter IV
discusses a way to obtain the duration of the K-pulse without knowing
the circumnavigational path on the target, which is used to deduce the
K-pulse duration for simple geometries. Chapter IV is necessary as it
is very difficult to find the circumnavigational path vi.,- & complicated

geometrical shape. The targets used for verification in Chapter III and



IV include a grounded dielectric slab, a low Q target model, a straight
wire, a circular loop, a sphere, and a disk. The last four targets are
perfectly conducting structures. After verification, the methods are
tested with quasi noisy data and experimental data. These results are
presented in Chapter V. The whole dissertation is then concluded with
Chapter VI, together with some recommendations for future studies. Four
Appendices are added to clarify a few issues. Appendix A describes the
procedures and indicators in using the K-pulse estimation method
discussed in this dissertation. The circular loop is used as the
illustrating example. Appendix B discusses how the K-pulse can be used
for target discrimination. As mentioned before, a discussion of the
K-pulse and the E-pulse waveforms is presented in Appendix C. Appendix
D is the proof that a memorphic function in the entire complex plane can
be factored into a fraction of two entire functions.

In this dissertation, functions with capital letters are reserved
to represent the Laplace transform of the corresponding lower case time
functions. Most of the impulse responses are plotted together with the
K-pulse responses. This is done so that the two responses can be
compared simultaneously. The impulse responses are given as dash lines
and the K-pulse responses as solid lines when both responses appear on
the same plot. Also, all the initial guesses for the unknowns are
unity, unless otherwise stated. The first diamond in every K-pulse plot
is always a unit impulse. This is highlighted by an arrow in the
figures. The normalization of using a unit impulse at t=0 for the

K-pulse can be considered as an impulsive excitation of the target by



the first impulse function. Then, the later part of the K-pulse is
added in order to cancel all the resonances. Any other type of desired
"excitation" waveform can be convolved with this K-pulse to obtain the

proper K-pulse "excitation" waveform,



CHAPTER 11
THEORY

In this chapter, the method of estimating the K-pulse of the target
using the impulse response is described first. Then the pole-extraction

scheme is presented.
A. K-PULSE DERIVATION

The K-pulse as defined by Kennaugh in [2] is, a time-limited
waveform of excitation which produces time-limited waveforms of response
for all aspects and polarizations. The K-pulse is not unique in form
unless it contains only zeros which coincide with the poles of the
target 14]. This is to rule out the possibility that a linear
combination of derivatives of the K-pulse as another possible K-pulse,
as the differentiation process adds zeros which are not poles of the
target. The duration of the K-pulse being minimum is a necessary
condition. The whole approach described in this dissertation is based
on the latter part of the definition of the K-pulse; namely, the K-pulse
response of the target is time-limited. Assuming the K-pulse as some
function, the energy content outside the duraiicn of the K-pulse
response of the target is minimized with respect vo a set of unknowns.
The assumed model of the K-pulse is

N
k(t) = 8(t) + 1 a s(t-n7) , (2.1)
n=1



with t = T/N, where T is the duration of the K-pulse; N is the number of
delta functions; and the ap's are unknown real constants. Define J, the
cost function, to be the energy outside the K-pulse response duration;
i.e.,

T

T N T LI GO T (2.2)

TR
where h(t) is the impulse response of the target, Tp is the duration of
K-pulse response, T¢ is the cutoff time representing an arbitrarily long
duration, and "*" denotes convolution.

By minimizing the cost function J, the coefficients of Equation
(2.1) can be found. The reason why impulsive functions are chosen as
basis functions is that they are easily evaluated in the convolution
integral. Any other basis function requires actual calculation of the
convolution integral. Also, the impulses can be treated as samples of a
continuous function. Thus, the impulsive representation is fairly
general,

The cost function J can be put into a quadratic form. This will be

shown next. The convolution of the K-pulse model with the impulse

response is

N
k(t)*h(t) = | &(t) + 21 aps(t-nt) | *h(t) - (2.3)
n=
Or N
k(t)*h(t) = h(t) + [ a h(t-nt) , (2.4)
n=1
because, fw §(s-nt)h(t-s)ds = h(t-nt) . (2.5)



The square of Equation (2.4) gives

N
[k(t)*h(t)]J2 = h2(t) + 2h(t) anh(t-nt)

NN n=1
+ ) 1 anamh(t-nr)h(t-mr) . (2.6)

n=1 m=1

Then the cost function given by Equation (2.2) becomes

T N T
J=1%n2t)at +2 T a [ C n(t)h(t-nt)dt
TR n=1 TR
NN T
+ 5 1 aa | C h(t-nt)h(t-mt)dt . (2.7)
n=1 m=1 TR

Matrices are defined to simplify the algebraic manipulations.

The matrices are

A = * ’ (2.8)

H = . (2.9)




.
o= fCmlat , (2.10)
TR

where HT is the transpose of H,
T

s =[Ch(t)at , (2.11)
TR
and
:
8=/Cn2(t) dt . (2.12)
TR

Using the above matrices, the cost function in Equation (2.7) can be
expressed as

J=RAoA+2a's+ 8, (2.13)

which is a quadratic form . To find the extremum of a cost function,

the gradient with respect to each ap (V3) is equated to zero; i.e.,

VaJ = 20A +25 =0. (2.14)

Thus, A can be evaluated via the following equation:

A=-¢"S, (2.15)

1

where ¢ " is the inverse of ¢.

In most problems that were considered, ¢ is i1l-conditioned or
singular., This is because when N is large, some of the elements in the
matrix become very small, especially the elements in the lower right
corner., Thus, Equation (2.15) cannot be used directly., Optimization
schemes may be used to search for the minimum point of the cost function

with respect to the unknowns. The facts that 1) J can be expressed as a



quadratic form, 2) & is not a null matrix and 3)

V=20 , (2.16)

mean there exists a unique global minimum or maximum point [15]. One
good check to determine if T and Tp are chosen properly is whether ¢ is
semi-positive definite. The optimization schemes employed in this
dissertation are conjugate gradient [15], Powell-Fletcher [15] and
steepest decent [15]. The former two methods are programmed as
subroutines in the IBM System/360 Scientific Subroutine Package version
"11I. A1l three methods use the same idea of testing for the steepest
decent direction and making a step. They only differ in the testing and
stepping strategy. The three methods are incorporated so that the
methods can be inter-checked for the minimum of the cost function. The
Powell-Flectcher scheme seems to converge the fastest. The conjugate
gradient scheme is in the middle. The steepest decent scheme is
programmed so that the steps are controlled by the user to step

cautiously when the minimum is close by.
B. POLE EXTRACTION

As this approach is minimizing the energy excited by the natural
resonances in the signal, the dominant zeros of the K-pulse waveform
should coincide with the dominant poles of the target. Also, all
waveform data manipulated by the computers are usually only samples of
the continuous waveforms. Equation (2.1) can be viewed to represent

6(t) plus samples of a continuous function. To obtain the zeros of the

10



continuous function, a straight line interpolation model is assumed

between the samples of the continuous function. Then

ko(t) = s(t) +k (t), (2.17)

where k.(t) is a continuous function with straight lines joining all the
an's. One such example is shown in Figure 2.1a. The reason why
straight 1ine interpolation and extrapolation are used is Kc(s) can be
easily found for the linearly interpolated function kq(t). This is
sufficiently accurate provided the sampling criteria is sufficiently
satisfied. From experience, if the sampling used is at least four times
the required Nyquist rate, then straight line interpolation is adequate.
With this straight line interpolation, the differentiation rule of the
Laplace transform can be applied very conveniently to obtain an
expression for K.(s) which is the Laplace transform of the continuous
portion of the K-pulse k¢(t). Then the zeros of the Ko(s) can be
obtained via some zero-finding numerical subroutines. Naturally other
types of interpolation can be applied. This might reduce the number of
samples required to approximate the continuous portion of the K-pulse.
However this is the same as expanding the continuous portion of the
K-pulse in a set of basis function. Unless there are some indications
as to what the K-pulse might look like, there does not seem to be much
advantages with this alternate approach. Besides, even with a
continuous function, the computer can only work with the samples of the
function.

Differentiating the linearly interpolated and extrapolated kc(t)
(Figure 2.1b),

11
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(a) 1linear interpolation and extrapolation (ay) of samples.
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" (b) The derivative of the top figure.

Figure 2.1. An illustration of 1inear interpolation and extrapolation
(35) of samples and their derivatives.
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at kc(t) = aos(t) - aNG(t-T)

) (
Z (a a l)p /2 [t -
n=1

where the an's are samples of the continuous function for n = 1, 2,

2n 1

)1, (2.18)

L1
T

cees N; a, is the linear projection from a, and a (t) is the

1 2 3 Pay2
rectangular pulse function [16]; T is the duration of the K-pulse. By

taking the Laplace transform of Equation (2.18),

d 1_e-sr
<gf dt c(t)] =a -ae -sT , L ] n§1 (a - an_l)e(l'")Slr (2.19)
or
d
L Ogp k ()T = sk (s) . (2.20)
Then, the K-pulse sbectrum is
Or
a-aesT -ST
N 1 -e N
— ] (1-n)st
K =1 -
(s) T + <7, ngl(an an_l)e (2.22)

The complex frequencies (si) which satisfy Ka(sy) = 0, are the zeros of
the K-pulse. These, in turn, are also the poles of the target. The
roots of Equation (2.22) are numerically evaluated using the Secant

method [17].
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CHAPTER IITI
APPLICATION TO THEORETICAL DATA

In this chapter, the theory in the previous chapter is applied to
theoretical data. There are altogether seven examples. A plane wave
normally incident on a grounded dielectric slab was one of the examples
discussed in Kennaugh's paper [2] to demonstrate the K-pulse. This
target is also employed in this dissertation to illustrate the validity
of the technique described in the last chapter. First, the result of
using the exact impulse response of the grounded dielectric slab is
presented. Then the technique is checked with band-l1imited data. A
Fourier synthesized impulse response for the same grounded dielectric
slab is used as a second example. The words "Fourier synthesized"
implies that the impulse response data are generated in the frequency
domain first, then a discrete Fourier transformation is used to obtain
the data in the time domain., A Kaiser-Bessel function [18] is used to
weight the frequency data before transformation to reduce the Gibb's
phenomena. The third example is a Fourier synthesized impulse response
of a low Q model suggested by Kennaugh [19]. This example is to
illustrate that if the impulse response at late time contains
contributions from a lot of the poles, then even for a low Q structure,
the K-pulse can be approximated very nicely. The exact K-pulse for the
previous three examples are known, that is why they are presented first.

The exact K-pulses for the last four examples in this chapter are
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unknown, thus the K-pulses obtained can only be checked by their zero
strings and aspect-independent property. The last examples are all
three dimensional simple geometries (see Figure 3.1). (For the
convenience of the reader, all tables and figures of Chapter III are
grouped together at the end of the chapter.) The results of two high Q
structures (a thin conducting straight wire and a thin conducting
circular loop) are presented next. Finally, two low Q structures (a

conducting sphere and a conducting disk) are used as examples.

