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Abstract We consider the problem of designing algorithmic support for k-best
routing decisions in train shunting scheduling. A study at the Netherlands Railways
revealed that planners like to interact with the solution process of finding suitable
routes. Two types of interaction were required: the possibility of assigning specific
tracks to a route and of preventing the assignment of specific tracks to a route. The
paper develops insights in the structure of the cost matrix in this k-best optimization
problem. These dominance results are used in a two stage k-shortest path algorithm to
support this task of the shunting planners. The solution approach determines the opti-
mal sequence of the tracks that manually have been added to the route and determines
the k shortest paths in this network. The approach is implemented in a prototype of
a support system for shunting planners. The required calculation times for practical
instances of the problem with varying numbers of alternative solutions (k ≤ 8) and
intermediate tracks (m ≤ 5) are between 0.1 and 1.4 s. These calculation times are
acceptable to provide adequate support to the planners of these shunting yards.
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0 Introduction

This paper focuses on the problem of routing trains that have to be relocated during the
night. We develop and implement a solution approach that supports planners in this
task. The main contribution of this paper is the insight we gained in the structure of the
cost matrix in this k-best optimization problem. We implemented these insights in a
solution approach that allows for interaction with the planner in terms of the tracks that
should or should not be included in a routing. The approach minimizes the number of
direction changes and manual crossovers (the main objectives of the planner), while
taking into account the distance of the routings.

Section 1 discusses the problem of the planner in detail. Section 2 models this
problem as a two-stage problem. The first stage is modeled as a directed k-shortest
path problem, and the second stage as a directed k-shortest Hamiltonian path problem
in a k-shortest distance matrix. The specific structure of the cost matrix in this latter
problem is discussed. Section 3 discusses the way we implemented a solution approach
in the prototype of the support system and gives attention to the interaction with the
planners. Finally, Sect. 4 presents our conclusions.

1 Context of the problem of train routing

We examine the problem of routing sets of self-propelled coaches from a source track
to a destination track during a specific time window. A set of one or more connected
coaches is denoted as a train. Trains need a single driver for movement. The coaches
that belong to the same train arrive in a specific sequence at the same moment in time
on one of the tracks at the shunting yard. Some trains have to leave the station from the
same track in exactly the same configuration, but many trains have to be reconfigured
or relocated at a different track for some time. Reconfiguration may be necessary for a
number of reasons. Firstly, the demand for railway transport fluctuates, so a different
number of coaches may be needed in the departing train. Secondly, coaches that arrive
at other moments in time or at other tracks may have to be interchanged with coaches
in this train, for example because of maintenance schedules of the coaches. Relocation
of coaches on the shunting yard may also be necessary for a number of reasons. The
track where the train arrived may be used primarily for pass-through traffic, so if it has
to stay there during a longer period of time (e.g., a night shift), it has to be relocated
to another track on the shunting yard. Next, activities such as washing, cleaning, or
inspection, may be required. These activities have to be performed at a specific track
where the required facilities are available. The final reason is that there may be a
difference between the arrival track and the departure track for this train, which makes
relocation necessary.

In our study, we worked on real-life data of the location Zwolle. Figure 1 shows
the track layout. The tracks that are encircled in the figure will be used in this article
to explain the routing algorithm we developed.

123



k-Shortest routing of trains on shunting yards 747

Fig. 1 Track overview

Fig. 2 Route with a saw-movement at track 101

A shunting planner plans the reconfiguration, relocation, and routing of the trains
during the night. Planners aim at efficient schedules. Efficiency means first of all
minimal walking times for the shunting team and secondly minimal driving times
for trains when they are relocated. Inefficiencies occur if tracks are used that are not
included in the automatic crossover system, or if a train has to change direction on a
track. In the latter case, a saw-movement of a train is needed in order to continue the
routing. For example, track 101 in Fig. 2 is used for such a saw-movement in the route
of train AA from track 7B to track 96. As the self-propelled trains can be controlled
from both the front side and the rear side, drivers realize the saw-movement by driving
to a track where the train is allowed to stop, getting off the train, walking to the other
side of the train, and starting it again. Hence, the driver has to walk a distance equal to
the total length of the train, which makes routes involving a saw-movement inefficient.
Moreover, direction changes are only allowed at specific tracks that have to be long
enough, as for safety reasons a train may only be halted at tracks that are surrounded
by official rail signals. A planner therefore tries to minimize the number of direction
changes and usage of manual crossovers in a route. The actual distance of the train on
a route is of secondary importance.

