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ABSTRACT
With more and more social network data being released, pro-
tecting the sensitive information within social networks from
leakage has become an important concern of publishers. Ad-
versaries with some background structural knowledge about
a target individual can easily re-identify him from the net-
work, even if the identifiers have been replaced by random-
ized integers(i.e., the network is naively-anonymized). Since
there exists numerous topological information that can be
used to attack a victim’s privacy, to resist such structural
re-identification becomes a great challenge. Previous works
only investigated a minority of such structural attacks, with-
out considering protecting against re-identification under
any potential structural knowledge about a target. To achieve
this objective, in this paper we propose 𝑘-symmetry model,
which modifies a naively-anonymized network so that for any
vertex in the network, there exist at least 𝑘− 1 structurally
equivalent counterparts. We also propose sampling methods
to extract approximate versions of the original network from
the anonymized network so that statistical properties of the
original network could be evaluated. Extensive experiments
show that we can successfully recover a variety of such prop-
erties of the original network through aggregations on quite
a small number of sample graphs.

1. INTRODUCTION
Social network, which consists of a set of entities rep-

resenting individuals or organizations and relations among
these entities, has been shown to be an invaluable tool to
solve a variety of real applications including marketing, psy-
chology and epidemiology. Recently, as more and more so-
cial network datasets published in one way or another, ex-
ploring the properties of these networks has attracted ever-
increasing interests of researchers from different disciplines
including sociology, physics, and computer science.
One of the fundamental issues when releasing social net-

work data is avoiding disclosure of individuals’ sensitive in-
formation while still permitting certain analysis on the net-
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work. A straightforward approach to achieve this objec-
tive is naive anonymization, which replaces all identifiers
of individuals with randomized integers so that adversaries
cannot directly locate each individual just according to his
identifier. However, this simple strategy is insufficient[2, 4],
since background knowledge of individuals such as degree [7],
neighborhood graph [19], and so on, provides additional in-
formation which can be used by adversaries to re-identify
the individuals from the naively-anonymized network.

All of those background knowledge mentioned above can
be considered as structural knowledge of the corresponding
individual, since each of them describes some information of
the individual’s topological connection to other individuals
within the network. Adversaries having certain structural
knowledge about an individual can re-identify him from the
naively-anonymized network, provided that the candidate
vertex matching the knowledge is unique. For instance, as
shown in Figure 1, if we know that Bob has 2 neighbors
with degree 1, then even all identifiers are removed, we can
still identify Bob. Hay et.al [4] first formalize such iden-
tity disclosure based on structural knowledge of vertices as
S
¯
tructural R

¯
e-identification(SR).

To resist such identity disclosure, a reasonable solution
is to modify the naively-anonymized network, denoted by
𝐺𝑎, so that there will be at least 𝑘 entities satisfying the
structural knowledge in the network after modification. This
strategy is similar to the well known 𝑘-anonymity principle
in traditional privacy-preservation technologies when releas-
ing tabular data. Several previous works in this direction
have proposed various 𝑘-anonymity models based on differ-
ent structural knowledge used. For example, the 𝑘-degree
anonymity model [7] modifies the network so that there are
at least 𝑘 vertices sharing the same degree, for each vertex;
and the 𝑘-neighborhood anonymity model [19] modifies the
network so that there are at least 𝑘 vertices sharing isomor-
phic neighborhoods, for each vertex.

One fundamental problem underlying all of the models
mentioned above is that each of them assumes some specific
structural knowledge used by the adversaries in advance.
However, in practice, it’s very difficult for the network data
publishers to make such predication since there exists nu-
merous possible structural knowledge. On the other hand,
as we shall see in Section 2.2, although descriptive power
of certain structural knowledge may be limited, a combina-
tion of multiple easily obtained structural knowledge could
have quite strong descriptive power, which can re-identify
a large fraction of individuals from the network. So a 𝑘-
anonymity model independent of structural knowledge used



is necessary.
In this paper, we propose 𝑘-symmetry model to achieve

this requirement. The general idea is to modify the network
so that for each vertex 𝑣, there exist at least 𝑘 − 1 other
vertices each of which serves as the image of 𝑣 under some
automorphism of the modified network. Informally speak-
ing, an automorphism of a network is a permutation on its
vertices which preserves its vertex adjacency relationships.
In other words, the network remains invariant under the ac-
tion of an automorphism. For instance, in Figure 1(b), if
we exchange vertex 1 and 3 while fixing any other vertices,
the vertex adjacency relationships of the network are con-
served and therefore this permutation is an automorphism.
Intuitively, any structural knowledge characterizing vertex
1 could also characterize vertex 3 and therefore they cannot
be distinguished from each other by any structural knowl-
edge. In Section 2.1, we shall formally demonstrate that
such intuition really holds. We will then elaborate the tech-
nical details of the model, and further investigate several
related problems, including anonymization algorithm, util-
ity preservation, and possible improvements.
The rest of the paper is organized as follows: In Sec-

tion 2, we present both theoretical analysis and experimen-
tal results to support the necessities of 𝑘-symmetry model,
which have been shortly mentioned above. In Section 3,
we formalize the 𝑘-symmetry model and then develop an
anonymization procedure. The utility preservation prob-
lem is investigated in Section 4, where we propose two sam-
pling approaches to extract approximate versions of the orig-
inal network from the anonymized network. Section 5 fur-
ther discusses several possible improvements on the basic
𝑘-symmetry model. Related works are summarized in Sec-
tion 6, and we concludes the paper in Section 7.

2. MOTIVATION
In this section, we will first theoretically analyze the power

of structural knowledge and illustrate why 𝑘-symmetry model
could resist SR independent of the structural knowledge
used. We then experimentally compare the power of sin-
gle and combination of multiple structural knowledge. Both
the theoretical analysis and the experimental results sub-
stantiate the necessities of 𝑘-symmetry model.

2.1 Power of Structural Knowledge
We first give some basic notations. A social network is

modeled as a graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), with 𝑉 (𝐺) repre-
senting the set of entities and 𝐸(𝐺) ⊆ 𝑉 (𝐺) × 𝑉 (𝐺) rep-
resenting the set of edges, i.e. relations among the entities.
For 𝑣 ∈ 𝑉 (𝐺), if (𝑢, 𝑣) ∈ 𝐸(𝐺), then 𝑢 is a neighbor of
𝑣, and we use 𝑁(𝑣) to denote the set of all neighbors of
𝑣. The cardinality of 𝑁(𝑣), i.e. ∣𝑁(𝑣)∣, is the degree of 𝑣.
Suppose 𝜋 is a permutation on 𝑉 (𝐺), for each 𝑣 ∈ 𝑉 (𝐺),
we use 𝑣𝜋 to denotes its image under 𝜋. Furthermore, we
use 𝑉 (𝐺)𝜋 and 𝐸(𝐺)𝜋 to denote the image of 𝑉 (𝐺) and
𝐸(𝐺) under 𝜋, respectively. Clearly, 𝑉 (𝐺)𝜋 = 𝑉 (𝐺), and
𝐸(𝐺)𝜋 = {(𝑢𝜋, 𝑣𝜋)∣(𝑢, 𝑣) ∈ 𝐸(𝐺)}. An automorphism of
graph 𝐺(𝑉 (𝐺), 𝐸(𝐺)) is a permutation 𝜋 on 𝑉 (𝐺) such that
𝐺𝜋 = 𝐺, where 𝐺𝜋 = (𝑉 (𝐺)𝜋, 𝐸(𝐺)𝜋). Given two automor-
phisms 𝑓 and 𝑔 of 𝐺, the production of 𝑓 and 𝑔 is also an
automorphism of 𝐺. Actually, the set of all automorphisms
of 𝐺 under the production of automorphisms forms a group,
namely, the automorphism group of 𝐺, denoted by 𝐴𝑢𝑡(𝐺).
Two vertices 𝑢, 𝑣 of 𝐺 are automorphically equivalent (de-
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Figure 1: Illustration of a social network 𝐺 and its
naively-anonymized version 𝐺𝑎.

noted as ∼) to each other, if there exits an automorphism
𝑔 ∈ 𝐴𝑢𝑡(𝐺) such that 𝑢𝑔 = 𝑣. It’s easy to verify that auto-
morphism equivalence on vertices is an equivalence relation.
The vertex partition induced by automorphism equivalence
is called automorphism partition of 𝐺, denoted by 𝑂𝑟𝑏(𝐺),
and each cell in 𝑂𝑟𝑏(𝐺) is called an orbit of 𝐴𝑢𝑡(𝐺). We
use 𝑂𝑟𝑏(𝑣) to denote the orbit that vertex 𝑣 belongs to.

Example 1 (Power of Structural Knowledge).
Figure 1 shows a network 𝐺 and its naively-anonymized net-
work 𝐺𝑎. Suppose the background structural knowledge is
𝑃1: Bob has at least 3 neighbors, then the candidate set
under 𝑃1 is {2, 4, 5}. Thus, given the knowledge 𝑃1, adver-
saries can identify Bob with probability 1/3. In contrast, if
the structural knowledge about Bob is 𝑃2: Bob has 2 neigh-
bors with degree 1, then the candidate set under 𝑃2 is {2}.
Consequently, Bob can be uniquely re-identified from 𝐺𝑎 by
adversaries with 𝑃2.

