K-SVD meets Transform Learning:
Transform K-SVD

Ender M. Eksioglu*, Member, IEEE and Ozden Bayir, Student Member, IEEE

Abstract—Recently there has been increasing attention directed
towards the analysis sparsity models. Consequently, there is a
quest for learning the operators which would enable analysis
sparse representations for signals in hand. Analysis operator
learning algorithms such as the Analysis K-SVD have been
proposed. Sparsifying transform learning is a paradigm which
is similar to the analysis operator learning, but they differ in
some subtle points. In this paper, we propose a novel transform
operator learning algorithm called as the Transform K-SVD,
which brings the transform learning and the K-SVD based
analysis dictionary learning approaches together. The proposed
Transform K-SVD has the important advantage that the sparse
coding step of the Analysis K-SVD gets replaced with the simple
thresholding step of the transform learning framework. We show
that the Transform K-SVD learns operators which are similar
both in appearance and performance to the operators learned
from the Analysis K-SVD, while its computational complexity
stays much reduced compared to the Analysis K-SVD.

Index Terms—Sparsifying transform learning; analysis opera-
tor learning; dictionary learning; sparse representation

EDICS: MLSAS-SPARSE, DSP-SPARSE, IMD-SPAR

I. INTRODUCTION

Using the sparsity prior for signal representation tasks has
been a popular approach which brings performance gain in
various applications. The synthesis sparsity model has been
the more common approach when compared to the analysis
sparsity model. Various dictionary learning methods for the
synthesis model have been proposed in the literature. The
original (synthesis) K-SVD is one such method which allows
the construction of an overcomplete dictionary suitable for
sparse synthesis, by learning the dictionary from the data
itself [1]. Recently, the analysis sparsity model has been
receiving increasing attention as a lesser-known counterpart
to the synthesis sparsity model [2], [3]. The analysis sparsity
prior provides a signal model different from but related to the
synthesis sparsity. Similar to the synthesis dictionary learning,
methods for analysis operator or analysis dictionary learning
have also been proposed. Analysis K-SVD [4] is one such
method developed in parallel with its better known original
synthesis counterpart [1]. There are other recent methods for
analysis operator learning such as the ones given in [5], [6].
These methods try to solve the minimization of cost functions
similar to the one proposed in [4]. Recently, transform sparsity
model which is more general than the analysis sparsity model
has been introduced in [7]. Transform learning deals with a

The authors are with the Electronics and Communications Engineering
Department, Istanbul Technical University, Istanbul, Turkey (Phone/fax: +90-
212-285 3623, e-mail: {eksioglue, bayiroz}@itu.edu.tr).

cost function in which the modeling error called as the spar-
sification error is defined in the transform or analysis domain
rather than the original signal domain. This slight variation in
the problem formulation of transform learning results in some
important advantages when compared to the analysis operator
learning framework. In the transform sparsity model, the costly
co-sparse representation step gets replaced with a simpler
thresholding procedure, leading to substantial computational
savings. In this paper, we develop a new transform learning
method which assumes a structure similar to the Analysis K-
SVD algorithm of [4]. The resulting algorithm which we call
as the Transform K-SVD is shown to learn operators or trans-
forms with performance and structure similar to the operators
learned using Analysis K-SVD. However, Transform K-SVD
has much reduced computational complexity as promised by
the transform learning paradigm.

II. TRANSFORM LEARNING FORMULATION

We consider the transform learning framework which was
introduced in [7] and further developed in [8]. The formulation
for the overcomplete transform learning problem is given in
[8] using the following minimization.