As several shunting teams are simultaneously active on the railway network, the
planner has to avoid that a collision occurs. The planner uses a standard time window
of five minutes for moving a train. This time lag is long enough to cover the saw-
movements that may be required and walking time to the next assigned shunting task.
Tracks that already have been assigned to other routings that partly will be performed
in parallel cannot be included in the current route. Neither can tracks be included at
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which already a train has been located during a part of this time window. The set of
available tracks for a routing decision is therefore time-dependent and the length of
the time window affects the size of the set of available tracks.

The sequence of decision-making that a planner chooses does also affect the con-
tents of the set of available tracks for the decision on the route. For the next routing
decision of another train within the same time window, the set of available tracks will
be smaller.

Although optimization models have been build for similar problems (see Zwaneveld
et al. 1996; Brucker et al. 2002; He et al. 2003; Lübbecke and Zimmerman 2003a;
Freling et al. 2005; Dessouky et al. 2006; and for an overview Cordeau et al. 1998), the
Netherlands Railways has chosen to not yet implement a model that integrally solves
the routing problem in their railway planning systems. Integral approaches often lack
important real-world concerns (see, e.g., Cai et al. 1998). Lübbecke and Zimmerman
(2003b, p. 699) state that “the planning process can be covered only partly by a
model”. Alternatively, Carey and Carville (2003) developed an approach that mimics
the behavior of a human planner. However, such an approach does not benefit from
intelligent algorithmic support. In this paper, we use a more human centered approach
of algorithmic design that could help to overcome this type of problems. The approach
aims to develop OR-support for small but frequently occurring planning tasks of a
human planner. The human planner determines the boundaries of the problem that
will be supported with an algorithm, as well as the constraints.

From several interviews with planners, three mechanisms were identified that they
would like to use when constructing a route. First, a planner would like to be able
to block tracks that should not be included in the route. According to the hard con-
straints of the problem, many tracks are blocked automatically. However, the planner
sometimes likes to block some other tracks as well, for example if these tracks will
be needed for yet unplanned movements. Second, the planner would like to be able
to specify tracks that should be included in the route. There are two purposes for this
functionality. It enables a planner to quickly affect the geographical area of the main
part of the route. Next, it enables the planner to identify specific tracks that should
become part of the route. The latter functionality provides the planner the possibility
of regaining control over the route determination, for example, because of building
trust in the computer technology or including characteristics of these tracks that are not
included in the model. The algorithm will have to complete the route and determine
the optimum order of visiting these tracks. Finally, the planner would like to be able
to select a route from a list of equally efficient routes.

2 Modeling and design of solution approach

The problem for which we design an algorithm is now formulated as:

Given the set � of available tracks and the set � ⊂ � of tracks that need to be
included in the route, find k alternative routes for routing a train from a source
track to a different destination track, such that each alternative route includes all
m tracks that belong to the set �.
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Fig. 3 Initial network G1 and corresponding railway tracks

Set � is time-dependent and lists all tracks that will be available for routing during
the next five minutes after starting the routing. The planner may have removed sev-
eral tracks from this computer-generated list, so at the end both sets � and � are
predetermined by the planner.

Note that this problem formulation uses a time-dependent graph, not a time-
expanded graph. The latter type of graph would be necessary if more detailed infor-
mation on the planned moment of using a track within the five minute time lag should
be included.

In the classification of Cordeau et al. (1998), our problem formulation is a compound
network routing problem. In order to develop an algorithm for this problem, we have
to take into account the direction of moving a train on a track. The shunting yard is
therefore modeled as a directed graph G1 where each track i ∈ � is represented by two
nodes depending on the direction the train traverses this track (see lower part Fig. 3).
Node ir points to a right direction, node il to a left direction of the train at this track.
[Note the notational difference between i (track) and i (node)]. The total set of nodes
in graph G1 is denoted as N .

If an arc connects two nodes that represent the same track, a train can change to
that direction on this track. If an arc connects two nodes that represent different tracks,
routing a train between these tracks is possible in the direction given. The total set of
directed arcs is denoted as V , so G1 = {N , V }.

