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Abstract. We show that if two rings have equivalent derived categories then

they have the same algebraic K-theory. Similar results are given for G-theory,

and for a large class of abelian categories.
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1. Introduction

Algebraic K-theory began as a collection of elaborate invariants for a ring R.
Quillen was able to construct these in [Q2] by feeding the category of finitely-
generated projective R-modules into the so-called Q-construction; this showed in
particular that K-theory was a Morita invariant of the ring. The Q-construction
could take as input any category with a sensible notion of exact sequence, and
Waldhausen later generalized things even further. He realized that the same kind
of invariants can be defined for a very broad class of homotopical situations (cf.
[Wa], which used ‘categories with cofibrations and weak equivalences’). To define
the algebraic K-theory of a ring using the Waldhausen approach, one takes as input
the category of bounded chain complexes of finitely-generated projective modules.

As soon as one understands this perspective it becomes natural to ask whether
the Waldhausen K-theory really depends on the whole input category or just on
the associated homotopy category , where the weak equivalences have been inverted.
In the algebraic case this asks whether the K-theory of a ring depends only on
the associated derived category. In this paper we answer the latter question in
the affirmative; if one is given the derived category of a ring, together with its
triangulation—but without knowing which ring it is—then it is theoretically pos-
sible to recover the algebraic K-theory of the ring.
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We now give a more detailed description of the results. If R is a ring, let DR

denote the derived category of unbounded chain complexes of R-modules. Recall
that DR is a triangulated category in a standard way [Wb, 10.4]. Also, let K∗(R)
denote the algebraic K-groups of R. Our first theorem is the following:

Theorem A. If R and S are rings for which DR and DS are equivalent as trian-
gulated categories, then their algebraic K-groups are isomorphic: K∗(R) ∼= K∗(S).

When the hypothesis of the theorem holds we say that R and S are derived
equivalent, and so the result says that derived equivalent rings have isomorphic
K-theories. (This definition of ‘derived equivalent’ is not manifestly the same as
that of [R1, Def 6.5], but they do in fact agree—see Theorem 4.2).

We can actually state somewhat stronger results. Recall that Kn(R) is the
nth homotopy group of a certain space K(R) produced by one’s favorite K-theory
machine. Let Dc(R) denote the full subcategory of DR consisting of the perfect
complexes—that is, those complexes which are isomorphic in DR to a bounded
complex of finitely-generated projectives. (The ‘c’ is for ‘compact’, a term which is
defined in Example 3.5).

Theorem B. If R and S are rings such that Dc(R) and Dc(S) are equivalent as
triangulated categories, then Kn(R) ∼= Kn(S) for all n ≥ 0. Even more, one has a
weak equivalence of K-theory spaces K(R) ' K(S).

The K0 part of this result is very simple (see [R1, 9.3]), and so our contribution
is the extension to higher K-theory. We should mention that one can even weaken
the hypotheses somewhat, to require only an equivalence between Dc(R) and Dc(S)
which commutes with the shift or suspension functor; see Remark 4.4.

There are similar results for the G-theory of a ring. Recall that when R is
Noetherian G(R) is the Quillen K-theory of the category of finitely-generated R-
modules (as opposed to finitely-generated projectives); see [Sr, Chapter 5]. In
terms of the Waldhausen machinery, it is the algebraic K-theory of the category of
bounded chain complexes of finitely-generated R-modules—we denote the associ-
ated homotopy category by Db(mod- R).

Theorem C. Suppose that R and S are Noetherian rings.
(a) If R and S are derived equivalent, then G(R) ' G(S); in particular, Gn(R) ∼=

Gn(S) for all n ≥ 0.
(b) If Db(mod- R) is triangulated-equivalent to Db(mod-S), then G(R) ' G(S).

Results like these for K0 first appeared in SGA6. For higher K-theory the
most notable reference is the work of Neeman [N1], which first appeared in the
mid 80s. Neeman has had the much more ambitious goal of actually constructing
the algebraic K-theory space directly from the derived category. It seems he has
accomplished this in the case of abelian categories (cf. [N1, Thm. 7.1, p336]),
and so for instance can construct G(R) from Db(mod-R) when R is Noetherian.
Using this result Neeman is able to prove Theorem C(b), and from this he is able
to deduce Theorem B in the case of regular rings (because for regular rings one has
G∗(R) ∼= K∗(R)). Theorem B in the above generality is new, however, as are the
other results above.

Neeman’s work is quite long and intricate, and it has sometimes been met with
a certain amount of suspicion—mostly because experts just did not believe that
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K-theory could depend only on the derived category. The point we would like to
accentuate is that our proofs of the above theorems are all quite simple. The only
‘new’ tool which enters the mix is the use of model categories. Although model
categories are not often used in these contexts, their use effectively streamlines our
work. There are two main points underlying the above theorems:

(1) Any equivalence of model categories yields a weak equivalence of K-theory
spaces (see Proposition 3.7), and

(2) If two rings R and S are derived equivalent then tilting theory shows that their
model categories of chain complexes Ch(R) and Ch(S) are in fact equivalent as
model categories (see Theorem 4.2).

The first observation can be seen as an improvement of [TT, 1.9.8], see Remark 3.12.
The second is a more structured version of [R1, 6.4] and [R2, 3.3, 5.1]; note that
unlike [R2], we do not require any flatness hypotheses. See also [SS2, 5.1.1, B.1].

The observation in (2) is definitely surprising, although it turns out that it is
not hard to prove (in fact, considering the extra structure in the model category
seems to simplify the classical tilting theory proofs). The reason it is surprising
is that the derived category of R is the ‘homotopy category’ of Ch(R), and this
usually represents only first-order information in the model category. Equivalent
model categories have equivalent homotopy categories, but it almost never works
the other way around. So something special happens when dealing with chain
complexes over a ring; the first order information here determines all of the higher
order information. Note that this does not happen in arbitrary ‘abelian’ model
categories. See also Remarks 2.5 and 6.8.

We state one last theorem along these lines, where we replace the category of
R-modules by any rich enough abelian category. Of course any abelian category A
has an unbounded derived category DA, and we’ll say that A and B are derived
equivalent if DA is triangulated-equivalent to DB. Let Kc(A) denote the Wald-
hausen K-theory of the compact objects in Ch(A). It turns out that the space
Kc(Mod- R) is just K(R).

Recall that if A is an abelian category, we say that an object P is a strong
generator if X = 0 whenever homA(P,X) = 0; when A has arbitrary coproducts,
the object P is called small if ⊕α homA(P,Xα) −→ homA(P,⊕αXα) is a bijection
for every set of objects {Xα}α. Gabriel [G, V.1] has classified the abelian categories
which are equivalent to categories of modules over a ring: these are the co-complete
abelian categories with a single strong generator. Freyd [F, 5.3H] generalized this
to include the case of many generators; see Theorems 6.1 and 7.1. Using these basic
tools, we can extend our above statements to prove the following:

Theorem D. Let A and B be co-complete abelian categories which have sets of
small, projective, strong generators. Then
(a) A and B are derived equivalent if and only if Ch(A) and Ch(B) are equivalent

as pointed model categories.
(b) If A and B are derived equivalent, then Kc(A) ' Kc(B).

Neeman [N1, 7.1] has proven that if A and B are small abelian categories for
which Db(A) is triangulated-equivalent to Db(B), then K(A) ' K(B) where K(A)
denotes the Quillen K-theory of the exact category A. There is little overlap
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between this result and the above one: the abelian categories in Theorem D have
infinite direct sums, so it follows from the Eilenberg-Swindle that K(A) and K(B)
are both trivial. We do not know how to apply our methods to the kinds of abelian
categories Neeman deals with.

One final note: The reader may have noticed that we have always talked about
K-theory spaces, rather than K-theory spectra. In fact, all of the results in this
paper hold when restated in terms of spectra, and there is no difference in the proofs.
We have chosen to avoid the added complications in an attempt to streamline the
presentation.