: _ 2 T k J\|p

min [WY —X|[} —7log det(W W)+n) [(w", w)) P,
k#j

st. |zallo < s Vn, |wks=1VE (1)

Here, y,, € RM n=1,... , N are the signal vectors, and they
form the columns of the overall data matrix Y € RM>*N W ¢
RE*M is the trained overcomplete sparsifying transform, with
wk € RM for k = 1,..., K being the row vectors of W.
In [8] the overcomplete transform case K > M is studied,
whereas [7] considers the simpler case of square transform
learning with K = M. In (1), &, € RX forn =1,...,N
are the sparse signal representations in the transform domain,
and they constitute the columns of the matrix X € RE*N,
The constant s < K determines the signal sparsity in the
transform domain. In the cost function of (1), there are three
terms. Of these, |[W'Y — X||% is the main sparsification error.
The logdet(W"W) and 7, [(w*,w’)[P are secondary
terms, which are used to avoid trivial and degenerate solutions.
log det(WTW) enforces full rank constraint for the tall
W matrix, whereas »_, j|<'wk,w7)|P is included to avoid
repeated rows in W. Here, we use an alternate approach by
simplifying the cost function when compared to (1). The core

minimization problem we deal with is given below.
min [|[WY — X||%, s.t. [|[2,]lo < s Vn, [|[w®|, = 1 VE,
W, X
W} = maxjwtu’ | <1-0 @)
J

Here, the unit norm constraint on the operator rows eliminates
the trivial all zero solution. u{W7} is the row-wise mutual
coherence for W. The mutual coherence constraint between
the rows is for excluding too close or repeating rows. We will
incorporate a row replacement step into the transform update
procedure of our transform learning algorithm to enforce the
mutual coherence constraint and hence to eliminate degenerate
solutions with repeated rows. This approach is similar to the
one held in the Analysis-KSVD algorithm of [4].

III. THE TRANSFORM K-SVD ALGORITHM

To solve the minimization problem (2), we shall utilize the
two-stage iterative approach, which has been extensively used
in dictionary and analysis operator learning algorithms. Hence,
we shall minimize on W and X separately. The first stage
at the 7™ iteration should solve the following minimization
problem on X.

X = argn%én [Wi—)Y = X%, st [zallo < s Vn (3)

This is equivalent to the sparse coding stage of the sparsifying
transform learning algorithm as introduced in [7]. As detailed
in [7], this problem is computationally much simpler to solve
than the sparse representation steps of regular dictionary
learning algorithms and also the co-sparse representation steps
of recent analysis operator learning algorithms. The exact
solution for this problem is simply given by column-wise
thresholding of WY as to retain only s terms of highest
magnitude in each column [7]. For example, Analysis K-
SVD requires a backward greedy algorithm for the solution
of its similar analysis pursuit step, which has much higher
complexity compared to simple thresholding. As described in
[7], if the ¢y sparsity constraint in (3) is convexly relaxed
with an ¢; penalty, the exact solution in that case will be
computed by a computationally even cheaper soft thresholding
procedure. In our realizations in this paper we have stuck with
s-term column-wise hard thresholding.

The second step of the iterative learning process will start
with a minimization over W as described below.

W;) = argmin WY — X7, st [w]la=1Vk (@)

We omit the u{W?} constraint of (2) here. We will enforce
this mutual coherence constraint via row replacement opera-
tions while solving (4). One possible solution of (4) would
be calculating the least squares solution followed by row-wise
normalization. However, here we adopt an approach similar
to operator update step of the Analysis K-SVD. We solve
the minimization problem sequentially for each row of W.
Following the argument put forward in both Synthesis and
Analysis K-SVD algorithms, we maintain that the update of
the k" row w” should only be determined by the columns
of the data matrix Y which have already been found to

be approximately orthogonal to w”. Hence, the transform
operator update step should only include the data signals which
have the particular row vector which is to be updated in their
co-support. The data signals, which have the row vector w”
in their co-support, are determined by the zeros of the row
vector ¥ as found in the sparse coding step. Taking these
arguments into consideration, the minimization problem (4)
transforms into the sequential minimization problem as given
below for k =1,..., K.

w(;) = argmin [wY P2, s.t. [Jw]y =1)

Here, Y,(j) is a submatrix of Y containing only a selection of
columns. The columns selected correspond to the positions of
zeros in the k™ row of X(i) w}(“i). By using only the learned
co-support information rather than the overall X ;) matrix, we
preserve the co-support structure as learned in the ™ sparse
coding step.

