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¿-REGULAR ELEMENTS IN SEMISIMPLE ALGEBRAIC GROUPS
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PETER P. ANDREÍ1)

ABSTRACT.   In this paper, Steinberg's concept of a regular element in
a semisimple algebraic group defined over an algebraically closed field is gener-
alized to the concept of a fc-regular element in a semisimple algebraic group de-
fined over an arbitrary field of characteristic zero.   The existence of semisimple
and unipotent fc-regular elements in a semisimple algebraic group defined over a

field of characteristic zero is proved.   The structure of all fc-regular unipotent
elements is given.   The number of minimal parabolic subgroups containing a fc-
regular element is given.   The number of conjugacy classes of Ä-regular unipotent
elements is given, where  R   is the real field.   The number of conjugacy classes
of  Q -regular unipotent elements is shown to be finite, where   Q     is the field
of p-adic numbers.

1. Introduction. In [11], R. Steinberg defined a regular element in a semi-
simple algebraic group defined over an algebraically closed field to be one whose
centralizer had minimal dimension. He showed that there exists one conjugacy
class of unipotent regular elements and that a unipotent element was regular if
and only if it was contained in a unique Borel subgroup.  He also showed that a
unipotent element u was regular if and only if

where xa.¥= e for all simple roots a¡.
In this paper, we extend Steinberg's results to groups defined over a field

k of characteristic zero which is not necessarily algebraically closed. We define a
fc-regular element to be an element in the split radical of a minimal parabolic sub-
group whose centralizer has the same dimension as the centralizer of a maximal
split torus. If k is algebraically closed, then a fc-regular element is regular in
Steinberg's sense.

We will show the existence of both semisimple and unipotent fc-regular
elements.   We shall also see that a unipotent element   u   is   fc-regular if
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106 P. P. ANDRE

and only if   u = jc„. • • • jc„ jc„. • • • jc„     where xa.¥=e  for all restricted' al an  Pi Pm ai
simple roots a¡. The number of minimal parabolic subgroups containing a fc-
regular element jc will be shown to be  \Wk(G)\l\Wk(C°(xs))\ where Wk(G) is
the restricted Weyl group of G.  We will show that there is one GR -conjugacy
class of R-regular unipotent elements if G is adjoint or if G is not split and
is not one of three possible exceptions.  A method for calculating the number of
GR -conjugacy classes of R-regular unipotent elements in a split group is given.
For the p-adics, the number of conjugacy classes of Qp-regular unipotent elements
is shown to be finite.

In [6], Kostant and Rallis examined an equivalent concept to fc-regularity
in the p-space of a Cartan decomposition g = f + p of a complex semisimple
Lie algebra.

In [8], L. P. Rothschild discusses the G-conjugacy classes of Z?-regular nil-
potent elements in a real Lie algebra which are the Lie algebra analogues to R-
regular unipotent elements.

2. Notation. We will be concerned with a semisimple algebraic group G
defined over a field fc of characteristic zero. The group of fc-rational points of
G will be denoted Gk. Associated with such an algebraic group is a Lie algebra
0 whose fc-rational points will be denoted flfc.  In general, Gothic letters will be
used to denote Lie algebras of algebraic subgroups.

Throughout the paper we will use P to denote a minimal parabolic sub-
group of G. S will represent a maximal fc-split torus contained in P and U
the maximal unipotent subgroup contained in P. The action of S on U gives
rise to a restricted root system Afc on S. We will call the set of roots a such
that the root group U^ is contained in P, the positive roots and denote the
set Ak. The set Tlk such that every root in Ak can be written uniquely as
a positive integral combination of roots in n¿  is called the set of simple roots.

The paper makes strong use of Morosov's lemma, wliich can be found in
[4] or [5].  The results on reductive algebraic groups used in this paper can be
found in [2], [3], or [13].

3. Simply written elements.
Definition 1.  A Lie triple  [X, H, Y]   is a subset of three elements

{X, H, Y}  of a Ue algebra such that   [H, X] = 2X, [H, Y] = - 2Y and
[X, Y] = H.

Proposition 1. Z.er X be a nilpotent element in gfc, the k-rational
points of semisimple Lie algebra g.   Then there exists a Lie triple,   [X, H, Y]
such that HE$k, the k-rational points of the Lie algebra 3 of a maximal fc-
split torus of G.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



fc-REGULAR ELEMENTS 107

Proof. Since the characteristic of Qfc  is zero, X can be embedded in a
Lie triple   [X, H', Y']   in flfc. The Lie algebra. Qk spanned over fc by
{X, H', Y'} is semisimple and thus forms the fc-rational points of an algebraic
Lie algebra a   by Corollary 7.9, p. 195 of [2].   Let G' be the group whose
Lie algebra is fl'. The Lie algebra n'  spanned by X is the Lie algebra of a
unipotent group  U' in G'. The normalizer of n'  in G' is a Borel subgroup
of G' and contains a maximal fc-split torus S' of G'. Let S be a maximal
fc-split torus of G containing S'.  Let a be the Lie algebra of S and 3' be
the Lie algebra of S'. Since ad $' normalizes n', this defines a root a on €'.
Let n" be the root space in fl'  for the root - a. The elements of n"  are
nilpotent elements of fl'. The spaces n',a' and n"  span fl'.  Let HEî'k be
such that  [H, X] = 2X. Thus  [H, N] = - 2N for any N G n*.

[[N, X],H]=- [[X, H],N]- [[H, N],X]= 2[X, N] - 2[X, N] = 0.

Thus   [N,X] E$'k. Pick  YEn'k suchthat  [X, Y] =H.  Thus   [X, H, Y]   is
a Lie triple and H E ê'k C$k where S is the Lie algebra of a maximal fc-split
torus.

For the remainder of this section, P will be a fixed minimal parabolic sub-
group and S a fixed maximal fc-split torus contained in P. U will be the max-
imal unipotent subgroup of P. Then U= U(ax)U(a2) ' ' ' U(a ) where t/(Q.)
is the unroot group and a¡ is a root with respect to S.