1.1. Organization. The proofs of Theorems A–C are given in Section 5, and the
paper has been structured so that the reader can get to them as soon as possible.
The sections previous to that build up the necessary machinery, but with most
of the technical proofs postponed until later. Section 3 recasts Waldhausen K-
theory as an invariant for model categories, and proves that it is preserved by
Quillen equivalences. Section 4 explains what tilting theory has to say about Quillen
equivalences between model categories of chain complexes. Finally, in Section 7 we
develop the many-generators version of tilting theory, and prove Theorem D.

1.2. Notation and terminology. Being topologists, our convention is to always
work with chain complexes C∗ rather than cochain complexes. So the differentials
have the form d : Cn → Cn−1, and the shift operator is denoted as ΣC: it is the
chain complex with (ΣC)n = Cn−1.

Throughout this paper we deal with right modules (and our rings are not nec-
essarily commutative). Everything could be translated to left modules as well, but
because of the usual conventions for composing maps, right modules are what nat-
urally arise in some of our results; see Theorems 6.1 and 6.4 for example. Mod- R
denotes the category of all R-modules, whereas mod- R denotes the category of
finitely-generated R-modules (we only use this when R is right-Noetherian). Like-
wise, Proj- R is the category of all projective R-modules and proj- R is the subcat-
egory of finitely-generated projectives.

Finally, if C is a category then we write C(X, Y ) for HomC(X, Y ).

1.3. Acknowledgments. We are grateful to Mike Mandell and Stefan Schwede
for several helpful conversations related to this paper.

After writing this paper we learned of [B], which doesn’t overlap with any of our
results but nevertheless deals with similar issues. If the reader enjoys the present
paper, we highly recommend [B] as a nice companion.

2. Model category preliminaries

A model category is a category equipped with certain extra structures which
allow one to ‘do homotopy theory’. The theory is based on three standard examples:
the category of topological spaces, the category of simplicial sets, and the category
of chain complexes over a given ring. In this section we recall the basic axioms
of model categories, and state the main facts we need in the body of the paper.
[DwS], [H] and [Ho] are good references for this material.

Definition 2.1. A model category is a categoryM equipped with three distin-
guished classes of maps: the weak equivalences, the cofibrations, and the fibrations.
Cofibrations are depicted as �, fibrations as �, and weak equivalences as ∼−→.
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Maps which are both cofibrations and weak equivalences are called trivial cofibra-
tions, and denoted by

∼
�; trivial fibrations are defined similarly. The following

axioms are required:
Axiom 1: M is complete and co-complete.
Axiom 2: (Two-out-of-three axiom) If f : A → B and g : B → C are maps in M

and any two of f , g, and gf are weak equivalences, then so is the third.
Axiom 3: (Retract axiom) A retract of a weak equivalence (respectively cofibration,

fibration) is again a weak equivalence (respectively cofibration, fibration).
Axiom 4: (Lifting axiom) Suppose

A //
��

��

X

����
B // Y

is a square (in which A→ B is a cofibration and X → Y is a fibration).
Then if either of the two vertical maps is a weak equivalence, there is a
lifting B → X making the diagram commute.

Axiom 5: (Factorization axiom) Any map A → X may be functorially factored in
two ways, as A

∼
� B � X and as A � Y

∼
−� X.

Suppose maps A → B and X → Y are given. When any square as in Axiom 4
has a lifting B → X, we say that A → B has the left-lifting-property with respect
to X → Y . In Quillen’s original definition [Q1] the factorizations in Axiom 5 were
not required to be functorial; this extra requirement has since become standard,
however, as in [H] and [Ho]. It is often possible to get by without this assumption,
but this is also usually more trouble than it’s worth.

Example 2.2. In this paper we only deal explicitly with model categories on
categories of chain complexes.
(a) The category Ch+(R) of non-negatively graded chain complexes over a ring

R has a model structure where the weak equivalences are the maps induc-
ing homology isomorphisms (the quasi-isomorphisms), the fibrations are the
maps which are surjective in positive degrees, and the cofibrations are the
monomorphisms with degreewise projective cokernels; see [Q1, II p. 4.11, Re-
mark 5], [DwS, Sec. 7]. This model structure on Ch+(R) is referred to as the
projective model structure since there are other model structures on Ch+(R).

(b) The category Ch(R) of unbounded chain complexes over a ring R also has
a (projective) model structure with weak equivalences the homology iso-
morphisms, and fibrations the epimorphisms; see [Ho, 2.3.11], [SS1, 5]. Every
cofibration is still a degreewise split injection and the cokernel is levelwise pro-
jective, but not all such degreewise split injections are cofibrations.

(c) Ch(R) has another model structure with the same weak equivalences, but where
the cofibrations are the monomorphisms. The fibrations are harder to describe,
but any fibration is a degreewise surjection with levelwise-injective kernel. This
is the injective model structure on Ch(R). In this paper we only need to use
the projective model structure on Ch(R), however.

WhenM is a model category, one may formally invert the weak equivalences W
to obtain the category-theoretic localizationW−1M. This is the homotopy cate-
gory ofM, written HoM; see [Q1, I.1], [DwS, 6.2]. Since the weak equivalences in
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Ch(R) are the quasi-isomorphisms, the homotopy category Ho Ch(R) is equivalent
to the (unbounded) derived category DR (cf. [Wb, Example 10.3.2]).

A model category is called pointed if the initial object and terminal object are
the same. The homotopy category of any pointed model category turns out to
have a suspension functor Σ. For topological spaces this is ordinary suspension,
whereas for Ch+(R) and Ch(R) it is the functor sending a chain complex C to
the shift ΣC with (ΣC)n = Cn−1. As the example of Ch+(R) shows, this functor
need not be an equivalence. When it is an equivalence we say that M is a stable
model category, and in this case HoM becomes a triangulated category in a natural
way [Ho, 7.1]. (When M is not stable, HoM only has a ‘partial’ triangulation;
see [Q1, I.2, I.3], [Ho, 6.5] for details). For Ch(R) this of course specializes to the
usual triangulation on DR.

Definition 2.3. A Quillen map of model categories M → N consists of a pair
of adjoint functors L : M � N : R such that L preserves cofibrations and triv-
ial cofibrations (it is equivalent to require that R preserves fibrations and trivial
fibrations). In this case the pair (L,R) is also called a Quillen pair .

Example 2.4. Let R → S be a map of rings. The adjoint pair of functors
L : Mod- R � Mod- S : R defined by L(M) = M ⊗R S and R(N) = HomR(S, N)
prolongs to an adjoint pair between categories of chain complexes. One readily
checks that these prolongations are Quillen maps Ch+(R)→ Ch+(S) and Ch(R)→
Ch(S).

A Quillen map induces adjoint total derived functors between the homotopy
categories [Q1, I.4]. The map is a Quillen equivalence if the total derived func-
tors are adjoint equivalences of the homotopy categories. This is equivalent to
Quillen’s original definition by [Ho, 1.3.13]. More generally we say that M and
N are Quillen equivalent if they are connected by a zig-zag of Quillen equiva-
lences, and we write M 'Q N . As one simple example, the identity functors give
a Quillen equivalence Chproj(R) → Chinj(R) between the projective and injective
model structures on Ch(R). Two pointed model categories are ∗Quillen equiv-
alent if they are connected by a zig-zag of Quillen equivalences between pointed
model categories.

Remark 2.5. In general, having a Quillen equivalence of model categories is much
stronger than just having an equivalence between the associated homotopy cate-
gories. This is because of the added structure required for a Quillen map; functors
on the homotopy categories may not lift to the model category level, and even if
they do they may not be compatible with the model category structures. For ex-
ample, it follows from [Q1, I.4 Thm. 3] that Quillen maps between stable model
categories induce triangulated functors between the homotopy categories. Quillen
maps preserve even more structure, for example the simplicial mapping space struc-
tures [DK, 5.4], [Ho, 5.6.2]. There are simple topological examples—see [SS2, 3.2.1],
for instance—of stable model categories which have the same triangulated homo-
topy category, but nevertheless are not Quillen equivalent. In Remark 6.8 we discuss
another example (based on [Sc]) which is entirely algebraic.

