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Abstract. We show, with an elementary proof, that the number of halving simplices in a
set of n points in R4 in general position is O(n4−2/45). This improves the previous bound
of O(n4−1/134

). Our main new ingredient is a bound on the maximum number of halving
simplices intersecting a fixed 2-plane.

1. Introduction

Let S be a finite set of n ≥ d + 1 points in Rd and let k be an integer parameter,
1 ≤ k ≤ n − 1. A k-set of S is a k-element subset of S that can be strictly separated
from its complement by a hyperplane. The k-set problem asks for sharp bounds on the
maximum number F (d)

k (n) of k-sets of any set of n points in Rd . The dimension d is
usually considered to be a constant, while k, n→∞. It is not hard to see that the number

∗ Work by Micha Sharir has been supported by NSF Grants CCR-97-32101 and CCR-00-98246, by a grant
from the U.S.–Israeli Binational Science Foundation, by a grant from the Israel Science Fund, Israeli Academy
of Sciences, for a Center of Excellence in Geometric Computing at Tel Aviv University, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University. Work by Uli Wagner has been supported
by the COMBSTRU network of the European Union.
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of k-sets is maximized for point sets in general position, i.e., such that no d + 1 points
lie in a common hyperplane. In this setting, the following variant of the problem turns
out to be essentially equivalent and technically more convenient to study: An oriented
(d − 1)-dimensional simplex σ spanned by d points of S is called a j -facet of S, for
0 ≤ j ≤ n−d , if there are exactly j points of S in the positive open halfspace determined
by σ . We denote the number of j-facets of S by Gj (S) and seek sharp bounds on the
maximum G(d)

j (n) of the numbers Gj (S) over all sets S of n points in general position
in Rd . In dimension 2, the number of k-sets of S is equal to Gk−1(S), and in dimension
3, it is equal to 1

2 (Gk−2(S)+ Gk−1(S))+ 2; see [3]. In higher dimensions, there are no
longer any exact linear relations between these numbers, but for any fixed dimension d,
the numbers F (d)

k (n) and G(d)
k (n) lie within constant multiplicative factors of one another

(see, e.g., [12]).
A special case arises when n − d is even and j = (n − d)/2. Then G(d)

(n−d)/2(n)
counts the maximum possible number of so-called halving facets of S. If we reverse
the orientation of a halving facet, we obtain again a halving facet. Thus, we can forget
about the orientation and just speak of the underlying unoriented simplices, which are
called halving simplices. Bounds on the number of halving simplices can be translated to
bounds on the number of j-facets for any j , so it is sufficient to study the former quantity.
More precisely, if the maximum number of halving facets of n points in dimension
d can be bounded by O(nd−cd ) for some constant cd > 0, this implies a bound of
G(d)

j (n) = O(n�d/2�( j + 1)
d/2�−cd ) for all j , see [1].
The study of k-sets and j-facets began more than 30 years ago [9], [11], and tight

bounds on the above quantities are still elusive, even in the plane, where the maximum

number of halving edges is known to be at most O(n4/3) [6], and at least�(n · 2c
√

log n)

for some constant c [16]. In three dimensions the upper bound is O(n5/2) [14], and the

lower bound is �(n2 · 2c
√

log n). In fact, in any dimension d, the known lower bound is

�(nd−1 · 2c
√

log n), which is obtained by “lifting” the two-dimensional construction of
[16]. In d ≥ 4 dimensions, the known upper bounds become considerably weaker, and
are of the form O(nd−δd ), where δd = 1/(4d − 3)d , leaving a fairly big gap between
the upper and lower bounds. Moreover, the proof of these bounds uses the so-called
colored Tverberg theorem, for which there is no known elementary proof; the only
known proof, given in [17], uses methods from algebraic topology. See [12] for a review
of this approach.

In this paper we study the problem in four dimensions, and obtain the first elementary
derivation of an upper bound on the number of halving simplices, which also considerably
improves the previous upper bound mentioned above. Specifically, we show that the
number of halving simplices in a set of n points in R4 is O(n4−2/45). As mentioned
above, this implies a bound of O(n2(k + 1)2−2/45) for the number of k-facets (and
k-sets) for all k.

As in essentially all known proofs of upper bounds for the number of halving simplices
in any dimension, we only use a simple local property of halving simplices, the so-called
antipodality property, first observed by Lovász [11], which we define in more detail
below.
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2. The Structure of the Proof

We begin by reviewing the notion of antipodal geometric (hyper)graphs. We formulate
the definitions for general dimension. Later, we restrict our attention to dimensions 2
and 4.