Costs are assigned to the arcs in the network in order to search for a route that
minimizes total costs. We model the objective of the planner (discussed in Sect. 1)
as to find the set of k shortest routes that avoid manual operation of crossovers and
direction changes as much as possible. The costs of the arcs and paths in the network
therefore represent the weighted sum of these objectives, where the weight for manual
crossovers and direction changes is much higher than the weight for the actual distance.
The costs for an arc between nodes i and j are expressed as:

c (i, j) = w1 Ic ( j) + w2 Id (i, j) + w3d (i, j) ∀ (i, j) ∈ V

where c (i, j) = cost of arc from node i to node j

wn = weight of nth cost factor

Ic ( j) = 1 if track j requires manual crossover; else 0
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Id (i, j) = 1 if i = j ∧ i �= j (saw-movement); else 0

d (i, j) = physical distance between track i and j.

The weights for manual crossovers and direction changes are chosen such that they
are always larger than the sum of all arc costs associated with physical distance, i.e.,
w1 ≥ w2 ≥ ∑

i, j d (i, j); w3 = 1.
Network G1 can be used in a shortest path algorithm to determine a path from source

i∗ to sink j∗. Assuming that the shortest path visits nodes z1, z2, . . ., zt before arriving
in node j∗, the path costs are a1 (i∗, j∗) = c (i∗, z1) + ∑t

l=2 c (zl−1, zl) + c (zt , j∗),
where the ordered vector a (i, j) = (a1 (i, j) , . . . , ak (i, j)) contains the costs of the
k-shortest paths from node i to j; i, j ∈ N .

In order to find k different routes, a k-shortest path algorithm can be used. Several
algorithms are available in literature, mostly based on the path deletion algorithm
of Yen (1971) or the labeling algorithm of Shier (1976) (see Eppstein 1998 for an
overview). However, there is no guarantee that the routes found will visit all m tracks
in the set �. Therefore, we have to develop a new algorithm in order to find the k
shortest routes from source to destination that visit all m intermediate tracks.

We propose a two-stage solution approach. The first stage uses the Shier algorithm
to calculate the k-shortest lengths of paths from the source node i∗ and each node
of the subset S ⊂ N to the sink node j∗ /∈ S ∪ i∗.S = {i |i ∈ N ; i ∈ �} and has
cardinality 2m, with m the cardinality of �. The second stage uses this information
to determine the sequence of visiting the m tracks in each of the k alternative routes
from source i∗ to sink j∗. The main results of this paper, especially the dominance
results in case of k-shortest problems, are being developed in this second stage.

Shier’s k-shortest path algorithm (Shier 1976) calculates in a single pass all
k-shortest paths from a source node to all other nodes in the network, including the
sink node. The running time of the algorithm is O(kn3), with n the number of nodes in
N . We iterate this algorithm 2m +1 times to generate the k shortest paths from all ele-
ments of i∗ ∪ S to all nodes in N , including the sink node j∗. This iterative procedure
is for the typical problem instances faced by the planners in Zwolle (n ≈ 400, k ≤ 8
and m ≤ 5) quite efficient, while still providing the optimal solution to the problem
of stage 1. Stage 1 results in a matrix A = [a (i, j)] of minimal cost routes. Note that
as Shier’s algorithm distinguishes paths only by length, it cannot save two different
paths of the same length, hence a (i, j) is a vector with a1 (i, j) < · · · < ak (i, j). In
our problem context, different paths with equal lengths between source and sink will
be very rare, as the data for the length of tracks is exact. Hence, it is not necessary to
accommodate for this characteristic of Shier’s algorithm.

Table 1 shows an illustration of the matrix A. For the railway network of Zwolle
some of the results are shown for a routing problem with k = 2 alternatives and
m = 3 intermediate tracks. The costs of a manual crossover w1 and of a direction
change w2 have both been set to 1.000.000, so the set of k shortest paths will focus on
minimizing the sum of manual crossovers and direction changes. Table 1 only shows
the 2m intermediate nodes and the sink node as destinations, although the algorithm
calculates the distances to all nodes in the network. We only need this selection of
nodes in stage 2 of the solution procedure.
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Table 1 Cost matrix A with k = 2 alternatives and m = 3 intermediate tracks