The following theorem shows that for the special case of the model categories
Ch(R), Quillen equivalence is not a stronger notion than triangulated equivalence of
homotopy categories. In some sense this happens because rings are determined by
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‘first order’ information—compared, for example, to differential graded rings which
are not. This is proved in Section 6 as Theorem 4.2 (Parts 1 and 2).

Theorem 2.6. Two rings R and S are derived equivalent if and only if their associ-
ated model categories of chain complexes Ch(R) and Ch(S) are ∗Quillen equivalent.

This theorem cannot be extended to cover the case where R or S is a differential
graded algebra; we give an example in [DS] which is discussed briefly in Remark 6.8.
In Corollary 7.7 we do give a certain extension of this theorem to abelian categories,
however. The situation is a little confusing, because these two sentences may seem
contradictory; Remark 7.8 explains why they are not.

3. K-theory and model categories

In [Wa, Section 1] Waldhausen defined a notion of category with cofibrations and
weak equivalences and showed how to construct a K-theory space from such data.
The purpose of this section is to adapt Waldhausen’s machinery to the context of
model categories. This is almost entirely straightforward, but it has the advantage
of streamlining the theory somewhat.

LetM be a pointed model category with initial object ∗. An object A is called
cofibrant if ∗ � A is a cofibration. By a Waldhausen subcategory of M we
mean a full subcategory U with the properties that

(i) U contains the initial object ∗;
(ii) Every object of U is cofibrant;
(iii) If A � B and A → X are maps in U , then the pushout B qA X (computed

inM) belongs to U .
The proof of the following is just a matter of chasing through the definitions:

Lemma 3.1. Any Waldhausen subcategory of M, equipped with the notions of
cofibrations and weak equivalences from M, is a ‘category with cofibrations and
weak equivalences’ in the sense of [Wa, 1.2]; also, it satisfies the saturation axiom
[Wa, p. 327].

The lemma says that we may apply Waldhausen’s S•-construction [Wa, 1.3] to
obtain a simplicial category wS•(U). Taking the nerve in every dimension gives
a simplicial space [n] 7→ N(wSn(U)), and K(U) is defined to be loops on the
realization of this simplicial space: K(U) = Ω|NwS•(U)|. One defines the algebraic
K-groups of U by Kn(U) = πn(K(U)).

Remark 3.2. There are potential set-theoretic difficulties if the Waldhausen sub-
category is not small, and this is particularly a problem with the ‘complete’ Wald-
hausen subcategories that we work with below. Fortunately it is never really a
problem—we refer the reader to the nice Remark in [Wa, p. 379]. Waldhausen’s
solution (a), which works in all cases of interest in this paper, can be implemented
by assuming the model category is combinatorial , and by putting a bound on the
size of the objects in the Waldhausen subcategory. Information about combinatorial
model categories can be found in [D, Sections 2,7].

We give a partial description of wS•(U) here, because we need it later in Ap-
pendix A. Let wFn(U) denote the category whose objects are sequences {A} of
cofibrations A0 � A1 � · · · � An in U , and whose morphisms are commutative
diagrams {A} → {A′} in which every map An → A′

n is a weak equivalence. One
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can almost make [n] 7→ wFn−1(U) into a simplicial category (where wF−1(U) is
interpreted as the trivial category with one object and an identity map) by defining

di

(
[A0 � A1 � · · ·� An]

)
=

{
[A0 � · · ·� Âi � · · ·� An] if i 6= 0,

[A1/A0 � A2/A0 � · · ·� An/A0] if i = 0.

The difficulty is that with this definition the simplicial identities do not hold on
the nose, in the end because there are different possible choices for the quotients
Ai/A0 (they are canonically isomorphic, but still different). The category wSn(U)
is equivalent to wFn−1(U), but is slightly ‘fatter’ in a way that allows one to make
the face and degeneracy maps commute on the nose. The reader is referred to
[Wa, p. 328] for the precise definition—it should be noted, though, that the basic
ideas in the present paper can all be understood by pretending that wSn(U) is just
wFn−1(U). The only time the details of wSn(U) are needed is in the Appendix.

Example 3.3. Let R be a ring. The following are Waldhausen subcategories of
Ch(R) (as is easily verified).
(1) UK = {all bounded complexes of finitely-generated projectives}.
(2) UG = {all bounded below complexes C of finitely-generated projectives such

that Hk(C) 6= 0 for only finitely-many values of k}.

Let K(R) and G(R) denote the Quillen K-theory spaces for the exact categories
of finitely-generated projectives and finitely-generated modules, respectively. Then
we have:

Lemma 3.4. K(UK) ' K(R), and if R is Noetherian then K(UG) ' G(R).

Proof. A reference for K(UK) ' K(R) is [TT, 1.11.7]. For the G-theory, the
reference is [TT, 3.11.10, 3.12, 3.13]—however, since the terminology of that paper
is fairly cumbersome, we repeat the proof for the reader’s convenience.

Let V denote the subcategory of Ch(R) consisting of all bounded complexes of
finitely-generated modules; [TT, 1.11.7] shows that K(V) is the same as G(R).
Let W denote the subcategory of Ch(R) consisting of all chain complexes quasi-
isomorphic to an element of V. One can check that if R is Noetherian then UG

consists precisely of the cofibrant objects inW. Then [TT, 1.9.8] shows that UG ↪→
W and V ↪→W induce equivalences of K-theory spaces. �

Example 3.5. If T is a triangulated category with infinite coproducts (usually
called infinite sums in this context), an object X ∈ T is called compact if the
natural map ⊕αT (X, Zα)→ T (X,⊕αZα) is a bijection for every set {Zα ∈ T }. If
M is a stable model category, it is easy to check that the homotopy category HoM
has all infinite sums. We’ll say that an object inM is compact if its image in HoM
is compact. The subcategoryMc ⊆M consisting of all compact, cofibrant objects
is a complete Waldhausen category.

We are especially interested in this for the caseM = Ch(R), where a theorem of
Bökstedt-Neeman [BN, 6.4] identifies the compact objects as the perfect complexes,
i.e. the complexes which are quasi-isomorphic to a bounded complex of finitely-
generated projectives.

Example 3.6. Waldhausen never explicitly used model categories, but he could
have been working in this context all along. Waldhausen developed his machinery
to apply to the following case. Let X be a simplicial set, and let (X ↓ sSet ↓X)
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denote the category of retractive spaces over X. This has a natural model structure
inherited from the category of simplicial sets [Q1, II.3] by forgetting the retraction
over X (cf. [H, 7.6.5]). Take U to be the subcategory consisting of those retractive
spaces X ↪→ Z → X for which the map X ↪→ Z is obtained by attaching finitely
many simplices. This is a Waldhausen subcategory, and the associated K-theory
space is denoted A(X); see [Wa, 2.1].

If U is a subcategory ofM, write U for the full subcategory ofM consisting of all
cofibrant objects which are weakly equivalent to an object in U . From Example 3.5
above it follows that (Ch(R))c = UK (where UK is from Example 3.3). Call the
Waldhausen category U complete if U = U .

Suppose that (L,R) :M→N is a Quillen map of pointed model categories. Let
U and V be Waldhausen subcategories of M and N such that L maps U into V.
Since L preserves cofibrations, one checks easily that it induces a well-defined map
K(U)→ K(V).

Proposition 3.7. Suppose that (L,R) is a Quillen equivalence, and that U is
a complete Waldhausen subcategory of M. Let V = LU ; that is, V consists of
all cofibrant objects which are weakly equivalent to an object in L(U). Then V
is a complete Waldhausen subcategory of N , and L : K(U) → K(V) is a weak
equivalence.

The proof is simple but long winded, so we defer it to an appendix. It is worth
noting that, since the original appearance of this paper, the above proposition was
given an interesting generalization in [TV, Prop. 1.1].