Definition 2.1. A geometric hypergraph in Rd is a pair (S, T ), where S is a finite set
of points in general position, and T is a collection of simplices spanned by points from
S. The elements of T are also called hyperedges. A geometric hypergraph is called k-
uniform if all hyperedges have k vertices, i.e., if all hyperedges are simplices of dimension
k − 1. For a 2-uniform geometric hypergraph in R2 we drop the prefix “hyper” and just
speak of a geometric graph and its edges.

We will often denote a simplex by an (unordered) list of its vertices. Thus, p1 · · · pk =
conv{p1, . . . , pk}, with the understanding that the points are affinely independent.

Definition 2.2. A d-uniform geometric hypergraph (S, T ) in dimension d is called
antipodal if the following holds for any d − 1 points p1, . . . , pd−1 ∈ S: Whenever
a, b ∈ S are two distinct points such that both ap1 · · · pd−1, bp1 · · · pd−1 ∈ T , then there
is a third point c ∈ S such that cp1 · · · pd−1 ∈ T and such that the triangle abc intersects
the affine hull of p1 · · · pd−1 (see Fig. 1).

The crucial property is that the family of halving simplices of a point set has this
property (see, e.g., [12]):

Lemma 2.3. Let S be a finite set of points in Rd in general position, and let T be
the set of halving simplices of S. Then (S, T ) is an antipodal d-uniform geometric
hypergraph.

a

b

c

p1

p2

Fig. 1. The antipodality property in dimension 3.
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Thus, our goal is to prove the following:

Theorem 2.4. Let (S, T ) be an antipodal 4-uniform geometric hypergraph inR4, with
t := |T | hyperedges and n := |S| points. Then

t = O(n4−2/45).

The earlier proofs of upper bounds for the number of halving simplices consist of
two steps. First, one shows that, for an arbitrary d-uniform geometric hypergraph in Rd

with t hyperedges and n points, there is a line that intersects “many” of the hyperedges,
namely, at least �(t sd nd(1−sd )) many, where s2 = 2, s3 = 3, and sd = (4d − 3)d for
d ≥ 4. Then one shows that if the hypergraph is antipodal, then every line intersects
only “few” hyperedges, namely, at most O(nd−1) many (this latter observation is often
referred to as Lovász’ lemma; see [5] and [11]). We note, though, that the currently best
bounds for d = 2 [6] and d = 3 [14] are derived using different techniques; see below.

The main new idea in our proof is to use 2-planes instead of lines. The proof
then derives the following two lemmas, which stand in analogy to similar lemmas
established in the preceding proofs, and which, together, immediately imply
Theorem 2.4.

In the statements of the lemmas, a generic 2-plane is a plane π that lies in general
position with respect to S. In particular, no point of S lies on π , no edge connecting two
points of S meets π , and a triangle � spanned by S can meet π only at a single point
that lies in the relative interior of �.

Lemma 2.5. Let (S, T ) be a 4-uniform geometric hypergraph in R4, with n = |S|
points and t = |T | simplices. If t > Cn11/3, for some absolute constant C > 0,
then there is a generic two-dimensional plane π that intersects �(t3/n8) simplices
of T .

Lemma 2.6. Let (S, T ) be an antipodal 4-uniform geometric hypergraph on n points
in R4 in general position. Then no generic 2-dimensional plane intersects more than
O(n4−2/15) simplices of T .

Sections 3 and 4 are devoted to the respective proofs of these lemmas.

3. Selecting a Stabbing Plane

We need a result of Dey and Pach [8] on crossing simplices. Two simplices σ and τ
in Rd , of arbitrary dimensions 0 ≤ dim σ, dim τ ≤ d, are said to have a nontrivial
intersection if their relative interiors intersect. They cross each other if they have a
nontrivial intersection and their vertex sets are disjoint.

Theorem 3.1 (Dey and Pach). There exists a real constant c(d) > 0 that depends only
on d , so that the following holds. Let (S, T ) be a (d+ 1)-uniform geometric hypergraph
in Rd on n = |S| points in general position. If t = |T | ≥ c(d)

(n
d

)
, then there are two

simplices τ1, τ2 ∈ T that cross each other.
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We also recall the following simple geometric fact:

Lemma 3.2. If σ, τ are two simplices in Rd such that σ ∩ τ �= ∅, then there are two
faces σ ′ and τ ′ of σ and τ , respectively, such that dim σ ′ + dim τ ′ ≤ d and σ ′ and τ ′

intersect nontrivially.