After a social network 𝐺 is naively-anonymized as 𝐺𝑎,
any individual that a vertex 𝑣 ∈ 𝑉 (𝐺𝑎) represents (in the
following texts, for notational convenience, we also use 𝑣
to denote the corresponding individual) can be a target to
be attacked if adversaries know some background structural
knowledge about the individual. The knowledge could also
be understood as some assertion of the individual, which
could be evaluated to be true or false based on the topo-
logical structure of the network. Suppose 𝑃 is one of such
knowledge, by default, we set 𝑃 (𝑣) = 𝑡𝑟𝑢𝑒, then the power
of 𝑃 to re-identify vertex 𝑣 can be accurately quantified
by the size of the candidate set of 𝑣 under knowledge 𝑃 :
C(𝑃, 𝑣) = {𝑢∣𝑢 ∈ 𝑉 (𝐺𝑎) ∧ 𝑃 (𝑢) = 𝑡𝑟𝑢𝑒}. Obviously, the
smaller ∣C(𝑃, 𝑣)∣ is, the easier that 𝑣 could be re-identified
from 𝐺𝑎, and consequently the more powerful 𝑃 is for iden-
tifying 𝑣. In particular, the target 𝑣 could be definitely
re-identified under knowledge 𝑃 if and only if ∣C(𝑃, 𝑣)∣ = 1.
We illustrate the power of different structural knowledge de-
scribing the same individual in Example 1.

The key observation here is that, for any structural knowl-
edge 𝑃 , 𝑂𝑟𝑏(𝑣) ⊆ C(𝑃, 𝑣), since for any 𝑢 ∈ 𝑂𝑟𝑏(𝑣), there
exists an automorphism 𝜋 such that 𝑢𝜋 = 𝑣, which means
𝑃 (𝑢) = 𝑃 (𝑢𝜋) = 𝑃 (𝑣) = 𝑡𝑟𝑢𝑒 and therefore 𝑢 ∈ C(𝑃, 𝑣).
Then, the power of any structural knowledge to re-identify
a vertex from 𝐺𝑎 is at most the size of the orbit to which the
vertex belongs. In other words, ∣𝑂𝑟𝑏(𝑣)∣ is the upper bound
for the power of any structural knowledge to re-identify ver-
tex 𝑣 from 𝐺𝑎. For example, as shown in Figure 1(b), any
two vertices in any one of the following vertex sets: {1, 3},
{4, 5} and {6, 8}, cannot be distinguished from each other
in 𝐺𝑎, no matter which structural knowledge is given, since
{1, 3}, {4, 5} and {6, 8} are the orbits of the network.
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Figure 2: Ability of measures to re-identify a target.

Hence, if we modify the network 𝐺𝑎 to be published so
that for each vertex 𝑣, ∣𝑂𝑟𝑏(𝑣)∣ is large enough, we can
protect the privacy of identities against any possible SR.
In other words, by modifying 𝐺𝑎 to a graph 𝐺′ such that
for each vertex 𝑣 ∈ 𝑉 (𝐺′), ∣𝑂𝑟𝑏(𝑣)∣ ≥ 𝑘, we could achieve
𝑘-anonymity independent of structural knowledge used by
adversaries. This is actually what 𝑘-symmetry model does,
as we shall see in Section 3.

2.2 Combination of Structural Knowledge
Although constructing automorphic equivalence will guar-

antee the privacy of identities, we may still wonder whether
this strategy is necessary for the privacy protection on real
social networks. Next, we will show that by collecting multi-
ple simple structural knowledge of a target, adversaries can
obtain combined knowledge about the target and the size of
the corresponding candidate set under such combined knowl-
edge is quite close to that of the orbit to which the target
belongs.
For example, we can define a combined structural mea-

sure as a two-tuple 𝑓(𝑣) = (𝐷𝑒𝑔(𝑣), 𝑡𝑟𝑖(𝑣)), where 𝐷𝑒𝑔(𝑣)
is the degree sequence (in the ascending or descending or-
der) of vertices in the neighborhood of 𝑣, and 𝑡𝑟𝑖(𝑣) is the
number of triangles passing trough vertex 𝑣. Both of these
two measures about a vertex can be easily obtained by an
adversary. Note that any measure 𝑓 on vertices implies an
equivalence relation on 𝑉 (𝐺), denoted as ≈𝑓 , which is de-
fined as 𝑢 ≈𝑓 𝑣(𝑢, 𝑣 ∈ 𝑉 (𝐺)) iff 𝑓(𝑢) = 𝑓(𝑣). Thus, we can
further obtain a partition 𝒱𝑓 induced by ≈𝑓 .
To show the power of a measure 𝑓 to re-identify a tar-

get from a naively-anonymized network, we calculate two
statistics. One is

𝑟𝑓 =

∑
𝑉𝑖∈𝒱𝑓

𝛿(𝑉𝑖)∑
Δ𝑖∈𝑂𝑟𝑏(𝐺) 𝛿(Δ𝑖)

, where 𝛿(𝑉𝑖) = 1 if ∣𝑉𝑖∣ = 1 and 𝛿(𝑉𝑖) = 0 otherwise. 𝑟𝑓
quantifies the relative power of 𝑓 to uniquely re-identify a
target from 𝐺𝑎. We also define

𝑠𝑓 =

∑
Δ𝑖∈𝑂𝑟𝑏(𝐺) ∣Δ𝑖∣(∣Δ𝑖∣ − 1)∑

𝑉𝑖∈𝒱𝑓
∣𝑉𝑖∣(∣𝑉𝑖∣ − 1)

, which is the similarity between 𝒱𝑓 and 𝑂𝑟𝑏(𝐺). If 𝑠𝑓 is
close to 1, the power of 𝑓 to re-identify a target is close to
the upper bound of any structural knowledge.
For comparison, we also summarize values of 𝑠𝑓 and 𝑟𝑓

for 𝑑𝑒𝑔(𝑣)(degree of vertex 𝑣) and 𝑡𝑟𝑖(𝑣) on three real so-
cial networks: Enron, Hepth and Net trace. The results
are shown in Figure 2, from which we can clearly see that
the re-identification power of the combined measure, either

in the average sense (quantified by 𝑠𝑓 ) or in the strongest
sense(quantified by 𝑟𝑓 ), is quite close to the upper bound.
Hence, in practice, it is necessary to anonymize a network by
constructing automorphic equivalence relation on 𝐺𝑎, which
motivates us to propose the 𝑘-symmetry model.

3. K-SYMMETRY MODEL
In this section, we will first formalize 𝑘-symmetry model

in 3.1, then define orbit copying operation to implement 𝑘-
symmetry in Section 3.2. The detailed anonymization pro-
cedure is described in Section 3.3.

3.1 Problem Definition

Definition 1 (𝑘-Symmetry Anonymity). Given a
graph 𝐺 and an integer 𝑘, if ∀Δ ∈ 𝑂𝑟𝑏(𝐺), ∣Δ∣ ≥ 𝑘, then
𝐺 is 𝑘-symmetric, or, 𝐺 satisfies the requirement of 𝑘-
symmetry anonymity.

𝐾-symmetry anonymity is a generalization of any other
𝑘-anonymities of graphs based on different structural con-
straints on vertices. In other words, if a graph is 𝑘-symmetric,
it also satisfies any other 𝑘-anonymity requirements defined
in terms of other structural constraints on vertices, such as
degree, neighborhoods and so on.

Then the problem becomes: Given a graph 𝐺 and an in-
teger 𝑘, how to modify 𝐺 so that the resulting graph 𝐺′ is 𝑘-
symmetric? In this paper, we will only consider vertex/edge
insertion as the graph modification operations. Consequently,
the original graph 𝐺 must be a subgraph of the anonymized
graph 𝐺′.

3.2 Orbit Copying Operation
Since the vertices in each orbit are already automorphi-

cally equivalent to each other, our basic idea to modify a
graph 𝐺 to be k-symmetric is then to make duplicate copies
of each orbit in 𝑂𝑟𝑏(𝐺), until the total size of each orbit com-
bined with its copies is at least 𝑘. However, such copying is
not trivial, since we need to ensure that all the vertices in
the union now are still automorphically equivalent. In this
section, we will formalize the definition of our orbit copying
operation, and show that the above requirement is satisfied.

We first need to generalize the concept of automorphism
partition to sub-automorphism partition, which underlies the
definition of orbit copying operation as well as the following
theoretic analysis.

Definition 2 (Sub-automorphism partition). Let 𝐺
be a graph and 𝒱 be a vertex partition on 𝑉 (𝐺). 𝒱 is a
sub-automorphism partition of 𝐺 if ∀𝑂 ∈ 𝒱, ∀𝑢, 𝑣 ∈ 𝑂,
∃𝑔 ∈ 𝐴𝑢𝑡(𝐺) such that 𝑢𝑔 = 𝑣 and 𝒱𝑔 = 𝒱.