A. EXAMPLE I

A plane wave 1s normally incident on a grounded dielectric slab,
The grounded dielectric slab has a thickness of L and a relative
permittivity of four. A1l diamonds in Figures 3.2, 3.3, 3.4 and 3.5
represent impulses. The impulse response of the grounded dielectric
slab is shown in Figure 3.2. As shown in Figure 3.2, the target
response is resonating with decaying positive and negative impulses.
The target response is desired to have a finite duration. To start the
optimization process, twenty-six unit impulses are used as initial
guesses for the K-pulse. Since any initial guess of the unknowns is as
good as any value, one is chosen to be such value. The duration of the
K-pulse (T) is chosen as 2L/v, which is the round trip time to and from
the ground plane. "v" is the speed of light travelling in the
dielectric slab, The response of the grounded dielectric slab to these
impulses is shown in Figure 3.3. This inftial K-pulse gives rise to

more resonating impulses (see Figure 3.3) than the impulse response
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(Figure 3.2). The impulse at 2L/v is contributed by the input impulses
at t=0 and t=2L/v together. Al1 the impulses after 2L/v are
undesirable. As a result, the duration of the K-pulse response (TR) and
the cutoff time of integration (Tc¢) are chosen to be 2.04L/v and 12L/v,
respectively., After specified number of optimization steps, the K-pulse
results as in Figure 3.4; the K-pulse response is shown in Figure 3.5.
(Appendix A contains a more detail discussion on the optimization
process and the convergent indicators.) The weightings of all
twenty-six unit impulses in the initial K-pulse, except two, are reduced
to zero. The cdmbination of the two remaining impulses, one at t=0 and
one at t=2L/v converges to &(t) + (1/3)68(t-2L/v), which is the exact
K-pulse [2] for this geometry. A1l the undesirable resonating impulses
in the response due to the initial K-pulse guess are eliminated in the
optimization process as shown in Figure 3.5. All, except two, of the
impulses in the optimized K-pulse response, are reduced numerically to
zero. The remaining impulse at t=0 has a value of -1/3 and the other
impulse at t=2L/v has a value of -1. This K-pulse response converges to
-(1/3)8(t) - 8(t-2L/v), which is the exact K-pulse response [2]. Two
other initial quesses for the K-pulse as shown in Figure 3.6 are also
employed to start the optimization process. The same K-pulse and
K-pulse response as in Figures 3.4 and 3.5 are obtained. This further
supports the fact that this theory is independent of the initial K-pulse

guess supplied to start the optimization process.
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B. EXAMPLE II

The plane wave normally incident on a grounded dielectric slab can
be put into a transmission 1ine model [2]. The model consists of a
shorted length (L) of line which is appended to a semi-infinite line of

twice the intrinsic impedance. The resulting transfer function is given

by

W] r—

_ e-2sl/c

H(s) = (3.1)

1 -
1+75-e 2sl/c

Frequency data are generated with the above expression, over the
frequency band of kL = 0,017(0.017)100n, where k is the wave number.
The notation employed for the bandwidth is: 1) the first number is the
lowest frequency used, 2) the second number which is in brackets is the
frequency increment and 3) the last number is the highest frequency
used. The Fourier synthesized impulse response of the grounded
dielectric slab is shown in Figure 3.7 for a duration of 6L/v. Its
amplitude has been reduced by a factor of ten after the discrete Fourier
transform process. Since the impulse response is bandlimited, the
impulses in Figure 3.2 now have finite rise and fall times. The
oscillating impulses after 2L/v are still the important features in
Figure 3.7. The duration of the K-pulse is chosen as 2L/v. The
duration of the K-pulse response is chosen as 2.05L/v. The reason why
the K-pulse response duration is not chosen as 2L/v is to account for
the finite rise and fall time of the bandlimited impulse. The cutoff
time for the integration is 8L/v. Eleven unit impulses are used to

start the optimization process. The response due to this initial input
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ifs shown in Figure 3.8. This figure shows a lTot of resonating impulses
after 2.05L/v. The approximate K-pulse obtained after optimization is
shown in Figure 3.9. Again, only two impulses remain numerically
significant after optimization - the unit impulse at t=0 and the
0.3328535 impulse at t=2L/v. The percentage of difference is 0.14% for
the impulse at t=2L/v. The optimized K-pulse response, which is shown
in Figure 3.10, has only a small residue after t=2.1L/v. Although only
a duration of 6L/v is shown in Figure 3.10, the amplitude of the signal
at later times is negligible. This response has a duration of 2.1L/v
instead of 2L/v because the bandwidth of the impulse response is
limited. However, the time between the peaks of the first two Fourier
synthesized impulses is still 2L/v. The poles associated with the
approximate K-pulse are -1.1001 + (2n+1)r versus -1.0986 + (2n+1)rw from
the exact K-pulse, where n is an integer. These poles are normalized to
2L/v; i.e., to obtain the actual values of the natural resonances,
multiply the above pole values by twice the thickness of the slab (L)
and divide by the speed of light in the dielectric medium.

C. EXAMPLE III

The following expression [19] is used as a first check on the

concept of using impulses to represent samples of a continuous waveform:

(sL/c)?
-1 + (sL/c) + (sL/c)2 + exp(-sL/c) *

H(s) = (3.2)

This H(s) can be decomposed into a fraction of two entire functions [2].

Using I'Hapital's rule, H(s) can be proven not to have any zero. Since
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H(s) has no zero, it is decomposed into R(s) which is the K-pulse
response in the s-domain,

R(s) =1, (3.3)
and K(s) which is the complex frequency spectrum of the K-pulse,

exp(-sL/c) -1 1
KS) = "Guaz T eua te

(3.4)

which 1s also the reciprocal of H(s).

Inverse Laplace transforming Equation (3.4), the K-pulse in the
time domain consists of a delta function at t=0 and a linear decaying.
function of duration L/c. The maximum value of the decaying function is
one. The synthesized impulse response [h(t)] is obtained via fast
Fourier transform on the data generated from Equation (3.2). The
bandwidth used to generate this waveform is kL = 0.2n(0.2w)400w, The
number of samples used to approximate the continuous portion of the
K-pulse [kc(t)] is 200, The duration of the K-pulse is chosen to be
L/c. The duration of the K-pulse response is chosen as 0.025L/c, since
an impulse function [Equation (3.3)] now has a finite rise and fall time
due to bandlimited data. The cutoff time for integration is 2L/c.

After optimization, samples of the optimized K-pulse are plotted against
the exact K-pulse in Figure 3.11., The first diamond at t=0 is
representing an impulse, which is highlighted by an arrow; the rest of
the diamonds are representing samples of the continuous portion of the
K-pulse [ke(t)]. It can be seen that the optimized K-pulse gives a very
good approximation to the exact K-pulse. The Fourier synthesized

impulse response generated with Equation (3.2) and the optimum K-pulse
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response are shown in Figure 3.12. The energy contained in the K-pulse
response is almost limited only to the Fourier synthesized impulse., The
energy that spread over infinity in the impulse response {is reduced
almost to zero. This energy spread can also be considered as the energy
contributed by the infinite pole string. Thus, the pole-zero
cancellation concept is established. Table 3.1 1ists the first ten
poles from Equation (3.2) and first ten zeros of Equation (2.22) with
the proper ap's from the optimized K-pulse for comparison. The zeros
and the poles are both normalized to L/c. The zeros of the estimated
K-pulse are very close to the exact poles of the frequency response
function H(s). This example shows that even for Tow Q targets, if the
impulse response at late time contains sufficient contributions from the
higher order poles, the exact K-pulse can be approximated fairly well.

Starting with the next example, the exact K-pulse is no longer known.

D. EXAMPLE IV

A conducting straight wire of length L with length to radius ratio
of 2000, is chosen as the next example. The frequency response data are
generated from a moment method solution [20]. The bandwidth of the
responses is kL = 0,081(0.08n)8n, After discrete Fourier transforming
the frequency data, the maximum magnitude of the impulse responses are
normalized to one. All data in this example are taken at 6=90°,

¢-polarization. The geometries are shown in Figure 3.1. The K-pulse in

Figure 3.13 is derived from the Fourier synthesized impulse response at
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$=30°. The duration of the K-pulse is chosen to be 2L/c. The energy
between 5L/c and 9L/c is being minimized. The number of samples chosen
for the continuous portion of the K-pulse [kc(t)] is 100, The inftial
guesses for the samples are unity. The impulse and the K-pulse
responses of the wire at ¢=30° are compared in Figure 3.14. The high
energy resonance after 4L/c has been greatly reduced. It is also
interesting to note that the duration of the K-pulse response does not
have to be known exactly to obtain the K-pulse, as the optimization in
thfs example is specified to perform minimization beginning at 5L/c
instead of 4L/c, which is the more accurate estimation of the K-pulse
response duration. The aspect independence of the K-pulse obtained can
be shown by convolving the obtained K-pulse with other aspect angles.
Figures 3.15 and 3.16 show the comparison of the impulse and the K-pulse
responses of the wire at ¢=60° and 90°, respectively. At ¢=60°, the
K-pulse response shows very little energy after 3L/c. At ¢=90°, the
K-pulse response indicates very little resonance after 2.6L/c. The
reason why at broadside the K-pulse does not terminate at 2L/c is again
due to the limited bandwidth of the data. It takes finite time to start
and end a signal.

Initially, the number of samples (N) employed is 50. The increase
of sampling from 50 to 100 does not have a drastic effect on the shape
of the K-pulse. Moreover, the accuracy of the poles obtained from N=50
improves when N is increased to 100; the energy content outside the
K-pulse response also decreases. All these are indicators that the

K-pulse obtained is stepping in the right direction. If the number of
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samples (N) is reduced to less than 50 in this case, one should watch
out for the violation of the criterion for straight line interpolation
of the samg1es. The poles obtained with the K-pulse in Figure 3.13 are
compared with those obtained by Kennaugh [19] in Table 3.2. The poles
are normalized to L/c. The poles are more accurate in the imaginary
parts than the real parts. This thin wire example was also discussed by
Kennaugh [2]. The K-pulse that was shown in [2] is not time-limited;
whereas, Figure 3.13 is time-limited. It is believed that Prof.
Kennaugh only intended to illustrate that if the K-pulse is ever needed
. for actual excitation of targets, it can be approximated by impulsive
and step functions. The pole-zero cancellation concept is still

embedded in his K(s).

E. EXAMPLE V

The second high Q geometry to be examined, is the conducting
circular loop with wire radius (a) to loop radius (r) ratio of nx10'3.
The frequency data are generated using a moment method program [10] over
the bandwidth kr = 0.027(0.02n)4n. After these frequency data are
discrete Fourier transformed into the time domain, the maximum magnitude
of the impulse responses are normalized to one. The K-pulse in Figure
3.17 is derived from the Fourier synthesized impulse response at 6=45°,

a-polarization. The geometries are shown in Figure 3.1. The duration

of the K-pulse (T) is chosen to be 2ar/c. The number of samples (N) to
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represent the continuous portion of the K-pulse is 100. The duration of
the K-pulse response is chosen to be 5wr/c. After optimization, the
resulting K-pulse response has little energy after 4mr/c. This is
contrasted with the high oscillation of the impulse response in Figure
3.18. Again even though the exact K-pulse response duration is not
supplied for minimization of energy, the proper K-pulse response
duration shows up in Figure 3.18 to be 4ur/c after optimization. The
convolution of the approximate K-pulse with three other impulse
responses - 6=0°, ;—po1arization; 8=45°, ;-polarization; 8=90°,
;-po1arization are shown in Figures 3.19, 3.20 and 3.21 respectively.
Again, the respective impulse responses are also plotted in the same
figures using dash lines. The energy content in the K-pulse responses
at late time - 2.4nr/c in Figure 3.19; 4xr/c in Figures 3.20 and 3.21,
is very small, Again the aspect and polarization independent property
of the K-pulse is confirmed. In fact, the initial trys of optimization
using N=50 for 6=45°, both 5 and ; polarizations gave similar K-pulses
(see Appendix A). This is only true, if similar poles are excited by
the two different impulse responses.