Proof. Let σ ′ and τ ′ be faces of σ and τ , respectively, such that σ ′ ∩ τ ′ �= ∅ and
dim σ ′ + dim τ ′ is minimal among all such intersecting pairs of faces. Let x ∈ σ ′ ∩ τ ′.
If x were contained in the relative boundary of σ ′, say, then there would be a proper
face σ ′′ of σ ′ still intersecting τ ′, contradicting the minimality of the dimensions. Thus,
x lies in the relative interior of both σ ′ and τ ′. Moreover, if dim σ ′ + dim τ ′ > d, then
the intersection of the affine hulls of σ ′ and τ ′ would contain a whole line through x .
Moving along this line away from x until we first reach the relative boundary of σ ′ or of
τ ′, we would again find a point x ′ contained in the intersection of the two simplices and
in the relative boundary of at least one of them, thus reaching the same contradiction as
before.

We are now ready to prove Lemma 2.5. We project S and T orthogonally onto a
generic hyperplane in R4, apply the following lemma to the resulting configuration, and
then lift the resulting line 
 orthogonally back to R4, to obtain the desired 2-plane π .
(Actually, additional arguments, based on a slight perturbation of π , are needed to ensure
that π is generic.)

Lemma 3.3. There exists an absolute constant C > 0, such that if (S, T ) is a 4-uniform
geometric hypergraph in R3, with n ≥ 6 points in general position, and t ≥ C

(n
3

)
hyperedges, then there is a line 
 that intersects at least �(t3/n8) simplices of T .

Proof. We take C := max(2c(3), 1), where c(3) is the constant in Theorem 3.1. First
assume that t > (C/2)

(n
3

)
. By Theorem 3.1, there exist two simplices τ1, τ2 ∈ T that

cross each other. By Lemma 3.2, there exist two faces σ1 and σ2 of τ1 and τ2, respectively,
that cross as well, and such that dim σ1+dim σ2 ≤ 3. Moreover, since the points of S are
in general position, we cannot have dim σ1 + dim σ2 < 3. Thus, up to symmetry, either
σ1 is an edge ab and σ2 is a triangle xyz, or σ1 is a point a contained in the interior of
the 3-simplex σ2 = τ2 = xyzw. In both cases there exists a crossing edge–simplex pair
(ab, τ ) consisting of an edge ab spanned by two points of S and a simplex τ ∈ T , such
that ab crosses τ . Indeed, in both cases, take τ to be τ2. In the former case, ab is the
edge provided by the preceding analysis, and in the latter case, ab is any edge that has a
as one endpoint, and a point b ∈ S, which is different from a and from the four vertices
of τ2, as the other endpoint (such a b exists since we assume that n ≥ 6).

Let x denote the number of such crossing edge–simplex pairs induced by (S, T ). It
follows that we have

x ≥ t − C

2

(
n

3

)
(1)

for any t and n ≥ 6. This is trivially true if t ≤ c(3)
(n

3

)
. Otherwise, for each crossing
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edge–simplex pair (ab, τ ), delete τ from T . Then the remaining set T ′ of simplices does
not generate any crossing edge–simplex pair, so t − x = |T ′| ≤ c(3)

(n
3

)
.

It will be convenient to use (1) for all integers n ≥ 0. For n ≤ 3 there are no
hyperedges, so t = 0, x = 0, and (1) holds. For n = 4, 5 direct calculation shows that

t ≤
(

n

4

)
≤ 1

2

(
n

3

)
≤ C

2

(
n

3

)

and (1) holds as well.
We now apply a standard random sampling argument to derive a stronger bound. For

a parameter α ∈ (0, 1), to be specified later, let Sα be a random sample obtained by
picking each point of S independently with probability α. Let Tα be the set consisting of
those simplices τ ∈ T all of whose vertices are present in Sα . By the previous argument,
the random variables nα = |Sα|, tα = |Tα|, and the random variable xα counting the
number of crossing edge–simplex pairs of (Sα, Tα) satisfy

xα ≥ tα − C

2

(
nα
3

)
.

In particular, this inequality also holds for the expected values of these random variables.
We have E[xα] = α6x , E[tα] = α4t , and E[

(nα
3

)
] = α3

(n
3

)
(in the last equality, both sides

express the expected number of unordered triples in Sα). Hence

α6x ≥ α4t − α
3C

2

(
n

3

)
.