The resulting minimization problem in (5) is exactly the
same as the one derived in the analysis operator update step
of Analysis K-SVD. This is interesting, because our transform
learning approach (4) and the Analysis K-SVD operator learn-
ing approach start from two very different cost functions, but
end up with the same minimization problem for the update of
the operator. We should note that in [4] during the development
of the Analysis K-SVD, the analysis comes up with exactly
the same minimization problem as given in (5) only through a
rigorous procedure involving various approximations. In [4],
the original operator update minimization problem evolves into
the form in (5), because it provides a simpler to solve, but
still well-performing approximation. However, here (5) is the
exact and natural form of the minimization problem when we
require row-wise sequential updates for the transform in (4).
Therefore, the formulation here provides further support for
the use of (5) as an efficient approximation in [4].

Since (5) is identical to the approximate minimization
problem in [4], we can adopt the solution proposed in Analysis
K-SVD for the operator row update. The exact solution for
(5) is the left-singular vector corresponding to the smallest
singular value of Y](:). Given that we have to calculate the
SVD (or at least one particular singular vector) for each
submatrix Y,(;) for k =1,..., K, it is appropriate to name the
resulting overall algorithm as Transform K-SVD. This algo-
rithm possesses the advantages of both the transform learning
approach and the Analysis K-SVD. First of all, the sparse
coding step has been simplified compared to the Analysis
K-SVD. On the other hand, using the row-wise updates as
in Analysis K-SVD, the rows of W are modified separately
and in parallel. After updating a row, we need to include an
additional step to enforce the mutual coherence constraint of
(2) and to avoid repeating rows. Similar to the procedure in [4],
we replace a learned row w”* with a randomly generated one
if \wkij\ >1—¢, for any j < k. The novel Transform K-
SVD algorithm for learning a sparsifying transform is outlined
in a structured form in Alg.1.

Another point recommended in [4] is the explicit modifi-
cation of the row update rule for special applications, such
as natural images. In [4], it is recommended to modify the

Algorithm 1 Transform K-SVD

Input: Data record of length N, Y = {y,}_,; the
desired sparsity in the transform domain given by s; J.

Goal: {W,X} = arg&ig(HWY - X%,
st. [@nllo < 5 Vns [wh]ls =1 Vhk; p{WT} <14,

1: Initialize the transform operator, W(O) = Wjy.

2: for i:=1,2,... do > main iteration

3: Xy = argm)én||W(i_1)YfX| 2, st ||zullo < sVn
> transform sparse coding step, solved by column-wise
thresholding of W;_)Y.

4: for k:=1,2,...,K do
rows of the transform operator

5: Form the matrix Y,(:), by selecting the columns of
Y which correspond to the zero positions of :c’(fi).

> sequential update of the

6 why = argmin |wY |3, st. fwlz=1 »
w

calculate for Y,(J) the singular vector with the minimum
singular value.

Replace w(;, if \w’(“i)wjzﬂ > 1-4, forany j < k.

end for > end of row update iteration

9: end for > end of main iteration

row update in the following fashion when working on natural
image patches.

w* = argmin [lwY |3 +7) [IF NIl (w/w”)?,
k#j
st. Jlwlla=1 (6)

Here, I and I; denote the sets of the indices of data
vectors which have the £™ and j™ rows in their co-supports,
respectively. I¢ is a complementary set [4]. It is discussed in
[4] that (6) forces pairs of atoms which do not jointly appear in
the co-supports of signals to become orthogonal to each other.
This should result in a more stable recovery in the applications
of the learned operator/transform. The closed-form solution for
this modified problem is given in [4] as the least eigenvector
of the following matrix.