Clearly, if 𝒱 is a sub-automorphism partition of 𝐺, then
𝒱 is finer than 𝑂𝑟𝑏(𝐺), which means that for each 𝑉𝑖 ∈ 𝒱,
there must exist some Δ𝑗 ∈ 𝑂𝑟𝑏(𝐺) such that 𝑉𝑖 ⊆ Δ𝑗 . In
particular, 𝑂𝑟𝑏(𝐺) is also a sub-automorphism partition of
𝐺. Hence, sub-automorphism partition can be considered as
a generalization of automorphism partition. It’s worthwhile
to point out that such generalization is not trivial since we
can find many partitions finer than automorphism partition
that cannot be classified as sub-automorphism partitions,
which is illustrated in Example 2.



(a) Graph 𝐺 (b) Graph 𝐺′ after 𝑉3 is copied

Figure 3: Illustration of orbit copying operation.

Example 2 (sub-automorphism partition). Consider
a cyclic graph with four vertices {1, 2, 3, 4} and edge set
{(1, 2)(2, 3)(3, 4)(1, 4)}. It’s easy to check that the parti-
tion {{1, 2}, {3, 4}} is a sub-automorphism partition. But
the partition {{1, 2, 3}, {4}} is not, since we cannot find any
automorphism that maps 2 to 3 while fixing the partition.

Now, we give the formal definition of orbit copying oper-
ation (in Definition 3), which is illustrated in Example 3.

Definition 3 (Orbit Copying). Given a graph 𝐺 and
a sub-automorphism partition 𝒱 of 𝐺. Suppose 𝑉 ∈ 𝒱, an
orbit copying operation 𝑂𝑐𝑝(𝐺,𝒱, 𝑉 ) is defined as follows:
For each 𝑣 ∈ 𝑉 , introduce a new vertex 𝑣′ into graph 𝐺

and:
1.if (𝑢, 𝑣) ∈ 𝐸(𝐺), 𝑢 ∈ 𝑈 , 𝑈 ∈ 𝒱 and 𝑈 ∕= 𝑉 , then add an
edge (𝑢, 𝑣′) into 𝐺;
2.if (𝑢, 𝑣) ∈ 𝐸(𝐺), 𝑢 ∈ 𝑉 , then add an edge (𝑢′, 𝑣′) into 𝐺.

Example 3 (Orbit Copying). As shown in Fig 3(a),
the original graph 𝐺 has the automorphism partition 𝑂𝑟𝑏(𝐺)
= {𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5}, where 𝑉1 = {𝑣1, 𝑣2}, 𝑉2 = {𝑣3}, 𝑉3 =
{𝑣4, 𝑣5}, 𝑉4 = {𝑣6, 𝑣7} and 𝑉5 = {𝑣8}. Fig 3(b) shows the
graph after the orbit 𝑉3 is copied.

Note that usually we will use 𝑂𝑟𝑏(𝐺) as the initial par-
tition before any orbit copying operation. The key point of
the orbit copying operation is that the copy of the original
orbit can strictly preserve the adjacency relation between
the original orbit and other orbits. For instance, as shown
in Example 3, 𝑉 ′

3 is still adjacent to 𝑉2 and 𝑉4. Hence, in
the graph 𝐺′ after an orbit copying operation 𝑂𝑐𝑝(𝐺,𝒱, 𝑉 ),
any vertex in 𝑉 is automorphically equivalent to its copy in
𝑉 ′. As a result, in 𝐺′, all vertices in 𝑉 ∪ 𝑉 ′ will be auto-
morphically equivalent to each other. Therefore, we must
have 𝑉 ∪ 𝑉 ′ ⊆ Δ𝑖, for some Δ𝑖 ∈ 𝑂𝑟𝑏(𝐺′). We also need
to notice that 𝑉 ∪ 𝑉 ′ is not necessarily an orbit of 𝑂𝑟𝑏(𝐺′),
which is illustrated in Example 4.

Example 4 (𝒱 ′ and 𝑂𝑟𝑏(𝐺′)). As shown in Figure 3,
after orbit copying, we have 𝒱 ′ = 𝑂𝑟𝑏(𝐺′). However, Figure
4 gives a counterexample. Here, 𝒱 = 𝑂𝑟𝑏(𝐺) = {𝑉1, 𝑉2}
with 𝑉1 = {𝑣1} and 𝑉2 = {𝑣2, 𝑣3}. After 𝑉1 is copied, we
obtain 𝐺′ and 𝒱 ′ = {{𝑣1, 𝑣′1}, {𝑣2, 𝑣3}}. If 𝐺′ is laid out as
𝐺′′, it’s easy to check that all the four vertices of 𝐺′ belong
to the same orbit of 𝐺′. Therefore, 𝒱 ′ ∕= 𝑂𝑟𝑏(𝐺′).

We formalize the above intuitions about orbit coping op-
eration in Lemma 1. Due to space limitations, all the proofs
are omitted in this paper.

(a) Graph 𝐺 (b) 𝐺′ (c) 𝐺′′

Figure 4: An example that 𝒱 ′ ∕= 𝑂𝑟𝑏(𝐺′).

Lemma 1. Let 𝐺 be a graph and 𝒱 = {𝑉1, 𝑉2, ..., 𝑉𝑚} be
a sub-automorphism partition of 𝐺. After an orbit copying
operation 𝑂𝑐𝑝(𝐺,𝒱, 𝑉𝑖)(1 ≤ 𝑖 ≤ 𝑚), the partition 𝒱(1) =

{𝑉1, 𝑉2, ..., 𝑉
(1)
𝑖 , ..., 𝑉𝑚} is a sub-automorphism partition of

𝐺(1), where 𝑉
(1)
𝑖 is the union of 𝑉𝑖 and its copy, and 𝐺(1) is

the resulting graph.

Since our ultimate goal is to modify a network to be 𝑘-
symmetric, only one copying operation does not necessarily
ensure the size of the augmented cell is large enough. Hence,
we may need to perform orbit copying operations on the
same cell of the initial partition multiple times to achieve
the size requirement. An immediate consequence of Lemma
1, described in Lemma 2, guarantees that the resulting par-
tition by merging all copies as well as the copied cell is still
a sub-automorphism partition of the resulting graph.

Lemma 2. Let 𝐺 be a graph and 𝒱 = {𝑉1, 𝑉2, ..., 𝑉𝑚} be a
sub-automorphism partition of 𝐺. The vertex partition after
applying 𝑁 ≥ 0 orbit copying operations 𝑂𝑐𝑝(𝐺,𝒱, 𝑉𝑖) on

the same cell 𝑉𝑖(1 ≤ 𝑖 ≤ 𝑚), i.e., 𝒱(𝑁) = {𝑉1, 𝑉2, ..., 𝑉
(𝑁)
𝑖 ,

..., 𝑉𝑚} is a sub-automorphism partition of the resulting graph

𝐺(𝑁), where 𝑉
(𝑁)
𝑖 is the union of 𝑉𝑖 and all its copies (in

particular, 𝑉
(0)
𝑖 = 𝑉𝑖) and 𝐺(𝑁) is the resulting graph.

Lemma 1 and 2 only focus on the orbit copying operations
on a single cell, but to achieve the 𝑘-symmetry anonymity,
we may have to perform a series of orbit copying operations
on different cells in the initial partition. Let O = 𝑂1...𝑂𝑁 be
any orbit copying operation sequence of length 𝑁 performed
on 𝐺, where 𝑂𝑛 = 𝑂𝑐𝑝(𝐺,𝒱, 𝑉𝑖𝑛) for 1 ≤ 𝑛 ≤ 𝑁 , and let the
graph produced by O be 𝐺O. Suppose 𝜋 is a permutation on
the set {1, 2, ..., 𝑁}. Let the operation sequence under 𝜋 be
𝜋(O) = 𝑂𝜋(1)...𝑂𝜋(𝑁), where 𝑂𝜋(𝑛) = 𝑂𝑐𝑝𝜋(𝑛)(𝐺,𝒱, 𝑉𝑖𝜋(𝑛)

),
for 1 ≤ 𝑛 ≤ 𝑁 . The next lemma shows that orbit copying
operation is order-independent.

Lemma 3. Let 𝐺 be a graph, and 𝒱 = {𝑉1, 𝑉2, ..., 𝑉𝑚} be
a sub-automorphism partition of 𝐺. Suppose O is any orbit
copying operation sequence of length 𝑁 performed on 𝐺. Let
𝛼 and 𝛽 be any two permutations on the set {1, 2, ..., 𝑁},
then 𝐺𝛼(O) and 𝐺𝛽(O) are isomorphic.

Now we are ready to show an important theorem which
states that an arbitrary sequence of orbit copying opera-
tions on the initial partition will always produce a sub-
automorphism partition of the resulting graph. It is a gen-
eralization of Lemma 2, and will be the foundation of our
anonymization procedure proposed in the next subsection.