Set α := C
(n

3

)
/t , which, by assumption, lies in (0, 1). We conclude that there are

x ≥ 1

α2
t − C

2α3

(
n

3

)
= t3

2C2
(n

3

)2 = �
(

t3

n6

)

crossing edge–simplex pairs for (S, T ). Since there are
(n

2

)
edges ab, one of them par-

ticipates in �(t3/n8) crossing edge–simplex pairs, so the line spanned by that edge
intersects the asserted number of simplices of T .

To complete the proof of Lemma 2.5, we note that the line 
 produced by Lemma 3.3
is not generic, since it passes through two points a, b ∈ S. If we slightly perturb 
 into
generic position, we may lose intersections only with those simplices that are incident
to either a or b (or both). The number of such simplices is at most 2

(n
3

)
< n3. Hence, as

long as t � n11/3, the new generic line 
′ will still intersect �(t3/n8) simplices of T .
Lifting 
′ back to 4-space, we obtain the desired generic 2-plane π .

4. Bounding the Number of Simplices Stabbed by a 2-Plane

Let (S, T ) be a 4-uniform geometric hypergraph in R4 and let π be a generic two-
dimensional plane. Our goal is to bound the number of hyperedges τ ∈ T intersected
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by π , under the assumption that (S, T ) satisfies the antipodality property. If a 3-simplex
τ ∈ T and π intersect (necessarily generically), then the intersection is a line-segment of
positive length whose endpoints lie in the relative interior of two triangles bounding τ .

Let E be the set of line segments {τ ∩ π | τ ∈ T }, and let V be the set of endpoints of
these edges. Then G = (V, E) is a geometric graph in the plane π , but with a particular
kind of vertex and edge labeling: Each point q ∈ V is the intersection of π with some
triangle spanned by a triple of points a, b, c ∈ S, and we label q by the triple abc.
Similarly, each edge e ∈ E is the intersection of π with some simplex spanned by
four points a, b, c, d ∈ S, and we label e by the quadruple abcd . The (labels of the)
endpoints of e are two distinct subtriples of abcd . The order of the indices (points of S)
in the label is immaterial, but all indices are distinct. No two objects receive the same
label. In particular, m := |V | ≤ (n

3

)
. Moreover, rephrasing what has just been noted, if

two points abc and xyz of V are connected by an edge, then the triples abc and xyz
must share a common pair of indices, say, a = x and b = y, and the edge is labeled
by the quadruple abcz. We say that the geometric graph G has a special n-labeling if
its vertices and edges are labeled in this manner (that is, vertices are labeled by distinct
triples and each edge is labeled by the quadruple that is the union of the labels of its end
vertices).

So far, everything holds for general 4-uniform geometric hypergraphs. It is time to
exploit antipodality.

Lemma 4.1. If (S, T ) satisfies the antipodality property, then so does the graph G =
(V, E).

Proof. Let us fix a triangle pqr of S that intersects the plane π at a point o, also labeled
by pqr . We view o as the origin ofR4 as well as of the planeπ . Since the two-dimensional
planes aff(pqr) and π intersect at the single point o, every point x ∈ R4 can be written
uniquely as x = xπ + xpqr with xπ ∈ π and xpqr ∈ aff(pqr). Then the projection
x �→ xπ is a linear map R4 → π , and a point x projects onto xπ = o iff x ∈ aff(pqr).

Now, suppose that E contains two edges e, f incident to the point o. These edges
correspond to simplices apqr, bpqr ∈ T that are incident to the triangle pqr . By the
antipodality of (S, T ), there is a third simplex cpqr ∈ T incident to pqr , such that
aff(pqr) intersects the triangle abc. Since the simplex cpqr intersects the plane π (the
point o is contained in both), our genericity assumption implies that the intersection is
a line segment. One endpoint of this line segment is the point o, and the other endpoint
w arises as the intersection of some other facet of cpqr with π , say w = cpq ∩ π .
Our genericity assumption now implies that w lies in the relative interior of cpq , and
thus it can be written as w = νc + ρp + ηq, with ν + ρ + η = 1 and ν, ρ, η > 0.
Applying our projection map, it follows that w = νcπ . Similarly, each of the edges e
(labeled by apqr ) and f (labeled by bpqr ) have o as one of their endpoints, and the
other endpoint is of the form u = λaπ and v = µbπ , respectively. It remains to observe
that abc ∩ aff(pqr) �= ∅ implies that o ∈ aπbπcπ , and since λ,µ, ν > 0 and we chose
o as the origin of our coordinate system, this implies that o ∈ uvw, as asserted.