T
Y, YT+ Zu,? N 1w’ w” (7)
P

Hence, when we deal with natural image patches as the data
vectors, we employ transform update step as given by (6).
The computational complexity of the Transform K-SVD per
iteration can be analyzed as follows. The transform sparse
coding step is dominated by the WY multiplication rather
than the thresholding procedure, and its complexity is given as
O(NMK). This is much reduced compared to to the sparse
coding step of the Analysis K-SVD. The backward greedy
(BG) and the optimized backward greedy (OBG) analysis
pursuit algorithms used in Analysis K-SVD have complexities
O(NM?K) and O(NM?3K), respectively. In the transform
update step, the matrix Y, is of size (M>< N KIES) ~ (MxN)
on average. We can use Lanczos bidiagonalization based
methods for the calculation of the minimal left-singular vector

of each such matrix [9], requiring O(N M) operations. Hence,
the total computational complexity for K matrices will scale as
O(NMK). Therefore, the overall computational complexity
of Transform K-SVD is also given as O(N M K). This result
shows a reduction on the order of M or M? when compared
to the Analysis K-SVD depending on whether the BG or
the OBG algorithm is used. The O(NMK) computational
complexity of Transform K-SVD is the same as the complexity
of the overcomplete transform learning algorithm in [8]. We
should note that in our simulations we realized the transform
update using (7), where the eigenvector calculation is for a
matrix of size M x M. Since the eigenvector calculation
dominates the computation time for Transform K-SVD, its
required computation times come out to be sublinear in V.

IV. SIMULATION RESULTS

In this section we study the natural image denoising perfor-
mance of the learned operators. We compare operators learned
via the Analysis K-SVD algorithm, our novel Transform K-
SVD and also the constant, analytic finite difference (FD) op-
erator [6], [7]. The simulations are geared towards facilitating
a comparison between the Analysis K-SVD and Transform
K-SVD operators, rather than giving best or state-of-the-art
results. The denoising procedure is adapted from [4] using
the Analysis K-SVD realization available from the authors’
webpages. The implementations were performed in Matlab on
a system with an Intel Core i7 CPU at 2.4GHz, 12GB memory
and 64-bit Windows 8 operating system.

Each noisy image is used to generate N = 20, 000 possibly
overlapping patches of size 8 x 8, and these patches form the
training data Y used by the two algorithms. The operators are
of size 128 x 64 with K = 128, and the number of iterations is
20. The operators are employed to denoise all the overlapping
patches obtained from the noisy image using analysis sparsity
regularization with error-based OBG for sparse coding. The
denoised patches are merged to form the denoised image. Both
algorithms use (6) and the corresponding update rule with
~ = 1000 and § = 0.05. Both algorithms utilize the exact
same operator initialization and row replacement schemes as
detailed in [4]. In operator learning, analysis K-SVD employs
OBG with target subspace dimension 7, whereas Transform
K-SVD uses hard thresholding with s = 30. The standard
deviation of the AWG noise changes as ¢ = 5, ¢ = 10 and
o = 20, which result in a PSNR of about 34.1, 28.1 and 22.1
dB in the noisy images, respectively.

Table 1 details the denoising results of the various operators
for five commonly used images. The operators learned via
Transform K-SVD perform in general a little better than the
operators learned from Analysis K-SVD and the analytic FD
operator. It is also observed that with increasing noise the
performance gap between Transform K-SVD and Analysis
K-SVD increases. Fig.1, on the other hand, visualizes the
operators learned by the Transform and Analysis K-SVD al-
gorithms from the noisy ‘Barbara’ and ‘Lena’ images. We can
see similar structures appearing in the Transform and Analysis
K-SVD operators learned from the same images, and we can
deduce that although they start from different formulations of

a) b)

c) d)

Fig. 1: Examples of the operators learned for o = 10: a) Analysis K-SVD for ‘Barbara’, 1+ = 0.940, b) Transform K-SVD for
‘Barbara’, 1 = 0.946, c) Analysis K-SVD for ‘Lena’, u = 0.918, d) Transform K-SVD for ‘Lena’, p = 0.942.