The poles obtained from the K-pulse is compared with the poles
given by Kim et al. [10] in Table 3.3. These poles are normalized to
2nr/c. The real parts of the estimated poles are not as accurate at the
high frequency end as the ones at the low frequency. This is probably
due to the 1imited bandwidth of the impulse response used. However the
imaginary parts are consistently accurate. As N is increased, similar

properties described previously in Example IV about the similarity of
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K-pulse shapes, better accuracy of the poles and reduction of energy
content outside the duration of K-pulse response are also exhibited by
the loop. Kim et al. [10] also obtained a K-pulse for the circular
loop with the same geometry. However, it is very difficult to compare
with their result. Their K-pulse is bandlimited. While the K-pulse
described here itself is not bandlimited, the impulse response it used
is bandlimited. Also, if not all the poles are excited at late time in
the impulse repsonse (due to limited bandwidth), then the K-pulse
obtained here cannot claim uniqueness. Nevertheless, the duration of
the K-pulse responses at the different aspects and polarizations are
very close to Kim et al.'s [10] results. Appendix C contains a more
detail discussion on the two K-pulse models. The next two examples

involves low Q structures,
F. EXAMPLE VI

The first low ) geometry to be discussed is the conducting sphere.
The frequency data used in this example are generated from the Mie
solution. Since this is a low Q structure, the choice of Ty (the
K-pulse response duration) must be chosen very carefully. If too large
a value is chosen, the energy content to be minimized will be very small
and only the very dominant poles will be excited. If too small a value
is chosen, the energy to be minimized may contain contributions other
than the poles - the entire function in the early time [21], resulting
in wrong pole values. The K-pulse in Figure 3.22 is obtained from the

backscattered Fourier synthesized impulse response generated with a
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frequency bandwidth of kr = 0.1(0.1)66. Note that "r" is the radius of
the sphere. The duration of the K-pulse (T) is chosen to be 2ar/c. The
duration of the K-pulse response is about 3.8wr/c. The number of
samples to approximate the continuous portion of the K-pulse is 200.
Figure 3.23a compares the K-pulse and the impulse responses of the
sphere for the backscattered case. Since the structure has a low Q, the
effect of the K-pulse on the small resonance cannot be seen clearly in
Figure 3.23a. The amplitude scale in Figure 3.23b is 100 times that of
Figure 3.23a. All the amplitude scales in the "b" designated figures
are expanded 100 times relative to those of the "a" designated figures
in the following discussions, unless otherwise stated. Figures 3.24
through 3.27 are generated from a bandwidth of kr = 0.1(0.1)33.5.

Figure 3.24 is the same as Figure 3.23, except these backscattered data
have a smaller bandwidth., Figures 3.25 and 3.26 use data from bistatic
scattering at ¢=90°, vertically and horizontally polarized,
respectively., Figure 3.27 uses bistatic scattering at ¢=180°, for
vertically polarized data. Again, at late time - 3.8wr/c in Figure
3.24, 4,2wr/c in Figures 3.25 and 3.26, 4wr/c in Figure 3.27, the energy
content is smaller than those in the impulse responses.

The zeros of the K-pulse in Figure 3.22 is compared with Kennaugh's
result [2] in Table 3.4. The poles are normalized to 2wr/c. The first
six poles compare well; whereas, the higher order poles do not. Using
the contribution of residues and poles discussed by Chen [22] to compare
with the late time signal of Figure 3.23b beginning at 3.6ur/c, the

contribution of the first six pairs of poles and residues seems
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sufficient to represent the late time function. This suggests that the
method discussed in this dissertation can obtain the poles only if they
are excited, Or the K-pulse for this example is not unique, until the
other poles of the sphere are included. Actually, applying this method
to a Tow Q structure is not very useful, as this method requires a
minimization of energy content outside the duration of the K-pulse
response. And there is very little energy in the late time of the
impulse response of a low Q structure to be manipulated. Kennaugh [2]
suggested a better method to obtain the poles of the low  structures

using the Geometrical Theory of Diffraction [23].

G. EXAMPLE VII

The last theoretical example to be discussed is the conducting
circular disk. The frequency data are generated from an eigenfunction
solution [24] over a bandwidth of kr = 0.16(0.16)16. In this case, r is
the radius of the disk. After discrete Fourier transform is performed
on these frequency data, the impulse responses are normalized to a
maximum magnitude of one. The K-pulse shown in Figure 3.28 is obtained
by minimizing the K-pulse response (6=45° and 5-po1arized) outside
4nr/c. The number of samples (N) used to represent the continuous
portion of the K-pulse is 100. Figures 3.29, 3.30, 3.31 and 3.32 show
the comparison between the impulse and K-pulse responses of the disk at
8=45°, 5-po1arized; 6=0°, 5-polar1zed; 8=45°, ;-po1arized; and 6=90°,
;-po1arized, respectively., Again the amplitude scales of the "b"
designated plots are 100 times those of the "a" designated plots. The
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durations of the K-pulse responses are around 4wr/c, 2.4nr/c, 4nr/c and
4ur/c for Figures 3.29, 3.30, 3.31 and 3.32, respectively. The energy
contained outside the K-pulse response is very small. If the impulse
response at 0=45°, &-po]arization is used to obtain the K-pulse, Figure
3.33 is the resulting K-pulse with the number of sampling still at 100.
The responses of the disk to this K-pulse at 8=45°, ;-po1arization;
8=0°, 5-po]arization; 8=45°, é-po]arization; 8=90°, &-po1arization are
shown in Fiqures 3.34, 3.35, 3.36 and 3.37, respectively. The results
of this K-pulse are compatible with the K-pulse derived from the 98=45°,
and 5-po1arization. The energy content outside the K-pulse responses
duration is very small. The reason for the two different K-pulses is as
discussed in the previous example. There are two sufficient conditions
for two different K-pulses from two different impulse responses of the
same target. The first condition is insufficient pole-excitation in the
late time. The second condition is different poles are excited in the
impulse responses. BRoth conditions seem to be satisfied in this case,
as discussed in the following paragraph. Consequently, it is not easy
to distinguish low Q targets using the energy content at late time, but
the dominant complex natural resonances are still very useful
information.

The poles of the two K-pulses are listed together with the poles
extracted by Lee [25] in Table 3.5. The poles are normalized to 2wr/c.
Starting with the sixth pole for the first K-pulse (Figure 3.28) and the
fifth pole for the second K-pulse (Figure 3.33), the poles do not seem

to match. In fact, the real parts do not follow the same trend as
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obtained by Lee. The same behaviour was exhibited in the previous
example. The explanation is insufficient pole excitation at late time.
Since the disk is a low Q structure, not all poles are expected to
contribute at late time. The fourth poles of the first K-pulse
(5-polar1zat10n) seems to be out of place. Actually, this pole compares
fairly well with the first pole listed by Lee [25] as the broadside
pole — -6.535 + 31.757j. This suggests that é-po1arization at 9=45°
"excites the broadside pole string, but not the %—polarization at 6=45°,
Consequently, two different K-pulses are obtained for the different
polarizations at 06=45°, Comparing Figures 3.29b through 3.32b with
3.34b through 3.37b, the K-pulse derived from a-polarization (Figure
3.28) seems to perform better in minimizing the energy outside the

duration of the K-pulse responses.
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Table 3.1

A Comparison of the First Ten Exact Poles and Estimated Zeros
in the s-domain (Upper Left Half Plane)
for the Simulated Model in Equation (3.2)

Exact Poles Estimated Zeros

1) -3.6326 + 5.,2336j -3.6339 + 5,2321j
2) -5.0874 + 11.8318j -5.0887 + 11.8302j
3) -5.8978 + 18.2771j -5.8993 + 18.2749j
4) -6.4689 + 24.6586] -6.4708 + 24.6557j
5) -6.9115 + 31.0086j -6.9139 + 31.0050j
6) -7.2733 + 37.3405j -7.2764 + 37.3360j
7) -7.5795 + 43,6610j -7.5832 + 43,6556
8) -7.8448 + 49.9738j -7.8493 + 49,9675
9) -8.0791 + 56.2811j -8.0842 + 56.2740j
10) -8.2887 + 62.5843] -8.2952 + 62.5769j
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Table 3.2

A Comparison of the First Six Exact Poles and Estimated Zeros
in the s-domain (Upper Left Half Plane)
for the Conducting Thin Straight Wire

Exact Poles Estimated Zeros
1) -0.161 + 3.013j -0.183 + 2.962j
2) -0.219 + 6.133j -0.278 + 6.058j
3) -0.262 + 9.256 -0.344 + 9.180j
4) -0.294 + 12.383j -0.393 + 12.314j
5) -0.320 + 15.512j -0.423 + 15.448j
6) -0.343 + 18.642j -0.482 + 18.591j
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Table 3.3

A Comparison of the First Ten Exact Poles and Estimated Zeros
in the s-domain (Upper Left Half Plane)

for the Conducting Thin Circular Loop

Exact Poles Estimated Zeros
1) -0.423 + 6.509] -0.474 + 6.509j
2) -0.606 + 12.871j -0.674 + 12.891j
3) -0.745 + 19.211j -0.796 + 19.248j
4) -0.862 + 25.541j -0.949 + 25.560j
5) -0.965 + 31.864j -1.055 + 31.892j
6) -1.059 + 38.183j -1.318 + 38.803j
7) -1.145 + 44,499j -1.548 + 45.326]
8) -1.226 + 50.812j -1.786 + 51.702j
9) -1.302 + 57.124j -1.977 + 58.019j
10) -1.374 + 63.434j -2.124 + 64.319j
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Table 3.4

A Comparison of the First Ten Exact Poles and Estimated Zeros
in the s-domain (Upper Left Half Plane)

for the Conducting Sphere

Exact Poles Estimated Zeros
1) -3.142 + 5.441j -3.008 + 5.447j
2) 4,411 + 11,354j 4,013 + 11.444j
3) 5,297 + 17.328j -5.204 + 18.016j
4) -5.994 + 23,342j -6.002 + 24.258j
5) -6.585 + 29,1380j -6.756 + 30.077j
6) -7.094 + 35.450j -6.908 + 35.622j
7) -7.546 + 41,532j -6.656 + 41,562j
8) -7.961 + 47.627j -6.472 + 47,785]
9) -8.338 + 53.740j -6.382 + 54.081j
10) -8.683 + 59.860j -6.331 + 60,400j
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1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

A Comparison of the Estimated First Ten Poles

Table 3.5

in the s-domain (Upper Left Half Plane)

for the Conducting Circular Disk

Lee

-3.178 + 7.595j

-3.789
-4,239
-4,605
-4.918
-5.194
-5.442
-5.668
-5.877
-6.072

+

+

14,339
20.934j
27.462j
33.949j
40.410j
46.850j
53.276]
59.690]
66.095]

First K-pulse

-3.074 + 7.685j

-3.941
-4.434
-6.405
-4,959
-4,929
-4,962
-4,355
-4,364
-4,503
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+

+

14.471j
20.923j
28.179j
33.996
43.121j
49,949j
57.046]
64.109j
70.886]

Second K-pulse

-3.931
-4, 386
-4.533
-4,035
-4,030
-4,154
-4, 259
-4,372
-4,467

+

+

14.425j
21.158j
27.781j
33.880j
40.762j
47,317
53.785]
60.208j
66.600j
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Figure 3.1. The simple target models used to illustrate the method of
K-pulse estimation. The orientation geometry is also

given,
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Figure 3.2. Response of the grounded dielectric slab to a normally
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diamond's height represents the weighting of an impulse)
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The K-pulse for normal incidence on the grounded dielectric
slab resulted after optimization with the initial guess
corresponding to Figure 3.3. (each diamond's height
represents the weighting of an impulse).
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Figure 3.5. Response of the grounded dielectric slab to the K-pulse
shown in Figure 3.4. (each diamond's height represents

the weighting of an impulse).
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Figure 3.6, Two other initial guesses for the K-pulse which after
optimization yield the same K-pulse as Figure 3.4.
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(kL = 0.017(0.01%)1007).
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Figure 3.11. The exact and approximate K-pulse for the simulated model
given in Equation (3.2).

44



1.0
139.46

0.6

ll'lllllLlllll.Llllllllll

0.4

0.2

AMPL 1 TUDE
0.0

-0.2

-1.0 -0.8 -0.6 -0.Y

Figure 3.12.

(=]
o
~n

l""TTI""]Y'IIIV!"‘
2.0

1‘1 VYY"Y"].IVIV'1"'T
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

TIME (L/C)

IMPULSE RESPONSE
RESPONSE TO THE
OPTIMIZED K-PULSE

Impulse response and response to the approximate K-pulse
shown in Figure 3.11 for the simulated model in Equation
(3.2). Both responses have an impulsive singularity at
the start of the waveform. (kL = 0,2n(0.2w)400x).
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Impulse response and response to the K-pulse shown in
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Figure 3.15. Impulse response and response to the K-pulse shown in
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Figure 3.17. K-pulse obtained using the Fourier synthesized impulse
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Figure 3.22, FK-pulse obtained using the Fourier synthesized impulse
response of the conducting sphere in the backscattered
direction with kr = 0.1(0.1)66.
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Impulse response and response to the K-pulse shown in
Figure 3,22 for the conducting sphere at a bistatic
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kr = 0.1(0.1)33.5.
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Figure 3.27. Impulse response and response to the K-pulse shown in
Figure 3.22 for the conducting sphere at a bistatic
angle of ¢=180°, vertical polarization with
kr = 0.1(0.1)33.5.
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(b) The amplitude scale is expanded by 100.

