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INTRODUCTION

A vector space can be viewed, according to one's predilections, either as a module

over a ring, or as a vector bundle over a space (with one point). If one seeks broad

generalizations of the structure theorems of classical linear algebra, however, the satis-

faction afforded by the topologists has, unhappily, no algebraic counterpart.
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6 H. B A S S

Our point of departure here is the observation that the topological version of

linear algebra is a particular case of the algebraic one. Specifically, the study of

continuous real vector bundles over a compact X, for example, is equivalent to the study

of finitely generated projective C(X)-modules, C(X) being the ring of continuous real

functions on X. This connection was first pointed out by Serre [28] in algebraic geometry,

and recently in the above form by Swan [34]. Serre even translated a theorem from

bundle theory into pure algebra, and he invented the techniques to prove it [29] (see § 8).

His example made it clear how to translate large portions of homotopy theory into the

same setting, and thus discover, if not prove, an abundance of natural theorems of topo-

logical origin.

What follows is the result of a first systematic attempt to exploit this idea. This

investigation was inaugurated jointly by S. Schanuel and the author, and an

announcement of the results of that earlier work was made in [9]. In particular, the

topological background for the results of §§ 10-11 is pointed out there.

Generally speaking the method is as follows. The problem at hand is " locally

trivial 55, i.e. locally it can be solved by a simple parody of classical linear algebra.

Furthermore, one proves an < c approximation ?? lemma which asserts the existence of

global data with prescribed behavior in a given local situation. Finally, in order to

piece these together one uses a kind of " general position 5? argument. The ability

to put things in general position imposes a dimensional restriction on the conclusions,

and thus we determine a cc stable range " for the problem.

The structures investigated here are those of projective modules (Chapter II)

and of the general linear group (Chapter I). This can be thought of as analogous to

the study of vector bundles on a space, and on its suspension, respectively. If we
(c stabilize ", we are led to consider analogues of the functors K° and K1, respectively,

ofAtiyah and Hirzebruch [2], and a good deal of the formalism, in particular the exact

sequence, of that analogy is developed in Chapter III. The natural extension of the

functors K.\ z>2, to our algebraic context has so far evaded a definitive appearance.

In another direction, this point of view should be fruitful in studying other classical

linear groups. For example, thinking of bundles with reduced structure group, one

can consider non degenerate quadratic forms on projective modules, and the associated

orthogonal groups. K° would then be the <c Witt ring 5?, and Witt's theorem, for example,

is analogous to our Theorem 9.3. The local part of this theory has recently been done

by Klingenberg [25], but several serious problems continue to obstruct its globalization.

The most important applications of our machinery are to the linear groups over

orders in semi-simple algebras finite dimensional over the rationals (§§ 19-21). When

applied to ZTT, n a finite group, they give quantitative information onj. H. C. Whitehead's

groups of simple homotopy types [36], results which elaborate on some earlier work

of G. Higman [38]. They also shed some new light on the structure of SL(n, A),

with A the ring of integers in a number field. Most striking is the fact that, for n suitably

large, if H is a non central normal subgroup, then SL(TZ, A)/H is a finite central extension
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K-THEORY AND STABLE ALGEBRA 7

of PSL(/z, A/q) for some ideal q. This information is the starting point for the proof,

in [40], that every subgroup of finite index in SL(TZ, Z), yz>3, contains a congruence

subgroup (see § 21).

The author owes most of his mathematics to Serre's genius for asking the right

question at the right time, and he records here his gratitude for having so profited. He

is particularly thankful also to A. Heller, who has endured long audience on th^ present

work, and who is responsible for numerous improvements in its exposition.
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CHAPTER I

STABLE STRUCTURE OF THE LINEAR GROUPS

§ i. Notation and lemmas.

The objectives of this chapter are Theorems 3.1 and 4.2 below, which purport

to describe all the normal subgroups of the general linear group. We begin in this

section by establishing notation and some general trivialities on matrices.

Let A be a ring. GL(72, A) is the group of invertible n by n matrices over A.

Let e^ denote the matrix with i in the (i.j)^ coordinate, and zeroes elsewhere; we recall

that e,f^ = 8,̂ ,. Let a, b eA and i 4=J. Then (i + ae^ (i + be^ = i + {a + b)e^ here

i == i denotes the n by n identity matrix. Thus, for i and j fixed, the matrices i + ae^

form a subgroup of GL(TZ, A) isomorphic to the additive group of A. A matrix of the

form i + ae^, i 4=j, is called elementary, and we denote by E(??, A) the subgroup of GL(TZ, A)

generated by all elementary matrices.
Now let q (possibly == A) be a two sided ideal in A. The q-congruence group is

GL(7z, A, q) =ker(GL(/z, A) -^ GL(^, A/q)).