From/to k 204r 204l 41r 41l 101Ar 101Al Sink 6A

Source 7B 1 6422 1006422 2012109 1012109 2012158 1012158 1006929

2 6644 1006644 2012326 1012326 2012167 1012167 1007146

204r 1 0 1000000 2013199 1013199 2013234 1005927 1008019

2 ∞ 1005428 2013420 1013420 2013252 1012879 1008240

204l 1 1000000 0 1013199 13199 1013234 13234 8019

2 1005428 ∞ 1013420 13420 1013252 13252 8240

41r 1 13199 1013199 0 1000000 2006115 1006115 5180

2 13420 1013420 ∞ 1002712 2008247 1008247 5623

41l 1 1013199 2013199 1000000 0 3006115 2006115 1005180

2 1013420 2013420 1005916 ∞ 3008247 2008247 1005623

101Ar 1 13234 1013234 2006115 1006115 0 1000000 5242

2 13252 1013252 2008247 1008247 ∞ 1005734 1009740

101Al 1 1013234 2013234 3006115 2006115 1000000 0 1005242

2 1013252 2013252 3008247 2008247 1006746 ∞ 2009740

The second stage of the solution procedure aims at determining the optimal sequence
of visiting the m tracks of the set � in each of the k alternative paths from source to
sink. This is an interesting problem that to the knowledge of the authors has not been
studied before. It is related to the Hamiltonian path problem of finding the optimal
sequence of visiting the nodes in a network where each node has to be included exactly
once (see Chvatal 1985). However, in network G1, each track ∈ � was represented
by two nodes: ir and il that both belong to S, but only one of these nodes needs to be
present on a path from source to sink. So we need to determine the nodes that need to
be included in the path and the actual sequence of visiting these nodes.

Our solution approach will be to exploit the structure of the specific cost matrix
when solving a Hamiltonian path problem in each of the 2m different networks that
emerge, as there are m intermediate tracks. Figure 4 shows the aggregated network
G2, from which the 2m networks used in stage 2 are deduced. The figure shows
an aggregated network in the sense that the intermediate nodes (e.g., ir or il ) are no
real nodes, but aggregate nodes. All other things being equal, each aggregate node is
represented by two different networks with either node ir or node il . As this holds
true for all m intermediate nodes, a total of 2m networks results. The complexity of
the problem is mainly due to the fact that the k alternative paths in the final solution
may result from more than one network in this set of 2m networks. However, some of
them may also result from the same network, either by applying another sequence of
visiting these nodes (a next-best Hamiltonian path) or by using a next-best arc with a
slightly higher cost on the same path.

Let us first gain more knowledge of the structure of this problem. The 2m networks
that result from G2 (Fig. 4) differ from G1 (Fig. 3) in three respects. First, these
networks contain only a small subset i∗ ∪ Ssel ∪ j∗ of the nodes from G1, where
Ssel = {

ix ∈ S| i ∈ � ∧ iy /∈ S, x �= y
}
, i.e., Ssel is a subset of S with cardinality m
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Fig. 4 Aggregated network G2
of stage two

where each intermediate track i is represented by exactly one node, either ir or il . There
are 2m different subsets Ssel, resulting in the same number of networks G2 (Ssel). Each
intermediate node in a network G2 (Ssel) can be reached from the source node, and
each intermediate node can reach the sink node. There are no directed arcs between
source node and sink node, unless S = ∅. If there are intermediate nodes, the network
contains between each pair of intermediate nodes a total number of 2k directed arcs.
The cost of the kth arc between two nodes represents the cost of the kth-shortest path
between the corresponding nodes in G1. Hence, the optimal solution of stage 1 is used
as input for the networks of stage 2.

The problem of stage 2 is now to determine the k minimal cost paths from i∗ to j∗
in the set of 2m networks G2 (Ssel), where G2 (Ssel) can be characterized as:

G2 (Ssel) = (
N sel

2 , V sel
2

)
with

N sel
2 = {i∗ ∪ Ssel ∪ j∗}

V sel
2 = {ah (i, j) |i ∈ i∗ ∪ Ssel, j ∈ Ssel ∪ j∗, h ∈ [1, k]}

/ {ah (i∗, j∗) |h ∈ [1, k]} .

Before we solve this specific shortest path problem, we take a further look at the
characteristics of the cost matrix A (see Table 1 for an example). Contrary to the
normal situation in a shortest path problem, this cost matrix shows the costs of k
different paths between the same nodes. If we aim at finding multiple shortest paths
in networks with such a cost matrix, the assumptions behind the cost matrix in normal
k-shortest path algorithms (Eppstein 1998) should be reconsidered. We therefore pay
attention to the cost matrix A. The inherent structure of A can be revealed using four
Lemmas. They hold for all i ∈ i∗ ∪ Ssel; j ∈ Ssel ∪ j∗.