Remark 3.8. The proposition also works in the following way. Let Q be a cofibrant
replacement functor for M; for example one can take the map ∗ → X and apply
the functorial factorization ∗ � QX

∼
−� X in M to define Q. Similarly, let F

be a fibrant-replacement functor for N with Y
∼
� FY � ∗ for Y in N . Suppose

that V is a complete Waldhausen subcategory of N . Define RV to be the set of
all objects of the form QRFX where X ∈ V, and let U = RV. Then U is a
complete Waldhausen subcategory of M, and LU = V. The functor L induces a
map K(U) → K(V), and the proposition says this is an equivalence. So we have
actually proven:

Corollary 3.9. LetM and N be pointed model categories connected by a zig-zag of
∗Quillen equivalences. Let U be a complete Waldhausen subcategory of M, and let
V consist of all cofibrant objects in N which are carried into U by the composite of
the derived functors of the Quillen equivalences. Then V is a complete Waldhausen
subcategory of N , and there is an induced zig-zag of weak equivalences between K(U)
and K(V).

Corollary 3.10. A Quillen equivalence M → N between stable model categories
induces a weak equivalence of K-theory spaces K(Mc)

∼−→ K(Nc), where Mc and
Nc denote the subcategories of cofibrant, compact objects.

Proof. Write the functors of the Quillen equivalence as (L, R). The derived functors
of L and R induce an equivalence between the homotopy categories, and so in
particular they take compact objects to compact objects. This clearly implies
Nc ⊇ LMc; it basically gives the opposite inclusion as well, but we now explain
this in more detail.
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If X is in Nc, let FX be a fibrant-replacement X
∼
� FX � ∗ in N and

let Q(RFX) be a cofibrant-replacement ∗ � Q(RFX)
∼
−� RFX of RFX in

M. Because the derived functors of L and R take compact objects to compact
objects, QRFX must still be compact—i.e., QRFX ∈Mc. Yet LQRFX is weakly
equivalent to X, and so X ∈ LMc. At this point we have shown Nc = LMc, and
so we can just apply Proposition 3.7. �

Corollary 3.11. If Ch(R) and Ch(S) are ∗Quillen equivalent (perhaps through a
zig-zag of ∗Quillen equivalences), then K(R) ' K(S).

Proof. We have already remarked that K(R) ' K(UK), and UK = (Ch(R))c. All
the intermediate model categories in the zig-zag must be stable because ‘stability’
is preserved under ∗Quillen equivalence. Therefore Corollary 3.10 applies. �

Remark 3.12. The above corollary has two improvements over similar results in
the literature. The first is that we are allowing a zig-zag of ∗Quillen equivalences,
rather than just an equivalence Ch(R) → Ch(S); in particular, note that our zig-
zag could conceivably pass through very non-algebraic model categories. For just
a single Quillen equivalence Ch(R) → Ch(S), the closest result in the literature
seems to be [TT, 1.9.8]. In that result, however, the functor L : Ch(R)→ Ch(S) is
required to be complicial , meaning in part that it is induced via prolongation from
a functor Mod- R → Mod- S. In some of our applications L is the functor which
tensors with a chain complex of projectives (rather than just a single projective),
and so the [TT] result is not applicable.

4. Tilting Theory

In this section we determine the algebraic content of having a Quillen equivalence
between Ch(R) and Ch(S) for rings R and S. A nice, complete answer can be given
in terms of tilting theory . Originally tilting theory only dealt with derived equiva-
lences, but it turns out that for rings derived equivalence and Quillen equivalence
coincide.

We begin with a classical analogue of tilting theory, namely Morita theory.
Morita theory describes necessary and sufficient conditions for when two categories
of modules are equivalent. Call a (right) R-module P a strong generator if
homR(P,X) = 0 implies X = 0 for any (right) R-module X.

Theorem 4.1. (Morita Theory) Given rings R and S, the following conditions
are equivalent:

(1) The categories of (right) modules over R and S are equivalent.
(2) There is an R-S bimodule M and an S-R bimodule N such that M ⊗S N ∼=

R as R-bimodules and N ⊗R M ∼= S as S-bimodules.
(3) There is a (right) R-module P which is finitely-generated, projective and a

strong generator such that homR(P, P ) ∼= S.

Proof. We only give a brief sketch because this is classical, see [Wb, 9.5]. For (2)
implies (1), the functors −⊗R M : Mod- R −→ Mod- S and −⊗S N : Mod- S −→
Mod- R give the inverse equivalences. For (1) implies (3), given an equivalence
F : Mod- S −→ Mod- R one may take P = F (S). For (3) implies (2), take N = P
since P is a homR(P, P )-R bimodule and take M = homR(P,R) which is an R-
homR(P, P ) bimodule. �



DERIVED EQUIVALENCES 11

Now we turn to the analogue of Morita theory for categories of chain complexes,
called ‘tilting theory’. This analogue was developed by Rickard in [R1, 6.4] to
classify derived equivalences of rings. Later, Keller [Kr, 8.2] broadened tilting the-
ory to apply to more general derived equivalences of abelian categories. We extend
both sets of results to give Quillen equivalences underlying the derived equivalences.
Theorem 4.2 below extends Rickard’s work, whereas the generalization to abelian
categories is considered in Section 7. These results can also be used to remove
certain flatness assumptions in [R2, 3.3, 5.1].

Let T be a triangulated category. Recall that a full subtriangulated category
S is a full subcategory which is (i) closed under isomorphisms, (ii) closed under the
suspension functor, and (iii) has the property that if two objects of a distinguished
triangle in T lie in S then so does the third object. When T has infinite sums, a
full subtriangulated category is called localizing if it is closed under coproducts of
sets of objects [N2, 1.5.1, 3.2.6]. An object P in T is a (weak) generator if the
only localizing subcategory of T which contains P is T . Although this definition
looks much different than the definition of a strong generator, it is not. If P is
compact (see Example 3.5 for a definition), then P is a (weak) generator if and
only if T (P,X)∗ = 0 implies X is trivial (see [SS2, 2.2.1] for a proof that these are
equivalent). Here T (−,−)∗ denotes the graded maps with T (X, Y )n = T (ΣnX, Y ).

An object P ∈ Ch(R) is called a tilting complex if it is a bounded complex of
finitely-generated projectives, a generator of DR, and DR(P, P )∗ is concentrated in
degree zero [R1, Def. 6.5]. Here is our generalization of Rickard’s result [R1, Thm
6.4]:

Theorem 4.2. (Tilting theorem) The following conditions are equivalent for
rings R and S:

(1) There is a zig-zag of ∗Quillen equivalences between the model categories of
chain complexes of R- and S-modules:

Ch(R) 'Q Ch(S).

(2) The unbounded derived categories are triangulated equivalent:

DR '∆ DS .

(3) The naive homotopy categories of bounded chain complexes of finitely gen-
erated projective R and S-modules are triangulated equivalent:

Kb(proj- R) '∆ Kb(proj- S).

(4) The model category Ch(R) has a tilting complex P whose endomorphism
ring in DR is isomorphic to S: DR(P, P ) ∼= S.

Remark 4.3. Rickard [R1, 6.4] showed that (3) and (4) are equivalent and that
both these are equivalent to having a triangulated equivalence Db(Mod- R) '
Db(Mod- S). He defined two rings to be ‘derived equivalent’ if any of these condi-
tions holds. We defined ‘derived equivalent’ to mean (2), and so the result shows
that our use agrees with Rickard’s. Note that [R1, 6.4] gives several other equiva-
lent conditions involving variations of the derived category; see Proposition 5.1 as
well.

Proof of (1)⇒ (2)⇒ (3)⇒ (4). Every ∗Quillen equivalence of stable model cate-
gories induces an equivalence of triangulated homotopy categories [Q1, I.4 Theorem
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3], so (1) implies (2). Any triangulated equivalence restricts to an equivalence be-
tween the respective subcategories of compact objects. Since Kb(proj-R) is equiva-
lent to the full subcategory of compact objects in DR by [BN, Prop. 6.4], (2) implies
(3).