Moreover we denote by E(TZ, A, q) the normal subgroup of E(TZ, A) generated by all

elementary matrices in GL(TZ, A, q).
We shall identify GL(/z, A) with a subgroup of GL(72+m,A) by identifying

aeGL(^,A) with a
 eGL{n+m,A). This done, we set

^ lm

GL(A, q) = U^GL(7z, A, q) and E(A, q) = U,E(TZ, A, q).

When q-A we write GL(A)-GL(A, A) and E(A)=E(A,A). GL(A) is called

the stable general linear group over A.
Lemma (1.1) (" Homotopy Extension "). — If A-^B is a surjective ring homo-

morphism, then E(/z, A, q)->E(72, B, qB) is surjective for all n and q.

Proof, — If i+^- is B-elementary, and b is the image of aeA, then i+ae^

maps onto i+be,.. (There is an abuse of notation here which one should excuse,

in that " i " and cc
 e^

 ?? have two senses.) This shows that E{n, A) -^E(TZ, B) is

surjective. Now E(n, B, qB) is generated by elements T° == G~ \a with (je'E(n, B) and

T qB-elementary;i.e. T== i +qe^ ^eqB. We can find q ' e q with image q, and cr'eE^, A)

with image a (by the first part of the proof). Clearly (i ^-y^,)0 lifts T°.

If Hi and Ha are subgroups of a group we denote by [H^, HJ the subgroup

generated by all [Ai, h^\ =h^~
l
h^~

l
h^ with ^eH,.
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K-THEORY AND STABLE ALGEBRA

Lemma (1.2). — ffi,J\ and k are distinct, then

[i—ae^ i—be^]==i+abe^.

Proof. — (i + ae^ (i + be^) (i -̂ ,) (i -^) =

(i + ae^ + ̂  + abe^ (i — ae^— be^ + abe^ ==

(i + ae^ + be^ + abe^ — ( .̂) — (be^ + abe^ + {abe^ = i + abe^.

Corollary (1.3). — If q and q' are ideals and 72^3, then

E(72, A, qq') C[E(TZ, A, q), E(n, A, q7)].

/TZ particular, E(n, A, q) = [E(^ A), E(^ A, q)J.

Proof. — The right side is a normal subgroup of E{n, A) which, by ( i . 2), contains
all qq'-elementary matrices.

Corollary (1.4). — Suppose n>^ and let H be a subgroup of GL(/z, A) normalised

by E(7z, A). Tjf T ^ a family of elementary matrices in H, then HDE(TZ, A, q), where q

z'j- ̂  two-sided ideal generated by the coordinates of i—T for all TGT.

Proof.—IfT=i+^eT then, since ^J>3, we can commutate with other elementary
matrices and obtain all elementary matrices of the form i + acbe^. The E(%, A)-invariant
subgroup generated by these, as T varies in T, is clearly E(/z, A, q).

Corollary (1.5). — (i) E(TZ, A) = [E^, A), E(/z, A)] /or 7^3.

(ii) ^A is finitely generated as a Z-module, then E{n, A) ^ a finitely generated group
for all n.

(iii) If A is finitely generated as a Z-algebra, then E{n, A) is a finitely generated group

for all n^3.

Proof. — (i) is immediate from (1.3), setting q==A=q' .

(ii) Is obvious, since E(n, A) is generated by a finite number of subgroups, each
isomorphic to the additive group of A.

(in) Let ^==i,^, ...,^. generate A as a ring, and consider the elementary

matrices i +a,e^o<^i<_r, and all j^k. These generate a group which, by (1.2),

contains all i + M^, where M is a monomial in the a,. Since A is additively generated
by these M we catch all elementary matrices.

In special cases we get something for 72=2.

Lemme (1.6). — Suppose i =u-[-v with u and v units in A. Then

E(2,A,q)c[GL(2,A),E(2,A,q)] .

If, further, u==w
2
 with wecenter A, then E(2, A, q) = [E(2, A), E(2, A, q)J.

[a,P]

Proof.—Given qeq, set b==v~lq,oL•.

ii [i—u)b

o i

U 0
, and p== eE(2,A,q). Then

e[GL(2, A), E(2, A, q)J. Moreover,

w~1^--
w o
^ ^-i eE(2,A), by Lemma 1.7 below, and [w~~\ (B] == [a, ?].
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H. B A S S

Examples. — i. If A contains a field with more than two elements, i is a sum of

two units. Likewise if 2 is a unit in A.

