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Introduction 

Recently rapid imaging methods that exploit the spatial sparsity of images using 

under-sampled randomly perturbed spirals and non-linear reconstruction have 

been proposed [1,2]. These methods were inspired by theoretical results in sparse 

signal recovery [1-5] showing that sparse or compressible signals can be 

recovered from randomly under-sampled frequency data. We propose a method 

for high frame-rate dynamic imaging based on similar ideas, now exploiting both 

spatial and temporal sparsity of dynamic MRI image sequences (dynamic scene). 

We randomly under-sample k-t space by random ordering of the phase encodes 

in time (Fig. 1). We reconstruct by minimizing the L1 norm of a transformed 

dynamic scene subject to data fidelity constraints. Unlike previously suggested 

linear methods [7, 8], our method does not require a known spatio-temporal 

structure nor a training set, only that the dynamic scene has a sparse 

representation. We demonstrate a 7-fold frame-rate acceleration both in 

simulated data and in vivo non-gated Cartesian balanced-SSFP cardiac MRI .  

Theory 
Dynamic MR images are highly redundant in space and time. By using linear 

transformations (such as wavelets, Fourier etc.), we can represent a dynamic 

scene using only a few sparse transform coefficients. Inadequate sampling of the 

spatial-frequency -- temporal space (k-t space) results in aliasing in the spatial -- 

temporal-frequency space (x-f space). The aliasing artifacts due to random 

under-sampling are incoherent as opposed to coherent artifacts in equispaced 

under sampling. More importantly the artifacts are incoherent in the sparse 

transform domain. By using the non-linear reconstruction scheme in [1-5] we 

can recover the sparse transform coefficients and as a consequence, recover the 

dynamic scene. We exploit sparsity by constraining our reconstruction to have a 

sparse representation and be consistent with the measured data by solving the 

constrained optimization problem: minimize  ||Ψm||1  subject to: ||Fm – y||2 < ε. 

Here m is the dynamic scene, Ψ transforms the scene into a sparse 

representation, F is randomized phase encode ordering Fourier matrix, y is the 

measured k-space data and ε controls fidelity of the reconstruction to the 

measured data. ε  is usually set to the noise level.  

Methods 

For dynamic heart imaging, we propose using the wavelet transform in the 

spatial dimension and the Fourier transform in the temporal. Wavelets sparsify 

medical images [1] whereas the Fourier transform sparsifies smooth or periodic 

temporal behavior. Moreover, with random k-t sampling, aliasing is extremely 

incoherent in this particular transform domain. To validate our approach we 

considered a simulated dynamic scene with periodic heart-like motion. A random 

phase-encode ordered Cartesian acquisition (See Fig. 2) was simulated with a 

TR=4ms, 64 pixels, acquiring a total of 1024 phase encodes (4.096 sec). The data 

was reconstructed at a frame rate of 15FPS (a 4-fold acceleration factor) using the 

L1 reconstruction scheme implemented with non-linear conjugate gradients. The 

result was compared to a sliding window reconstruction (64 phase encodes in 

length). To further validate our method we considered a Cartesian balanced-SSFP 

dynamic heart scan (TR=4.4, TE=2.2, α=60°, res=2.5mm, slice=9mm). 1152 

randomly ordered phase encodes (5sec) where collected and reconstructed using the L1 scheme at a 7-fold 

acceleration (25FPS). Result was compared to a sliding window (64 phase encodes) reconstruction. The 

experiment was performed on a 1.5T GE Signa scanner using a 5inch surface coil. 

Results and discussion 

Figs. 2 and 3 illustrate the simulated phantom and actual dynaic heart scan reconstructions. Note, that even 

at 4 to 7-fold acceleration, the proposed method is able to recover the motion, preserving the spatial 

frequencies and suppressing aliasing artifacts. This method can be easily extended to arbitrary trajectories 

and can also be easily integrated with other acceleration methods such as phase constrained partial k-space 

and SENSE [1]. In the current, MatlabTM implementation we are able to reconstruct a 64x64x64 scene in 

an hour. This can be improved by using newly proposed reconstruction techniques [5,6]. Previously 

proposed linear methods [7,8] exploit known or measured spatio-temporal structure. The advantage of the 

proposed method is that the signal need not have a known structure, only sparsity, which is a very realistic 

assumption in dynamic medical images [1,7,8]. Therefore, a training set is not required.  
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Figure 2: Simulated 

dynamic data. (a) The 

transform domain of the 

cross section is truly sparse. 

(b) Ground truth cross-

section. (c) L1 reconstruction 

from random phase encode 

ordering, 4-fold acceleration 

(d) Sliding window (64) 

reconstruction from random 

phase encode ordering..  

Figure 1: (a) Sequential phase encode ordering. (b) Random Phase 

encode ordering. The k-t space is randomly sampled, which enables 

recovery of sparse spatio-temporal dynamic scenes using the L1 

reconstruction. 

Figure 3:Dynamic SSFP 

heart imaging with 

randomized ordering. 7 -

fold acceleration (25FPS). 

The images show two 

frames of the heart phase 

and a cross section 

evolution in time (a) Sliding 

window (64) recon. (b) L1

recon. The signal is 

recovered in both time and 

space using the L1 method. 
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