Definition 2. A nilpotent element NEnk, the fc-rational points of the
Lie algebra n of the group  U, is simply written if N = Sa6n.í'a  where
^a G na> a-root sPace and Xa ^ 0 for all a E Uk.

Proposition 2. A simply written nilpotent element NEnk is contained
as the first member of a Lie triple   [N, H, Y]   in flk suchthat HE8k,the
k-rational points of the Lie algebra g of the maximal k-split torus S.

Proof.  By Proposition 1, A^ can be embedded in a Lie triple   [N, H\ Y'\
where H' is an element of the fc-rational points of the Lie algebra S" of a max-
imal fc-split torus S".  Let n'  be the fc-space spanned by A''.   Let R(n') be the
normalizer of n'  in G.   Let jc GZ?(n')fc.  Then, by the Bruhat decomposition,
jc = uxnwu2  where ux, u2 E Uk and nw EN(S)k. Since jc ER(n')k,
uxnwu2Nu2ln^u~xl = tN where  r G fc.   Let u2Nu2l = Y = SKa + 2/^
with  Ya ¥= 0  for all a E ilk. But

nwYn~l =T,nwYan-1 +Z"wVw1 = T.Y'w-i(a) + 2^-i(W

which is not in p, the Lie algebra of the minimal parabolic subgroup P, unless
w = e and nw E P.  Thus R(ri)k C P and R(n') C P.   Since H' is in the
Lie algebra of R(n'), H' G p.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



108 P. P. ANDRE

H' is therefore contained in the Lie algebra of a maximal fc-split torus con-
tained in the minimal parabolic subgroup P. The maximal fc-split tori of P are
conjugate by elements in  Uk. Therefore, there is an element uEUk such that
uH'u~l E 3fc, the fc-rational points of the Lie algebra 3 of the maximal fc-split
torus S.   Now, uNu~l = 2aen .Ya + 2Xß, ß ranging over higher roots.  Let
H = uH'u~1. Then,

[H, uNu-1] = 2uNu~i = [H, £Xa + T.Xß]

= 2>(Z/)*a +ZmXß = Z2Xa + Z2Xß.
But, then a(H) =2 for all aE nfc. Thus ß(H) > 2 for all higher roots. But
ß(H) = 2 unless X0 = 0 for all ß, and uNu~l = N. Therefore, the Lie triple
[N, H, uY'u~l]   is the Lie triple which we want.

Corollary 1. Let NEnk be simply written. In the Lie triple [N, H, Y]
such that HEnk, H and  Y are unique.

Proof. If N = SXa, a E nk. Then a(H) = 2  for all aE nk.  Since the
simple roots form a basis for %%, H is uniquely determined.   Y is unique from
p. 984 in   [5].

4. fc-split elements.
Definition 3. The split radical SR(P) of a minimal parabolic subgroup

P is the group generated by a maximal split torus S and the unipotent radical
U of P.

Definition 4.  An element g EGk is a k-split element if it is contained
in the split radical of a minimal parabolic subgroup.

Lemma 1. Every k-rational element of SR(P) is conjugate by an element
in Uk to an element of the form of su where sESk and u EUk and s commutes,
with u.

Proof.  Order the positive roots Ak   starting with roots of height one
and then height two and so on.  Let jc G SR(P)k. Then jc = SjUj   where
sx E Sk  and  ux = Hxa. G Uk where jca. G Ua. , the fc-rational points of the
cyroot group, and  a¡ <a;-  if i <j.

If sx   commutes with jca , proceed to jca .  If sx   does not commute
with jc    , then Cüjís^^l.  If jc     =exp(Xa),construct

/ M»i)       \% =exp [T^Mx*4'

Then
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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_, _,        _, / al(sl) \ /   al(sl) \

=exp (o-¿rr z°.) exp(^y=ï x«)=■*«■»> -v

Thus t/ajsjjcai«ai =Sj and uai\uji/ai =Sj^2 ••'^á„-
Proceeding inductively, SjUj is conjugate by an element in C/fc after r steps

to SjÜjc^JIjc^. where jc^. commuteswith sx and nfj>o.i for all a,-, l</<r.

Proposition 3. Every semisimple k-split element is contained in a maximal
k-split torus.

Proof. Let jc be a semisimple element of SR(P)k. By Lemma 1, jc is con-
jugate by ux in Uk to an element of the form su where sESk and uEUk and
su = us. But by the uniqueness of the Jordan decomposition, u = e and MjJcuJ"1 =
Sj since UjJCuY1 is semisimple. Thus jc is an element of the maximal fc-split torus
u~xlSux.

5. fc-regular elements.
Definition 5. A fc-split element jc is k-regular if dim C(jc) = dim C(S)

where C(jc) is the centralizer of jc in G and C(S) is the centralizer of S in G.

Proposition 4. If x is a k-regular semisimple element and y is a k-split
semisimple element then dim C(jc) > dim C(y).

Proof. By Proposition 3, every semisimple fc-split element is contained in a
maximal fc-split torus. Thus v is an element of a fc-split torus Sx. But.dim C1(y)<
dim C(5j) = dim C(S) = dim C(x).

Proposition 5. There exists a k-regular semisimple element.

Proof. Since C°(jc) is reductive, where C°(jc)  is the connected component
of the identity and x is an element of Sk, C°(x) is generated by C(s) and the
root groups  U(a) where a(jc) = 1.  Since S is fc-split, Sk at Hom(X*(S), fc*).
Since fc is infinite, there exists s E Sk  such that ot(s) ¥=1  for all a G X*(S).
Therefore, a(s) =¿ 1   for all a G Ak. Therefore, C°(s) = C(S) and s is fc-regular.

Definition 6. A unipotent element uEUk is simply written with respect
to a maximal fc-split torus S, if « = exp (A) and A is a simply written nilpotent
element.

Proposition 6. There exists a k-regular unipotent element.