Theorem 1. Let 𝐺 be a graph and 𝒱 = {𝑉1, 𝑉2, ..., 𝑉𝑚}
be a sub-automorphism partition of 𝐺. Suppose O is any
orbit copying operation sequence of length 𝑁 performed on
𝐺. Let the resulting vertex partition and the corresponding
graph be 𝒱(𝑁) and 𝐺(𝑁), where each cell in 𝒱(𝑁) is the union
of the original orbit and all of its copies. Then 𝒱(𝑁) is a
sub-automorphism partition of 𝐺(𝑁).



3.3 Anonymization Procedure
Based on the orbit copying operations, we now propose

an anonymization procedure to modify a graph to be 𝑘-
symmetric, which is shown in Algorithm 1. The basic idea of
the anonymization is repeating the orbit copying operation
for each 𝑉𝑖 ∈ 𝑂𝑟𝑏(𝐺)(∣𝑉𝑖∣ ≤ 𝑘) until the size of the union of
𝑉𝑖 and its copies are equal to or larger than 𝑘.

Algorithm 1: Anonymization

Input: a graph 𝐺 and its automorphism partition
𝑂𝑟𝑏(𝐺) = {𝑉1, 𝑉2, ..., 𝑉𝑚}; the specified threshold 𝑘

Output: a 𝑘-symmetric graph 𝐺′ with respect to 𝐺 and
𝑂𝑟𝑏(𝐺)

for 1 ≤ 𝑖 ≤ 𝑚 do1

if ∣𝑉𝑖∣ ≥ 𝑘 then2

Continue;3

end4

else5

Let 𝑉 ′
𝑖 = 𝑉𝑖;6

while ∣𝑉 ′
𝑖 ∣ < 𝑘 do7

𝑂𝑐𝑝(𝐺,𝑂𝑟𝑏(𝐺), 𝑉𝑖);8

𝑉 ′
𝑖 = 𝑉 ′

𝑖 ∪ 𝑉𝑖;9

end10

end11

end12

The fact that the graph produced by Algorithm 1 is 𝑘-
symmetric is a straightforward result of Theorem 1, which
is formally claimed in Theorem 2.

Theorem 2. The graph 𝐺′ produced by the anonymiza-
tion procedure is 𝑘-symmetric.

We illustrate the anonymization procedure as well as its
major properties in Example 5.

Example 5 (Anonymization Procedure). Consider
the graph 𝐺 shown in Figure 3(a). Suppose now 𝑘 = 2,
then 𝑉2 and 𝑉5 need to be copied if we want to produce
a 2-symmetric graph. Figure 5(a) shows the graph 𝐺′ af-
ter the anonymization procedure. Now we obtain a new
vertex partition 𝒱 ′ = {𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5} of 𝑉 (𝐺′), where
𝑉2 = {𝑣3, 𝑣′3}, 𝑉5 = {𝑣8, 𝑣′8} and other cells remain un-
changed. Each cell of 𝒱 ′ contains at least 2 vertices that
are structurally equivalent and we can easily check that 𝒱 ′

is a sub-automorphism partition of 𝐺′. Figure 5(b) shows
the graph 𝐺′ after the anonymization procedure when 𝑘 = 3.
Here, since none of the 5 orbits of 𝑂𝑟𝑏(𝐺) satisfies the 𝑘-
symmetry constraint, all of them need to be copied.

In general, the order of orbits in 𝑂𝑟𝑏(𝐺) is not neces-
sarily to be unique. However, attributed to Lemma 3, our
anonymization procedure is independent of the orbit copying
order, which means that we could always obtain the same 𝑘-
symmetric graph 𝐺′ whatever the order of orbits in 𝑂𝑟𝑏(𝐺)
is.
The time complexity of the anonymization procedure is

polynomial. Note that the time complexity of Algorithm 1
relies on the number of vertices and edges newly added into
the network. Specifically, suppose there are 𝑁 orbits in 𝒱
containing less than 𝑘 vertices, denoted by 𝑉𝑖1 , ..., 𝑉𝑖𝑁 . Let
𝑘1, ..., 𝑘𝑁 be the number of orbit copying operations for each
orbit 𝑉𝑖𝑘(1 ≤ 𝑘 ≤ 𝑁), respectively. Then the total number

of vertices added is
∑𝑁

𝑗=1 𝑘𝑗 ∣𝑉𝑖𝑗 ∣ ≤ (𝑘−1)∣𝑉 (𝐺)∣, since each

(a) 𝐺′ when 𝑘 = 2 (b) 𝐺′ when 𝑘 = 3

Figure 5: Illustration of anonymization procedure.

𝑘𝑗 ≤ 𝑘 − 1 and
∑𝑁

𝑗=1 ∣𝑉𝑖𝑗 ∣ ≤ ∣𝑉 (𝐺)∣. And the total number

of edges introduced is less than
∑𝑁

𝑗=1 𝑘𝑗 ∣𝑉𝑖𝑗 ∣(𝑘∣𝑉 (𝐺)∣) ≤
𝑘(𝑘 − 1)∣𝑉 (𝐺)∣2. Note that usually 𝑘 is much smaller than
∣𝑉 (𝐺)∣ and thus could be treated as a constant. Hence, the
worst case running time of the anonymization procedure is
𝑂(∣𝑉 (𝐺)∣2).

4. UTILITY
A critical problem that needs to be addressed in any pri-

vacy protection model is the utility of the published data.
One of the desired utilities is permitting users summariz-
ing key statistical properties of the original network on the
published network data. We will publish a graph that is
anonymized to be 𝑘-symmetric so that adversaries cannot
re-identify any vertex. We further provide graph-backbone
(discussed in Section 4.1) based sampling approaches to ex-
tract approximate versions of the original network from the
anonymized network, so that analysts can evaluate approx-
imate values of the key properties of the original network
from these sample graphs.

4.1 Graph Backbone
One of the very recent progress in network science shows

that the skeleton by collapsing all automorphically equiva-
lent classes in the network can preserve many key proper-
ties of original network including diameter, average shortest
path length and hub vertices [15]. Hence, preserving such
skeleton when anonymizing a network will be crucial for an-
alysts to recover certain key statistical properties of the orig-
inal network. Note that definition of orbit copying implies
that the linkage pattern between orbits in the original net-
work can be precisely preserved. Thus, it’s reasonable to ex-
pect that the original network and the anonymized network
will share the same or similar skeleton in the sense of filter-
ing out the structurally equivalent vertices in the network.
And consequently, sampling approach on the anonymized
𝑘-symmetric network under certain heuristics can help us
capture the skeleton of the original network, thus providing
the opportunity for users to accurately recover the statistical
information of the original network.

However, [15] only shows a general framework to capture
the graph skeleton by coarse-graining all orbits of a graph
without considering many special cases where the structure
will collapse after reduction of certain orbits. We will show
many cases where it’s necessary to exert restriction on the
reduction so that we can get a more meaningful skeleton,
which is consequently expected to preserve more structural
properties of the original network. Motivated by these intu-



itions, in this section we will first propose a new structural
skeleton of a network, called as graph backbone, which is
closely related to the orbit copying operation.
Graphs under orbit copying operation implies certain re-

lation on graphs. Let (𝐻,𝒱𝐻) be a two-tuple with 𝐻 rep-
resenting a graph and 𝒱𝐻 be a sub-automorphism partition
of 𝐻. Thus, after the action of a set of orbit copying opera-
tions on cells within 𝒱𝐻 , we can obtain a unique two-tuple
(𝐺,𝒱𝐺) with 𝐺 representing the resulting graph and 𝒱𝐺 rep-
resenting the resulting partition of 𝐺. Then, we call (𝐺,𝒱𝐺)
as a generalization of (𝐻,𝒱𝐻), and (𝐻,𝒱𝐻) as a reduction of
(𝐺,𝒱𝐺). Such relation is denoted by (𝐻,𝒱𝐻) ≤ (𝐺,𝒱𝐺). In
the context without confusion, we also say 𝐻 is a reduction
of 𝐺, or 𝐺 is a generalization of 𝐻, without explicitly speci-
fying corresponding partitions of 𝐺 and 𝐻. In particular, 𝐺
is both a generalization and reduction of itself. Obviously,
the resulting graph 𝐺′ of the anonymization procedure is a
generalization of the input graph 𝐺, with respect to 𝑂𝑟𝑏(𝐺).
First, it’s clear that a graph 𝐺 may have multiple reduc-

tions, with respect to the given sub-automorphism partition
𝒱𝐺. Let ℛ(𝐺,𝒱𝐺) be the set consisting of all the reduc-
tions of (𝐺,𝒱𝐺), namely, ℛ(𝐺,𝒱𝐺) = {(𝐻,𝒱𝐻)∣(𝐻,𝒱𝐻) ≤
(𝐺,𝒱𝐺)}. Since (𝐺,𝒱𝐺) ∈ ℛ(𝐺,𝒱𝐺), ℛ(𝐺,𝒱𝐺) is not empty.
Clearly, the reduction relation ≤ on ℛ(𝐺,𝒱𝐺) is reflexive,
asymmetric, and transitive. Hence ≤ is a partial order on
ℛ(𝐺,𝒱𝐺). Then, we are ready to give Theorem 3, which is
a fundamental property of the poset (ℛ(𝐺,𝒱𝐺);≤).