TABLE I: Denoised image PSNRs in dB for five natural
images, noise standard deviation ¢ = 5,10 and 20.

o ‘ operator H Lena ‘ Barbara ‘ Peppers ‘ Boats ‘ House
T. K-SVD 37.63 37.04 36.90 36.62 | 38.27

5 | A.K-SVD 37.33 37.02 36.94 36.70 | 38.18
FD 36.38 34.69 35.93 35.13 | 36.96

T. K-SVD 33.61 32.28 32.46 3230 | 34.16

10 | A. K-SVD 33.34 32.09 32.27 32.06 | 3391
FD 33.01 30.47 32.17 31.65 | 33.55

T. K-SVD 31.27 28.53 29.42 29.32 | 30.83

20 | A.K-SVD || 29.48 27.28 27.87 2795 | 29.66
FD 30.07 26.81 28.86 28.42 | 30.28

TABLE II: Computation times (in seconds) of the two algo-
rithms for transform/operator learning with a single iteration.

of patches, N [| 1,000 | 2,000 | 4,000 | 8,000 | 16,000 | 20,000

T. K-SVD 24 2.8 32 4.0 52 5.8

A. K-SVD 514 100.0 | 202.1 | 396.6 | 793.0 963.6

the problem, the Transform and Analysis K-SVD algorithms
provide related solutions to the sparsifying operator learning
problem. The corresponding mutual coherence values are also
listed in the figure caption. Fig.2 shows the noisy and denoised
images for the image ‘Lena’ with o = 10.

The computation times of the two algorithms for different
training data size N are listed in Table 2. These are the
required times only for the transform/operator learning section
for a single iteration with multicore pooling in MATLAB off.
The results are averaged over 20 realizations. Transform K-
SVD decreases the required time substantially by realizing the
sparse coding step via simple thresholding.

V. CONCLUSIONS

We have presented Transform K-SVD, a novel algorithm
for solving the transform learning problem. Transform K-SVD

Fig. 2: Denoised images for o = 10: a) Noisy image (PSNR =
28.12dB), b) Transform K-SVD (PSNR = 33.61dB), c¢) Anal-
ysis K-SVD (PSNR = 33.34dB), d) FD (PSNR = 33.01dB).

extends the sequential update paradigm of the K-SVD synthe-
sis dictionary and analysis operator learning algorithms into
the newly introduced sparsifying transform learning realm.
Transform K-SVD successfully merges the computationally
efficient sparse coding step of the transform learning with the
row-wise operator update of the K-SVD, which allows parallel
implementation. Simulations with natural images show that
Transform K-SVD can learn transforms which are structurally
and performance-wise similar to and even better than the
operators learned from Analysis K-SVD, while retaining a
substantial computational saving.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.

[2] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus synthesis in
signal priors,” Inverse Problems, vol. 23, no. 3, pp. 947, 2007.

[3] S. Vaiter, G. Peyré, C. Dossal, and J. Fadili, “Robust sparse analysis
regularization,” [EEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2001-2016,
2013.

[4] R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: a dictionary-
learning algorithm for the analysis sparse model,” IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 661-677, 2013.

[5] S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator learning
and its application to image reconstruction,” IEEE Trans. Image Process.,
vol. 22, no. 6, pp. 2138-2150, 2013.

[6] M. Yaghoobi, Sangnam Nam, R. Gribonval, and M.E. Davies, “Con-
strained overcomplete analysis operator learning for cosparse signal
modelling,” IEEE Trans. Signal Process., vol. 61, no. 9, pp. 2341-2355,
2013.

[7]1 S. Ravishankar and Y. Bresler, “Learning sparsifying transforms,” IEEE
Trans. Signal Process., vol. 61, no. 5, pp. 1072-1086, 2013.

[8] S. Ravishankar and Y. Bresler, “Learning overcomplete sparsifying
transforms for signal processing,” in IEEE International Conference on
Acoustic, Speech and Signal Processing (ICASSP), 2013.

[9] A. Korobeynikov, “Computation- and space-efficient implementation of
SSA,” Statistics and its Interface, vol. 3, no. 3, pp. 357-368, 2010.