2. If A is an integral domain containing a primitive 71
th root, u, of i, then

i + u + • . . + ̂  is a unit if i 4- i is relatively prime to n. Since

i + M + . . . + ^ = i + z / ( i + . . . 4 - ^ - i )

we can write i as a sum of two units provided both i and z+ i are prime to n. Such

an i always exists unless n is a power of two.

3. The commutator quotient of GL(2, Z) is a group of type (2, 2), and that

of SL(2, Z) is cyclic of order 12. More generally, the commutator quotient of

SL(2, Z/^Z) is cyclic of order d, where d=gcd(q, 12). IfZy denotes the j^-adic integers

then the commutator quotient of SL(2, Z^) is cyclic of order 4 for p=2, 3 for j&=3,

and i for j&=t=2 or 3. In all of these examples E=SL.

4. For any ring A i is a sum of two units in M{n, A) for all n> i. For if n> i

let B=A[a]=A[^/(/(^)), where/(^=r-^+i. Then i =a(i —a71-1) =a(i —a)^(a)

so a and i —a are units in B. Therefore they define A-automorphisms of B^A" whose

sum is i.

The next lemma plays a fundamental role in what follows.

Lemma (1.7) ( ( c Whitehead Lemma 5 ?) . — Let aeGL{n, A) and beGL{n, A, q).

TA^TZ

^6

o

^ 0

0 6

(27^

^

0

0

—b

mod E(2%, A, q)

mod E(27z, A)

(The congruences hold for either left or right cosets.)

Proof. — Write 6 = = i + y ; y i s a n nxn matrix with coordinates in q. Let

ba o
0 I

P-

T3=

I

a o

o b

-b-^qc

5

0

1 I

^1=

3

i {ba)

0

and

-\
i

G=

5 T

I 0

a i

2 —
i —a~

l
q

0 I

Then clearly ^=^^^eE(2n, A, q). We begin by showing that aT=[B.

OCTi
^
0

(XT

-1
<7

^

I

1^~S=

T2<7==

5 aria ^

<2 0

ba—a b

a —q+q

—a i +q

::==

ba — qa q

—a i

a o
qa b

=
a o

—a b

; OCT=[3.

^ a q

—a i

5
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K-THEORY AND STABLE ALGEBRA

ab o
0 I

b-
1
 o

o b
1

=

eE(27z, A, q) and hence

ab o
0 I

b-
1 o

o b

a o
o b

mod E(2/z, A, q).

Finally, modulo E(2/z, A), we have

a 0 1 i || i
o b o i

0| I

- I 1 0

For left cosets we need only observe that all subgroups involved are invariant under

transposition.

Corollary (1.8). — [GL{n, A), GL{n, A, q)] CE(27?, A, q).

Remark, — It would be useful if one could strengthen this corollary to say:

[GL(/z, A, q),GL(/?, A, q')]cE(27z, A, qq'), say even under the assumption that q+q '^A.

Combining (1.3) and (1.8) we have, for ^^3,

E(72, A, q) - [E(^, A), E(^ A, q)] c[GL(^ A), GL(^, A, q)] cE(2^z, A, q).

Letting n->co we conclude:

CWter^ (1.9). — E(A, q) = [E(A), E(A, q)] == [GL(A), GL(A, q)]. In particular,

E(A)=[GL(A),GL(A)].

Remark. — The last conclusion is due to J. H. C. Whitehead [363 § i]. Indeed,

essentially, everything in this section is inspired by Whitehead's procedure in [36].

§ 2. The affine group.

Lemma (2.1) . — For n>^2 the additive group generated by E(TZ, A) is the full matrix

algebra^ M(TZ, A).

Proof. — It suffices to catch ae^ for all aeA, all z, j\ If i^pj, ae^== (i +ae^) — i.

For the diagonal elements we have, for example,

ae^=(i +ae^)(i +e^)—i—ae^—e^.

Viewing A" as a right A-module we can identify GL(%, A) with Aut^A").

Corollary (2.2). — For ^>2 the E(^, A) invariant subgroups ofA^ are the qA^ where q

ranges over all left ideals. (Note that these are not sub-A-modules.)

Proof. — By the Lemma we can replace E(TZ, A) by M(TZ, A). Let

a=(^, ...^JeA^

and let q=SA^,. It clearly suffices to show that M(n, A)a==qAn. But the obvious

use of coordinate projections, permutations, and left multiplications makes this evident.