Now we assume condition (3) and choose a triangulated equivalence between
Kb(proj-R) and Kb(proj-S). Let S[0] be the free S-module on one generator,
viewed as a complex in Ch(S) concentrated in dimension zero; let T be its im-
age in Kb(proj- R). We have DR(T, T ) ∼= DS(S[0], S[0]) ∼= S. Since S[0] gener-
ates Kb(proj-S), T generates Kb(proj-R). Since R[0] is a generator of DR and
R[0] ∈ Kb(proj- R), the only localizing subcategory of DR containing Kb(proj- R)
is DR; so T generates DR. Hence T is a tilting complex and condition (4) holds. �

The real content of the theorem, of course, is the proof that (4) ⇒ (1). This is
given in Section 6, after we have developed a little more machinery.

Remark 4.4. We could have put one more intermediary condition in Theorem 4.2.
Instead of a triangulated equivalence (in either (2) or (3)) we could have required
only an equivalence of categories which commutes with the shift or suspension
functor. Such an equivalence would preserve compact objects and preserve the
graded maps D(−,−)∗. It would also preserve the property of being a compact
generator, since an object is a compact generator if and only if it detects trivial
objects by [SS2, 2.2.1]. Thus, such equivalences preserve tilting complexes. We
do not have very interesting examples of such equivalences, though (other than
triangulated equivalences).

Remark 4.5. The two tilting theory results in this paper, Theorem 4.2 and its
analogue Theorem 7.5, also appear in disguised form in [SS2]. Chain complexes
do not satisfy the stated hypotheses of the tilting theorem in [SS2, 5.1.1], but
in [SS2, Appendix B.1] chain complexes are shown to be Quillen equivalent to a
model category which does satisfy the stated hypotheses. So Theorems 4.2 and 7.5
can be considered as special cases of [SS2, 5.1.1]. Here, though, we have removed
all hypotheses and the proofs are much simplified—they only use categories of
chain complexes, whereas the proofs in [SS2] require the use of the new symmetric
monoidal category of symmetric spectra [HSS].

5. Proofs of the main results

If you accept the basic results stated so far, it becomes easy to prove the first
three theorems cited in the introduction.

Proof of Theorem B. This follows from Corollary 3.11 together with the equivalence
of Parts 1 and 3 in Theorem 4.2. Note that Dc(R) and Kb(proj- R) are two names
for the same thing, by [BN, 6.4]. �

Proof of Theorem A. If DR and DS are equivalent as triangulated categories, then
so are their full subcategories of compact objects. So Theorem B applies. This also
follows from Corollary 3.11 and the equivalence of Parts 1 and 2 in Theorem 4.2. �

We now turn our attention to the proof of Theorem C, which is the G-theory
result. We begin with a proposition which is fairly interesting in its own right.
Consider a function C which assigns to each ring R a subcategory of DR. We
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say that the assignment preserves equivalences if every triangulated equivalence
F : DR → DS restricts to an equivalence between C(R) and C(S).

Here is some new notation: Dh+(Mod- R) denotes the full subcategory of DR

consisting of chain complexes with bounded below homology, and Dhb(Mod- R) de-
notes the full subcategory of complexes with bounded homology. One can similarly
define Khb(proj- R), etc. The notation K+,hb(proj- R) means the intersection of
K+(proj- R) and Khb(proj- R). It is an easy exercise to check that Dh+(Mod- R) =
K+(Proj- R) and Dhb(Mod- R) = Db(Mod- R).

Proposition 5.1. The assignments R 7→ C(R) preserve equivalences, where C(R)
is any of the following:

Kb(proj- R), K+(Proj- R) = Dh+(Mod- R), Dh−(Mod- R),

Dhb(Mod- R) = Db(Mod- R), K+(proj- R), K+,hb(proj- R).

Proof. The result [BN, 6.4] identifies Kb(proj- R) with the subcategory of compact
objects in DR. Any equivalence DR → DS must preserve direct sums, and so it
takes compact objects to compact objects.

A complex X lies in Dh+(Mod- R) if and only if it satisfies the following property:
for any compact object A, there exists an N such that DR(Σ−kA,X) = 0 for k > N .
Since triangulated equivalences preserve compact objects and the suspension, they
preserve these objects as well.

Similarly, a complex X lies in Dh−(Mod- R) if and only if for any compact
object A, there exists an N such that DR(ΣkA,X) = 0 for all k > N . The same
argument as above applies. For Dhb(Mod- R), note that this is just the intersection
of Dh+(Mod- R) and Dh−(Mod- R).

The case of K+(proj- R) is harder, but was proven by Rickard—see the first
paragraph in the proof of [R1, 8.1]. Finally, K+,hb(proj- R) is just the intersection
of K+(proj- R) and Dhb(Mod- R). �

K+,hb(proj- R) is the full subcategory of DR consisting of complexes which are
quasi-isomorphic to a bounded-below complex of finitely-generated projectives,
and which also have bounded homology. So one has the inclusions Dc(R) ⊆
K+,hb(proj- R) ⊆ DR. Note that K+,hb(proj- R) is the image in DR of the Wald-
hausen subcategory UG(R) ⊆ Ch(R). It is an easy exercise to check that when R is
right-Noetherian one has K+,hb(proj- R) = Db(mod-R), where the latter denotes
the full subcategory of DR consisting of the bounded complexes of finitely-generated
modules.

Theorem C follows immediately from the following more comprehensive state-
ment:

Theorem 5.2. Let R and S be right-Noetherian.

(a) If R and S are derived equivalent, then G(R) ' G(S).
(b) R and S are derived equivalent if and only if K+,hb(proj- R) and K+,hb(proj- S)

are equivalent as triangulated categories.
(c) If Db(mod- R) '∆ Db(mod-S), then G(R) ' G(S) and K(R) ' K(S).

Proof. Part (b) is entirely due to Rickard [R1, 8.1,8.2]. (Note that Rickard uses
cochain complexes whereas we use chain complexes, and writes K−,b(proj- R) for
what we call K+,hb(proj- R), etc.)
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For (a), suppose that R and S are derived equivalent. Then Theorem 4.2 says
that there is a chain of ∗Quillen equivalences between Ch(R) and Ch(S). On the
homotopy categories, this gives us a chain of triangulated equivalences between
DR and DS . Proposition 5.1 says that this triangulated equivalence between DR

and DS restricts to an equivalence between K+,hb(proj- R) and K+,hb(proj- S). So
the complete Waldhausen subcategory UG(R) is carried to UG(S) via the various
adjoint functors in the chain of Quillen equivalences. One can now use Corollary 3.9
to deduce that K(UG(R)) ' K(UG(S)). That is, G(R) ' G(S).

For (c), recall that when R is Noetherian Db(mod- R) is just another name for
K+,hb(proj- R), and the same for S. So if Db(mod-R) ' Db(mod- S) then by (b)
R and S are derived equivalent; so we can apply (a) and Theorem B. �

6. Derived equivalence implies Quillen equivalence

In this section we prove the Tilting Theorem 4.2. The only difficult part of this
theorem follows from a differential graded analogue of the following result from [G,
V.1]. This can also be viewed as another perspective on Morita theory.

Theorem 6.1. (Gabriel) Let A be a co-complete abelian category with a small,
projective, strong generator P . Then the functor

homA(P,−) : A −→ Mod- homA(P, P )

is the right adjoint of an equivalence of categories.

There is also a version of this theorem for a set of small generators, due to Freyd;
see Section 7.

We begin by defining a chain complex of morphisms between any two chain
complexes. For M,N in Ch(R) define HomR(M,N) in Ch(Z) by

HomR(M,N)n =
∏
k

homR(Mk, Nn+k).

The differential for HomR(M,N) is given by dfn = dNfn + (−1)n+1fndM . This
structure gives an enrichment of Ch(R) over Ch(Z). So instead of an endomorphism
ring , an object in Ch(R) has a differential graded ring of endomorphisms.