Theorem 3. The poset (ℛ(𝐺,𝒱𝐺);≤) is a bounded lat-
tice.

The graph backbone is then defined as the least element
in (ℛ(𝐺,𝒱𝐺);≤), which is formally shown in Definition 4.

Definition 4 (Graph Backbone). Given a graph 𝐺
and a sub-automorphism partition 𝒱𝐺 of 𝐺. The back-
bone of (𝐺,𝒱𝐺) is the least element in the bounded lattice
(ℛ(𝐺,𝒱𝐺);≤).

Since (ℛ(𝐺,𝒱𝐺);≤) is a bounded lattice, the uniqueness
of graph backbone of (𝐺,𝒱𝐺) can be ensured. Usually, we
denote the unique backbone of (𝐺,𝒱𝐺) as 𝐵𝐺,𝒱𝐺 .

Example 6 (Graph Backbone). Figure 6 illustrates
a graph 𝐺 and its backbone 𝐵𝐺,𝒱𝐺 . Note that vertices in
𝐺 are colored in terms of corresponding sub-automorphism
partition 𝒱𝐺.

Here, we need to give some remarks on the definition of
graph backbone. The backbone of (𝐺,𝒱𝐺) is essentially the
smallest skeleton that can be used as the seed graph from
which the network can grow to be (𝐺,𝒱𝐺) through orbit
copying operations. Hence, if we define an inverse oper-
ation of orbit copying operation, the backbone of (𝐺,𝒱𝐺)
is just the ultimate result after a sequence of such inverse
operations. For the convenience of description, we call such
inverse operation as reduction operation. Clearly, the reduc-
tion operation sequence from (𝐺,𝒱𝐺) to its backbone is not
unique. Such a reduction operation simply coarse-grain an
automorphic equivalence class. However, each orbit copying
operation or its inverse operation involves only one orbit in
each operation. Thus, two automorphic substructures in-
volving more than one orbits cannot be reduced anymore
in a backbone. In contrast, in the network quotient reduc-
tion [15], there exists no such restriction. For example, as

S1 S2

(a) Graph 𝐺

S1 S2

(b) Backbone of 𝐺

S1, S2

(c) Quotient of
𝐺

Figure 6: Illustration of graph backbone and quo-
tient.

shown in Figure 6, the two isomorphic subgraphs 𝑆1 and 𝑆2

of 𝐺 will be preserved in 𝐺’s backbone, however, they will
be reduced to one in 𝐺’s quotient.

Clearly, such restriction in the backbone reduction is more
meaningful, since usually different isomorphic substructures
are deemed as different modules of the network. In the pre-
vious example, 𝑆1 and 𝑆2 are two obvious modules of 𝐺.
Hence, when seeking 𝐺’s reduction, it’s more reasonable to
preserve such modular information.

Now we can move to another property of backbone: the
orbit copying operation can preserve the backbone, which
means that after the action of any sequence of orbit copying
operations, the resulting graph can be reduced to the same
backbone, which is formally stated in Theorem 4. Thus,
the graph 𝐺′ produced by the anonymization procedure will
preserve the backbone of the original graph 𝐺, with respect
to the given sub-automorphism partition 𝒱 of 𝐺.

Theorem 4. Let (𝐻,𝒱𝐻) ≤ (𝐺,𝒱𝐺), i.e., (𝐺,𝒱𝐺) be a
generalization of (𝐻,𝒱𝐻). Then 𝐵𝐺,𝒱𝐺 = 𝐵𝐻,𝒱𝐻 .

4.2 Backbone-Based Sampling
Since backbone captures the essential structural proper-

ties of the original network, graphs with the same backbone
and similar size tend to have the same or similar statis-
tical properties. Thus, the key to approximately recover
the structure of the original network is to extract its back-
bone from its 𝑘-symmetric version, which is possible since
graph 𝐺 and its 𝑘-symmetric anonymized graph share the
same backbone( Theorem 4). In this section, we will propose
two backbone-based sampling strategies to extract the orig-
inal network from the anonymized network. We first out-
line the general framework of backbone-based sampling in
4.2.1, then propose the exact backbone-based sampling and
approximate backbone-based sampling in 4.2.2 and 4.2.3,
respectively.

4.2.1 A General Framework
Let (𝐺′,𝒱 ′) be the result after anonymization of (𝐺,𝒱𝐺).

Suppose 𝒫 is a set of knowledge of 𝐺, for example the num-
ber of vertices or edges of 𝐺. Similarly as in Section 2.1,
here we can model each knowledge 𝑃 ∈ 𝒫 as some asser-
tion of 𝐺. By default, we set 𝑃 (𝐺) = 𝑡𝑟𝑢𝑒. Then the
set 𝑆𝑆(𝐺′,𝒱 ′,𝒫) = {(𝐻,𝒱𝐻)∣𝐵𝐺′,𝒱′ = 𝐵𝐻,𝒱𝐻 ∧ (𝑃 (𝐻) =
𝑡𝑟𝑢𝑒, ∀𝑃 ∈ 𝒫)} forms the sample space, with respect to 𝒫.
The backbone-based sampling strategy simply takes a graph
uniformly from the sample space.



Clearly, using different knowledge 𝒫 will result in differ-
ent sample spaces. Since the original graph 𝐺 is also in
the sample space, sample spaces with large size are pre-
ferred. But on the other hand, larger sample space usu-
ally means less restrictions on the structure of the sampled
graph, which may degrade its utility. Therefore, it is left
to the network publisher to choose a reasonable set 𝒫 that
achieves good trade-off between sample space size and sam-
ple utility. However, simply using the knowledge of ∣𝑉 (𝐺)∣
has already provided such a trade-off. In this case, suppose
the corresponding sub-automorphism partition of 𝐵𝐺′,𝒱′ is
ℬ = {𝐵1, 𝐵2, ..., 𝐵𝑚}. The size of the sample space then
equals to the number of feasible solutions (𝑘1, ..., 𝑘𝑚) to the
equation

∑𝑚
𝑖=1 𝑘𝑖∣𝐵𝑖∣ = ∣𝑉 (𝐺)∣, where each 𝑘𝑖 is a positive

integer. Thus, in general the size of sample space is ex-
pected to be exponential to ∣𝑉 (𝐺)∣. As a result, even in a
network with moderate size, the sample space size will be
unimaginably large. However, as we shall see later in the
experimental section, the sample utility is surprisingly good
in most cases. Hence, in the following implementations of
the backbone-based sampling strategy, we only consider the
cases where knowledge about the number of vertices in the
original network will be published.

4.2.2 Sampling Based on Exact Backbone
We next propose the exact backbone detection algorithm,

which is shown in Algorithm 2. The basic idea of the al-
gorithm is to reduce the network by repeatedly removing
the subgraphs which is obtained by orbit copying operations
(line 8 to 12). However, we first need to identify subgraphs
constructed by orbit copying operation (line 2 to 7).

Algorithm 2: Graph Backbone Detection

Input: 𝐺, 𝒱
Output: 𝐵𝐺,𝒱
foreach 𝑉 ∈ 𝒱 do1

foreach 𝑣 ∈ 𝑉 do2

Compute 𝐿(𝑣);3

foreach 𝑢 ∈ 𝐿(𝑣) do4

Add (𝑣, 𝑢) into ℒ(𝑉 );5

end6

end7

foreach 𝐶 ∈ 𝒞(𝐺𝑉 ) do8

if ∃𝐶′ ∈ 𝒞(𝐺𝑉 ), 𝐺′
𝐶

∼=ℒ(𝑉 ) 𝐺𝐶 then9

Remove 𝐶′ from 𝐺;10

end11

end12

end13

return The resulting graph, which must be 𝐵𝐺,𝒱 ;14

Let 𝐺 be a graph and 𝒱 be one of its sub-automorphism
partitions. From the definition of orbit copying operation,
we have that the subgraph induced by each cell 𝑉 ∈ 𝒱, de-
noted as 𝐺[𝑉 ], will consist of a set of connected components
and some of the components can be considered as copies of
the remaining components. Let 𝒞(𝐺[𝑉 ]) be the set of 𝐺[𝑉 ]’s
components. If one component 𝐶1 ∈ 𝒞(𝐺[𝑉 ]) is the copy of
𝐶2 ∈ 𝒞(𝐺[𝑉 ]), 𝐶1 must be isomorphic to 𝐶2. For example,
as shown in Figure 7, in both of the two graphs, the compo-
nent 𝐶1 is isomorphic to the component 𝐶2 (𝐶1 and 𝐶2 are
the induced subgraphs of the cell whose vertices are marked
by blue).
However, in some cases, isomorphic relation between com-

ponents is not sufficient to characterize the orbit-copying

C1

C2

(a) 𝐺1

C1

C2

(b) 𝐺2

Figure 7: Examples of graphs and their backbones.