Now Aff(7z,A) is defined to be the semi-direct product GL^^xA^ If

(7eGL(/2, A) and oLeA
n the multiplication is given by

(cr, a) (o-', a') = ((TO', era' + a) •
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12 H. B A S S

In particular

(^a)-1-^-1,-^)

We identify GL{n, A) with GL(?z,A)xo, and A" with ixA^ The latter is an abelian

normal subgroup. Since

(o-, o)(i, a)(o-, o)-1^!, o-a)

we see that for subgroups HcGL(;2,A) and ScA^ invariance of S under H is the

same in both of its possible senses.

We shall often identify (cr, a)eAff(72, A) with eGL(n+ i, A) (viewing a

as a column vector). Note that this identifies E(TZ, A) x A71 with a subgroup of E(^ + 13 A).

Proposition (2.3). — Let H be a subgroup of Af{[n, A) with projection L in GLyz(, A).

Then

(i) [H, A-] = [L, A-] == 2^(i -^A-.

(ii) 7/' H is normalised by An then [H.A^CH j-o ^ '̂j- case HnA^ trivial =>H

^TO(2/.

(iii) 7/' ^^2 anrf H is normalised by E(^, A), then [H, An]==qAn /or a unique left

ideal q.

Pn?o/. — (i) If (T,(B)eH, so T(=L, and a==( I , a )eA n 3 then

[(T,[B),(I,a)]=(I,(I-T- l)a).

(i) => (ii) is trivial, and (iii) is a consequence of (2.2).

We shall use this proposition to show that, under suitable conditions, a subgroup

HcGL(7z, A) normalized by E(TZ, A) contains E(7z, A, q) for some q+o. By (i .4) it

will be sufficient to show that H contains a single non trivial elementary matrix. Of

course we assume n J> 3 in order to invoke ( i . 4).

Suppose first that there is a (?eH and a unit z/e center A, such that a=^u.i,

but a—u.i has a zero row or column. We first apply the following:

Remark. — Since Z is a Euclidean ring E(TZ, Z) =SL{n, Z) for all n^>2. Hence

every cc permutation 5? (i.e. a matrix with one non zero coordinate equal to ± i in each

row and column) of determinant i lies in E(TZ, Z). By specialization, every such permu-

tation lies in E(^, A) for any A.

Now back to a and u above. We can conjugate with a permutation in E(TZ, A)

and assume a—u.i has either the last row or column zero; say the last row. Then

a == ucs' with i =(= or' eAff(% — i, A). Since commutating with o- neglects u we can use (2.3)

to produce lots of elementary matrices (in the last column). If the last column of CT—u. i

vanishes we transpose the above argument.

Before proceeding further with our problem, let us compute the centralizer of

^T= i -}-ae^\aeA}. Given o-, let a be the first column ofo- and (B the second row of o"1.

Then cmy""^ i +a^B. Hence, if (TT==TCT we have (x.a^==ae^. If a==i we conclude
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K-THEORY AND STABLE ALGEBRA 13

n
that a==( . | and (B== (o, u~

1
, o, ..., o). Then allowing general a we find uau~

l
==a

W
so that z/ecenterA. Now changing e^ to ^, we can already record the following:

Corollary (2.4). — If n^2, the centrali^er of E(TZ, A) consists oj all matrices u.i

with u a unit in the center of A..

Continuing our argument above, our objective is:

Lemma (2.5). — Let ^j>3 and H a subgroup of GL(TZ, A) normalised by E(TZ, A).

If H contains a non central element a with some coordinate ^ero, then H3E(7z,A,q) for

some q 4= o.

Proof. — After conjugating <r with a permutation in E(TZ, A) we can make a^ or

h\
a^ zero, where a == ( ; j is the first column of <r. If a commutes with all T == i + ae^

W
then a has the same first column as u. i for some z/ecenter A, by the last paragraph,

and this case was handled already above. Hence we may assume ^T can be chosen

so that p = cn-cr"" \~14= i. Then p^^T^+aT? where ^==a^~
1
, and (B is the second

row of cr~1 (see computation above).

Case i. ^=o. Then ay has zero last row, so p^T^-l-ay and r~1 have the

same last row. Hence we have i 4= p eA{f(n — i. A) and we can use (2.3) to get elementary

matrices.

Case 2. <2i==o. Then the first rows of p and r~1 agree, so p is not central and

has an off diagonal zero (since T"~1 has first row (i, —a, o, ..., o)). Hence we can

replace (T by p and obtain Case i again.

§ 3. Structure of GL(A).

Theorem (3.1) (Stable Structure Theorem.)