Continued.
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Figure 3.29. Impulse response and response to the K-pulse shown in
Figure 3.28 for the conducting circular disk at 6=45°,
8-polarization with kr = 0.16(0.16)16.
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Figure 3.31. Impulse response and response to the K-pulse shown in
Figure 3.28 for the conducting circular disk at ©=45°,
¢-polarization with kr = 0.16(0.16)16.
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Figure 3.32. Impulse response and response to the K-pulse shown in
Figure 3.28 for the conducting circular disk at 6=90°,
¢-polarization with kr = 0.16(0.16)16.
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Figure 3.34. Impulse response and response to the K-pulse shown in
Figure 3.33 for the conducting circular disk at 6=45°,

¢-polarization with kr = 0.16(0.16)16.
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Impulse response and response to the K-pulse shown in
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8-polarization with kr = 0.16(0.16)16.
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Figure 3.36. Impulse response and response to the K-pulse shown in
Figure 3.33 for the conducting circular disk at 6=45°,
8-polarization with kr = 0.16(0.16)16.
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Figure 3.37. Impulse response and response to the K-pulse shown in
Figure 3.33 for the conducting circular disk at 8=90°,
¢-polarization with kr = 0.16(0.16)16.
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CHAPTER IV
ESTIMATION OF THE DURATION OF THE X-PULSE

One of the necessary conditions for a unique K-pulse {s that fits
duration must be minimal [2]. Consider the following example. Let k(t)

be the K-pulse of a target with duration T. Now let
kl(t)= k(t) + a k(t-Tl) (4.1)

which has a duration of T + Tl; a and T, are arbitrary constants. This

1
K-pulse will also cancel the poles of the target, because the Laplace

transform of kl(t) gives
-sT
ky(s)= K(s)[1+ae” 1. (4.2)
and Kl(s) has not only the zeros of K(s) but also,

s, = (L/T)[In(a) + (2n+1)1] (4.3)

where n is an integer. If Ty is not zero, then any value of a will
still cancel the poles of the target. As there are an infinite number
of choices for a, there are also an infinite set of functions that will
cancel the poles. Consequently, to have a unique K-pulse, its duration
is of minimal is a necessary condition. For simple geometries, the
duration of the K-pulse (T) is chosen to be the circumnavigational path
length over the velocity. For example, for the circular loop, Sphere

and circular disk the K-pulse duration is 2ar/c, where r is the radius.
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In other words, T corresponds to the circumference over the velocity of
the wave. For the straight wire and the grounded dielectric slab
T=2L/v, where L is the length of the wire or the thickness of the slab.
For more complicated geometries, this type of interpretation is not
easy. Another approach is needed, and one method is described in this
chapter.

The difference between the imaginary parts of neighboring poles for
a plane wave normally incident on the grounded dielectric slab is jvn/L.
The time corresponding to this

Aw = vu/L (4.4)

difference frequency is T = 2L/v. Table 4.1 lists the difference
between the imaginary parts of consecutive poles for the five targets
discussed in the previous chapter. (For the convenience of the reader,
211 tables and figures of Chapter IV are grouped together at the end of
the chapter.) The difference in radian frequency for the wire
approaches n. The other targets have their difference in radian
frequency approaching 2n. The time corresponding to this difference of
frequency is L/c for Equation (3.2); 2L/c for the wire; 2ar/c for the
loop, sphere and disk. These are all the proper values for the duration
of the K-pulse. Calculated from Table 4.1, the times corresponding to
the first differences are 0.952L/c, 2.014L/c, 1.975wr/c, 2.0137r/c,
1.863wr/c, for the low Q model [Equation (3.2)], wire, loop, sphere and
disk, respectively. They are very close to the true K-pulse duration.
These are all summarized in Table 4.2. It appears the K-pulse duration

is related to the density of the poles.
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Since the main concept in this dissertation is based on
minimization of the energy due to the natural resonances, the K-pulse
obtained with any duration longer than the proper duration will contain
the dominant pole information. More generally, the K-pulse obtained

with non-minimal duration will have the following Laplace transform:
K (s)=K(s)G (s,T ) (4.5)

where Gm(s) js any entire function of exponential type for variable s,
and Tn is the duration of gm(t), which 1s the inverse Laplace transform
of Gm(s,Tn). Note that "m" and "n" are used to represent the infinite
number of entire functions and durations. In other words, the poles
associated with K(s) will always remain in Kmn(s) as the guess of the
K-pulse duration 1s changed. They would remain unchanged until the
guess of the K-pulse duration is less than the proper K-pulse duration.
When the guess of the K-pulse duration is less than the proper K-pulse
duration, either the minimization process will not converge or the pole
strings will be totally different from those of the true K-pulse. Using
this information and the density of the poles, the duration of K-pulse
can be estimated. Also if Tn=0, then Gm(s) is a real constant, an
exponential function of s, or a polynomial of s. All of these will not
affect the result of estimating the duration of the K-pulse because of
the K-pulse model employed in this dissertation. The constant, of
course, will not affect the pole string obtained. The exponential
function of s will give a time shift for k(t), but the K-pulse model is

forced to start at time zero. Besides, this pole string will always
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have the real parts being zero and can be ignored. Lastly, a polynomial
of s for Gm(s) cannot occur because only impulsive singularities are
allowed in the model,.

The optimization process is started with a reasonable guess of the
duration of K-pulse (Tgl)' It is better for this guess to be longer
than the true duration as opposed to a shorter duration. A reasonable
estimate seems to be the period of the damped sinusoid exhibited by the
dominant natural resonance of the target at late time. After the first
guess K-pulse [kgl(t)] is obtained, the value of the K-pulse duration
quess (Tgl) is increased to some other guess (ng) and its corresponding
K-pulse [kgz(t)] is obtained. The dominant pole strings are compared.
If the two strings are totally different, then the second guess (ng)
needs to be increased to a third guess (Tg3) to obtain a corresponding
K-pulse [kg3(t)]. This process is repeated until the two consecutive
pole strings have some similar poles. Then the difference of the radian
frequency (Aw) between consecutive and more dominant poles but common in
both strings are calculated. The value of a better guess for the
duration of the K-pulse (T) is then 2n/Aw.

The above procedure is checked with the five targets discussed in
the previous chapter., The high Q structures are discussed before the
low Q structures. The density of samples for the continuous portion of
the K-pulse is taken to be 50 samples/T. From experience, the choice of
50 samples/T seems to be a good starting point for the optimization
process. The first and second guesses are assumed to be 1.5T and 2T,

respectively. The third guess for the K-pulse duration is 0.5T. This
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third gquess is used to confirm that T is the proper K-pulse duration.
To start the optimization process all the initial guesses of the
unknowns in the K-pulse model are specified as unity.

The thin straight wire is the first example to be discussed. The
duration of the first guess K-pulse is 3L/c (Tw1)° The duration of the
K-pulse response is 5L/c (TR) and the cutoff time for the integration is
9L/c (Tc). The bandwidth of the Fourier synthesized impulse responses
used 1s kL = 0.087(0.08%)8n, After twenty-five steps of optimization
using the impulse response of the straight wire at ¢=30°,
@-polar1zat10n, the K-pulse [kwl(t)] for the first K-pulse duration
guess is shown in Figure 4.1. The energy in the K-pulse response
outside 4L/c is very small as shown in Figure 4.2. This K-pulse
response is different from what is shown in Figure 3.14, because the
durations of the K-pulses are different. sz(t) in Figure 4.3 is
derived similarly except its duration TQZ is chosen to be 4L/c and only
ten steps of optimization are specified. The K-pulse response of the
wire at ¢=30° is shown in Figure 4.4. The energy content after 5L/c is
again very small, Comparing the zero strings of kwl(t) and sz(t)
(Table 4.3), the first approximation of the duration of the K-pulse (T)
is calculated to be 2.009L/c, which is very close to the true T (2L/c).
If the duration of the K-pulse is chosen to be 2L/c, the K-pulse as in
Figure 3.13 will result. The responses for the straight wire at the
different aspect angles will be as shown in Figures 3.14, 3.15, 3.16.
The energy of the K-pulse responses in late time at the various angles

will be very small, For a final check, the guess duration of the
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K-pulse (Tw3) is chosen to be L/c. After twenty-five steps of
optimization, no reduction in energy is shown outside the K-pulse
response as shown in Figure 4.5. Not surprisingly, the "K-pulse"
obtained (Figure 4.6) does not have any zero similar to the K-pulses
obtained previously. The reason why K-pulse is in quotations for Figure
4.6 is the waveform obtained no longer contains the natural resonance
information of the target.

The loop exhibits results similar to those obtained for the wire.
The first guess of the K-pulse duration (Tzl) is 3nr/c. The duration of
the K-pulse response (TR) is 8nr/c and the cutoff time (TC) for
integration is 12nr/c. The bandwidth of the Fourier synthesized impulse
response used is kr = 0.027(0.02w)4n, After twenty-five steps of
optimization, the first guess K-pulse [kzl(t)] is obtained as shown in
Figure 4.7. The impulse response used is at 6=45°, 6-po1arization. The
corresponding K-pulse response 1s shown in Figure 4.8. The energy
content outside 4ar/c is minimized. After ten steps of optimization,
the second guess K-pulse kzz(t) as shown in Figure 4.9 is obtained with
the duration of the K-pulse (Tzl) increased to 4mr/c (T22)° The
response due to kzz(t) is contrasted with the impulse response in Figure
4,10. The signal amplitude is small at the late time. The zeros
derived from both K-pulses are compared in Table 4.4. The first
approximation to the K-pulse duration (T) is calculated to be 1,983nr/c,
which is very close to the true duration.of 2nr/c. Using a K-pulse
duration of 2wr/c, Figure 3.17 shows the K-pulse with the proper

duration. Then the responses of the loop at different angles to this
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K-pulse are shown in Figures 3,18 to 3.21. All the K-pulse responses
have very little energy remaining. If the duration of the K-pulse is
chosen to be =nr/c, after twenty-five steps of optimization, no
minimization of energy is achieved as shown in Figure 4.11, indicating
the choice of T is wrong. Again the "K-pulse" (Figure 4.12) obtained
has no dominant zero similar to any of the dominant zeros obtained from
the other three K-pulses.

Next the discussion turns to the low Q structures - the lTow Q model
[Equation (3.2)], the sphere, and the disk. The method of minimization
of the energy at late time is not expected to work well for the low Q
structures, as the energy contributed by their natural resonances is
small even before the optimization begins. Nevertheless, it is
interesting to see how the method to obtain the K-pulse duration behaves
for the low Q structures. The impulse response used for Equation (3.2)
has a bandwidth of kL = 0.057(0.057)100w., The initial guesses for the
K-pulse duration (Tel)’ the K-pulse response duration (TR) and the
cutoff time (Tc) for integration are 1.5L/c, 0.5L/c, 2.92L/c,
respectively. After ten steps of optimization, the first K-pulse kel(t)
as shown in Figure 4.13 is obtained. The K-pulse response is shown in
Figure 4.14. Increasing the K-pulse duration (Tel) to 2L/c (Tez)’ the
second K-pulse kez(t) as shown in Figure 4.15 is obtained after ten
steps of optimization. The response to kez(t) is shown in Figure 4.16.
Comparing the dominant zeros of kel(t) and kez(t) (Table 4.5), the first
approximation to the K-pulse duration is calculated to be 0.948L/c which

compares well with the true value of L/c. Using a value of L/c for the
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K-pulse duration, the K-pulse as ;hown in Figure 3.11 will results, and
response of the model to this K-pulse is shown in Figure 3,12. The
zeros of this K-pulse compare well with the poles of the model. Figure
4.17 shows the "K-pulse" with the guess of K-pulse duration (Te3) being
0.5L/c. The K-pulse response as shown in Figure 4.18 shows the
optimization process is walking in the proper direction. But a
comparison of the zeros associated with Figure 4.17 and the other
K-pulses for Equation (3.2) shows that these zeros obtained with K-pulse
duration of 0.5L/c are not even close.