In the remainder of this section, we derive an upper bound for the number of edges
of an antipodal geometric graph G = (V, E) with a special n-labeling as defined above.
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The crossings between edges of G are of central importance in our analysis. We recall
the following fundamental result, first proved by Ajtai et al. [2] and independently by
Leighton [10] (see also [12]):

Theorem 4.2 (Crossing Lemma). If G = (V, E) is a simple graph, then in any draw-
ing of G in the plane, there are at least�(|E |3/|V |2) crossings between the (not necessar-
ily straight) arcs representing the edges of G, provided that |E | ≥ 4|V |. Consequently, we
always have |E | = O(|V | + |V |2/3 X1/3), where X is the minimum number of crossings
in any drawing of G.

The proof of this theorem exploits the kind of probabilistic argument that we used
in the proof of Lemma 3.3. For antipodal geometric graphs we also have the following
result by Dey [6].

Lemma 4.3 (Dey). The number of crossings between the edges of an antipodal geo-
metric graph G = (V, E) is at most |V |2.

Proof. We present the proof of the lemma, because later we need the notions of convex
and concave chains that the proof exploits. We remark that the proof presented here is
simpler than the original proof; as far as we know, the only previous mention of it is on
p. 288 in [12].

By choosing an appropriate coordinate system for the plane, we may assume that no
edge in E is vertical. We consider an edge uv ∈ E with left endpoint u and right endpoint
v. If there exists an edge with left endpoint v and with slope larger than the slope of
uv, then let vw be the edge that has the smallest slope among all such edges and we
call vw the convex successor of uv; otherwise, the convex successor is not defined. The
antipodality property guarantees that no two edges can have the same convex successor.
Thus, if we define a convex chain as a maximal sequence e1, . . . , ek ∈ E such that each
ei+1 is the convex successor of ei , then these chains form a partition of the edge set E ,
and, clearly, each chain is an x-monotone convex polygonal curve. Note that if uv is the
rightmost edge of a convex chain, uv must have the largest slope among all the edges
with right endpoint v, for otherwise the antipodality property would imply that uv has a
convex successor. Thus, every vertex v is the right endpoint of at most one convex chain,
so there are at most |V | such chains. Similarly, there are at most |V | concave chains,
which are defined analogously (by reversing the direction of the y-axis). If two edges
in E cross, then we can extend one of them to a convex chain and the other one to a
concave chain, and charge the crossing to the pair of chains. Since a convex curve and a
concave curve can cross at most twice, and since a crossing in G can be charged to two
different pairs of chains, the total number of crossings is at most |V |2.

By applying Lemma 4.3 to the graph of halving edges of n points in the plane, we
see that there are only O(n2) crossings between the halving edges. Together with the
Crossing Lemma, this yields a simplified proof of Dey’s bound of O(n4/3) for the number
of halving edges.

In our setting, however, direct application of Lemma 4.3 does not yield a sharp bound:
The number of vertices is |V | = O(n3), so Lemma 4.3 only implies that the number of



k-Sets in Four Dimensions 185

crossings in G is O(n6). Combining this bound with the bound of the Crossing Lemma,
we only obtain the trivial bound |E | = O(n4). We circumvent this difficulty as follows.

As noted above, each edge of G connects two points abc, abd whose labels share
a common pair ab. For each pair of distinct points a, b ∈ S, we define Gab to be the
subgraph of all edges whose endpoints share the pair ab of point labels (recall that
all labels are unordered). In addition, for each a ∈ S, we define Ga to be

⋃
b �=a Gab.

Thus every edge of G belongs to two distinct subgraphs of the form Ga,Gb, and to one
subgraph of the form Gab. Note that each graph Gab has at most n − 2 vertices and
each graph Ga has at most

(n−1
2

)
vertices. Note also that the degree in G (in Ga , Gab,

respectively) of any vertex ξ = abc is at most 3(n − 3) (2(n − 3), n − 3, respectively)
since any neighbor of ξ in G must share two symbols out of {a, b, c} and there are only
n− 3 choices for the third symbol. (In Ga , the two shared symbols are a and one of b, c,
and in Gab, the shared symbols are a and b.)

We fix a ∈ S, and consider the graph Ga . Let ξ = abc be a vertex of Ga , and let
da(ξ) denote its degree in Ga . Each edge of Ga incident to ξ can be classified as either a
b-edge, if it is of the form (abc, abx), or as a c-edge, if it is of the form (abc, ayc). We
call ξ bichromatic (with respect to a) if the number dab(ξ) of its incident b-edges and
the number dac(ξ) of its incident c-edges are both at least λda(ξ). Here λ ∈ (0, 1) is a
parameter whose value will be determined later; we emphasize that it will depend on n.
Otherwise, we call ξ monochromatic (again, with respect to a).