Let A be any ring and GL(A) the stable general linear group over A (see § i for

definition).

a) For all two-sided ideals q,

E(A, q) = [E(A), E(A, q)] - [GL(A), GL(A, q)].

b) A subgroup HcGL(A) is normalised by E(A)<=>/or some (necessarily unique) q,

E(A,q)cHcGL(A,q).

H is then automatically normal in GL(A).

c) If A->B is a surjective ring homomorphism and if H is normal in GL(A), the

image of H is normal in GL(B). (Note that GL(A)-^GL(B) need not be surjective.)

Proof. — a) is just (1.9). c ) is a consequence of b) since the image ofH will be

normalized by the image ofE(A), which, by ( i . i), is E(B). Moreover, the uniqueness

497



14 H. B A S S

of q and normality ofH in part b ) both follows from [GL(A), H] =E(A, q) CH, which

is a consequence of a ) .

It remains to prove that if HcGL(A) is normalized by E(A), and if q

is the ideal generated by the coordinates of i — T for all reH, then E(A, q) CH.

Let H^==HnGL(/z, A) and let q^ be the ideal generated by all coordinates of i—T,

reH^. Viewing H^ cAtt^n + i, A) it follows from (2.3) and (i .4) that ti^+i contains

enough elementary matrices to capture E(/z + i, A, qj. Hence

HDU,E(^ + i, A, qj = U,E(A, qj =E(A, q).

§ 4. Structure in the stable range.

One would like to recover the stable structure theorem for GL(^, A), 72<oo.

Fortunately a sufficient condition for this can be formulated as a very simple axiom,

one which we will verify in a rather general setting in Chapter II (Corollary 6.5 and

Theorem 11. i).

Definition, — Let oc== (a^y . . ., a^) be an element of the right A-module A\ We

call a unimodular (in A^ if 2^A<^ == A. This is clearly equivalent to the existence of a

linear functional /: A^A such that y(a) == i. Let n>_ i; we say n defines a stable range

yorGL(A)if,forall r>n, given a==(^ , ...,^.) unimodular in A7', there exist b^ . . . , ^ _ ^

in A such that (a^+^i^r? • • "> ^r- i+^r- i^r) ls unimodular in A7'"1.
Examples. — If A is a semi-local ring, then n = i defines a stable range. If A is

a Dedeking ring n = 2 works. If A is the coordinate ring of a rf dimensional affine

algebraic variety, e.g. if A is a polynomial ring in d variables over a field, then n=d-\-1

defines a stable range for GL(A).

Lemma (4.1). — If n defines a stable range for GL(A) it does likewise for GL(A/q)

for all ideals q.

Proof.—Suppose r>n. Writing A'=A/q, suppose a' == {a[, . . ., a[} is unimodular

in (A')^ say i ==2^. Lift t\ and a[ to ^ and ^ in A, so i ==^t^+q with ^eq. Then

(^i, . . ., ̂ , ^eA7'4"1 is unimodular; so, by hypothesis, there exist c^eA such that

(^i + q<7, . . ., ̂  + ̂ r?) ls unimodular. Replacing a^ by ^ + ̂ 3 then, we can assume a

is unimodular. Again by hypothesis there exist b^eA rendering

(a^+b^a,, . . ., ̂ ,_i+*,-A)

unimodular. The images, V^ of the b^ in A' now satisfy our requirements.

Theorem (4.2). — Suppose n defines a stable range for GL(A).

For r>n and for all ideals q:

a) The orbits of E(r, A, q) on the unimodular elements of Ar are the congruence classes

modulo q. In particular E(r, A) is transitive,

b) GL(r, A, q) =GL(TZ, A, q)E(r, A, q).

c) E(r, A, q) is a normal subgroup of GL(r, A).

For r>max(7z, 2):

d) E(r, A, q) = [E(r, A), E(r, A, q)] - [E(r, A), GL(r, A, q)J for all ideals q.
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e) If HcGL(r, A) is normalised by E(r, A), then, for a unique ideal q, E(r, A, q) CH
and the image of H in GL(r, A/q) lies in the center.

For r;>max(27z, 3), and for all ideals q:

f) E(r, A, q) - [GL(r, A), GL(r, A, q)].

Proof, -a) We first show that if a =(^, . . .,^) = ( i+<7i , <7^ . . . ,^) is unimodular,
with <7,eq, then there is a reE(r, A, q) such that ra=(i ,o , . . . ,o) . Writing i as

a left linear combination of a^ . . ., ̂  and multiplying this equation on the left by

q, = a,, the coefficient of a, in the new equation is a right multiple, say q, of q,, and hence

in q. Thus a, is in the left ideal generated by a^ . . ., a,^ <^, so (^, . .r., ̂ , ̂ )

is unimodular. Our hypotheses now say that we can find a[=a,-\-b,qa,, i<^i<r—i

such that (^,...^;-i) is unimodular. Set ^= i +^\b^eE(r, A/q), ̂ nd write

(^, . . . ,< - i )= ( i+y i , ... ,y;-i). Then ^eq , i^^r—i, and

Tia=(i+^, ...,^_i,^).