Proof. Assume that G is not anisotropic. Let jc be a simply written uni-
potent element of Uk with respect to the maximal fc-split torus S. Then jc =License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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exp(X) where X=2Xa, aGII^ and Xa¥:Q. By Proposition 2, X is contained
in a Lie triple   [X, H, Y]   with H ESk, the fc-rational points of the Lie algebra
3 of the group S.   Let a be the fc-Lie algebra spanned by   {X, H, Y}.  flfc  is a
completely reducible o-module.  Therefore, we can write flfc  as the sum of irre-
ducible o-modules ik'\ Each fl£>  is the direct sum of eigenspaces (ñ-m.+2P)k
of H such that if NE (fl^.+2p)fc, then   [H, N] = (- m¡ + 2p)N.

dim C(X) = n, the number of irreducible components.  C(H) has a one-
dimensional intersection with fl^  if m¡ is even.  If m¡ is odd, C(H) n
fl(/) = {0}.

Now, 2X= [H, X] = [H, ZXa] = 2a(H)Xa. Thus a(H) = 2  for all
a E nfc  and ß(H) is even for all ß E Ak. Thus mi cannot be odd for any L
Therefore, dim C(H) = dim C(X) = n.

But, ß(H) ¥> 0 for any ß G Ajf.  Thus dim C(H) = dim C(3) = dim C(S).
Since  C(X) is the Lie algebra of C(jc), dim C(jc) = dim C(X) = dim C(H) =
dim C(S). Therefore, jc is fc-regular.

If G  is anistropic, then the identity is a fc-regular unipotent element.

Proposition 7. Let x be a k-regular unipotent element and y a unipotent
element in Gk.  Then  dim C(k) < dim C(y).

Proof.   Let y = exp Y.   By Proposition 1, Y is contained in a Lie triple
[Y, H, Z]   such that H E 3^, the fc-rational points of the Lie algebra of a max-
imal fc-split torus S'.  Let a be the fc-Lie algebra generated by   {Y, H, Z}. As
in Proposition 6, flfc  is the direct sum of irreducible a-modules a)¡). But
dim C(H) < dim C(Y) and dim C(jc) = dim C(S) = dim C(S") < dim C(H).
Thus dim C(jc) < dim C(Y) = dim C(y).

Proposition 8. A k-split element x is k-regular if and only if xu is k-
regular in C°(xs), the Zariski component of the identity in C(xs) where x =
XgXu  is the Jordan decomposition of x.

Proof.  We know that  C(jc) C C(xs), since anything which commutes with
jc commutes with both its semisimple and unipotent parts.  Thus, the Zariski-
connected component of C(jc)  containing the identity is equal to  C^(xu), the
Zariski-connected component of the centralizer of jcu  in C°(jcs), which we
denote by H.   Let x be fc-regular. Then it is fc-split and thus xs and jcm  are
fc-split. Therefore, jcs is contained in a maximal fc-split torus S and S Ç C°(jcs)
= H.   Since jc^ G S, then C(S) Ç C°(xs) = H and dim CG(S) = dim CH(S).
Since dim CG(jc) = dim CH(x), x is fc-regular in H.   But, dim CH(x) =
dim CH(xu) and jc„  is fc-regular in H = C°(jcs).

Suppose jcu  is fc-regular in C0^). Then  dim Cg(jc) = dim C^jc) =
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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dim CH(xu) = dim CH(S) = dim CG(S) and jc is fc-regular in G.

Corollary 2. Every semisimple k-split element is the semisimple part of
a'k-regular element.

Proof. Let xs be a semisimple fc-split element.  By Proposition 6, there
exists a fc-regular unipotent element jcu  in C°(xs). The element x¿xu  is fc-
regular in G  and jc = jcsjcu  is the Jordan decomposition.

6. fc-regular unipotent elements.

Proposition 10. A unipotent element u E Uk is k-regular if u =
xaxxa2 ' ' ' xa„xßx ' " xßm  where *<*,- G Uaf the ai root group, xß. E U&¡
the ßj root group, a{EUk and x^^e for all a¡ E Uk and xa.$ U2a. if
2a,- is a root, ßi range over positive roots of higher order.

Proof. It suffices to show that u is Gfc-conjugate to a simply written
unipotent element jc.

Let u = exp N where N = '2X0l + "ZXß where aEUk  and ranges over
positive roots of height greater than one. We will show that N is Gk-conjugate
to X = 2Za. Note that Xa # 0 for all a G Tlk. The conjugation will be
carried out sequentially. X will be conjugated by an element in  Uk  so that it
will have the same components of A in the root spaces of height one and two
and then that element will be conjugated so that it agrees with A in all root
spaces of height one, two and three and so on.

Let nfe  be the fc-rational points of the Lie algebra n of U. Let nj  be
the fc-rational points of the Lie algebra n+  spanned by the root spaces n^.
where ßt has height greater than one. We shall first prove that   [X, nk] = n¿".

Since X is simply written it can embedded in a Lie triple   [X, H, Y]   such
that H E 3fc, the Lie algebra of S.   Let a be the fc-Lie algebra spanned by
[X, H, Y]. Then flfc  is the direct sum of irreducible a-modules fl£\ Each
8^ is the direct sum of eigenspaces (ñ(~-m+2P)k where   [H, Z] =(-m¡ + 2p)Z
if ZE(^m.+2p)k. Let iRk = ^M\'. Note that, for R > 0, [X, flÄfc] =
(8«+2)fc- Let ßfc =2*>o(öiAand fl++ = 2Ä>2(fli?)fc. Therefore, [X, fl+] =
8++. Since X is simply written, X = XXa, a E Uk. Then [H, X] = [H, 2Xa] =
2a(H)Xa = 2T,Xa. Therefore, a(H) = 2 for all simple roots a, and ß(H) is
positive and even for all positive roots ß E Ak. Thus nk E fl£  and nk C fl£+
but dim nfc > dim fl£  and  dim mt > dim Qk+. Therefore, nk = ik   and
n+ = fl++. Thus  [X, nk] = n^.