For the next two low ) structures, the duration of the K-pulse
response must be known very accurately, as the energy contributed by the
natural resonances in the late time is quite small. If the K-pulse
response duration (TR) is chosen too large, the contribution can only
come from the first complex pole-pair. The better is the estimate of
the duration of the K-pulse response; the better is the number of real
poles available. The amplitude of the K-pulse and impulse responses for
these two targets are shown with a magnification of 100. The number of
optimization steps specified for each plot in the remainder of this
section is twenty-five.

The fourth example for this chapter is the conducting sphere. The
impulse response of the backscattered field of the sphere is generated
with a bandwidth of kr = 0.1(0.1)33.5. The duration of the K-pulse
response (TR) and the cutoff time for the integration (T¢) are chosen to
be 4sr/c and 10wr/c, respectively. For the K-pulse duration (Tgj) guess
of 3wr/c, the K-pulse [kgi(t)] is as shown in Figure 4.19, after
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optimization. The response of the sphere in the backscattered direction
is obtained and shown in Figure 4.20. For the K-pulse duration (Tsz)
guess of 4ar/c, the second guess K-pulse ksz(t) as shown in Figure 4,21
and the sphere response (Figure 4.22) to this K-pulse are then produced.
Comparing the zeros of ksl(t) and ksz(t) (Table 4.6), the first
approximation for the duration of the sphere's K-pulse is 2,254nr/c
comparing with the true value of 2ar/c. The reason that this number fis
not as good as before is the low Q property of the sphere. Using
T=2uar/c, the K-pulse with the proper K-pulse duration can be obtained as
in Figure 3.22. The responses of the sphere at various angle to this
K-pulse are shown in Figures 3.23 to 3.27. The poles obtained from the
K-pulse confirm the duration of the sphere to be 2ar/c. Again when the
duration of the K-pulse (T53) is chosen as uar/c, the zeros from the
"K-pulse" (Figure 4.23) do not resemble those obtained for the sphere
previously, even though the K-pulse response (Figure 4.24) exhibits some
energy reduction at late time.

The last example discussed in this chapter is the conducting
circular disk. The impulse response whose bandwidth is
kr = 0.16(0.16)16 at 6=45°, and 5-po1arizat10n is used. The K-pulse
response duration (TR) and the cutoff time (Tc) are chosen to be 4wr/c
and 8wr/c, respectively. The first guess K-pulse [kdl(t)] and the
response of the circular disk at 6=45°, and é-polarization to this
K-pulse with a K-pulse duration (le) of 3ar/c are shown in Figures 4.25
and 4.26, respectively. When the second quess of the K-pulse duration

(sz) is chosen to be 4nr/c, K-pulse [kdz(t)] as in Figure 4.27 is
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obtained. The corresponding response of the disc at 6=45°, and
a-polaization to this K-pulse is shown in Figure 4.28. Comparing the
zeros of kdl(t) and kdz(t) (Table 4.7), the first approximation to the
K-pulse duration (T) is 2.176nr/c, which compares fairly well with the
true value of 2wr/c., Again, because the disk is a low Q structure, the
first approximation is not very close. If T is chosen to be 2mr/c, then
the K-pulse and the disc's responses to the K-pulse are shown as in
Figures 3.28 through 3.32. Again the zero string of the K-pulse
verifies the proper K-pulse duration, Figures 4.29 and 4.30 show the
"K-pulse" and the response of the disc at 6=45°, 5=po1arization to the
"K-pulse" when the K-pulse duration is chosen to be wr/c. Although some
energy reduction can be seen, the zero string departs totally from the
other zero strings. This means the duration of the K-pulse is chosen

too small.

This chapter has presented a procedure to obtain the approximate
duration of the K-pulse. The method works better with high Q
geometries, even when the K-pulse response durations are not known very
accurately. The procedure works reasonably well with low Q structures
if the proper K-pulse response durations are known. The reason for this
discrepancy lies in the concept of minimizing energy outside the K-pulse
response duration. When the energy content at late time is low already
as in the low Q structures, the optimization process will not be able to
perform as well as the impulse responses with high energy content at
late time. Nevertheless, this is a very good procedure for estimating

or checking the proper duration of the K-pulse.
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1)
2)
3)
4)
5)
6)
7)
8)
9)

Table 4,1

Radian Frequency Difference Between Consecutive Poles

Equation (3.2) Wire
6.598 3.120
6.445 3.123
6.382 3.127
6.350 3.129
6.332 3.130
6.321 -
6.313 -
6.307 -
6.303 -
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Loop

6.362
6.340
6.330
6.323
6.319
6.316
6.313
6.311
6.310

Sphere Disk
5.913 6.744
5.974 6.595
6.014 6.528
6.038 6.487
6.070 6.461
6.082 6.441
6.095 6.426
6,113 6.414
6.120 6.404



Table 4.2

Summary of Radian Frequency Differences and Its Corresponding Time

E?uation Wire Loop Sphere Disk
Radian
Frequency
Difference 2n " 2n 2r 2n
Approaching
Corresponding L/c 2L/c 2nr/c 2nr/c 2nr/c
Time
First Radian 6.598 3.120 6.362 5.913 6.744
Difference

Corresponding 0.952L/c 2.014L/c  1.975wr/c  2.013nr/c 1.863nr/c
Time
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Table 4.3
A Comparison of the Zeros Obtained Using Two K-pulses with
Different Durations (The Target is a Straight Wire)

K-pulse Estimate [ky1(t)] K-pulse Estimate [ky2(t)]

(Duration = 3L/c) (Duration = 4L/c)

1)
2)
3)
4)
5)
6)
7)

-0.649 + 2.099j -
- -0.102 + 1.304j
-0.184 + 2.977j -0.178 + 2.967j
- -0.404 + 4,301j
-0.234 + 6.105j -0.260 + 6.093j
- -0.587 + 7.475j
-0.316 + 9.200j -0.318 + 9.194j
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Table 4.4
A Comparison of the Zeros Obtained Using Two K-pulses with
Different Durations (The Target is a Circular Loop)

K-pulse Estimate [kg1(t)] K-pulse Estimate [kgo(t)]

(Duration = 3ar/c) (Duration = 4ur/c)

1)
2)
3)
4)
5)
6)
7)

- -0.451 + 2.718j
-1.187 + 3.232j -
-0.432 + 6.520j -0.442 + 6.510j
- -1.101 + 9.438j
-0.557 + 12.859j -0.634 + 12.881j
- -1.218 + 16.044j
-0.779 + 19.246j -0.789 + 19.229j
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Table 4.5
A Comparison of the Zeros Obtained Using Two K-pulses with
Different Durations [The Simulated Model in Equation (3.2)]

K-pulse Estimate [kei(t)] K-pulse Estimate [ke2(t)]
(Duration = 1.5L/c) (Duration = 2L/c)
1) -3.639 + 5,201j -3.356 + 5.380j
2) -5.034 + 11.830j -3.860 + 11.633j
3) -6.197 + 17.960j -4,379 + 18.417j
4) -5.659 + 24,707j -4,358 + 24.659j
5) -6.125 + 33.393j -4,310 + 31.174j
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1)
2)
3)
4)
5)

Table 4.6

A Comparison of the Zeros Obtained Using Two K-pulses with

Different Durations (The Target is a Conducting Sphere)

K-pulse Estimate [kg1(t)]

(Duration = 3w7r/c)

-2.998
-4.700
-3.518
-4.197

+ 5.287j
+ 10,862
+ 16.428j
+ 22.252]
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K-pulse Estimate [kgo(t)]
(Duration = 4ur/c)
-1.478 + 4.036j
-3.405 + 5.419j
-2.047 + 10.414j
-2.291 + 16.359j
-2.510 + 22.313j



Table 4.7
A Comparison of the Zeros Obtained Using Two K-pulses with

Different Durations (The Target is a Circular Disk)

K-pulse Estimate [kqp(t)] K-pulse Estimate [kqp(t)]

(Duration = 3ar/c) (Duration = 4nr/c)

1)
2)
3)
4)
5)

- -0.808 + 3.180j
-1.522 + 4,082j -
-3.040 + 7.793j -3.048 + 7.411j
- -2.219 + 8.513j
-3.662 + 13.566] -2.222 + 13.697j
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Figure 4.1. K-pulse obtained using the Fourier synthesized impulse
response of the conducting straight wire at ¢=30° with
kL = 0.08n(0,08n)87, The K-pulse duration is 3L/c.
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Figure 4.12. "K-pu]se" obtained using the Fourier synthesized impulse
response of the conducting circular loop at 6=45° and
a-polarization with kr = 0.027(0.02n)4r. The “"K-pulse"
duration is nr/c.
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Figure 4.13. K-pulse obtained using the Fourier synthesized impulse
response of the simulated model given in Equation (3.2).
The K-pulse duration is 1.5L/c.
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Figure 4.13 for the simulated model given in Equation
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Figure 4.17. "K-pulse" obtained using the Fourier synthesized impulse
response of the simulated model given in Equation (3.2).
The "K-pulse" duration is 0.5L/c.
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Figure 4,18. Impulse response and response to the "K-pulse" shown in
Figure 4.17 for the simulated model given in Equation
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Figure 4.19. K-pulse obtained using the Fourier synthesized impulse
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Figure 4.20. Impulse response and response to the K-pulse shown in
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Figure 4,21.

K-pulse obtained using the Fourier synthesized impulse
response of the conducting sphere in the backscattered
direction with kr = 0.1(0.1)33.5. The K-pulse duration
is 4ur/c.
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Figure 4.24. Impulse response and response to the "K-pulse" shown in
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Figure 4.25. K-pulse obtained using the Fourier synthesized impulse
response of the conducting circular disk at 6=45°,
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duration is 3ar/c.
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Figure 4.26.

RESPONSE TO THE
OPTIMIZED K-PULSE

Impulse response and response to the K-pulse shown in
Figure 4.25 for the conducting circular disk at 6=45°,

8-polarization with kr = 0.16(0.16)16. The amplitude
scale is expanded by 100,
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Figure 4,27, K-pulse obtained using the Fourier synthesized impulse
response of the conducting circular disk at 6=45°,

8-polarization with kr = 0.16(0.16)16. The K-pulse
duration is 4nr/c.
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Figure 4.28. Impulse response and response to the K-pulse shown in
Figure 4.27 for the conducting circular disk at 6=45°,

8-polarization with kr = 0.16(0.16)16. The amplitude
scale is expanded by 100.
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Figure 4.29. "K-pulse" obtained using the Fourier synthesized impulse
response of the conducting circular disk at 6=45°,

8-polarization with kr = 0.16(0.16)16. The "K-pulse"
duration is =r/c.
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Figure 4.30. Impulse response and response to the "K-pulse" shown in
Figure 4,29 for the conducting circular disk at 6=45°,
6-po1arization with kr = 0.16(0.16)16. The amplitude
scale is expanded by 100,
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CHAPTER V
APPLICATION TO NOISY AND MEASURED DATA

In this chapter, the theory discussed in Chapter Il is applied to
simulated noisy data and measured data. The simulated noisy data are
generated by the addition of white Gaussian noise of zero mean to the
theoretical data. The Gaussian noise is generated with the subroutine
GAUSS in IBM System/360 Scientific Subroutine Package Version III. The
theoretical data for the circular loop are used for this study. The
measured data are from two finite circular waveguides, whose geometries
are the same and shown in Figure 5.1. (For the convenience of the
reader, all tables and fiqures of Chapter V are grouped together at the
end of the chapter.) One of the circular waveguides has both ends
opened. The other waveguide has the end at ¢=180° shorted. The
measurement of the geometries was done on the Ohio State University
Compact Range Reflectivity Facility [26].