Writing i as a left linear combination of a[, . . ., ̂ , and left multiplying this equation
^ ^i—§^ we can write q[—q^==^i^ ^^ ^^^^ Then if

T,=i+2^^EE(r,A,q),

we have r^a=(i+^, . . . ,^ ;_ , ,^ ) . I f a==i -^ then a^^= (i, ^, . . .^;_,, ̂ ).

Let T3 = i — (^i + . . . + ̂ -i^-i)i + ̂ i); then T3(7T2Tia == p = (i, o, . . ., o), and

T3eE(r,A, q). The presence of a, which need not belong to E(r, A, q), is harmless,

since o-^^p. Hence T^CT-^CTT^GEO-, A, q) solves our problem.

Now for the general case. Setting q =A, the case above was already general, and

we have thus shown that E(r, A) is transitive. Now let q be arbitrary, and a=(B mod q

unimodular elements ofA^ We can find oeE(r, A) so that a(3 = (i, o, . . ., o). Since
era FEE op mod q the argument above provides a reE(r, A, q) with T(7a=c7(B; hence
(T^TCTOC^P.

b) Given aeGL{r, A, q), the last column of^is congruent, mod q, to (o, . . ., o, i).

Hence, by part a) above, there is a ^eE(r, A, q) such that T^== with

^eGL(r- i ,A ,q ) , acqA'-1. Set ^==
-a^ 1 eE(r, A, q); then

TgT^ ==- eGL(r-i,A,q).

By induction we can continue reducing until reaching GL(/z, A, q).

c ) E(r, A, q) is generated by all T^CT-^CT with T q-elementary and (jeE(r, A).

Given aeGL(r, A) we must show a-^aeE^, A, q). But a-V^^: ((B-1^)0, where

p=a°~1. Since (by definition) E(r, A, q) is normalized by E(r, A), it suffices to show

EB-^peE^, A, q). By part b) we can write P==yp, with yeGL^, A) and peE(r, A).

Again, then, it suffices to show y-^yeE^, A, q). Write y= ^ ° , <-eGL(r—i, A),
and =i+?^ ,?eq .
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Case i. i or j is == r, say z === r. Then T =
i o

, ̂ eqAr 1 so y^ 1==

tc-i

which is clearly in E(r,A,q). Similarly for j==r.

Case 2. ^J<y. Let a be the ^ column of c and 6 the j^ row of c""1. Then

ba=o, being the (^j)^ coordinate of c~
l
c=l (recall z=t=j) . One sees easily that

yTY""1 ==

I + dqb o

0 I
. Let TI=

qb{i

G
 ==z

+aqb

i a

0 I

0

)-1 I

eE(r, ^

eE(r,A, q), and

We conclude by showing that (TiYTy'^eE^ A, q).

i
0

i
0

i
qb

—a

I

—a

i

—a

i

I 0

qb{i+aqb)-
1 i

I + <^ 0

qb i

I (2

0 I

i a—a

qb i + yba

i a

0 I

i -\-aqb 0

0 1

I 0

qb i

i fl
0 I

5

since ba=o.

d ) Using r^>3 we have, from (1.3)3

E(r, A, q) = [E(r, A), E(r, A, q)] c[E(r, A), GL(r, A, q)].

Let T=i+a^. be one of the generators of E(r,A). Suppose, for some a, that

[T°,GL(r,A,q)]cE(r,A,q). Then

[T, GL(r, A, q)] = [r0, GL(r, A, q)0]0-^ [r0, GL(r, A, q)]0-^^ A, ̂ '^-E^ A, q).

Being free thus to choose o, we can transform T and assume T=i+^r?* Now by
part b), using r>n, GL(r, A, q) =GL(r—i, A, q)E(r, A, q), so it suffices to check that

[r,GL(r-i,A,

Then

q)]cE(r,A,q). Let y

[̂  T] ==
I 0

—t I

c-
1

0

C 0

0 I

0

I

I 0

t I

eGL(r—i, A, q), and write T==

C 0

0 I

I 0

t{c—i) i •

I 0

t I

c o

o i

This is in E(r, A, q) since c= i mod q.
f) Since GL(r, A) = GL{n, A)E(r, A) and GL(r, A, q) == GL(n, A, q)E(r, A, q)

there remains only, by virtue of part d ) , to show that [GL(^, A), GL(/?, A, q)] cE(r, A, q).