Let N¡ be the sum of all Xa. in the expansion of U into components
such that the height of ßj is i   By above, there exists  Y2 G nk  such that
[X, Y2] =N2  and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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X2 = exp (Y2)X exp (- Y2) = X + [X, Y2] + higher terms

= X + N2 + X<32) + X\2) + • • •

where X)2^ is the component of exp (Y2)Xexp(-Y2)  in the root spaces of
roots of height i.

There exists a  Y3 E nk  such that   [X, Y3] =N3- XS^. Then

exp(y3)X2 exp(-73) = X2 + [X2, Y3] + higher terms

= X + N2 + X\2) +N3- Xi32) + higher terms

= X + N2 +N3 + higher terms.

Proceeding sequentially we can conjugate AT by a suitable element in  Uk  and
obtain N.  Thus u = exp (N) is GÄ-conjugate to jc = exp (X) and u is
fc-regular.

Proposition 11. Let u be a k-regular element in   Uk.   The Gk-conjugacy
class of u is dense in   U.

Proof.  Let <f>: P—*■ Ube defined by 0(p) = pup-1. Since 0 is a regular, <j>(p)
contains an open subset of 0(ZJ). However,

dim C(S) = dim CG(u) > dim Cp(u)

= dim OF1 (")) > dim P - dim 0(P).

But dim P = dim C(S) + dim U.  Thus dim 0(P) = dim U and 0(P) = U. Since
Pk is dense in P, <t>(Pk) is dense in <¡>(P). Thus 4>(Pk) is dense in  U.

Proposition 12. Let uEUk such that u = JCa jcQ2' • • xanxßx ' " xß  »
a¡ G nfc and xa. = e for some ctjEIlk and ßt range over higher roots.   Then
u is not k-regular.

Proof. Suppose u is fc-regular. The Pk-conjugacy class of «  is then
dense in  U and contains an element jc such that jc = J<ajJca   • • • xa„xßx
• • • Xß     and jca ¥= e for all a¡ E nk. However, no Pk conjugate of u  can
have a nonidentity a-  component. Thus u is not fc-regular.

Corollary 3. A unipotent element uE Uk is k-regular if and only if
u = xaixa2 • • • xanxßi "' xßm  where xa¡ * e for all a¡ G nfc and ßt
range over higher roots.

7. fc-regular elements and minimal parabolic subgroups.

Lemma 3.   Let x be a k-regular element which is a member of two min-
imal parabolic subgroups Px  and P2.  Let x be an element of the split radicalLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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SR(PX) of Px and xs be an element of S, a maximal k-split torus contained
in Px. Then there exists an element n of N(S)k, the k-rational points of the
normalizer of S, such that «P2«-1 = Px.

Proof.   Since Px   and P2  are minimal parabolic subgroups, there exists
gEGk  suchthat gP2g~l = Px. By the Bruhat decomposition, g - uxnwu2
where ux,u2ERU(Px) and nwEN(S)k. Since ux  is an element of Px,
nwu2p2u2lnwl =pv

Let u = *ajJca2 • • • xaxßl "• xßm  where w l(a¡) is positive and
w-103,-) is negative. Then

nwu2 ~ nwxa.xxa2 ' ' ' xanxßx ' ' ' xßm

= x _j      x _,.      '"JC _j     Jiwxß   '"Xß    =u3n u4.w   '(0!j) w   l(ot2) w   l(.<*n) w Pi Pm *  w  *

But then nwu4P2ulxri^ = Px.
Let A'k = {a E AJo^jCj) =1}. A^  is a root system for C°(xs) and

since jc is fc-regular, jcu  is a fc-regular unipotent element in C°(jcs). If II^  is
a set of simple roots for A^  such that Tl'k C Ak , then jcm = xy xy   • • •
xyxs   • • • jc5     where xy. ¥= e  for all y¡ E Tl'k  and S¡ ranges over the higher
roots of A'k+ = A+ n A^.

Suppose ßi(xs) ¥= 1 for some root ßt where xß.i*e in the decomposi-
tion of «4. Then pick the root ßj of lowest height such that ßj(xs)¥=l. By
the above, we have

nwxßxih)xß2^2) • • • \(f»Wß„K) * ' * »í,Hi)"»

" nwxsxßx(tl/ßl(xs)) ' ' ' xßn(tJßn(xs)')xuxßn(rtn) ' ' • Xßi(-tx).

Since ßj is the root of lowest height such that ßj(xs) == 1, it is not a positive integral
combination of the other pVs, y^s and 5,'s. Therefore, the ßj component of
u4%ií¡'   is not the identity, since

'í(W»'í/-'/)-'í/('/(1^))*-
But if u4XgXuu4'   is written x¿cp   • " xp    where p¡ EA%,px = ßj,

then

nwu4xsxuu4lnw=x'sx'w-iip j'-'^-i^ j  where nwxsn~1=x's.

But nwu4xsxuu^xn^ is an element of Pj, while w~l(px) is negative  and
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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JC _j is not in Px. Therefore, by contradiction, ß((xs) = 1   for all roots
.4.

W        \HXJ
ßi such that xß íe in the expansion of u4

Assume that there is a ßj such that jc^. #e in the expansion of u4.
Then ßj is a positive integral combination of the roots in  n^, since j3-(jci)=l.
But w-1(p\) is negative, thus w~l(yt) is negative for some y¡ETl'k. Since
jcu  is fc-regular in C°(jcs), xy. ¥= e.   Since y¡ is simple in Afc+, the y¡ com-
ponent of u4xuu4l   is not the identity. Thus

,-i„-i =nwu4xsxuu4*nw* = xjiwxyi • • • xyxSi • • • jc6 «p w

I      H=  Y  y • • •   y Y • • •   y

and jc" _j, .,  is not an element of P.. This leads to a contradiction since
n^jM^«^1«-1   is an element of i'j. Therefore xß. = e for all (3y-  and

"w^W =/Ji-

Proposition 13. A k-regular unipotent element is contained in only one
minimal parabolic subgroup.