Let Ma (respectively, Ba) denote the number of edges of Ga that are incident to
a monochromatic (respectively, bichromatic) vertex (an edge can contribute to both
counts). We put B :=∑a∈S Ba and M :=∑a∈S Ma . We first obtain an upper bound for
B in terms of n and λ, and then we derive a relation among M , n, λ, and B. Finally, we
optimize λ so that the resulting upper bound for B + M is minimized.

A vertex ξ = abc belongs to the three graphs Ga,Gb,Gc, and may be bichromatic
in any subset of them. We put

B∗ =
∑
a∈S

∑
ξ bichromatic in Ga

da(ξ).

Note that an edge counted in B is counted at least once and at most four times in this
sum, so B∗ = �(B).

For each integer k ≥ 0, let �k be the set of pairs (a, ξ) such that ξ is bichromatic
in Ga and such that 2k−1 < da(ξ) ≤ 2k . Since the maximum value of da(ξ) is at most
2(n − 3), the maximum value of k is at most log(2n).

For each a ∈ S and 0 ≤ k ≤ log(2n), let Va,k denote the set of the vertices ξ of Ga

with (a, ξ) ∈ �k , and put Da,k =
∑

ξ∈Va,k
da(ξ). Note that Da,k = �(2k |Va,k |), and that∑

k≥0

∑
a∈S Da,k = B∗.

We construct a new graph G∗a,k from Ga as follows. For each bichromatic vertex
ξ = abc in Va,k , for each b-edge (abc, abx) incident to ξ , and for each c-edge (abc, ayc)
incident to ξ , with x �= y, we form the 2-path (abx, abc, ayc), and regard it as a (drawing
in π of an) edge (abx, ayc) in G∗a,k . Note that an edge (abx, ayc) can be generated at
most four times, since the middle vertex must be labeled by a, by one of b, x , and by one
of c, y. We turn G∗a,k into a simple graph by retaining only one copy of each multiple edge,
which we choose arbitrarily, and draw it as a 2-path that passes through the respective
middle vertex, as prescribed above. The number of vertices of G∗a,k is O(n2).
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abc

Fig. 2. On the left, the dashed path and the solid one cross improperly at the vertex abc. On the right, the
two paths cross properly.

Consider a bichromatic vertex ξ = abc ∈ Va,k and choose the notation so that
dab(ξ) ≤ dac(ξ). Then we have dab(ξ) ≥ λda(ξ) because ξ is bichromatic, and dac(ξ) ≥
1
2 da(ξ) because da(ξ) = dab(ξ) + dac(ξ). So the number of 2-paths of the form
(abx, abc, ayc) is at least dab(ξ)(dac(ξ)−1), where we subtract 1 from dac(ξ) to ensure
that we count only 2-paths with x �= y. Since all the degrees da(ξ), for ξ ∈ Va,k , lie
in [2k−1 + 1, 2k], we have dab(ξ)(dac(ξ) − 1) = �(λ2kda(ξ)). From this we get the
following lower bound for the number of edges of G∗a,k :

|E∗a,k | ≥ �
(
λ2k

∑
ξ∈Va,k

da(ξ)

)
= �(λ2k Da,k). (2)

Let Xa denote the number of crossings between the edges of Ga . We clearly have∑
a Xa ≤ 2X = O(n6). Let X∗a,k denote the number of crossings between the edges of

G∗a,k , for the above plane embedding of that graph (after eliminating multiple edges). A
pair of edges of G∗a,k can cross either properly, when they contain two respective crossing
edges of Ga , or improperly, when they cross each other at a common middle vertex. See
Fig. 2. Since the middle vertices of both edges in a crossing pair in G∗a,k are such that
their da-degrees lie in [2k−1+ 1, 2k], each crossing in Ga induces at most O(22k) proper
crossings in G∗a,k , for a total of O(22k Xa) proper crossings. Similarly, the number of
improper crossings is O(|Va,k | · 24k) = O(23k Da,k). That is, we have

X∗a,k = O(23k Da,k + 22k Xa).

By the Crossing Lemma, the number of edges of G∗a,k is

|E∗a,k | = O(n2 + (n2)2/3(X∗a,k)
1/3),

which, combined with (2), yields

λ2k Da,k = O(n2 + n4/3(23k Da,k + 22k Xa)
1/3),

and this gives

Da,k = O(λ−12−kn2 + λ−1n4/3 D1/3
a,k + λ−12−k/3n4/3 X1/3

a ).