But this follows from (1.8)3 since r>_2n.

e) We begin by showing that if H contains a non central element, CT, then

HDE^A.q') for some q'+o. By (2.5) it suffices to produce, in H, a non central

K\
element with at least one coordinate zero. Let a = i . j be the first column of o-.

W
Since r>n, our hypothesis on n permits us to add multiples ofa^ to the other coordinates
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and render them unimodular. This can be accomplished by conjugating <r with a matrix

of the form ^r-1 ^ eE(r, A), so we can reduce to the case where (^, .. ., a,_,)

unimodular. We can then write a,=d^+ ... +^_^_,, so that if X= Ir-1 °

laA d r

where d== [d^, .. ., d,_^, we have X-^ ; .

\o /

Now in the paragraph preceding Corollary 2.4 we showed that if (T commutes

with all T = i + ae^, then a has only one non zero coordinate, so we can finish with (2.5).

Hence we may assume there is such a T for which p=aw-^-1^ i. Let (3 denote the

second row of a-1 and Y=apr-1. Then (just as in the proof of (2.5)) we have

(TTCT ^i+aap, so p==T~l+aY.

We now claim that p is not central. Otherwise p=u.i with yecenterA

by (2.4). With X as above, the last row of (X- ̂ y is zero, so that X- 1? == X- ̂ l + (X^a)-^

and X-'T-1 have the same last row. Since i—T-1 is concentrated in the upper

left 2 x 2 corner, and i—X-1 in the last row, we see, using r^, that the (r, ̂ '"coordinate

of X ^ 1 is i. But the same coordinate of «X-1 is u. This shows that p central => p = i,

contrary to our choice of T.

Now consider X-lpX=X-lT-lX+ (X-YXyX). This is a non central element of H

whose last row agrees with that of \-l^-l\= i —saS, where e is the first column of X-1

and 8 is the second row of X== ^-1 ^ . Hence 8 has only one non zero coordinate

(using r>2), so the last row of X-^-^ has at most two non zero coordinates. We

conclude then that X-^X has some coordinate zero, and again we finish with (2.5).

For the proof of e ) now, choose q maximal so that E(r, A, q) CH. Our problem

is to show that the image, H', of H in GL(r, A/q) lies in the center of GL(r, A/q).

Since E(r, A) normalizes H, H' is normalized by the image ofE(r, A), which, by ( i . i),

is E(r, A/q). Hence ifH' is not central Lemma 4.1 permits us to apply the first part

of our argument to H' and conclude that E(r, A/q, q'/q) CH' for some q'+q. Then

the inverse image, L==HGL(r, A, q), of H'contains E(r,A,q'). By part d) now

E(r, A, q') = [E(r, A), E(r, A, q')] c[E(r, A), L] C

C[E(r, A), HJ[E(r, A), GL(r, A, q)]^ [E(r, A), H]E(r, A, q) CH,

contradicting the maximality of q.

§ 5. Dimension o.

Corollary 6.5 tells us that n= i defines a stable range for GL(A) when A is semi-
local, and it is in precisely this case that the restrictions r^3 intervene effectively.
The following refinements can be made:

Proposition (5.1). — Suppose n=i defines a stable range for GL(A) (e. g. A can
be any semi-local ring).
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a) If A is commutative, then, for all ideals q and all rj> 2,

E(r, A, q) =SL(r, A, q)(=SL(r, A)nGL(r, A, q)).

In particular E(r, A) =SL(r, A).

b) Suppose i == w2 + y z^A ^ aW y z/nz^ ZTZ ^ center of A. TT^TZ, /or all r^ 2,

E(r, A, q) = [E(r, A), E(r, A, q)] = [GL(r, A), GL(r, A, q)].

proof: _ a) Clearly E(r, A, q) CSL(r, A). Now an element of GL(r, A, q) is,

by (4.2) b ) , reducible modulo E(r, A, q) to GL(i,A, q), i.e. to a unit, and that unit

is evidently the determinant of the original matrix. This proves a ) .

b ) For r>3 b ) is just parts d ) and/) of Theorem 4.2. However, the proof there

uses r>3 only to invoke (1.3) and conclude that E(r, A, q) == [E(r, A), E(r, A, q)].

Our hypothesis permits us to use (1.6) instead for the same purpose when r=2.

As a consequence of part a) above and (1.1) we have:

Corollary (5.2). — Let q be an ideal in the commutative ring A for which A/q is

semi-local. Then, for all q'3q, E(r, A, q') -> SL(r, A/q, q'/q) is surjective for all r. In

particular, SL(r, A) -> SL(r, A/q) is surjective.