Proof. Let «  be a unipotent fc-regular element such that «  is an element
of two minimal parabolic subgroups Z'j   and P2. Then u = eu is the Jordan
decomposition of u  and e is an element of every maximal fc-split torus of Z'j
and u is an element of SR(PX). By Lemma 3, there exists nwEN(S)k  such
that rVW =pv Let "=*ai*a2 "•*<*„*/?! '"xßm where jca/¥= e
for all a¡ E Uk and (3f range over higher roots. If w =£ e, then w ' (a,-) is
negative for some ay G flfc  and x'w-x,..  is not an element of Px. But

"w"»«,1  =X'w-lrai)X'w-l(a2) ' ' * X'w-H«„)Xw-l(ßx) ' ' ' *W-»(J>M)

is an element of Z'j. This is a contradiction.  Hence, w = e and nw  is an
element of Px. Therefore Z'j = P2.

Corollary 5. The centralizer of a k-regular unipotent element is contained
in P, the unique minimal parabolic subgroup containing u.

Proof.   Let g be an element of Gk suchthat gug'1 = u.   Thengífc-1
is a minimal parabolic subgroup containing u.  Thus gPg~l = P and g is an
element of P since P is its own normalizer.  Since C(u)k is dense in C(u),
C(u) is contained in P.

Proposition 14. A k-regular semisimple element is contained in  \Wk\
minimal parabolic subgroups where  Wk is the restricted Weyl group.
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Proof.   Let s be a fc-regular semisimple element contained in a maximal
fc-split torus S CPX   and let s be an element of P2.  Then by Lemma 3, there
exists nwEN(S)k suchthat nwP2n^1 = Px.  Since the elements in N(S)k
normalize S, s is an element of nPxn~l   for all nEN(S)k- Since N(S)k n
Z'j = C(S)k  and Z'j   is its own normalizer, the number of minimal parabolic
subgroups of the form n^j«"1   is  \N(S)klC(S)k\ = \Wk\.

Lemma 4. Let s be a semisimple k-split element. A minimal parabolic
subgroup Px of C°(s) is equal to the intersection of C°(s) and a minimal
parabolic subgroup P2  of G such that s   is an element of SR(P2).

Proof.   Let g be an element of C°(s) and let s be an element of the
maximal fc-split torus S where S is contained in the minimal parabolic subgroup
P.   Now by the Bruhat decomposition g can be written uniquely as uxnwu2
where ux   and u2   are elements of Uk ÇP, nw  is an element of N(S)k  and
u2 = xa xa   • • • xa    with a¡ E Ak   and w~1(a¡) is negative, sgs-1 =
suxnwu2s~l = suxs~lsnws~lsu2s~i = g.   But suxs~1   is an element of Uk,
sn^yS-1   is an element of N(S)k  and su2s~l = x'a x'    ' ' ' x'a    where w~l(a¡)
is negative.  Hence by the uniqueness of the Bruhat decomposition, suxs~l = ux,
snws-1 = nw,su2s~x = u2. Therefore, C°(s) is generated by  C(S) and the
root groups  U,a-,  such that a(s) = 1.

P n C°(s) = Px   is a minimal parabolic subgroup of C°(s), since P O C°(s)
is generated by  C(S) and the root groups  i/(a)  such that a(s) = 1   and
a E AjJ". Given a root a E A'k = [aE Ak|a(s) =1}  then either  i/(a)  is con-
tained in Z'j  or  C^(_a)  is contained in Z'j.

Let P'x   be another minimal parabolic subgroup of C°(s). Then P'x =
gPig~l = *<? n C°(s))i-1 =gPg~l n C°(s) where g is an element of C°(s)k.
But gPg~l   is a minimal parabolic subgroup of G and gSg~l   is a maximal
fc-split torus containing s.

Proposition 15. Let x = xpcu be a k-regular element.   Then x is con-
tained in  \Wk(G)\l\Wk(C°(xs))\ minimal parabolic subgroups of G.

Proof. Let jc be contained in SR(PX), let jcs be contained in the max-
imal fc-split torus S in Px   and let jc be contained in another minimal parabolic
subgroup P2. By Lemma 3, there exists nwEN(S)k  suchthat nwP2n^vi=Pl.
Thus any minimal parabolic subgroup containing jc also contains S. Hence, if
P2  is a minimal parabolic subgroup containing jc then P2 n C°(jcs) is a min-
imal parabolic subgroup of C°(xs).  By Proposition 8, jc is fc-regular in G if
and only if jcu  is fc-regular in C°(jcs).  Therefore, by Proposition 13, jc is con-
tained in only one minimal parabolic subgroup of C°(jcs).   There are  |Wfc(G)|
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minimal parabolic subgroups of G  containing S and   \Wk(C (xs))\  minimal
parabolic subgroups of C°(xs) containing S.   Since  C(S) is contained in
C°(jCj)  we can think of Wk(C°(xs)) as a subgroup of Wk(G). Given a coset
of Wk(G)IWk(C°(xs)), there is a representative nw  in N(S)k  such that
«wZ'1n~1   contains x.  Two such representatives come from the same coset in
N(S)k/C(S)k. Therefore, the number of minimal parabolic subgroups containing
jc is  \Wk(G)\l\Wk(C°(xs))\.

8.  The conjugacy classes of R-regular unipotent elements. In the following
section, the field fc will be restricted to the field of real numbers R.

Proposition  16.  The PR-conjugacy class o fan R-regular unipotent element
is open in   UR, in the real topology, where  U is the unipotent radical of the
minimal parabolic subgroup P.

Proof. Let uEUR   be an R-regular unipotent element.  Let u = exp (N).
Then we see that  dim C(u) = dim C(N) = dim C(SR) = dim C(9R) where 3  is
the Lie algebra of the maximal Z?-split torus S.   Let p   be the Lie algebra of P
and let  n be the Lie algebra of U. Since nR   is normal in pR, ad (N)($R) Ç
nR. But pR = C($R) + nR. Thus ad(A)(PA) = nR. Therefore, PR   operating
by conjugacy on u  is open in  UR.