If the second term on the right dominates, then Da,k = O(λ−3/2n2). So we always have

Da,k = O(λ−12−kn2 + λ−3/2n2 + λ−12−k/3n4/3 X1/3
a )

= O(λ−3/2n2 + λ−12−k/3n4/3 X1/3
a )
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since λ−3/2n2 > λ−12−kn2. We fix a threshold integer parameter k0, that we will shortly
optimize, sum these bounds over all k ≥ 0 and a ∈ S, and use Hölder’s inequality, to
obtain

B = O

(∑
k≥0

∑
a∈S

Da,k

)

= O

(∑
k≤k0

∑
a∈S

Da,k +
∑
k>k0

∑
a∈S

Da,k

)

= O


2k0

∑
k≤k0

∑
a∈S

|Va,k | + λ−3/2n3 log n + λ−12−k0/3n4/3

(∑
a∈S

Xa

)1/3

n2/3




= O(2k0 n3 + λ−3/2n3 log n + λ−12−k0/3n4).

We now fix the threshold parameter k0 to minimize this bound. That is, we choose k0 to
be the integer that satisfies 2k0 ≤ λ−3/4n3/4 < 2k0+1, and obtain

B = O(λ−3/2n3 log n + λ−3/4n15/4).

The second term dominates the first term, provided that λ > (log4/3 n)/n, which indeed
will be the case for our choice of λ. Hence the total number of edges in all the graphs
Ga that are incident to a bichromatic vertex is

B = O(λ−3/4n15/4). (3)

We now turn to the analysis of the overall number M of edges incident to monochromatic
vertices, by analyzing the number of edges in the individual refined subgraphs Gab,
which proceeds by exploiting the global convex/concave chain decomposition of the
whole graph G.

The graph G is antipodal, and so it can be decomposed into O(n3) pairwise edge–
disjoint x-monotone convex (or concave) chains, as in the proof of Lemma 4.3. Consider
the graph Gab, for a fixed pair of points a, b ∈ S. We delete from it all the edges that
are adjacent to at least one bichromatic vertex either in Ga or in Gb, and we denote by
G ′ab the resulting subgraph. We take each chain γ from the global collection of convex
and concave G-chains, and extract from it all maximal contiguous subchains that consist
exclusively of edges of G ′ab. Let Cab denote the number of such ab-subchains. See Fig. 3.

abx

abu

aby
axz�


Fig. 3. The extraction of an ab-chain from a global chain.
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Lemma 4.4.
∑

a,b Cab = O(λM + λ−3/4n15/4).

Proof. An ab-subchain γ may end, as we trace it from left to right, when the global
chain c that contains γ ends. This happens a total of O(n3) times, over all subgraphs
Gab. Otherwise, we consider an “abrupt end” of such a chain γ at some node ξ = abx .
If the next edge s along the global chain is also an ab-edge, it must be adjacent to a
bichromatic vertex, and we charge the chain to s. Any such edge can be charged at most
once by concave chains, and at most once by convex chains, because each charged edge
belongs to a unique global convex chain c1, and to a unique global concave chain c2,
and the charging subchain γ is contained in either c1 or c2. Hence, the total number of
chains of this kind, over all subgraphs Gab, is O(B) = O(λ−3/4n15/4).

We now suppose that the next edge s is not an ab-edge. The preceding node along the
global chain c is of the form aby, and the succeeding node is of the form axz, say (the
case where the succeeding node is of the form bxz is symmetric). See Fig. 3. The two
edges (aby, abx), (abx, axz) belong to Ga , and we regard the terminal vertex ξ = abx
of γ as a vertex of that graph. By construction, ξ is monochromatic in Ga . Then either
the number of b-edges incident to ξ , or the number of its incident x-edges, is at most
λda(ξ). In the former case we charge γ to the edge (aby, abx), and in the latter case
we charge it to the edge (abx, axz). As above, an edge can be charged at most once by
convex chains, and at most once by concave chains, because it lies on the global chain
that contains the charging subchain γ . The overall number of edges that are charged, over
all subgraphs G ′ab, and thus the number of abrupt ends of the type under consideration,
is at most λ times the number of edges incident to monochromatic vertices, that is, at
most λM .

Since the first bound, O(λ−3/4n15/4), on the number of abrupt ends dominates the
number O(n3) of global chain ends, the lemma follows.