Definition 6.2. The tensor product of X and Y in Ch(Z) is defined by

(X ⊗ Y )n =
⊕

k

Xk ⊗ Yn−k

where d(xp ⊗ yq) = dxp ⊗ yq + (−1)pxp ⊗ dyq. A differential graded algebra
is a chain complex A in Ch(Z) with a multiplication µ : A ⊗ A −→ A which is
associative and unital [Wb, 4.5.2]. A (right) differential graded module M over
a differential graded algebra A is a chain complex M with an associative and unital
action α : M ⊗A −→ A. Denote the category of such modules by Mod-A.

For any P in Ch(R) let EndR(P ) = HomR(P, P ). Notice that EndR(P ) is a
differential graded ring with the product structure coming from composition. Also,
for any X ∈ Ch(R) the complex HomR(P,X) is a right differential graded EndR(P )-
module with the action given by precomposition. So HomR(P,−) induces a functor
from Ch(R) to Mod- EndR(P ). Its left adjoint is denoted − ⊗EndR(P ) P . This
left adjoint can be defined as the coequalizer that the notation suggests using the
evaluation map HomR(P, P )⊗ P −→ P .
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Our differential graded analogue of Gabriel’s theorem produces a Quillen equiv-
alence of model categories instead of an equivalence of categories. So before stating
it we need to establish the model category structure on a category of differential
graded modules. The following proposition is proved in [Hi, 2.2.1, 3.1] and in [SS1,
4.1.1].

Proposition 6.3. Let A be a DGA. The category Mod- A has a model category
structure where the weak equivalences are the maps inducing an isomorphism in ho-
mology and the fibrations are the surjections. The cofibrations are then determined
to be the maps with the left-lifting-property with respect to the trivial fibrations.

We can now state the following differential graded version of Gabriel’s theorem.

Theorem 6.4. Let P in Ch(R) be a bounded complex of finitely generated projec-
tives. If P is a (weak) generator for Ch(R), then there is a Quillen equivalence

Mod- EndR(P ) −−−−→ Ch(R)

in which the right-adjoint is the functor HomR(P,−).

Before proving this theorem we need the following lemma.

Lemma 6.5. Let M,N ∈ Ch(R). Then H∗ HomR(M,N) ∼= DR(M,N)∗ when M
is cofibrant.

Proof. It is easy to see in general that Hn HomR(M,N) ∼= H0 HomR(ΣnM,N) ∼=
[ΣnM,N ] where [−,−] denotes chain-homotopy-classes of maps. When A is cofi-
brant one has that DR(A,B) ∼= [A,B] (since all objects are fibrant in Ch(R)), and
so we can write

Hn HomR(M,N) ∼= [ΣnM,N ] ∼= DR(ΣnM,N) = DR(M,N)n.

�

Proof of Theorem 6.4. For any complex of projectives P , HomR(P,−) preserves
surjections (fibrations) and hence is exact. We next show that HomR(P,−) pre-
serves trivial fibrations; since HomR(P,−) is exact, we only need to show that
H∗ HomR(P,K) = 0 when H∗K = 0 and apply this to the kernel K of the trivial fi-
bration. P is cofibrant by [Ho, 2.3.6] because P is a bounded complex of projectives.
Thus, by Lemma 6.5, if K is acyclic then H∗ HomR(P,K) ∼= DR(P,K)∗ ∼= 0. Hence,
the functor HomR(P,−) preserves fibrations and trivial fibrations; see also [Ho,
4.2.13]. So its left adjoint is a Quillen map, and therefore the adjoint pair induces
total derived functors on the level of homotopy categories [Q1, I.4]. Denote these
derived functors by RHomR(P,−) and −⊗L

EndR(P ) P respectively.
Since Ch(R) and Mod- EndR(P ) are stable model categories, both total derived

functors preserve shifts and triangles in the homotopy categories, i.e., they are exact
functors of triangulated categories by [Q1, I.4 Prop. 2]. Since −⊗L

EndR(P ) P is a left
adjoint it commutes with coproducts. To see that RHomR(P,−) commutes with
coproducts it is enough to show that DEndR(P )(EndR(P ),RHomR(P,−)) commutes
with coproducts since EndR(P ) is a compact generator of Mod- EndR(P ). By
adjointness, this functor is isomorphic to DR(EndR(P )⊗L

EndR(P )P,−) which in turn
is isomorphic to DR(P,−) since EndR(P ) is cofibrant. Since P is compact [BN,
6.4] this functor commutes with coproducts.
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Now consider the full subcategories of those M in Ho(Mod- EndR(P )) and X in
DR respectively for which the unit of the adjunction

η : M −−−−→ RHomR(P,M ⊗L
EndR(P ) P )

or the counit of the adjunction

ν : RHomR(P,X)⊗L
EndR(P ) X −−−−→ X

are isomorphisms. Since both derived functors are exact and preserve coproducts,
these are localizing subcategories. The map η is an isomorphism on the free module
EndR(P ) and the map ν is an isomorphism on P . Since the free module EndR(P )
generates the homotopy category of EndR(P )-modules and P generates Ch(R), the
derived functors are inverse equivalences of the homotopy categories. �

Before completing the proof of the Tilting Theorem, here are two important
statements.

Lemma 6.6. Suppose that A is a DGA and R is a ring (considered as a DGA
concentrated in degree zero). Then A and R are quasi-isomorphic if and only if
Hk(A) ∼= Hk(R) for all k. (That is, if and only if Hk(A) = 0 for k 6= 0 and
H0(A) ∼= R.)

Proof. Given Hk(A) ∼= Hk(R) for all k, then there are quasi-isomorphisms of DGAs
A←− A〈0〉 −→ H0(A) ∼= R. Here A〈0〉 is the (-1)-connected cover of A with A〈0〉k = 0
for k < 0, A〈0〉k = Ak for k > 0 and A〈0〉0 = Z0A the zero cycles. �

Proposition 6.7. Any quasi-isomorphism A −→ B of differential graded algebras
induces a Quillen equivalence Mod-A→ Mod- B.

Proof. Any map f : A −→ B induces a Quillen adjoint pair between Mod-A and
Mod- B, just as in Example 2.4. The right adjoint is given by restriction of scalars
and the left adjoint is −⊗A B. [SS1, 4.3] and [Hi, 3.3.1] both show that this adjoint
pair is a Quillen equivalence. �

Completion of the proof of Theorem 4.2. We must show that (4)⇒ (1), so suppose
that Ch(R) has a tilting complex T . Then T satisfies the hypotheses of Theorem 6.4,
hence Ch(R) is ∗Quillen equivalent to the category of modules over the differential
graded algebra EndR(T ). Since T is a bounded complex of projectives, it is cofibrant
by [Ho, 2.3.6]; hence from Lemma 6.5 we have H∗ EndR(T ) ∼= DR(T, T )∗ ∼= S
concentrated in dimension zero. By Lemma 6.6 this implies that EndR(T ) is quasi-
isomorphic to S. Thus the categories of EndR(T )-modules and right differential
graded S-modules (Ch(S)) are ∗Quillen equivalent by Proposition 6.7:

Ch(R) 'Q Mod- End(T ) 'Q Ch(S).

�

Remark 6.8. We have now shown that when R and S are rings, their model cate-
gories of dg-modules are ∗Quillen equivalent if and only if the associated homotopy
categories are triangulated equivalent. This is false if R and S are allowed to be
DGAs rather than rings, essentially because the analog of Lemma 6.6 fails: the
quasi-isomorphism type of an arbitrary DGA is not determined by its homology
(not even if you include all its Massey products, see [S, A.3]).

In [DS] we give an explicit example of derived equivalent DGAs whose model
categories of dg-modules are not Quillen equivalent. Fixing a prime p, the first



DERIVED EQUIVALENCES 17

DGA is Z〈e, x〉/(ex + xe = x2, e2 = 0) where e, x both have degree 1, and de = p,
dx = 0. The second DGA is Z/p[x, x−1], where again x has degree 1 and dx = 0.
For a proof that these are derived equivalent, see [DS].