Corollary 6.  77ze PR-conjugacy class of a unipotent R-regular element
u E UR  is a union of connected components of the set of R-regular elements
in   UR.

Definition 7. Let Lt = {« G UR\u = JcaiJca2 • • • xafxßl • - • xßm}
where af E TlR, ßf G A¿, ß} £ ïlR   and xa. = e.

Note 1. The union of the L¡ is the full set of the non-Z?-regular elements
in  U.   Thus the set of Z?-regular elements Ru  is equal to UR - \J¡'=xLi. Each
L¡ partitions  UR — L¡ into two components if and only if dim U,a.^ ™'l«  We
shall call one such component M¡ and the other N¡. The set of a¡ E UR   such
that dim U^a.) = 1  will be denoted M.

Definition 8.  Let  dim U,a* = 1  and A  be a connected component of
Ru. p/(A) = 1  if ^4  is contained in Mt and pt(A) = - 1  if A  is contained
in N¡.

Proposition 17. Two R-regular unipotent elements of UR are GR-con-
jugate if and only if they are PR-conjugate.

Proof.   Let ux   and u2  be two Z?-regular unipotent elements in  UR,
and let guxg~l =u2   for some gEGR.  Both ux   and u2  are contained in
a unique minimal parabolic subgroup P.   But gPg~l   is a minimal parabolic
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subgroup containing u2.  Thus gPg l = P.   But since P is its own normalizer

SZPr-

Proposition 18. An R-regular unipotent element in a connected com-
ponent A of Ru  is GR-conjugate to an element in another connected com-
ponent B of Ru  if and only if there exists an element s ESR   such that
a¡(s) ER+, the positive real numbers, if p¡(A) = p¡(B) and a¡(s) ER~, the
real numbers, if p¡(A) # p¡(B) for all a¡ E M.

Proof.   By Proposition 17, it is sufficient to restrict our discussion to
Z'jj-conjugacy.  Since conjugacy by elements in  UR   does not change the com-
ponents of an element in the simple root spaces, it is sufficient to restrict our
attention to  C(S)R-conjugacy.

Let  C(S)R = V(C(S))RSR   where  V(C(S))  is the derived group of C(S)
and V(C(S)) is an anisotropic semisimple algebraic group.  Let  T' be a max-
imal torus defined over R  in  V(C(S))  and  T = T'S is a maximal torus defined
over R  in G.  The restricted roots of S are the restrictions of roots on  T to
S. Since dimM^.) = 1   for a¡ EM, a¡ is defined over R.   Thus the restriction
of a¡ EM to  T' is the zero map.  Let  dim U^a.) = 1 • Then  U^a.)  is a root
group for  T as well as a restricted root group of S. Thus for any root ß such
that ß(S) = 1, a¡ + nß is not a root and therefore   Uß E C(S). The elements in
Uß with ß(S) = 1 commute with the elements in  U,a.y Likewise, conjugation
by an element tET' leaves jca. unchanged since ct{(T') = 1. Therefore, since
T' and the  Uß generate  V(C(S)), the elements of V(C(S))R   commute with
xa. E U,a.) where  dim U^a.^ = 1. Thus an irregular element of a connected
component A  of Ru  is GR-conjugate to an element of another connected
component B only if it is SR -conjugate to some element of B.

If an Z?-regular unipotent element jc in a connected component A  of Ru
is SR -conjugate to some element in another connected component B then by
Corollary 6, jc is GR -conjugate to all elements in B.

If jc is an element of M¡ and s is an element of SR   such that
at{s) ER~, the negative real numbers, then sjcs-1 EN¡, since

x = ^aj-^aj * " " xaM ' ' ' xccnxßx  ' ' ' xßm

and

sxs'1 = x'ajx'a2 ' • ' xai(0Li(s)t) • • • x'anx'ßi • • • x'ßm EN{.

Likewise if jc is an element of M¡ and sjcs-1   is an element of N¡, then a¡(s)
is negative.
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A connected component A   of Ru  equals Ç\P=xMn. C\ C\f=xNn., since
A  lies either in M¡ or N¡ for each i.  p¡(A) = p¡(B) if either both A   and
B lie in Af, or both lie in N¡. Thus if jc is an element of A  and sjcs-1   is
an element of B for s E SR, then a¡(s) is positive if p¡(A) = p,-(Z?)  and neg-
ative if Pi(A) * ptf).

Theorem 1. Let G be an adjoint semisimple algebraic group.   The R-
regular unipotent elements are GR-conjugate.

Proof. Since two minimal parabolic subgroups are GR -conjugate, it suffices
to show that two R-regular unipotent elements in UR are PR -conjugate.  By
Proposition 18, it is sufficient to show that given any partition of the set M
into two sets I and / there exists an element s ESR   such that a¡(s)  is
positive for i El and a-(s) is negative for / G/.

Extend S to maximal torus T of G defined over R. The characters of S are
restrictions of characters of T. The restricted roots of S are restrictions of roots of
T. The restricted simple roots of S are restrictions of the simple roots of T. Since
the group is adjoint, the simple roots of T generate the character group of T. There-
fore, the restricted simple roots of S generate the character group of S.

Now SR = Hom(X*(S), R*). Since the simple roots are free generators
for X*(S), there exists s¡ E SR, such that a¡(s¡) is negative and aj(s¡) = 1
for / # i.

Thus given a partition M = IUJ where In/ = 0, let s = sr sr   • • •
sr    where a_. G I.  Thenrp U

at(s) = a¡(srisr2 • • • srp) = a¡(sri)a¿sr2) • • • a¡(srp) = afa)

is negative if i G Z.   But a;(s) =1  if / G /.
Therefore, the Z?-regular unipotent elements form a single GÄ-conjugacy

class.
An equivalent theorem to Theorem 1 was proved in [8] by Rothschild

from the Lie algebra point of view.

Theorem 2. If G is an R-split semisimple algebraic group, then the num-
ber of conjugacy classes of R-regular unipotent elements is given by  2q  where
q is the number of cyclic components of even order in a direct sum decomposition
of Z(G), the center of G.