relation between components. For example, in Figure 7(b),
component 𝐶1 (𝐶2) will not be an orbit-copy of 𝐶2 (𝐶1),
since no vertex in 𝐶1 shares the same neighbor with any
vertex in 𝐶2. However, in Figure 7(a), for each vertex
𝑢 ∈ 𝐶1, we can find a corresponding vertex 𝑣 ∈ 𝐶2 such
that they share the same neighbors that does not lie in the
blue cell. Let ℒ(𝑉 ) be the set of all vertex pairs (𝑢, 𝑣)
such that they share the same neighbors outside 𝑉 , that
is 𝑁(𝑣)∩ (𝑉 (𝐺)− 𝑉 ) = 𝑁(𝑢)∩ (𝑉 (𝐺)− 𝑉 ), and they come
from different components of 𝒞(𝐺[𝑉 ]). Then, only if we can
find an isomorphism 𝜃 from 𝐶𝑖 ∈ 𝒞(𝐺[𝑉 ]) to 𝐶𝑗 ∈ 𝒞(𝐺[𝑉 ])
such that each (𝑢, 𝜃(𝑢)) ∈ ℒ(𝑉 ) (such a relation between
𝐶1 and 𝐶2 is denoted by 𝐶1

∼=ℒ(𝑉 ) 𝐶2), 𝐶𝑖 (𝐶𝑗) will be an
orbit-copy of 𝐶𝑗 (𝐶𝑖) and thus can be removed (line 9 to
11). When we remove a component from the network, we
remove the vertices contained in the component as well as
all their incident edges.

Above analysis shows that the components removed are
strictly the orbit copies of some components in the same cell,
thus we can ensure that the resulting graph is the backbone
of (𝐺,𝒱). Based on the above identification algorithm of
graph backbone, we can now further propose a sampling
strategy to approximate the original network, which is illus-
trated in Algorithm 3.

Algorithm 3: Exact backbone-based sampling

Input: 𝐺′,𝒱 ′, 𝑛 = ∣𝑉 (𝐺)∣, 𝑝[1...∣𝒱 ′∣]
Output: A connected subgraph 𝐺𝑠 of 𝐺′ such that

∣𝑉 (𝐺𝑠)∣ ≈ 𝑛
Compute 𝐵𝐺′,𝒱′ ;1

𝑁 = 𝑛− ∣𝑉 (𝐵𝐺′,𝒱′ )∣;2

while 𝑁 > 0 do3

Randomly pick 𝑖 with probability 𝑝[𝑖] such that4

(𝐶𝑃𝑁 [𝑖] + 1) ⋅ ∣𝐵𝑖∣ ≤ ∣𝑉 ′
𝑖 ∣, where 1 ≤ 𝑖 ≤ ∣𝒱 ′∣, 𝐵𝑖 ∈ ℬ

and 𝑉 ′
𝑖 ∈ 𝒱 ′;

𝐶𝑃𝑁 [𝑖] = 𝐶𝑃𝑁 [𝑖] + 1;5

𝑁 = 𝑁 − ∣𝐵𝑖∣;6

end7

for 1 ≤ 𝑖 ≤ ∣ℬ∣ do8

Repeat 𝑂𝑐𝑝(𝐵𝐺′,𝒱′ ,ℬ, 𝐵𝑖) 𝐶𝑃𝑁 [𝑖] times;9

end10

return The resulting graph as 𝐺𝑠;11

The input of Algorithm 3 is the generalization (𝐺′,𝒱 ′)
of the original network 𝐺 and the number of vertices of 𝐺.
Here, users can also specify 𝑝[𝑖] as the input, which is the
sampling probability from cell 𝑉 ′

𝑖 of 𝒱 ′. In general, 𝑝[𝑖] can
follow any distribution. However, real social networks usu-
ally have a right-skewed degree distribution, meaning that
the number of vertex with degree 𝑘 is inversely correlated to



𝑘. Thus, in the original partition 𝒱, the size of cells is ex-
pected to be inversely related to the degree of vertices in the

cell. Hence, usually, users can define 𝑝[𝑖] = 𝑑−1
𝑖 /

∑∣𝒱′∣
𝑗=1 𝑑

−1
𝑗 ,

where 𝑑𝑖 is the degree of vertices in 𝑉 ′
𝑖 .

The basic idea of the algorithm is to distribute 𝑁 =
𝑛 − ∣𝑉 (𝐵𝐺′,𝒱′)∣ vertices into different cells of ℬ with prob-
ability 𝑝[𝑖]. In the real implementation, we first compute
𝐶𝑃𝑁 [𝑖] (initialized as 0) to record the number of orbit copy-
ing operations that should be performed on cell 𝐵𝑖 of ℬ ac-
cording to 𝑝[𝑖] (line 3 o 7). Then, we repeat the orbit copying
operation 𝐶𝑃𝑁 [𝑖] times for each cell in ℬ.
Note that the number of vertices in the resulting graph

may be slightly more than ∣𝑉 (𝐺)∣, but the number of ad-
ditional vertices inserted will not exceed the size of the cell
chosen at the last iteration of the while loop. Introduction
of extra vertices usually can be ignored since most cells in
the automorphism partition of a real network are of very
small size compared to the whole population.
The major weakness of this implementation is its poten-

tial inefficiency. Note that when calculating graph backbone
in Algorithm 2, indeed we need to perform graph isomor-
phism testing, whose complexity is still an open problem.
Specifically, neither we have found a polynomial time algo-
rithm, nor we can prove that the problem is NP-complete [3].
Therefore, in the worst case, it is unlikely that there exists
an efficient algorithm outperforming the brute-force search.

4.2.3 Sampling Based on Approximate Backbone
To reduce computational complexity, in this subsection,

we propose an alternative implementation with linear time
complexity in the worst case.
The procedure is illustrated in Algorithm 4, whose in-

puts are the same as that of Algorithm 3. In the proce-
dure, 𝑆[𝑖](initialized as 1) records the number of vertices
that should be sampled from cell 𝑉𝑖 ∈ 𝒱 ′, according to 𝑝[𝑖];
𝑉 𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] and 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑖] are two booleans, respectively, in-
dicating whether vertex 𝑣𝑖 is visited and selected in the𝐷𝐹𝑆
procedure shown in Algorithm 5; all other notations have the
same meaning as they are in Algorithm 3.

Algorithm 4: Approximate backbone-based sampling

Input: 𝐺′, 𝒱 ′, 𝑛 = ∣𝑉 (𝐺)∣, 𝑝[1...∣𝒱 ′∣]
Output: A connected subgraph 𝐺𝑠 of 𝐺′ such that

∣𝑉 (𝐺𝑠)∣ = 𝑛
𝑁 = 𝑛− ∣𝒱 ′∣;1

while 𝑁 > 0 do2

Randomly pick 𝑖 with respect to 𝑝[𝑖] such that3

𝑆[𝑖] < ∣𝑉 ′
𝑖 ∣, where 1 ≤ 𝑖 ≤ ∣𝒱 ′∣ and 𝑉 ′

𝑖 ∈ 𝒱 ′;
𝑆[𝑖] = 𝑆[𝑖] + 1;4

𝑁 = 𝑁 − 1;5

end6

Uniformly pick a vertex 𝑟 ∈ 𝑉 (𝐺′), and suppose 𝑟 in 𝑉 ′
𝑗 ;7

𝑉 𝑖𝑠𝑖𝑡𝑒𝑑[𝑟] = 𝑡𝑟𝑢𝑒;8

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑟] = 𝑡𝑟𝑢𝑒;9

𝑆[𝑗] = 𝑆[𝑗]− 1;10

𝑛 = 𝑛− 1;11

𝐷𝐹𝑆(𝑟, 𝑛, 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑆,𝒱 ′);12

return The subgraph induced by13

𝑉 = {𝑣∣𝑣 ∈ 𝑉 (𝐺′) ∧ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑣] = 𝑡𝑟𝑢𝑒});

The main idea of the sampling procedure is to sample over-
all 𝑛 vertices from cells of 𝒱 ′ through a depth-first traversal
on the graph 𝐺′ and return the subgraph induced by such
𝑛 sampled vertices as the approximation of the original net-

work. For each cell in 𝒱 ′, we first need to compute the
expected number of sampled vertices, which is proportional
to the given probability 𝑝[𝑖]. Then, we randomly select a
vertex in 𝐺′ as the root of the resulting DFS-tree (line 7 to
11 in Algorithm 4), then use 𝑆[1, ..., ∣𝒱 ′∣] to guide the DFS
procedure, such that for each cell 𝑉𝑖 at most 𝑆[𝑖] vertices
will be sampled (from line 8 to 13 in Algorithm 5). The
rationality of exploiting the DFS as the framework of ver-
tex sampling is to ensure the connectedness of the induced
subgraph, which is required by the original graph.