The theoretical circular loop data are the same as in the previous
chapters. The ratio of the wire radius (a) to the loop radius (r) is
10°3. The bandwidth of the data is kr = 0.,02r(0.027)4n. The aspect
angle and polarization of the impulse response used are 6=45° and
5—po1arizat10n, respectively. The noise is added independently into the
real and imaginary parts of the frequency data before discrete Fourier
transforming the data into the time domain. The maximum amplitude of

the real and imaginary parts in the frequency data are about 0.36V and
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0.62V, respectively. For the first test the added Gaussian noise has a
zero mean and a standard deviation of 0.01V.

The impulse response obtained from the polluted data is shown in
Figure 5.2. The periodicity at late time of the impulse response is
about 2ar/c, which is the proper K-pulse duration (T). The optimization
process is started with 50 as the number of samples (N) to respresent
the continuous portion of the K-pulse. The energy is minimized over the
period from 6nr/c to 12wr/c. After ten steps of Powell-Fletcher type of
minimization, the value of N is increased to 100, and the K-pulse
response duration is reduced to 5wr/c. The cutoff time for the
integration is still 12nr/c. After another ten steps of the Powell-
Fletcher type of optimization, the resulting K-pulse is shown in Figure
5.3. Again the first diamond is an impulse, which is highlighted by an
arrow, the other one hundred diamonds are samples of a continuous
function, The impulse response and the response to the K-pulse in
Figure 5.3 for the loop at 6=45° and 5-po1arization are plotted in
Figure 5.4. The energy content remaining in the K-pulse response later
than t=4ar/c appears to be contributed by the noise component, as the
amplitude is in the noise level,

To see how well the the K-pulse obtained (Figure 5.3) stops the
resonance at late time, this K-pulse is convolved with the noiseless
impulse responses. By eliminating the noise factor, the K-pulse
response can be be compared with the results in Chapter III. Figure 5.5
contains both the impulse response and the response to the K-pulse shown

in Figure 5.3 for the loop at 6=45° and 5—po1arizat1on without noise.
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The energy content after t=4ar/c is very small. Figure 5.6 is the
impulse response and the response to the K-pulse shown in Figure 5.3 for
the loop at 6=0° and %-po]arization. Again the K-pulse response has
very little energy after 2.4nr/c. The impulse response and the response
to the K-pulse shown in Figure 5.3 for the loop at 6=45°, ;-polarized
are plotted in Figure 5.7. There is only a small residue of energy
after 4nr/c. The response to the K-pulse shown in Figure 5.3 and the
impulse response for the loop at 6=90°, &-polarization are shown in
Figure 5.8. The amplitude of the K-pulse response signal after S5ar/c is
greatly reduced. If Figures 5.5 through 5.8 are compared with Figures
3.18 through 3.21, respectively, the K-pulse obtained here is performing
very competitively as the K-pulse in Figure 3.17 does. That is why it
is not surprising to see the dominant zeros of this K-pulse (Figure 5.3)
compare very well with the true poles of the circular loop as shown in
Table 5.1. The noise level specified in this example is fairly close to
the noise level encountered at the 0.S.U. compact range facility.

This can be seen by comparing the K-pulse response at late time in
Figure 5.4 with Figure 5,24 where the noise amplitude is fluctuating
between * 0,03V.

In the second example, the noise level of the signal is increased
five times. This is to evaluate the K-pulse estimation technique when
the signal is corrupted by a large amount of noise. The frequency
response for the same circular loop at 6=45°, a-polarization is again
corrupted with white Gaussian noise of zero mean with standard deviation

of 0.05V. The impulse response is shown in Figure 5.9. The periodicity
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of the signal at late time 1s still around 2xr/c. Thus, the K-pulse
duration (T) is still chosen as 2xr/c. The K-pulse response duration is
chosen as 5nr/c. The cutoff time for integration is 12ar/c. :The number
of samples (N) used to represent the continuous portion of the K-pulse
is 100. After six steps of Powell-Fletcher minimization, the K-pulse as
shown in Figure 5.10 is obtained. The impulse response and response to
the K-pulse shown in Figure 5.10 for the loop at 6=45°, and
8-po1ar12ation are shown in Figure 5.11. The K-pulse response after
4nr/c is indeed very noisy. To check the approximate K-pulse, it is
again convolved with noiseless data. The K-pulse is first convolved
with the noiseless impulse response at 8=45°, 3-po1arization. The
result is contrasted with the impulse response in Figure 5.12. There
are still some residues after 4wxr/c. This 1is to be expected, as the
noise level of the impulse response employed to obtain the K-pulse has
been increased. The performance of the technique is expected to
degrade. Similar late time behaviour is exhibited at the other aspect
angles and polarizations. Figure 5.13 shows the impulse response and
the response to the K-pulse shown in Figure 5.10 for the loop at 6=0°,
;-polarization. Figures 5.14 and 5.15 show both the impulse response
and the response to the K-pulse shown in Figure 5.10 for the loop at
;-po1arizat1on with 6=45° and 90°, respectively. Even though Figures
5.12 through 5.14 have some residue at late time, the majority of the
energy contained in the late time of the impulse response has been

reduced. The first few dominant poles are probably available from the

zeros of the K-pulse in Figure 5.10. This is confirmed in Table 5.1.
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In fact, the first two zeros are very close to the true poles.
Furthermore, all of the imaginary parts of the zeros are very close to
the corresponding true poles.

In this next example, some backscattered measurement data are
examined. The target is a finite circular waveguide with open ends.
The geometry of the waveguide is shown in Figure 5.1. The measurement
is taken over the bandwidth of kr = 1.32(0.00665)12, where r is the
radius of the waveguide. At ¢=0°, 6=0°, a moment method solution [27]
is used to supplement the measured frequency data making the effective
bandwidth of the data as kr=12. The impulse response for the open-ended
finite circular waveguide at ¢=0°, 6=0° is shown in Figure 5.16. Figure
5.16 shows that there are two major scattering centres in the impulse
response - one at the front of the waveguide at t=0; the other at the
back of the waveguide at t=6.8nr/c. The earlier portion (0<t<6nr/c) of
Figure 5.16 can be viewed as the return from a semi-infinite circular
waveguide, since the effect from the back of the waveguide cannot be
within this early period. The amplitude at later time (t>6nr/c) of the
impulse response, of course, is the character of the finite open-ended
finite circular waveguide. Thus, the impulse response can be divided
into sections to isolate each of these mechanisms, In other words, this
example can be further divided into two sub-sections - one for the
semi-infinite circular waveguide (0<t<6nr/c), another for the finite
circular waveguide (t>6nr/c). The portion of the impulse response
related to the semi-infinite circular waveguide 1s analyzed first. Then
the analysis of the impulse response for the late time of the finite
circular waveguide is discussed.
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The early portion of the impulse response of the finite circular
waveguide is plotted in Figure 5.17. The approximate periodicity is
ar/c; therefore, the K-pulse duration is chosen as =nr/c. The energy fis
minimized between 3nr/c to 5wr/c. After five steps of Powell-Fletcher
minimization, the K-pulse is as shown in Figure 5.18. The response to
the K-pulse shown in Figure 5.18 and impulse response for the
semi-infinite circular waveguide at ¢=0°, 6=0° are shown in Figure 5.19.
The periodicity between 3ar/c to 5wr/c is gone. The residual amplitude
at late time seems to be contributed by noise. The zeros of the K-pulse
are listed in Table 5.2. Two of them are similar to what Moffatt et al.
[28] presented as complex natural resonances of a semi-infinite circular
waveguide extracted using rational function approximants; namely,
-2.076+11.266j and -5.0146+38.590j.

Measurements were also performed on a similar circular waveguide
with one end closed. The same bandwidth of kr = 1,32(0.00665)12 is
used, where r is the radius of the waveguide., Similarly, a moment
method solution [27] is supplemented in the lower frequency range to
give the impulse response at ¢=0°, 6=0° a bandwidth of kr=12., The
closed end is at ¢=180°. Since the early time (0<t<6nr/c) of this
impulse response does not contain the effect of the closed end, this
section of the impulse response (Figure 5.20) can also be considered as
the effect of the semi-infinite circular waveguide. However, the
impulse response of the circular waveguide with one closed end seems to
have a slight error. The amplitude is decaying until about 3.4sr/c,

then the signal seems to be growing. There are some energy reflection

136



from the back before the wave reaches the shorted end of the circular
waveguide, This may be due to the alignment of the circular waveguide
at the time of the experiment. Figure 5.21 is the impulse response and
the response due to the K-pulse of Figure 5.18 for the semi-infinite
circular waveguide at ¢=0° using the data of the finite circular
waveguide with one closed end. The K-pulse of Figure 5.18 is doing a
reasonable job of terminating the resonances except between 4ar/c to
6nr/c. Taking the error described earlier into consideration, the
slight increase in energy between 4nr/c to 6nr/c can be regarded as
measurement error rather than a problem with the K-pulse. However, this
K-pulse does not completely terminate the late time resonance of the
open-ended circular waveguide at ¢=0°, 6=0° (Figure 5.22). 1In other
words, the type of resonance exhibited by the semi-infinite circular
waveguide is different from the finite circular waveguide at late time.
To find the K-pulse to kill the resonance at the late time of the
open-ended circular waveguide, the impulse response of the waveguide at
¢=0°, 6=0° (Figure 5.16) is restudied. The periodicity of the impulse
response at late time 1s still ar/c, so the K-pulse duration is also
chosen as such. The energy between 10wnr/c and 16wr/c is minimized with
steps of Powell-Fletcher Scheme. After three steps of optimization, the
K-pulse shown in Figure 5.23 is obtained. The impulse response and the
response to the K-pulse shown in Figure 5.23 for the finite open-ended
circular cylinder are compared in Figure 5.24. The amplitude of the
K-pulse response after 8.8nr/c is in the noise level. The noise level

judging from the very late time amplitude is fluctuating between x0,02V.
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There is a little hump at about 14ar/c which is very close to
13.67r/c, the second time that the signal travels to and from the back
of the waveguide. There also seems to be a slight hump around 20.4nr/c,
the third time that the impulsive signal goes to the back of the
waveguide and returns. The K-pulse (Figure 5.23) does not cancel this
mechanism because the K-pulse duration is chosen as nr/c. To kill this
mechanism requires the duration of the K-pulse be increased to 6.4wr/c.
Since the magnitude of this mechanism is not large, its contribution is
neglected. The poles associated with the late time are listed in Table
5.2,

The convolution of the K-pulse (Figure 5.23) with the ¢=0°, 6=0°
impulse response of the circular waveguide with one closed end at
¢=180°, is shown in Figure 5.25. It is not surprising to see that the
ampltude of the K-pulse response at late time (t>11ar/c) has been
greatly reduced. For this configuration, the signal received is very
similar to the bistatic scattering at ¢=180°, 6=0° for an open-ended
circular waveguide with twice the length., The wave at the origin is
actually the same in the two cases because of image theory. Therefore,
the contributors to the resonance come from the different waveguide
modes excited. According to C. C. Huang's [29] calculation, there can
be as many as 40 different modes excited inside the waveguide.
Consequently, there is a lot of energy between t=6.8wr/c and t=11wr/c in
the K-pulse response. It is also interesting to note that there is a
little hump around t=15.6nr/c, which is the second round trip time for

the signal to travel to the closed end and back.
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A few words about the convergence of the K-pulses obtained in this
chapter is discussed next. Using the impulse response at ¢4=0°, 6=0° for
the circular waveguide with one closed end, the K-pulse obtained from
the late time (t>llar/c) has a shape very similar to the K-pulse
presented in Figure 5.23. One can only expect them to be very close, as
noise is involved. It is very unlikely that they would be the same.
Since the early time (0<t<3wr/c) of this impulse response has some
slight errors, the K-pulse obtained from the early time is quite
different from Figure 5.18. Other aspect measurements are also
available; but the bandlimited data does not seem to exhibit a lot of
resonance.