Proof.  As in Theorem 1, we are concerned with finding the number of
orbits of SR   acting on the set of connected components of Ru.

Let 0 G X*(S). We define ^: SR-+Z2, by
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0 if <f>(s) is positive,
1 if 0(s)  is negative.

Define X*(S) = {0|0 G X*(S)}   and  AR = (a\aEAR}.
Since S is a torus, X*(S) can be viewed as Z2-vector space of dimension

n = dim S and X*(S) = number of connected components of Ru.  Likewise we
can form Z2(AR), the   Z2-vector space generated by   AR.   Let  s E SR.   Then
s(0) = 0(s) maps Z2(AR) into Z2.

î(0 + 4>) = (0 + í)(s) = 0(s) + í(s) = s(0) + s(í).

Thus each element of SR   gives a linear functional on Z2(AÄ)  into Z2>, Sup-
pose Sj   and s2  are elements such that Sj=s2. Then a¡(sx) = ct¡(s2) for all
restricted roots. Therefore sxAsx1 = s2As2l   where ,4  is a connected com-
ponent of Ru.

The set S = {s\s E SR}   is a subspace of the dual of Z2(AR), since
?j(0) +s2(<p) = 0(Sj) + 0(s2) = <P(sxs2) = SjS2(0).  If 5 is not the space of

linear functionals, there must exist 0 in Z2(AÄ)  such that s(0) = 0(s) = 0
for all sESR.  But, then 0=0.  Thus S is the dual space of Z2(AR). Since
the simple roots generate the full set of roots, a linear functional on Z2(AR)  is
determined by its behavior on II.

Therefore, given a connected component A  of Ru  there is a one to one
correspondence between the connected components B obtainable from A  by
conjugation by elements in SR   and the dual space of Z2(AR)- But the order
of Z2(AR) equals the order of its dual.

Thus the number of conjugacy classes of Z?-regular unipotent elements is
given by the order of X*(S)IZ2(AR), which is equal to 2q where q is the
dim X*(S)IZ2(AR). _

Now Z2(AR) = Z(AR)/(Z(AR) n 2X*(S)) and X*(S) = X*(S)/2X*(S).
But by the second isomorphism theorem we get

7(-X ,..W*)+2**6$»£2K^r) - 2X*(S)

Therefore,

-miZ2(AR) =■ ̂XJf[f^%2x*{S) = X*(S)I(Z(AR) + 2X*(S)).

By the fundamental theorem of finitely generated abelian groups, there
exists a basis   {px, 02, • • • , 0„}   of X*(S) such that   {wîj0j, m202, • • • ,
m„0„} is a basis for Z(AÄ).  If m¡ is odd, 0f EZ(AR) + 2X*(S). If m¡ is

0(s) =
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even, 0,- g Z(AR) + 2X*(S), but 20,- <£ Z(Añ) + 2X*(S). Hence [rx<t>l,r2<¡>2,
• • • ,r„0„} is a basis for Z(AR) + 2Ar*(5) with r¡ = 1 if w(- is odd, r¡ = 2 if
m/ is even.

The center of G  is isomorphic to X*(S)/Z(AR). The number of com-
ponents of X*(S)/Z2(AR) in the decomposition into a direct sum of cyclic
groups is equal to the number of components q  of Z(G) with even order. Thus
the number of GR-conjugacy classes of an Z?-regular unipotent element is  2q
which is the order of X*(S)/Z2(AR).

For Z?-spIit simply connected almost simple groups of the given type, we
have the following number of conjugacy classes of R-regular unipotent elements.

Table 1.

TYPE OF GROUP

An

Z(G)

-n+l

Z4 if n is odd

Z2 x Z2 if n is even

NUMBER OF CONJUGACY CLASSES
OF /{-REGULAR UNIPOTENT ELEMENTS

1 if n is even

2 if  n   is odd

2

2

2 if n is odd

4 if n is even

1
2

1

1

1

Theorem 3. Let G be a nonsplit, semisimple group defined over R with
irreducible restricted root system.   Then there is only one conjugacy class of R-
regular unipotent elements except possibly in the three cases whose restricted
Dynkin diagrams are the following:

(1)

(2)

(3)

A  •••  Hr-fi P

0—©"

Q    i    S ••• '—0—►
J_i_m+

Proof.   If  G is not absolutely almost simple, then dim U^a.) > 1   for
all a¡ E TlR   and M = 0. Therefore, we can restrict ourselves to the absolutely
almost simple case.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The restrictions of roots and characters on a maximal torus T defined over
R containing S are restricted roots and characters respectively of S. Therefore,
X*(S)/Z(AR) is a homomorphic image of X*(T)/Z(A) where A is an absolute
root system for G. Therefore, if G is of type E6, Es, F4 or G2, X*(T)¡Z(A)
is of odd order and hence X*(S)/Z(AR) is of odd order. Thus UR forms a
basis for X*(S). Therefore, for any subset M Ç UR, M can be extended to a
basis of X*(S).

For the remainder of the proof, we will show that in all other forms M
can be extended to a basis for   X*(S),  excluding the three possible excep-
tions.

Given a semisimple algebraic group  G  defined over R, we can, by a con-
struction of Borel and Tits in [3], construct a maximal split group  G  such that
S CG and a G FI^   is a simple root of G if 2a £ AR   and if 2a G AR   then
2a is a simple root of G.  Let  Ag  be the root system for G.  Let   V =
X*(S) ®z R.  We can induce onto  V an inner product under the action of the
Weyl group.  To each element  a G Ag, there exists a linear functional a*  on
V defined by a*(v) = - 2(a, u)/(a, a).  Note that a*(ß) is an integer for all
a, ß G Ag. The set of weights of the root system Ag  denoted  Ag  is the set
{v E V\a*(v) EZ, for all a G Ag}. We can see that Ag D X*(S) DAg. Therefore, it
is sufficient to show that M can be extended to a basis for Ag. Note that M can-
not contain a if 2a G A^, since U,^ must be at least two dimensional. Therefore,
MÇAg.