Algorithm 5: 𝐷𝐹𝑆(𝑣, 𝑛, 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑆,𝒱 ′)

Input: 𝑣, 𝑛, 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑆, 𝒱 ′
foreach 𝑢 ∈ 𝑁(𝑣) do1

if 𝑛 < 1 then2

return;3

end4

if !𝑉 𝑖𝑠𝑖𝑡𝑒𝑑[𝑢] then5

𝑉 𝑖𝑠𝑖𝑡𝑒𝑑[𝑢] = 𝑡𝑟𝑢𝑒;6

//Suppose 𝑢 ∈ 𝑉 ′
𝑡 .7

if 𝑆(𝑡) > 0 then8

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑[𝑢] = 𝑡𝑟𝑢𝑒;9

𝑆[𝑡] = 𝑆[𝑡]− 1;10

𝑛 = 𝑛− 1;11

𝐷𝐹𝑆(𝑢, 𝑛, 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑, 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑆,𝒱 ′);12

end13

end14

end15

This implementation tries but cannot guarantee to fully
capture the backbone of 𝐺′. As a result, the sample graph
produced is not assured to come from the sample space
𝑆𝑆(𝐺′,𝒱 ′,𝒫). However, as shown in the following experi-
mental section, sampling based on heuristic DFS can closely
approximate the structure of the original network. An-
other obvious advantage of this implementation is its ef-
ficiency. Since it is in fact a depth-first traversal of 𝐺′

plus some preprocessing, the worst case running time is
𝑂(∣𝑉 (𝐺′)∣+ ∣𝐸(𝐺′)∣), which is linear.

4.3 Experiments of Backbone-based Sampling
In this section, we provide extensive experiments to show

the effect of our backbone-based sampling approach. Three
real network datasets, Hepth, Enron and Net trace, are
used in our experiments, which are also used in [4]. Table 1
lists the basic statistics of these real networks. For our pur-
pose of backbone-based sampling, we release the anonymized
network 𝐺′, the corresponding sub-automorphism partition
𝒱 ′ as well as ∣𝑉 (𝐺)∣ to the public.

We only focus on the utility of the statistical properties
of the original graph. Specifically, similar to [4], we consider
an analyst who estimates a graph property by drawing sam-
ple graphs from 𝐺′, measuring the property of each sample,
and then aggregating measurements across samples. We ex-
amine four properties commonly measured and reported on
network data. Degree is the degree distribution of the graph.
Path length is a distribution of the lengths of the shortest
paths between 500 randomly sampled pairs of vertices in the
network. Transitivity (or, clustering coefficient) is a distri-
bution of clustering coefficients of all vertices. Clustering co-
efficient of a vertex is defined as the proportion of connected
neighbor pairs among all possible neighbor pairs. Network
resilience is measured by plotting the fraction of the number
of vertices contained in the largest connected component as



Table 1: Statistics of networks used.
Statistic Network

Hep-Th Enron Net-trace
Number of vertices 2510 111 4213
Number of edges 4737 287 5507
Minimum degree 1 1 1
Maximum degree 36 20 1656
Median degree 2 5 1
Average degree 3.77 5.17 2.61

vertices are removed in descending order of degree [1].
We measured each of these characteristics for the origi-

nal graph 𝐺 and for a set of 20 output graphs produced by
both Algorithm 3 and 4 with 𝑘 = 5. We are surprised to
find that the results produced by the two strategies are al-
most the same. What’s more, the approximation algorithm
(Algorithm 4) performs even a bit better than Algorithm 3
in the case of Hepth and Net trace. Such observations
can be naturally interpreted since in Algorithm 3, when a
vertex sampled has large degree, a large number of edges
should then be copied, which will significantly degrade the
approximation effect if the vertex selected actually does not
have automorphically equivalent counterparts in the original
network. Due to the similarity of the results produced by
the two algorithms, in Figure 8, we only show the results
coming from the approximation strategy (Algorithm 4). All
above experiments are also carried out for 𝑘 = 10, which
gives similar results and thus is omitted here to save space.
From Figure 8, we can see that for most utility measures, our
backbone-based sampling approach can achieve good utility
quality.
Note that our backbone-based sampling approach is a ran-

domized strategy. One kind of aspects characterizing the ef-
ficiency of such strategies is its speed to converge to the
steady state. To investigate the convergence of our ap-
proach, we need to explore the evolving trend of the ag-
gregating statistics of utility measures with the increase of
the number of graphs sampled. Here, for degree and short-
est path length, we summarize the average of the value
Kolmogorov-Smirnov statistic (which measures the maxi-
mum vertical distance between two cumulative distributions)
as the difference between the original graph and the sampled
graphs. The smaller this statistic is, the better the sampled
graphs match the original graph on the compared distribu-
tion. We test the average value of this statistic on the two
distributions considered, by increasing the number of sam-
pling graphs from 1 to 100. Figure 9 gives the results.
As shown in Figure 9, in all the tested cases, the value of

the utility measure used will fast converge to a steady value.
And in many cases, only 5-10 sampled graphs are necessary
to achieve relatively good utility quality. It’s a strong proof
of the efficiency and reliability of our sampling method. We
thus could achieve a reasonably good approximation to the
original graph’s properties by sampling a very small set of
subgraphs from the anonymized network.

5. IMPROVING K-SYMMETRY MODEL
In previous sections, we have shown that backbone-based

sampling approach can ensure the utility of 𝑘-symmetry
model, in spite of the fact that anonymization cost of the
𝑘-symmetry model is 𝑂(∣𝑉 (𝐺)∣2). In some cases where min-

imization of modification on the original network is desired,
reducing such costs will be a challenging problem. For this
purpose, we will first propose a strategy based on accurate
backbone computation to minimize the number of newly-
introduced vertices in 𝑘-symmetry model. Then, we will
improve the basic 𝑘-symmetry model by excluding the pro-
tection of hub vertices. We will elaborate the rationality and
the benefits of our improvement.

5.1 Minimizing the Number of Newly-Added
Vertices

A simple observation on Figure 3(a) inspires us that we
can further reduce the number of newly-introduced vertices
to satisfy the 𝑘-symmetry constraint. For example, in Fig-
ure 3(a), when 𝑘 = 3, the orbit 𝑉1 = {𝑣1, 𝑣2} needs to
be copied once. However, this copy results in a new cell
𝑉 ′
1 = {𝑣1, 𝑣2, 𝑣′1, 𝑣′2} with four vertices, which is redundant

for 3-symmetry (see Figure 5(b)). In fact, we just need to
introduce only one new vertex 𝑣′1 to make the resulting cell
𝑉 ′′
1 = {𝑣1, 𝑣2, 𝑣′1} to be 3-symmetric.
Then an interesting question arises: how to modify a net-

work to be 𝑘-symmetric by introducing the minimal number
of vertices? Note that in Figure 3(a), 𝑣1 and 𝑣2 are auto-
morphically equivalent to each other, which accounts for the
redundancy of 𝑘-symmetry after orbit copying operations.
Recall that a network’s backbone is redundancy-free in the
sense that the backbone cannot be obtained by applying any
orbit copying operations on any of its subgraphs. Thus, if we
can apply the anonymization procedure (Algorithm 1) on the
network’s backbone, i.e. 𝐵𝐺,𝑂𝑟𝑏(𝐺) instead of the network
itself, we can ensure the minimization of newly-introduced
vertices.

5.2 Minimizing Anonymization Cost by Ex-
cluding Hub Protection

In this subsection, we will first discuss the motivation to
exclude the protection of hubs in a social network and pro-
pose 𝑓 -symmetry model as a generalization of 𝑘-symmetry
model. Then we justify this strategy by experiments on real
networks.

5.2.1 Anonymization Excluding Protection of Hubs
In this subsection, we will first show that it is the hub

vertices, i.e. vertices in the network with high degree, that
dominate the anonymization cost of the 𝑘-symmetry model.
Heterogeneous degree distribution, the property shared by
most of real world networks including social networks, states
that most of vertices have small degrees and very few ver-
tices have relatively larger degrees. Usually, we can easily
identify those hub vertices from a social network. It has
been shown that hub vertices tend to lie in a trivial orbit
of a network [15], which implies that it’s almost impossible
to find an automorphically equivalent counterpart for a hub
vertex. Such facts can be naturally interpreted since sym-
metry is sensitive to random perturbations of the network
structure. Hence, to construct 𝑘 − 1 counterparts for each
hub vertex, for example 𝑣, we need to introduce at least 𝑘−1
new vertices and (𝑘 − 1)𝑑𝑒𝑔(𝑣) edges. Modification cost for
constructing automorphic equivalence for a small number of
hub vertices accounts for the majority of the overall modi-
fication cost to anonymize a network. Hence, if we improve
our basic anonymity model by excluding the protection of
some hub vertices, the modification on the original network
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Figure 8: Experimental results of utility preservation. The figure compares sampled graphs computed by
approximate backbone-based sampling algorithm (black) to the original graph (red).
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(b) Shortest Path Distribu-
tion (𝑘 = 5)
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(d) Shortest Path Distri-
bution (𝑘 = 10)

Figure 9: Fast convergence of utility quality when the number of sampled graphs increases.

is expected to be significantly reduced.
When anonymizing social networks, we can find following

obvious rationalities to exclude the protection of hub ver-
tices. First, in general, the hubs in a social network represent
well-known individuals, for which identity protection is not
necessary. For example, in an email messaging network in
a company, the most highly-connected vertex is quite likely
to be the email address of the CEO. Hubs are often outliers
in a network, making it difficult to protect their identity
through anonymization [4]. Hence, we argue here that it is
not necessary to protect hub vertices in identity anonymiza-
tion for social networks. Second, hub disclosure will not
increase the risk of identity disclosure of other vertices and
the link disclosure in the network. Even the adversary knows
the individuals represented by hubs, other vertices satisfy-
ing the 𝑘-symmetry constraint cannot be re-identified, and
consequently any link in the network will be safe.
Above facts motivate us to improve the basic 𝑘-symmetry

model to exclude the anonymization of hub vertices in a
social network, which is defined in the following definition.