The example is based on [Sc] which considers model categories underlying the
stable category of modules over the Frobenius rings R = Z/p2 and R′ = (Z/p)[ε]/ε2.
The homotopy categories are triangulated equivalent, but when p is odd the corre-
sponding K-theory groups are non-isomorphic at K4 (when p = 2 it turns out they
are actually non-isomorphic at K3; we thank W. van der Kallen for referring us
to the relevant computations). So by Corollary 3.10 these model categories cannot
be Quillen equivalent. In [DS] we give a simpler proof of this by studying certain
endomorphism DGAs (which turn out to be the two specified above), where the
difference can be detected in the second Postnikov sections instead of in K4.

7. Many-generators version of proofs

In this section we generalize the work in Section 6 to the case where we have
a set of generators instead of just one. Here the analogue for abelian categories
is in [F, 5.3H]. For derived equivalences, Keller [Kr, 8.2] gave the corresponding
extension of Rickard’s work [R1, 6.4]. As always, our purpose is just to upgrade
the derived equivalences to Quillen equivalences.

As in Section 6, before moving to a differential graded setting we first recall
the classical setting. Define a ring with many objects to be a small Ab-category (a
category enriched over abelian groups); this terminology makes sense because an
Ab-category with one object corresponds to a ring, with composition corresponding
to the ring multiplication. Given a ring with many objects R, a (right) R-module
M is a contravariant additive functor from R to Ab. This means that for any two
objects P, P ′ in R there are maps M(P ′) ⊗ R(P, P ′) −→ M(P ). The category of
right R-modules is an abelian category.

If A is an abelian category and P is a set of objects, say that P is a set of
strong generators if X = 0 whenever homA(P,X) = 0 for every P in P. Define
EndA(P) to be the full subcategory of A (enriched over Ab) with object set P. The
following theorem from [F, 5.3H] classifies abelian categories with a set of strong
generators:

Theorem 7.1. (Freyd) Let A be a co-complete abelian category with a set of
small, projective, strong generators P. Then the functor

homA(P,−) : A −→ Mod- EndA(P)

is the right adjoint of an equivalence of categories.

In order to generalize this result to a more homotopical setting, we need to
replace Ab-categories with Ch-categories (categories enriched over Ch = Ch(Z).)
Since a Ch-category with one object is a differential graded algebra, one may think
of a small Ch-category as a DGA with many objects. Given a small Ch-category
R, a (right) R-moduleM is a contravariant Ch-functor from R to Ch. This means
that for any two objects P, P ′ of R there is a structure map of chain complexes
M(P ′)⊗R(P, P ′) −→M(P ). See [Ky, 1.2] or [Bo, 6.2] for more details.

Notice that Ch(R) and Ch(R) are both Ch-categories, where R is a ring and R is
a ring with many objects. The enrichment of Ch(R) over Ch was discussed in the
previous section. Since any two R-modules have an abelian group of morphisms
homR(M,N), the enrichment for Ch(R) follows similarly.
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Definition 7.2. Let P be a set of objects in a Ch-category C. We denote by E(P)
the full subcategory of C (enriched over Ch) with objects P, i.e., E(P)(P, P ′) =
HomC(P, P ′). We let

HomC(P,−) : C −−−−→ Mod- E(P)

denote the functor given by HomC(P, Y )(P ) = HomC(P, Y ).

Note that if P = {P} has a single element, then E(P) is determined by the single
differential graded ring EndC(P ) = HomC(P, P ).

In [SS3, 6.1] it is established that there is a (projective) model structure on the
category Mod- E(P) of E(P)-modules: the weak equivalences are the maps which
induce quasi-isomorphisms at each object and the fibrations are the epimorphisms
(at each object).

Now we can state the differential graded analogue of Freyd’s theorem; the dif-
ference is that here we have weak generators and a Quillen equivalence instead of
strong generators and a categorical equivalence. A set of objects P in a stable
model category C is a set of (weak) generators if the only localizing subcategory
of Ho(C) which contains P is Ho(C). As mentioned above Theorem 4.2, when the
elements of P are compact then they generate Ho(C) if and only if they can detect
when an object is trivial; see [SS2, 2.2.1]. Note that a (possibly infinite) coproduct
of a set of generators is still a generator, but is not necessarily compact.

Theorem 7.3. Let R be a ring with many objects and P a set in Ch(R) of bounded
complexes of finitely generated projectives. If P is a set of (weak) generators for
Ch(R) then there is a Quillen equivalence

Mod- E(P) −−−−→ Ch(R)

in which the right adjoint is the functor HomR(P,−).

Note that for every object r ∈ R there is a corresponding ‘free module’ F
R
r given

by F
R
r (s) = R(s, r). A projective R-module is finitely-generated if it is a direct

summand of a module ⊕iF
R
ri , where the sum is finite. And as usual, we denote the

homotopy category of Ch(R) by DR. We need the following lemma:

Lemma 7.4. The compact objects in DR are those complexes which are quasi-
isomorphic to a bounded complex of finitely-generated projective R-modules.

Proof. This follows from [Kr, 5.3]. �

Proof of Theorem 7.3. Just as in the proof of Theorem 6.4, one can check that
HomR(P,−) takes fibrations and trivial fibrations in Ch(R) to fibrations and triv-
ial fibrations in Ch for any bounded complex of projectives P . So the functor
HomR(P,−) preserves fibrations and trivial fibrations. Thus, together with its left
adjoint −⊗E(P) P, it forms a Quillen pair.

We proceed as in the proof of Theorem 6.4. The induced total derived functors
are again exact functors of triangulated categories which commute with coproducts.
Here we use the fact that each P is compact to show the right adjoint commutes
with coproducts. The full subcategories for which the unit of the adjunction η or
the counit of the adjunction ν are isomorphisms are localizing subcategories.

Note that for each object P in P there is a free E(P)-module F
E(P)
P defined

by F
E(P)
P (P ′) = E(P)(P ′, P ), and these generate the homotopy category of E(P)-

modules. For every P ∈ P the E(P)-module HomR(P, P ) is isomorphic to the
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free module F
E(P)
P by inspection, and F

E(P)
P ⊗E(P) P is isomorphic to P since

they represent the same functor on Ch(R). Thus, η is an isomorphism on every free
module and ν is an isomorphism on every object of P. Since the free modules F

E(P)
P

generate the homotopy category of E(P)-modules and the objects of P generate
Ch(R), the localizing subcategories where η and ν are isomorphisms are the whole
homotopy categories. This implies that the adjoint pair is a Quillen equivalence. �

Finally, we can write down a many-objects version of Theorem 4.2. If P is a set
of (weak) generators with each element P a bounded complex of finitely generated
projectives and H∗E(P) is concentrated in degree zero, then we call P a set of
tiltors. The following theorem is a generalization of Keller’s work [Kr, 8.2]:

Theorem 7.5. (Many-objects tilting theorem) Theorem 4.2 holds when the
rings R and S are replaced by rings-with-many-objects R and S. The tilting complex
is replaced by a set of tiltors T with H∗E(T) ∼= S.

The proof is given below, but first we state some easy consequences:

Corollary 7.6. Two rings-with-many-objects R and S are derived equivalent if and
only if their associated model categories of chain complexes Ch(R) and Ch(S) are
Quillen equivalent.

Using Theorem 7.1 we get the following corollary as well. Given an abelian cat-
egory A satisfying the hypotheses of Theorem 7.1, choose a set of small, projective,
strong generators P. Let A = EndA(P) be the associated ring-with-many-objects.
Freyd’s theorem says that A is equivalent to Mod- A, and so Ch(A) is equivalent
to Ch(A). In particular, one gets a projective model structure on Ch(A) by lifting
the one on Ch(A) across the equivalence; see [SS3, 6.1]. The next result is now an
immediate consequence of Corollary 7.6.