The remainder of the proof will consist of checking the possible real forms
to verify that M can be extended to a basis for Ag.

Let \a  be the weight such that a*(Xa) = 1  but ß*(Xa) = 0 for a ¥= ß
and a, ß EUR, the set of simple roots of G.  Therefore, by examining the
Dynkin diagram of G, we can write each root of UR   in terms of the Xa's. It
is clear that the Xa's  freely generate Ag. Therefore, we can determine from the
expression of the roots of M in terms of the  Xa's, whether M can be extended
to a basis of Ag. The restricted diagrams used in the following case by case
study can be found in [12].

I. Let G be of type An. The restricted Dynkin diagrams are:

(a)

(b)

(c)

00

0—0   0    % §—0-0
0-

-\—h

I—J-

2
>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



122 P. P. ANDRE

In case (a), G is split.  In case (b), M = 0. In case (c), M = 0. In case (d),
M = 0 except in the case which constitutes the first exception.

II. Let G be of type Bn. The restricted Dynkin diagrams are:

(a) 0   0 0 00011 ii   1   a
m

G is of type Bn with diagram:

I-Ï—1-+ I-H-rH=»

M= {ot2,a3, ••• ,am}, am =~2\m + Km_x, *, = - 2Xa/ + Xa¿1 +Xa.+ 1
for 2<i<m. MU\      is a basis for A?;.am g

III. Z-ei G be of type Cn. The restricted Dynkin diagrams are:

(a)

(b)
0    0   0 0 0   •••  0   0 0®#$

0   i  (D   i i—r-+Hé=l
In case (a), G is split. In case (b), M= 0.

IV. Let G be of type Dn. The restricted Dynkin diagrams are:

(a)

(b)

0—4-8-9- H-1 h+

I-0-H—0 ■010
0-0—0-
■«-<fl

(c)    Q-Q    g    Q
(d>    I-0—M) •

In case (a) either G is split or G is of type Z?„. In the latter case, the argument
is the same as the above in type Bn. Case (b) is the second exception. In case (c),
G is of type Bn and the above argument again holds. In case (d),M =0.

V. Let G be of type E7. The restricted Dynkin diagrams are:

(a)

(b)

(c)

(d)

0 Q Q
i—8—h
0   0    I

-0—@
-è—i—®
T -0
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In case (a), G is split.  In case (b), G is of type F4  and Ag = Ag.  Case (c)
is the third exception.  In case (d), M = 0.

In each of the three exceptional cases G is of type Cn  and M consists
of the unique long simple root, am.  In these cases, am = 2X„     . - 2X„    Gm m **m—1 "W
2Ag. There are, therefore, at most two GR-conjugacy classes of Z?-regular uni-
potent elements.

9. Qp-conjugacy classes of Qp-regular unipotent elements. For the following
results, fc will be restricted to Qp  the field of p-adic numbers.

Proposition 19. 77ie Gq -conjugacy class of a Qp-regular unipotent
element is open in  Uq , in the p-adic topology.

Proof.  Let m be a Qp-regular unipotent element in Uq . Then u =
exp (TV). From the argument of Proposition 16, we see that ad/v*(pg ) = Pg •
Thus if 0: PQ   —*• Uq    with <j>(p) = pup~x  then the differential of 0 is
onto x\.q   . But by  LG 3.15  of [10], 0 maps Pq    onto an open set in Uq .

Proposition 20. Let x and y be two Qp-regular unipotent elements in
UQp such that x=xaixa2 • • • xanxßl • • • xßm and y =yaiya2 • • • ymjft
' ' ' yßm where x*i ^e^y<*i f°r al1 aiG nß    and ft ranges over higher roots.
x is Gq -conjugate to y if and only if x' = xa xa2 • • • xan is C(S)q
conjugate to y =yaxya2 " ' ya    where C(S) is the centralizer of the maxi-
mal Qp-split torus S.

Proof.   By the proof of Proposition 10, jc is Uq -conjugate to jc' and
y is  U0 -conjugate to y. Thus if jc' is C(S)0 -conjugate to y', then jc

Sip Sip
is Gq -conjugate to y.

If jc is Gq -conjugate to y then by the argument of Proposition 17,
jc is Pq -conjugate to y where P is the unique minimal parabolic subgroup
containing jc and y. Thus jc'  is Pq -conjugate to y . But P = C(S)U and
the conjugation of jc' with an element in  Uq    cannot leave an element whose
only components are in simple root spaces unless the element in  Uq    commutes
with jc'. Since conjugation by  C(S) normalizes the restricted root groups, the
only elements of Pq    which could conjugate jc'  into y   are of the form cu
where c E C(S)q , u E Uq    and u commutes with jc'. But then cjcc-1 = y'
and jc' and y   are  C(S)q -conjugate.

Theorem 4. 77zere are only a finite number of Gq -conjugacy classes
of Qp-regular unipotent elements.

Proof.  From Proposition 20, it suffices to show that there are only a
finite number of orbits of C(S)Q    acting on R = {u\u = xaixa2 • • • xan,
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a, G rig    and xa.¥:e for each a,-G fig }. Topologically, R = U'a Q   x
U'«2Qp * ' ' * x V'«nQp  where  U«iQp = Kqp - {e}- Ut M«iQp  be"the
projective space produced from  U'a.Q    by identifying all points lying on a line
through the origin.  C(S)q    operates on Ma .q    and hence on Mq   =
Yl"=xMa.Q .  Since a¡ is an integral combination of basis elements in X*(S),
ß*/af(5g ) is finite. Therefore, if 0: Tl"=xU'a.Q   —* Mq    is the projection
map, then an orbit in Mq    has only a finite number of orbits in its preimage
in R. Since Ma.Q    is compact, M is compact. The orbits of C(S)q    are
open in R, hence they are open in M. Therefore, there are only a finite number.
Thus there are only a finite number of Gq -conjugacy classes of Q -regular uni-
potent elements.

I wish to thank Professor Mostow, Professor Tamagawa and Professor Selig-
man for their kind help.
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