Definition 5 (𝑓-symmetry). Given a graph 𝐺 and
function 𝑓 : 𝑂𝑟𝑏(𝐺) → 𝑁 , if ∀Δ𝑖 ∈ 𝑂𝑟𝑏(𝐺) = {Δ1,Δ2, ...,
Δ𝑚}, ∣Δ𝑖∣ ≥ 𝑓(Δ𝑖), then 𝐺 is 𝑓-symmetric, or, 𝐺 satisfies
the requirement of 𝑓-symmetry anonymity.

Clearly, 𝑘-symmetry model is just a special case of 𝑓 -
symmetry model, where 𝑓 is defined to be a function map-
ping all the orbits in 𝑂𝑟𝑏(𝐺) to a constant integer 𝑘. Note
that usually 𝑓 is desired to be a non-increasing function
with respect to 𝑑𝑖 (degree of vertices in orbit Δ𝑖), that is, if
𝑑𝑖 ≥ 𝑑𝑗 then 𝑓(Δ𝑖) ≤ 𝑓(Δ𝑗). 𝑓 -symmetry model provides
further flexibility for the network publisher. The publisher
could then test different functions and choose the one that
can achieve the best utility results. As a real implementation
of 𝑓 -symmetry model, we may set a degree threshold 𝛿 and
specify 𝑓 to be a function that maps all the orbits containing
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Figure 10: Anonymization cost when some hub ver-
tices are excluded from protection.

vertices with degree above 𝛿 to 1 and maps the remaining
orbits to 𝑘. Such a 𝑓 -symmetry model can exclude the pro-
tection of hub vertices and consequently improve the utility
quality.

5.2.2 Experimental Results of Excluding Hubs
In this section, we will show the benefits of excluding the

anonymization of hub vertices by experimental results on the
network Net trace, whose degree distribution is extremely
heterogeneous.
First, we investigate the relationship between the

anonymization cost (quantified by the total number of new
vertices and edges inserted) and the percentage of vertices
not protected. As shown in Figure 10, when the fraction
of vertices excluded (in the descending order of degree) in-
creases slightly, the anonymization cost decreases dramat-
ically. For instance, when 𝑘 = 10, if 5% of vertices with
largest degrees are excluded from protection, the number
of inserted edges decreases from 201,913 to 13,444, sav-
ing nearly 94% overhead. What’s more, even only 1% hub
vertices are excluded from protection, we can save 61.5%
overhead by decreasing the number of inserted edges from
201,913 to 77,749, which is an impressive achievement. From
Figure 10, we also can see that usually the number of edges
inserted dominates the overall cost.
We further explore the utility about the improved

𝑘-symmetry model by excluding some hub vertices. Intu-
itively, since less vertices and edges are introduced into the
graph, the sampling approach can produce a graph approx-
imating the original graph more closely. Figure 11 justifies
this intuition. Here, we also use the average Kolmogorov-
Smirnov statistic to measure the utility quality. We test
this statistic on the degree and shortest path distribution
for 𝑘 = 5, 10. Since the fast convergence of this statistic
has been verified, in this experiment, we simply summarize
the statistic value for 100 sampled graphs. We highlight
here that the anonymity power of the improved model will
not be significantly degraded, since all vertices except some
hub vertices still satisfy the 𝑘-symmetry anonymity require-
ment, and the number of hub vertices excluded is very small
compared to the overall population.

6. RELATED WORK
The problem of privacy protection in social networks was

first proposed in [2], where the authors demonstrated that
the naive anonymization strategy was not sufficient by study-
ing both the active and passive model in depth. While active
attacks are actually hard to carry out in many real social net-
works, however, passive attacks are much easier to do and

thus have been more extensively studied. Some researchers
focus on measures of anonymity (e.g., [12] and [14]), and
others concern various anonymization techniques. In [5], a
technique based on random edge deletions and insertions is
proposed, which is effective to resist some kind of attacks but
suffers a significant cost in utility. Edge randomization tech-
niques are further explored in [18], whose goal is to preserve
the spectral properties. While the network utility is much
improved, the effect on anonymity is not quantified. Other
anonymization techniques based on the classic framework
of 𝑘-anonymity([11], [10] and [13]) which is widely adopted
in the privacy preserving when releasing traditional tabular
data, have also been proposed. Zhou et al. [19] introduce
a method to insert edges into the network until any vertex
has a local neighborhood which is isomorphic to at last 𝑘−1
other vertices. Liu et al. [7] present an efficient algorithm
to make the network 𝑘-degree anonymous (i.e., for each ver-
tex, there are at least 𝑘 − 1 other vertices sharing the same
degree), also by inserting edges into the network. Most re-
cently, Hay et al. [4] propose an anonymization technique
which first partitions the vertex set into subsets with size
at least 𝑘 and then publishes a generalized network on the
partition level.

Symmetry in real networks, which is fundamental to the 𝑘-
symmetry model proposed in this paper, has only recently
attracted research interests. It has been shown that vari-
ous real networks have certain degree of symmetry [8, 17,
15]. Such symmetry can be produced by a network growth
model following the principle called as ”similar linkage pat-
terns” [17]. If we collapse all structural redundancy char-
acterized by network symmetry, we can obtain a structural
skeleton of the parent network –network quotient, which pre-
serves various key functional properties of the parent net-
work [15]. Symmetry in real networks is further utilized
to efficiently indexing shortest paths in a real network and
answering queries on large graphs [16].

Quite recently, we notice that one of motivations in [20] is
similar to us, which also guarantees privacy under any struc-
tural attack. However, the 𝑘-anonymity objective of [20]
is 𝑘-automorphism and graph alignment is used to achieve
this requirement. It will be an interesting future work to
compare the efficiency and effectiveness of our approach
achieving 𝑘-symmetry to that achieving 𝑘-automorphism.
Whether 𝑘-automorphism is equivalent to 𝑘-symmetry still
needs rigorous proof. However, some facts about 𝑘-symmetry
can be given to help readers to differentiate it from other
models: Given an integer 𝑘 > 0, if and only if for each ver-
tex 𝑣 in graph 𝐺, there exists 𝑘−1 nontrivial automorphisms
(which means identity permutation is excluded) such that the
images of any two of these automorphisms are distinct, then
𝐺 is 𝑘-symmetric.

7. CONCLUSION AND DISCUSSION
The major contributions of this paper can be summarized

as follows. We study the extreme privacy protection prob-
lem in social networks: protecting privacy against any pos-
sible SR, and we propose 𝑘-symmetry model as an effective
solution. In addition, we investigate the upper bound of
the descriptive power of possible structural knowledge and
quantify their power to re-identify a target. Furthermore,
we efficiently implement the 𝑘-symmetry model, design two
backbone-based sampling algorithms for utility preservation
purpose, and conduct extensive experiments which demon-
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Figure 11: Utility improvements when excluding hub vertices.

strate both the efficiency and effectiveness of the proposed
methods.
In our anonymization procedure, the automorphism par-

tition of a graph is assumed to be given as the input. How-
ever, computing the automorphism partition of graph is not
trivial, which is polynomially equivalent to the graph iso-
morphism(GI) problem [9]. In practice, program nauty1 is
usually used to compute the automorphism group of a given
graph due to its computational efficiency. However, nauty
may not scale well to large graphs with more than 20000
nodes. In such cases, a general approach called graph stabi-
lization [6] may be used to produce a good approximation
to the automorphism partition of the graph. One of such
approximation is total degree partition 𝒯 𝒟𝒱(𝐺). We are
surprised to find that for all the real networks that we’ve
studied 𝒯 𝒟𝒱(𝐺) = 𝑂𝑟𝑏(𝐺). Since approximation is accept-
able for identity anonymization on a really large social net-
work, 𝒯 𝒟𝒱(𝐺) will be a good substitute for 𝑂𝑟𝑏(𝐺) due to
its computational efficiency.
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