Lemma 1

a1(i, j) ≤ a1(i, z) + a1(z, j) ∀z ∈ Ssel. (1)

Proof Follows directly from the optimality of stage 1.

Lemma 1 states that the triangle equation holds for the best alternative paths between
nodes i and j . a1 (i, j) is the minimal cost of a path between node i and j in G1. Any
node z that is in the subset Ssel is also a node in G1, as Ssel ⊂ N . The optimality of the
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k-shortest path algorithm of stage 1 guarantees that the triangle equation also holds
for the minimal cost paths between any pair of nodes in G2. ��
Lemma 2

ah (i, j) < ah+1 (i, j) ∀1 ≤ h < k. (2)

Proof Follows directly from using the Shier (1976) algorithm in stage 1, as this
algorithm finds k routes with different costs, assuming that these routes exist (i.e.,
ah (i, j) < ∞∀1 ≤ h ≤ k).

Lemma 2 states that the matrix A has between each set of nodes k strictly increasing
costs of paths. Note that there may be several paths with the same costs. ��
Lemma 3

IF ∃z ∈ Ssel : ah (i, j) < a f (i, z) + ag (z, j) with f, g ∈ [1, k] , h ∈ [1, k − 1] .

Then ah+1 (i, j) ≤ a f (i, z) + ag (z, j) . (3)

Proof Suppose the contrary would be true: ah+1 (i, j) > a f (i, z) + ag (z, j). Then
[according to (2)] we would have ah (i, j) < a f (i, z) + ag (z, j) < ah+1 (i, j),
so there would be a path with a cost between ah (i, j) and ah+1 (i, j). However,
the optimality of stage 1 guarantees that ah+1 (i, j) is the minimal cost path in the
network G1 = (N , V ) with a cost that exceeds ah (i, j). As Ssel ⊂ N , this holds true
for z ∈ Ssel. ��
Corollary 1

IF ∀z ∈ Ssel : ah (i, j) < a f (i, z) + ag (z, j) with f, g ∈ [1, k] , h ∈ [1, k − 1] .

Then ah+1 (i, j) ≤ a f (i, z) + ag (z, j) ∀z ∈ Ssel. (4)

Lemma 4

IF ∃z ∈ Ssel, z �= i, j : ah (i, j) = a f (i, z) + ag (z, j) with f, g, h ∈ [1, k − 1] .

Then ah+1 (i, j) ≤ a f +1 (i, z) + ag (z, j)

and ah+1 (i, j) ≤ a f (i, z) + ag+1 (z, j) . (5)

Proof Suppose ah+1 (i, j) > min
[
a f +1 (i, z) + ag (z, j) , a f (i, z) + ag+1 (z, j)

]
,

i.e., the contrary would be true. Then we would have (using Lemmas 2, 3): ah (i, j) <

min
[
a f +1 (i, z) + ag (z, j) , a f (i, z) + ag+1 (z, j)

]
< ah+1 (i, j), but ah+1 (i, j) is

the minimal cost path in the network G = (N , V ) exceeding ah (i, j). Hence the
contrary cannot be true.

Lemmas 3 and 4 show that the triangle equation, which holds for the best solution
between node i and j (Lemma 1), does not generally hold for second-best solutions.
However, there is still some structure left in the matrix A. This structure is presented
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in Lemmas 3 and 4 and can be used as dominance relations in a solution approach for
stage 2.

Based on these Lemmas, we developed a heuristic for the second stage problem.
The heuristic is based on a Hamiltonian path approximation. A Hamiltonian path in
a network G = (N , V ) is a path that visits all nodes in N exactly once. In a cost
matrix that obeys the triangle equation (see Lemma 1), the search for a path that visits
all nodes at least once can be restricted to the search for a Hamiltonian path, i.e.,
to the search for a permutation of the intermittent nodes such that the minimal cost
path between source and sink results. Such a permutation largely restricts the search
process, although the Hamiltonian path problem is still NP-complete (Chvatal 1985).
Lemma 1 has shown that the cost matrix A does obey the triangle equation for the
minimal cost path between each pair of nodes in a network G2 (Ssel), but this cannot
be generalized to all k-best cost paths in that network, as Lemmas 3 and 4 have shown.
Therefore, the Hamiltonian path solution has to be considered as an approximation
of the optimal solution. The latter might contain multiple visits to the same node
for alternative solutions, and such solutions will not be found using a Hamiltonian
approximation.