Corollary 7.7. Let A and B be co-complete abelian categories with sets of small,
projective, strong generators. Then A and B are derived equivalent if and only if
their associated model categories of chain complexes Ch(A) and Ch(B) are ∗Quillen
equivalent.

Remark 7.8. Warning: Let M and N be two stable model categories whose
underlying categories are abelian, with sets of small, strong, projective generators.
The above corollary does not say that M and N are ∗Quillen equivalent if and
only if Ho(M) and Ho(N ) are triangulated equivalent. This statement is false;
see [Sc], [DS]. Note in particular that it does not apply to the model category
Mod-R where R is a DGA; the problem is that Ho(Mod-R) is not the same as
Ho(Ch(Mod-R)).

Proof of Theorem D. Part (a) is the above corollary. Part (b) is immediate from
(a) and Corollary 3.10. �

Proof of Theorem 7.5. The proof that condition (1) implies condition (2) and con-
dition (2) implies condition (3) follows just as in Theorem 4.2.

Now assume condition (3) and fix a triangulated equivalence between Kb(proj-R)
and Kb(proj-S). For s any object in S, consider the module F

S
s as a complex

concentrated in dimension zero; let Ts be its image in Kb(proj-R). Since the objects
in {Fs}s∈S generate Kb(proj-S), the objects in T = {Ts}s∈S generate Kb(proj-R).
But Kb(proj-R) generates DR, so T generates DR as well. By Lemma 7.4 the
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objects of T are compact in DR. Finally, we also have H∗E(T) ∼= H∗E({FS
s }) ∼= S.

So T is a set of tiltors.
If we are given a set of tiltors T for Ch(R), then by Theorem 7.3 Ch(R) is Quillen

equivalent to the category of modules over the endomorphism category E(T). Since
H∗E(T) ∼= S is concentrated in dimension zero, E(T) is quasi-isomorphic to S
by an extension of Lemma 6.6. Thus the categories of differential graded E(T)-
modules and differential graded S-modules are Quillen equivalent by [SS3, 6.1]
which generalizes Proposition 6.7:

Ch(R) 'Q Mod- E(T) 'Q Ch(S)

�

Appendix A. Proof of Proposition 3.7

Recall thatM and N are pointed model categories, (L, R) :M→N is a Quillen
equivalence, U is a complete Waldhausen subcategory ofM, and V = (LU). (Note
that L, being a left adjoint, must preserve the initial object). We must show
that V is a complete Waldhausen subcategory of M and that the induced map
L : K(U)→ K(V) is a weak equivalence.

For the remainder of this section, let F be a fibrant-replacement functor in
N and let Q be a cofibrant-replacement functor in M. Note that the functor
QRF : N → M takes V into U : for if X ∈ V then X ' LA for some A ∈ U , and
then QRFX ' QRFLA ' A. Since U is complete and A ∈ U , it follows that
QRFX ∈ U as well.

Lemma A.1. V is a complete Waldhausen subcategory of N .

Proof. The only point which takes work is axiom (iii) for Waldhausen categories.
So if A � B and A → X are maps in N where A, B, X ∈ V, we must show that
the pushout B qA X is also in V.

Consider the maps QRFA → QRFB and QRFA → QRFX. All the domains
and codomains of these maps are in U . Factor QRFA → QRFB as QRFA �

Z
∼
−� QRFB. Then Z ∈ U and so the pushout P = Z qQRFA QRFX is also in

U , because U is a Waldhausen subcategory of M. This pushout is weakly equiva-
lent to the homotopy pushout (see [DwS, 10]) of Z ← QRFA → QRFX, because
QRFA → Z is a cofibration and all the objects Z, QRFA, and QRFX are cofi-
brant; see [Ho, 5.2.6]. Since Z

∼
−� QRFB, P is also weakly equivalent to the

homotopy pushout of the diagram QRFB ← QRFA→ QRFX.
Finally, any left Quillen functor L preserves homotopy pushouts, in the sense

that LP is weakly equivalent to the homotopy pushout of LQRFB ← LQRFA→
LQRFX. The latter homotopy pushout is weakly equivalent to the homotopy
pushout of B ← A → X, which in turn is just weakly equivalent to the pushout
B qA X (since A → B is a cofibration and all the objects A, B, X are cofibrant).
So B qA X is weakly equivalent to LP , and is therefore in LU . �

Let wU denote the subcategory consisting of all weak equivalences in U , and write
N(wU) for the nerve of this category. The functor L induces a map wU → wV.

Lemma A.2. NL : N(wU)→ N(wV) is a weak equivalence of spaces.
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Proof. First of all, the functor Q : M→M maps U into itself (because U is com-
plete), and comes equipped with a natural weak equivalence QX → X. This shows
that the induced map NQ : N(wU)→ N(wU) is homotopic to the identity [Se, 2.1].
Similarly, NF : N(wV)→ N(wV) is homotopic to the identity.

The functor QRF : N →M maps V to U , as was remarked prior to the previous
lemma. There are natural transformations LQRF → LRF → F and Q→ QRL→
QRFL, and the composites are weak equivalences. It follows that the compositions
NL ◦N(QRF ) and N(QRF ) ◦NL are homotopic to the respective identity maps,
and so are part of a homotopy equivalence. �

Let ∆n denote the category consisting of n composable arrows 0→ 1→ · · · → n.
This may be given the structure of a Reedy category [Ho, 5.2.1] in which all the maps
increase dimension. The category of diagrams M∆n has a corresponding Reedy
model structure [Ho, 5.2.5] in which a map X• → Y• is a weak equivalence (respec-
tively fibration) if and only if each Xn → Yn is a weak equivalence (respectively
fibration). A map is a cofibration if and only if all the maps Xn qXn−1 Yn−1 → Yn

are cofibrations. In particular, an object X• is cofibrant if and only if the maps
Xn−1 → Xn are all cofibrations; by a simple recursion, this implies that all the
Xi’s are cofibrant as well.

Let Un denote the full subcategory of M∆n consisting of cofibrant diagrams
whose objects all belong to U . It is easy to see that Un is a complete Waldhausen
subcategory of M∆n . The functors (L,R) prolong to functors (L,R) : M∆n →
N∆n , and this is still a Quillen equivalence. We need the following:

Lemma A.3. Any diagram in Vn is weakly equivalent to one in L(Un). That is,
Vn = LUn.

Proof. Let X• = [X0 → · · · → Xn] be an object in Vn. Then each Xi is in V,
and so QRFXi lies in U (as was shown above Lemma A.1). Consider the object
QRFX• = [QRFX0 → · · · → QRFXn]. This need not be cofibrant in M∆n , but
we can still take its cofibrant replacement—call this new object C•. Each Ci is a
cofibrant object weakly equivalent to QRFXi, and is therefore in U ; so C• is in
Un. We have a sequence of maps LC• → LQRFX• → FX• ← X•, all of which
are objectwise weak equivalences, and so X• is weakly equivalent to an object in
LUn. �

The category w(Un) is exactly the category wFn(U) defined in Section 3. So
there is a ‘forgetful’ functor wSn(U) → w(Un−1): in the notation of [Wa, 1.3] it
sends an object {Aij} to the sequence A01 � A02 � · · · � A0n. This functor is
easily seen to be an equivalence of categories (see [Wa, bottom of p. 328]).

Proof of Proposition 3.7. Recall that K(U) is defined as the geometric realization
of a simplicial space [n] 7→ N(wSn(U)). It is therefore enough to show that L
induces weak equivalences N(wSn(U)) → N(wSn(V)) at each level. There is a
commutative diagram

wSn(U)

��

// wSn(V)

��
wUn−1

// wVn−1
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and the vertical maps are equivalences of categories. So it suffices to show that the
maps N(wUn)→ N(wVn) are weak equivalences. But this follows from Lemma A.2
applied to the complete Waldhausen subcategories Un and Vn = LUn ofM∆n

. �
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