In this chapter, the K-pulse estimation technique performs well
with the quasi-noisy data. In fact, for a noise level that is similar
to the 0.S.U. compact range facility, the technique works extremely
well, The dominant poles extracted are very close to the exact values.
Even for very noisy data, the first two poles are still available from
the approximate K-pulse. The imaginary parts for all the poles
extracted are very close to the corresponding exact imaginary parts of
the poles. Also, this chapter has demonstrated that by isolating the
resonant mechanism in the time domain, the poles and the K-pulses
associated with each scattering mechanism can be extracted. Using the
finite circular waveguide data, the K-pulse associated with the
semi -infinite circular waveguide has been derived by isolating that

portion corresponding to the semi-infinite circular waveguide.
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Table 5.1
A Comparison of the First Six Exact Poles and Estimated Zeros in the
s-domain (Upper Left Half Plane) for the Thin Circular Loop

Exact o = 0,01V o = 0.05V
1) -0.423 + 6.509j -0.459 + 6,500 -0.433 + 6.340j
2) -0.606 + 12.871j -0.639 + 12.883j ~0.590 + 12.710j
3) -0.745 + 19.211j -0.715 + 19.320] -0.332 + 19.170j
4) -0.862 + 25.541j ~0.972 + 25.605] ~1.405 + 26,104
5) -0.965 + 31.864j -1.348 + 32.516] -1.836 + 33.032j
6) -1.059 + 38.183j -1.727 + 38.933j -2.738 + 39.308;
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Table 5.2
The First Five Estimated Poles in the s-domain (Upper Left Half Plane)

for the Finite Circular Waveguide

Early Time Late Time
1) -1.319 + 11.457j -0.384 + 13,728j
2) -6.815 + 25.319j -6.532 + 28.861j
3) -4.074 + 36.246j -7.084 + 40.139j
4) -5.668 + 52.065] -7.564 + 54,135j
5) -6.790 + 65,024 -8.409 + 67.192j
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Figure 5.1. An illustration of the geometry of a finite circular
waveguide.
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CHAPTER VI
CONCLUSTIONS AND RECOMMENDATIONS

This dissertation has presented, for the first time, a method
whereby the K-pulse of a target can be approximated without a priori
knowledge of some of the complex natural resonances of the target. The
only knowledge required is the impulse response of the target either
obtained directly in the time domain or as multiple frequency samples of
the scattered field. In the latter case the impulse response is
obtained via Fourier synthesis. Even though the impulse response will
be band-1imited in practice, it does not affect the generated K-pulse.
It is felt that the material in this dissertation represents a major
advance in that for the first time, as demonstrated herein, it is
possible to obtain an estimate of the K-pulse of an arbitrary target
from measured scattering data. This means that measured data from a
broadband reflectivity facility such as the compact range at the
ElectroScience Laboratory can be employed directly to obtain an estimate
of the K-pulse.

The model used to obtain an estimate of the K-pulse is particularly
simple - only weighted delta functions are used. The convolution
involving this K-pulse model and the impulse response of the target is
thus simple. These delta functions in the K-pulse model can be
considered as samples of a continuous function provided the sampling

criterion is satisfied. There is no evidence at this time that a more
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complicated model would improve the estimate of the K-pulse. Besides,
the fact that the delta functions can represent samples of a_continuous
function means a 1ot of the function can be modelled. Therefore, this
model is also quite general., The unknown weights in the K-pulse model
are obtained by minimizing the energy which, in time, 1ies beyond the
K-pulse response duration, The optimization is performed by available
computer programs. For this reason, time and financial considerations
also dictate the need for simplicity ir the model.

Once the K-pulse estimate has been obtained, the dominant complex
natural resonances of the target can also be determined from this
K-pulse estimate. This is possible because the whole theory of this
dissertation is based on minimizing the energy due to the complex
natural resonances of the target. This is also a new numerical
procedure to extract the complex natural resonances of a target. Target
identification can be performed using these complex natural resonances.
It may well be that in the future the K-pulse and the target responses
to the K-pulse will be viewed as the optimum canonical waveforms of the
target, 1ike the impulse, step and ramp responses now. This
dissertation presents the K-pulse estimates, the responses to the
approximate K-pulse and the complex natural resonances for the following
geometries: 1) a plane wave normally incident on a grounded dielectric
slab, 2) a thin conducting straight wire, 3) a simulated low Q model, 4)
a thin conducting circular loop, 5) a conducting sphere, 6) a conducting
circular disc, 7) two conducting circular waveguides - one with open

ends, and the other with one closed end and one open end. The results
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of the first six targets show that the imaginary parts of the complex
natural resonances are always very close to the true values, but only
the real parts of the more dominant complex nqtural resonances are close
to the theoretical values.

The duration of the K-pulse must be known and chosen reasonably
close, in order to obtain an approximate K-pulse which has a close
resemblance to the true K-pulse. For simple geometries, the K-pulse
duration is chosen to be the circumnavigational path. For complicated
geometries, the circumnavigational path is not very obvious. A more
general way to estimate the K-pulse duration is required. By using a
conservative estimate for the K-pulse duration, which is usually the
periodicity of the damped sinusoid at late time of the impulse response,
the zero strings of K-pulses with different durations are compared. The
imaginary parts of similar zeros from the K-pulses are used to obtain a
better approximation to the K-pulse duration; namely, the difference
between neighbouring common zeros. This approach seems to give a very
close value to the true K-pulse duration for high Q targets, and also
low Q structures whose late time responses possess substantial pole
contributions. For other low Q structures, the method still estimates
the K-pulse duration reasonably well if the duration of the K-pulse
response is known reasonably well, )

A1l in all, this dissertation has presented a very simple and
general technique to get an estimate of the K-pulse for an arbitrary
target using the impulse response of the target. The method works best

with high Q structures but low Q structures can also be treated. Now
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that a general method to obtain the K-pulses is available, the
applications of the K-pulse can be further investigated. After a
catalog of K-pulses is obtained for some realistic target models, a
practical target discrimination system can be built to see one of the
practical applications of the K-pulse concept. At the ElectroScience
Laboratory, the measurement performed with the compact range is in the
frequency domain. The method described in this dissertation, operates
on the Fourier synthesized frequency data or in the time domain. The
Fourier synthesis always adds some numerical errors and human
interpretations. A method to determine the K-pulse of the target
directly from the frequency domain is very much preferred, as the data
are already acquired in the frequency domain. All these are some of the

areas which can be further studied.
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APPENDIX A
PROCEDURES TO ESTIMATE THE K-PULSE

In this appendix, the conducting circular loop is used as a target
example to 1llustrate the steps and indicators in arriving at the
K-pulse shown in Figure 3.17. The duration of K-pulse (T) is assumed to
be known (see Chapter 1V, otherwise). For the loop, the duration of the
K-pulse is 2nr/c, where r is the radius of the loop. To begin the
process, an angle with a particular polarization at which the target
will exhibit most of its natural resonant behaviour is chosen. With
the loop, 6=45° at a-po1ar12ation is chosen. Either the impulse
response or the frequency response is measured or generated. If the
frequency response is measured or generated, then the synthesized
impulse response is obtained via fast Fourier transform. It 1s better
to start the process with a smaller bandwidth to reduce N, the number of
samples required to approximate the continuous portion of the K-pulse.
If N is small, the computation time is also smaller. Naturally, the
sampling of the impulse response must satisfy the sampling theorem in
order to approximate the true impulse response. The impulse response
shown in Figure A.1 has a bandwidth of kr = 0.027(0.027)4n,

The duration of the impulse response is theoretically infinite.

For other than very high Q targets, the impulse response damps quickly
to negligible values. The practical duration of the impulse response
should be long enough to include a few “"cycles" of contributions from

tne poles. Figure A.1 shows the duration of the impulse response of the
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loop at 6=45°, é-polarization to be 12wr/c. This includes five
"cycles". Since the loop is a high Q structure, experience has shown
that the duration of the K-pulse response duration (TR) does not have to
be known exactly. This is because the later cycles would also contain
large contributions from the lower order poles. The range of time over
which the energy of the K-pulse response is to be minimized can be any
number of "cycles". For this example, the duration of the K-pulse
response (TR) is chosen to be 6nr/c; the cutoff time for integration
(TC) is 10nr/c; and the number of samples (N) to represent the
continuous portion of the K-pulse [kc(t)] is 50. The choice of N=50
seems to be a good starting value. It gives a reasonable approximation
to kc(t) and yet does not take too much cpu time before the bottom of
the cost function is found. The choice of N cannot be too small for
then it violates the sampling criterion for the impulse response. The
computer program will do the optimization with the sampling rate
dictated by the K-pulse. In other words, the size of the matrix ¢ in
Equation (2.13) is controlled by the user. Also if the number of
samples is too small, then the criterion for straight line interpolation
may be violated. A good rule of thumb from experience is to choose the
sampling rate at least four times the Nyquist rate.

After performing a user-specified number of searching steps, the
program will prompt the option of plotting the K-pulse and the response
to the K-pulse. It is advisable at this time to check for jump
discontinuities in kc(t) and energy reduction in the K-pulse response.

If the impulse response has no jump discontinuities, there is no reason
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why there should be jump discontinuities in kc(t). If the energy
outside the K-pulse response is not less than the energy in the impulse
response, the program is not going in the down-hill direction. Either
of these conditions, 1. e., jump discontinuities in kc(t) or no energy
reduction in the K-pulse response, may indicate that the chofices of the
K-pulse duration (T), the K-pulse response duration (TR). the cutoff
time of the integration (Tc), or the number of samples (N) to represent
the continuous portion of the K-pulse [kc(t)] may be in error. The
geometry of the target in relation to the impulse response should be
restudied, such that the proper T, TR’ Tc or N can be chosen, The
optimization process is then repeated.

In the example, fifty steps of Powell-Fletcher search is first
specified. Then ten more steps of conjugate gradient and Powell-
Fletcher search are used to do repeated checks for the bottom of the
valley. The resulting K-pulse for the loop (Figure A.2) is obtained.
The program now prompts the option of writing the coefficients. Then
the program prompts the option of convolving the K-pulse obtained with
the impulse response of the target at another aspect angle using the
sampling rate dictated by the impulse response., Before this option, the
computer program uses a sampling rate that is specified by the user to
minimize the number of calculations. It is a good idea to convolve with
the same impulse response for a further check on energy reduction. The
result for the circular loop is shown in Figure A.3.

At this stage, the aspect and polarization independent property of

the K-pulse can be checked. Another check is to use a different aspect
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angle or polarization to check the convergence of the K-pulse, by
repeating the optimization process. For this example, the impulse
response for the loop at 8=45°, ;-polarization is used. The choices of
the K-pulse duration (T), K-pulse response duration (TR), the cutoff
time for the integration (TC) and the number of samples (N) to represent
the continuous portion of the K-pulse [kc(t)] are the same as what was
used previously. After fifty steps of Powell-Fletcher and twenty-five
steps of conjugate qradient search, Figure A.4 is obtained for the
K-pulse. The response to the K-pulse is shown in Figure A.5. The
K-pulses shown in Figures A.2 and A.4 are nearly identical. This will
only be true, if similar pole strings are excited for the two differnt
impulse responses of a high Q target. Since the size of the matrix (¢)
is 50x50, the cpu time for these steps is very short. Fifty steps of
searching probably takes less than one minute of cpu time.