We introduce a branch and bound method in order to cope with the selection
of networks Ssel for which a Hamiltonian path problem is solved. The branch and
bound approach aims at determining in an early stage of alternative solution gener-
ation whether a solution that starts with an alternative permutation will result in an
improvement, using Lemma 1. As bounding mechanism, it uses the reduced distance
matrix approach (Balas and Toth 1985). Whenever an alternative solution has been
found, it determines which of the k-best solutions found so far are being improved by
this new solution, for which Lemmas 2, 3 and 4 are used.

There exists extensive literature on k-best combinatorial optimization problems, see
Eppstein’s (2001) internet bibliography http://www.ics.uci.edu/~eppstein/bibs/kpath.
bib. Solution methods for k-best shortest path and Hamiltonian path problems are given
in Lawler (1973) and Hamacher and Queyranne (1985). Sensitivity in k-best traveling
salesman problems is discussed in van der Poort et al. (1999). The basic trade-off is
between continuing to use the same sequence of nodes (i.e., by using a second-best path
between a pair of nodes in this sequence) and switching to another sequence of nodes.
In the latter case, we can start with the minimal cost arcs a1 (i, j) available for this new
sequence. This trade-off problem, denoted as the tolerance problem in literature on
combinatorial optimization problems (e.g., Shier and Witzgall 1980; Libura 1991), is
as difficult to solve as the original combinatorial problem. Due to the relatively small
k and m in the practical problem instances that we have to solve, we have decided to
not develop a heuristic for this trade-off problem, but solve it optimally using a branch
and bound approach that incorporates the Lemmas 2, 3 and 4.

The two stage approach for determining the k-shortest routes on a shunting yard,
visiting the list of must-visit tracks at least once, and avoiding the tracks that are listed
in the blocking list, is hence as follows:

Stage 1 Let a node represent the direction of a train on a track. Determine k-best
cost paths from a subset i∗ ∪ S (the source node and all 2m intermediate nodes) to
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all nodes N (including sink node j∗) in the network G1. Output: all k-best costs
a1 (i, j) ..ak (i, j) of paths originating from nodes used in stage 2.

Stage 2 Approximate the optimal solution by finding the k-best Hamiltonian paths
in the set of all 2m networks G2 (Ssel), where the nodes in each network represent all
tracks that have to be included in a route.

(a) Initialization: For all subsets Ssel set a1 (i, i) = ∞∀i ∈ Ssel (avoid these sub
tours)
Set Cur Solution[h] = ∞∀h ∈ [1, k]

(b) For each subset Ssel do apply a branch and bound procedure to determine whether
paths in this subset will improve the current set of solutions.

If
∑

a1(i, j)
(i, j)∈Hamiltonian path

< Cur Solution[k], update the current solutions, using

Lemmas 2, 3, and 4.
(Note that the algorithm enumerates all subsets Ssel, but does not specify the

sequence of checking the subsets. If a path is found that improves one or more elements
in the array of current solutions, we apply Lemmas 2, 3 and 4 in order to construct an
updated array of k-best solutions.)

The branch and bound method uses a lower bound LB in order to determine whether
a branch will lead to a path with a cost that exceeds the current k-best solution found.
The lower bound supposes that a partial Hamiltonian path has been created with i•
the last node added, leaving a subset T ⊂ Ssel of intermediate nodes to be added. It is
calculated as follows:

Set a1 (i•, j∗) = ∞ (it is not allowed to go directly to the sink node, as there are
other nodes left in T that have to be added to the path)

For all nodes i ∈ {i• ∪ T } calculate ri = min
j∈{ j∗∪T } [a1 (i, j)]

For all nodes j ∈ { j∗ ∪ T } calculate q j = min
i∈{i•∪T } [a1(i, j) − ri ]

L B = Cost partial path +
∑

i∈{i•∪T }
ri +

∑

j∈{ j∗∪T }
q j .

If L B ≥ Cur Solution [k], abandon this branch, else continue the search within
this branch.

3 Implementation

This section discusses the way we implemented the algorithm in a prototype of the
planning support system and gives attention to the interaction between this system and
the planner.