The graph G ′ab has n − 2 vertices. Denote by eab the number of its edges, and by
Xab the number of crossings between its edges. As in the proof of Lemma 4.3, we have
Xab = O(C2

ab). By the Crossing Lemma, we have

eab = O(n + n2/3 X1/3
ab ) = O(n + n2/3C2/3

ab ).

Summing these bounds over all graphs G ′ab, and using Hölder’s inequality, we obtain

M ≤
∑
a,b

eab ≡ e

= O


n3 + n2/3

(∑
a,b

Cab

)2/3

(n2)1/3




= O(n3 + n4/3(λM + λ−3/4n15/4)2/3),

and so

M ≤ e = O(n3 + n4/3(λ2/3 M2/3 + λ−1/2n5/2))

= O(n4/3(λ2/3 M2/3 + λ−1/2n5/2)).
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If the second term on the right dominates, then

e = O(λ−1/2n23/6). (4)

If the first term dominates, then

M = O(n4/3λ2/3 M2/3),

or M = O(λ2n4). The bound (3) for B is dominated by the bound in (4), provided that
λ > 1/n1/3, which again will be the case for our choice of λ. We thus conclude that

e = O(λ2n4 + λ−1/2n23/6).

Now we choose λ = n−1/15, and note that it satisfies both constraints assumed along the
way, namely, λ > (log4/3 n)/n and λ > 1/n1/3. We thus obtain e = O(n4−2/15). This
complete the proof of Lemma 2.6, and thus also of our main Theorem 2.4.

As mentioned in the Introduction, an upper bound on the number of halving sets
translates into a bound on the number of k-sets (see [1]). Thus, we have obtained the
following:

Corollary 4.5. A set of n points in R4 has at most O(n2(k + 1)2−2/45) many k-sets,
0 ≤ k ≤ n.

5. Discussion and Open Problems

Summarizing the technical ingredients of our proof, the first step is to find a 2-planeπ that
intersects (generically) many halving simplices, and the second step is to show that no 2-
plane can intersect many halving simplices. The cross sections of these simplices within
π form an antipodal geometric graph G. However, direct application of the Crossing
Lemma to G fails to produce sharp bounds, because G has (potentially) too many
crossings. However, G has a special labeling of its vertices and edges, and only nodes with
“nearby” labels can be connected by an edge. We exploit this property by decomposing
G into various subgraphs according to the labels of its edges and vertices, and apply
the Crossing Lemma within each subgraph separately. The subgraphs, however, need
no longer be antipodal, so we need an estimate on the number of convex and concave
chains that cover their edges. This in turn is done by classifying vertices as being either
bichromatic or monochromatic, and by carrying out a preliminary analysis that estimates
the number of edges incident to bichromatic vertices. This bound is then used to estimate
the number of chains in the decomposition of our subgraphs.

Clearly, the main open problem is to extend the new ideas to higher dimensions, where
the first target is to do it in five dimensions. The difficulty in such an extension is twofold:
Finding a 2-plane that crosses many halving simplices, and deriving an upper bound on
the number of halving simplices that a 2-plane can cross. So far we have accomplished
the first step, but not the second one. The difficulty is that the labels of the resulting
geometric graph are more involved: vertices are labeled by quadruples and edges by
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quintuples, which tends to make the analysis that we have developed in this paper quite
hard to extend.

Apparently, one needs some new ideas. Here are possible directions to look for them.
One possibility is to look for higher-dimensional flats that cross many halving sim-

plices. Consider, for example, a three-dimensional cross section h. The resulting config-
uration in h is still antipodal, but it now consists of convex polygons with O(1) sides,
that meet at common edges, about which antipodality holds. The challenge is to develop
new machinery that replaces/extends the convex chain decomposition and the Crossing
Lemma.

We observe that the only property of halving simplices that we have used is the an-
tipodality. In fact, almost all known proofs only use antipodality. Nevertheless, some
progress has been made in the way antipodality is exploited. The earlier proofs use
it only implicitly, via the Lovász Lemma. Starting with Dey’s proof, antipodality is
used more explicitly, via the convex and concave chain decomposition (see [6] and
[14], and the present paper, for applications in two, three, and four dimensions, respec-
tively). What we are seeking are new ways to exploit this property, say directly in three
dimensions.

A more challenging direction is to find and exploit additional properties of the hy-
pergraph of halving simplices beyond antipodality. In fact, Dey’s bound is optimal for
arbitrary antipodal geometric graphs. Strangely enough, the property that halving sim-
plices are halving is not used at all (other than in proving that their hypergraph is
antipodal).
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