The number of samples (N) can be increased to improve the accuracy
of the samples of kc(t). For the example, N is doubled and the K-pulse
response duration (TR) is reduced to 5mr/c. The impulse response used
is the first one which is at 6=45°, and a-polarized. After ten steps of
Powell-Fletcher and conjugate gradient search, Figures 3.17 and 3.18 are
obtained. The K-pulses shown in Figures A.2 and 3.17 do not show a
drastic change in shape. The aspect and polarization independent
properties are checked in Figures 3.19 through 3.21. The energy content
after 4unr/c in Figure 3.18 is less than that shown in Figure A.3. With
a further reduction of the natural resonance energy, the poles should be

closer to the true poles. Table 3.3 is repeated in Table A.1 for an
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easy comparison, Table A.1 lists the first ten poles in the upper
left-half plane for the circular loop. The poles are indeed approaching
the true poles. The process of increasing N can be repeated until the
sampling of the K-pulse is the same as in the impulse response, but the
cost of the computer time will increase. The bandwidth of the impulse
responses can also be increased to give a more accurate estimation of
the K-pulse. There is obviously a trade-off between K-pulse accuracy
and computer costs. The application of the K-pulse will ultimately

dictate the necessary accuracy.
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Table A.1
A Comparison of the First Ten Exact Poles and Estimated Zeros in the

s-domain (Upper Left Half Plane) for the Conducting Thin Circular Loop

Exact Poles Estimated Zeros Estimated Zeros

(N=100) (N=50)
1)  -0.423 + 6.509j -0.474 + 6.509j  -0.510 + 6.510j
2)  -0.606 + 12,871j -0.674 + 12,8915  -0.717 + 12.919j
3)  -0.745 + 19.211j -0.796 + 19.248j  -0.868 + 19.295]
4)  -0.862 + 25.541j -0.949 + 25.560j  -0.989 + 25.691j
5)  -0.965 + 31.864j -1.055 + 31.892j  -1.123 + 32,087]
6)  -1.059 + 38.183j -1.318 + 38.803j  -1.469 + 39.015j
7)  -1.145 + 44,499j -1.548 + 45,3265  -1.748 + 45,439j
8)  -1.226 + 50.812j -1.786 + 51.702j  -1.975 + 51.759j
9)  -1.302 + 57.124j -1.977 + 58.019j  -2.149 + 58.060]
10)  -1.374 + 63.434] -2.124 + 64,319j  -2.289 + 64.354j
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APPENDIX B
A TARGET DISCRIMINATION SCHEME

A similar target discrimination scheme had been discussed by
Moffatt [30]. It is now possible, however, to apply the scheme without
a priori knowledge of the target poles. From Chapter I, the frequency
response [En(s)] of a target at a particular aspect angle and
polarization is a memorphic function of complex frequency, it can be
decomposed into a fraction of two entire functions of exponential type.

(see Appendix D)

Fm(s)
Em(s) = K(s) (B.1)

where Fp(s) and K(s) are entire functions of exponential type. Since
the K-pulse response of the target at the mth aspect and polarization
[Fm(s)] is an entire function of exponential type, its time waveform is
time-limited [4]. The simplest way to discriminate targets is to
compare the energy content in the late time of the K-pulse response.
Target discrimination via late time energy was also discussed by Chen
[31].

Consider two conducting targets, a thick circular Toop and a thin
circular loop, and let the radius of the thick wire to the thin wire be
n, If the thin circular loop 1s present and the hypothesis is the thin
circular loop, then convolution of k(t) (Figure 3.17) with the Fourier

synthesized or measured impulse responses at any aspect angle and
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polarization will have very little energy content in the late time
(Figures 3.18 through 3.21). 1If the thick circular loop is present and
the guess is still the thin circular loop, then the convolution of k(t)
(Figure 3.17), the guessed target K-pulse, with the Fourier synthesized
or measured impulse responses at any aspect angle or polarization will
exhibit large energy content in the late time. This is shown, in
Figures B.1 and B,.2, which are the responses of the thick loop to the
K-pulse of the thin loop at 6=30° and 60°, respectively. Both impulse
responses are 5-po1arized and have a bandwidth of kr = 0.042(0.042)4.2.
The energy content in the late portion of the response is large;
therefore, the hypothesis of the thin loop is wrong.

Using the same idea, a target discrimination scheme can be derived.
The availability of K-pulses for a set of targets is assumed in the
following discussion., A parallel system is set up as in Figure B.3. A
target's broadband Fourier synthesized or measured impulse response
[e;(t)] is given and the question of which one in the set does this
impulse response belong to is raised. This target's impulse response is
convolved with all the K-pulses individually but simultaneously. The
energy content in the late time is compared among all the K-pulse
responses, The choice of the most probable target is the one having the
least energy content in the late time. Since late time is not well
defined, the operation can employ the elimination process. This is done
by comparing the energy content from the cutoff time of integration (Tc)
to the K-pulse response duration (TR) backwards in reasonable

increments. Stepping backwards one increment at a time, the higher
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Figure 3.17 for the thicker conducting circular loop at

8=30°, 6-polarization with kr = 0.042(0.042)4.2.
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energy content choices are discarded until only one choice remains.
There are aiso ways of identifying targets using the natural .resonances
of the targets [32-35]. Using the poles derived from the K-pulse, these
target identification methods can also be applied.

A word is in order concerning the effects of noise on a full scale
target discrimination system. Low Q targets will present the most
difficulty, as there i1s not much energy to compare with at the late
time. Their broadband Fourier synthesized or measured impulse responses
are of short duratfon. Fortunately, very few practical targets appear
to be low Q [36]. K-pulses for practical targets will continue to be
obtained from the 0.S.U. compact range facility which supplies
clutter-limited rather than noise-limited data. The proper place for
assessment of noise effects is in the identification studies rather than
K-pulse generation studies. All in all this appendix provides a

feasible target discrimination scheme.
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APPENDIX C
K-PULSE AND E-PULSE

Recently, a concept called "Extinction-Pulse" (E-pulse) [117, which
under certain conditions is closely associated with the K-pulse concept
[2] was discussed in the literature. In this appendix, this
relationship is discussed. The definition for the K-pulse is given in
Chapter II. An E-pulse is defined as a transient, finite duration
waveform wﬁich annihilates the contribution of a select number of the
natural resonances in the late time response [11]. Comparing the two
definitions, if 1) the E-pulse is chosen such that all the natural
resonances are annihilated, 2) the E-pulse contains no zero other than
those coinciding with the poles of the targets, 3) the duration of the
E-pulse 1s minimal, then it is the same as the K-pulse originally

defined by Kennaugh. The natural E-pulse model in [11] is,

e 2N

e (t) = § ¢, (t) . (c.1)
m=1

where the gn(t)'s are the basis functions, the cy's are real constants

to be determined and 2N is the number of poles to be cancelled. The

E-pulse [e€(t)] has a duration of Te. For a subsectional pulse basis

function of duration v,

9p(t)= ult-(m-1)y] - u(t-my) , (C.2)
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where u(t) is the unit step function., The duration of the E-pulse (Te)
is chosen as 2Nnn/wy, [11], where n is an integer and wy §s the imaginary
part of the th pole-pair to be cancelled. Equation (C.1) can be

Written in the s-domain as

1-e”5Y

) fN cme's’(""l)Y (C.3)
m=1

E%(s)= (

where y=nn/wg. Since N complex pole-pairs are to be cancelled by
Equation (C.3), this function must also contain the corresponding
complex zero-pairs.

The above expression is actually similar to the "Method of Zero
Insertion in Transform Domain" discussed by Gerst and Diamond [4] for

lumped paramter system. One example discussed by them is

1-e7%%, 2N —e(s-s
(s) = o 1 (e (c.4)
i=1
where s, 's are the poles to be cancelled, ¢ is an arbitrary number, and

i
2N is the number of poles to be cancelled. This input waveform was also

used by Kim et al. [10] as a K-pulse model for the circular loop with
the duration of the K-pulse, T=(2N+l)e. As pointed out by Gerst and
Diamond [4], the (l-e'es)/s factor, which is a pulse basis function, in
Equation (C.4) can be replaced by any Laplace tranform function G(s)
which has a finite time duration. In other words, any other basis
function can replace the pulse basfs function in (C.4). Since € is

th

arbitrary, it can be forced to cancel one of the poles in the 2

complex pole-pair. That is,

189



*
e-e(s-sz)zo -e(s-s,,)=0

1- and 1-e R (C.5)

*
where Sy is the complex conjugate of sl. Solving for €, gives e=nn/w£,

which is the same as y in Equation (C.3). Therefore, Equation (C.4) can

be reduced by one term,

1-e" %5, 2N-1  __(e.
( ) 1 (1-e e(s-s4)

i=1

K(s) = ) (C.6)

and the duration of K-pulse is now 2Ne. Substituting z=e'es, the above

equation can be written as,

1- 2N-1
Ks) = E 1+ o M, (©.7)
m=1

where the og's are functions of the poles. Performing the same

operation to Equation (C.3),

1- 2N-1
(D), Y Gy (c.8)

> m=1

Ee(s) = ¢

Since K(s) in Equation (C.7) is the same order of polynominal of z as
Ee(s) in Equation (C.8) and they both contain the same 2N zeros in order

to cancel the natural resonances, they are related by a real constant.

Furthermore,
Ci+l
ai = cl . (Cog)

The expression for K(s) in Equation (C.6) shows explicitly how the
poles are cancelled, which was concealed in Equation (C.1) and all the
theory behind it [11]. Henceforth, all reference to the E-pulse model
or the K-pulse model by Kim et al. will be referred to Equation (C.6).

This concludes the disscussion that both the K-pulse model employed by
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Kim et al. [10] and the E-pulse model [11] come from the same expression
used by Gerst and Diamond [4]. However, there is a strong distinction
between the two applications. Kim et al. take the limit of the number
of subsectional pulse basis functions to a large number (60); whereas,
Rothwell et al, only use a small number (less than 20) of subsectional
basis functions.

Next, the K-pulse model from this dissertation [Equation (2.22)]
and the other K-pulse model [Equation (C.6)] are compared. The

expression (C.6) has roots other than what was specified (sy). Namely,

j2nm
| €

(C.10)

are also zeros of Equation (C.6) for all integer n. Equation (2.22)
which is the Laplace transform of Equation (2.17) does not have such a
problem. To use Equation (C.6), the poles of the target must be known a
priori. The approach presented in this dissertation does not have such
a restriction. The only restriction this method may have is the
bandlimited Fourier synthesized impulse responses used which limits the
usable bandwidth of the K-pulse obtained.

The inverse Laplace transform of Equation (2.22) consists of an
impulse at t=0 and a continuous function spanning over the K-pulse
duration [Equation (2.17)]. The inverse Laplace tranform of Equation
(C.6) is a set of rectangular pulses. Could they be related? There are
two pieces of evidence that suggest they may be related. If Equation
(C.6) is divided by e and ¢ is taken to the 1imit of zero as N is

increased to infinity, the inverse Laplace transform of Equation (C.6)
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is an infinite set of impulses over the span of the K-pulse. This is
because [16]

lim pu(t)-u(t-e)q

e+0

s(t) (C.11)

€

where u(t) is the unit step function. On the other hand, the continuous
portion of the K-pulse in Equation (2.17) can also be viewed as an
infinite set of impulses over the duration of the K-pulse. Hence they
are both infinite set of impulses.

The other evidence is the interpretion of Equation (C.10), as €
approaches zero, the extra zeros will go to infinity, leaving only the
proper zeros in the finite plane. Hence, if the zeros in the finite
plane of both models described in Equation (2.22) and Equation (C.6)
correspond to all the poles of the target and none other, then the
models must be related. In summary, this appendix has shown that the
E-pulse model used by Rothwell et al. [11] and the K-pulse model used by
Kim et al. [10] orignated from the same equation used by Gerst and
Diamond [4] as an example. There are also very strong evidences that
their model is also similar to the K-pulse model employed in this

dissertation,
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APPENDIX D
PROOF THAT A MEMORPHIC FUNCTION CAN BE FACTORED INTO
A RATIO OF TWO ENTIRE FUNCTIONS®

The following proof is reproduced from the notes by Prof. J. T.
Scheik of the Mathematical Department at The Ohio State University: Let
r(z) be a memorphic function in the complex plane. The poles of r(z)
are listed as z4; ¥ =1, ..., ». The higher order poles are also
included in the list. Next, an entire function f(z) is defined such
that its zeros and their respective orders are the same as the poles of

r{(z). f(z) can be written [37] as,

£(z) = 2"e"(@) 1 (1:§;)ep‘(z) , (0.1)
i=1
i 1 z k
where pi(z) = ) E‘(;T : (D.2)
k=1

m is the order of the pole of r(z) at z=0; h(z) is an entire function,
then

f(z)r(z)=g(z). (D.3)
g(z) is an entire function, as all the poles of r(z) are cancelled by

f(z), and g(z) is now analytic everywhere., For z # zj,

9(z) (0.4)

r(z) = £(2)

This concludes the proof that a memorphic function r(z) can be written

as a quotient of two entire functions g(z) and f(z).

* SimiTar proof is probably given in some textbooks. It is included
here for the readers whose interests are in the mathematical
properties of the K-pulse,
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