For each train movement a route must be specified. The system contains a graphical
overview of the tracks with which routes can be created manually, interactively, or
automatically (Fig. 2). The overview shows the tracks of the currently active route
bold in a different color. Furthermore, track occupancy and track characteristics such
as manual crossover are shown using color and line style.
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Table 2 Average calculation times (milliseconds) for routing trains

Number of alternatives k

Number of obligatory tracks m 0 1 2 3 4 5

Obligatory track: 204 41 101A 18C 95

k = 1 114.2 248.6 424.4 526.9 714.9 936.9

k = 2 115.9 251.7 442.7 640.9 880.9 1, 181.3

k = 3 126.3 280.8 443.9 636.7 851.3 1, 106.1

k = 4 129.2 287.8 475.5 694.5 918.9 1, 190.5

k = 5 128.3 296.9 500.0 712.0 913.4 1, 212.0

k = 6 126.6 298.3 496.6 707.5 939.9 1, 267.0

k = 7 132.2 300.0 509.9 720.5 943.6 1, 275.2

k = 8 129.5 333.3 529.8 709.4 964.8 1, 375.0

Average calculation times (milliseconds, 100 replications) on a 2.4 Ghz Intel Pentium 4 processor

The planner can change the route interactively by blocking tracks or making tracks
obligatory by clicking on the tracks in the graphical overview. After each action of the
planner, the algorithm creates a new set of alternative routes taking the information
from the planner as a constraint. The planner can choose from the k alternative tracks
that are shown in a window with routing alternatives.

Table 2 shows the algorithm calculation times for a train that must be routed from
track 7B to track 6A. The table shows the average times for k = 1–8 alternatives and
for m = 0–5 added obligatory tracks, based on 100 replications. As a benchmark, the
average time for the default routing mode (k = 1 alternative, m = 0 obligatory tracks, a
simple shortest path problem) is 0.114 s. This mode is used when the planner is making
the shunt schedule and routes are calculated in the background automatically without
user intervention. The planner can manually increase the number of alternatives k
when he or she would like to see more routes. The table shows that this decision has
no large impact on the required calculation times compared to the simple shortest path
problem calculation, as long as the number of additional obligatory tracks m is low.
The inclusion of additional obligatory tracks results in longer calculation times, but
still very acceptable in our type of application. The scenario with 8 alternatives and 5
additional obligatory tracks results in calculation times of less than 1.4 s. Planners of
the Netherlands Railways expressed that larger values of k or m were not necessary
in practice, which make the calculation times acceptable for the practical application.

4 Conclusions and future research

This paper has developed insights in a k-best routing problem and implemented a
solution approach in a prototype of a planning support system. Support is provided
to railway planners that perform the task of routing trains on a railway network.
Trains have to be relocated to different tracks if the original track is required for other
purposes. A planner may prefer to use specific tracks in a route for a train, because of
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infrastructural or other reasons. A decision to block usage of several tracks may also be
appropriate, e.g., if these tracks will be needed for other purposes. The implementation
enables a planner to graphically interact with the solution process and select a route
from a set of k alternatives.

The solution approach that we propose is a two-stage process. The first stage consists
of determining the k-shortest routes from the “must-visit” tracks (including the source
track) to all other tracks in the railway network. We apply a k-shortest path algorithm
in a directed graph, where each track is represented by two nodes. The design of the
network enables us to determine the direction of the train over the tracks, which is
important for reasons of feasibility of the solution.

The second stage consists of determining the sequence of visiting the tracks in the
“must-visit” list for any of the k best solutions. We show that this problem differs
from traditional k-best Hamiltonian path problems, as the distance matrix consists of
k distances for each pair of nodes.

The main results of this paper are in developing insights on the cost matrix of this
problem. We develop dominance relations and apply them in a branch and bound
solution approach. The result lists the k shortest paths from source to destination
that visit all tracks in the “must-visit” list exactly once. The solution approach is
implemented in a prototype of a support system for the planner. Some experiments were
done with the solution approach, using real-life data. The results of these experiments
showed that the generated alternatives were logical and obtained within a reasonably
short time (0.1–1.4 s).

Although the solution approach has been developed for a specific routing problem
in shunting scheduling, the approach is of relevance for other routing problems as
well. k-best solution approaches provide opportunities for planners to combine their
insights and implicit preferences with the power of operations research methods.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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