Remarks. — i. For local rings some further refiniments of our results can be found

in Klingenberg [24].
2. Let GL(r, A, q)' be the inverse image in GL(r, A) of the center ofGL(r, A/q).

One would like the following converse to part e ) of Theorem 4.2: If

E(r ,A,q)cHcGL(r ,A,q) '

then H is normal. This would follow from: E(r, A, q) = [GL(r, A), GL(r, A, q)']. For

a commutative local ring this follows from (4.2) f), since GL(r, A, q)' is then generated

by GL(r, A, q) and the center of GL(r, A). Klingenberg's proof of this for non commu-

tative A appears to contain a gap, due to the erroneous equation, e <
 gJ(a~

l
b'~

l
a) = i

on p. 77 of [24].
3. If A is the ring of integers in a number field then n = i defines a stable range

for GL(A). Our results in this setting are, to some extent, well known. For example,

the last part of Corollary 5.2 (familiar to function theorists for A=Z) and condi-

tion (4.2) b) for q=A were known long ago by Hurwitz. Moreover, Brenner [13]

recognized (4.2) b) for A==Z. However the commutator formulae appear to have

escaped notice even for A=Z. They turn out to be essential in the proof (see § 21)

that every subgroup of finite index in SL(n, Z), 7Z>3, contains a congruence subgroup.

The discovery of the generality of these formulae lies ultimately in J. H. C. Whitehead's

work on simple homotopy types [36].
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CHAPTER II

STABLE STRUCTURE OF PROJECTIVE MODULES

§ 6. Semi-local rings.

Let A be a ring. Throughout this chapter, <c A-module ?9 means right A-module,

and " ideal ??, unqualified, means two-sided ideal. Let P be an A-module, and aeP.

We write P*=-Hom^(P, A) and define

o(a)-Op(a)-{/(a)|/GP}.

o(a) is a left ideal in A, and it is clear that o(oc) =A if, and only if, the homomorphism

g : A-^P, g{a) ==oia, has a left inverse. In this case we call a a unimodular element of P.

Lemma (6.1). — Let o- : Q^P be a homomorphism of A-modules with Q^ finitely

generated and projective. Then or has a left inverse (i.e. is a monomorphism onto a direct

summand) if, and only if, cr* : P*->Q* is an epimorphism.

Proof. — G has a left inverse => a* has a right inverse => (T** has a left inverse => cr

has a left inverse, since Q^=== Q** is reflexive. Moreover, (T* has a right inverse OCT*

is an epimorphism, since Q* is projective.

Denote by rad A the Jacobson radical of A.

Corollary (6.2). — Let a, T : Q—P as in (6 .1)3 and assume Im(o-—-r)CP.radA.

Then a has a left inverse o T does.

Proof. — Let /eIm((7—T)*cQ;; then /(Q) Crad A. Since Q if finitely generated

and projective this implies that /erad A. Q*. Hence Im a* Cim T* + rad A. Q*. Since Q*

is finitely generated, Nakayama's Lemma tells us that a* surjective =>T* surjective.

Using (6.1) now, this completes the proof.

Definition. — Call A semi-l^cal if A/rad A is an Artin ring. It follows then that

A/rad A is a finite product of full matrix algebras over division rings.

For the balance of this section, A always denotes a semi-local ring. The lemmas which

follow contain the < ( zero dimensional 5? case of the general results to follow.

If S is a subset of an A-module, P, denote by (S) the submodule generated by S.

We shall say
/-rank^(S;P).>r

if (S) contains a direct summand of P isomorphic to A^ We will suppress the

subscript " A ?? when A is fixed by the context. In what follows A is a fixed semi-local

ring, and P denotes an A-module.

Corollary (6.3). — /-rank(S; P) =/-rank((S) +P.rad A; P).
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Proof. — If y-rank((S)+P.rad A$ P)^r there is a homomorphism a : A^P

having a left inverse, and with Im crC(S) +P.radA. Hence we can find T : A^P

with ImTC(S) and Im(cr—r)CP.radA. By (6.2) T has then also a left inverse,

soy-rank(S; P)^y. The reverse inequality is obvious.

The following simple result will play a fundamental role in what follows.

Lemma (6.4). — If be A and a is a left ideal such that AbJ^a=A, then b-\-a

contains a unit.

Proof. — Since units in A/rad A lift automatically to units in A we may assume A

is semi-simple. Passing then to a simple factor we can reduce to the case A=Endj)(V),

where V is a finite dimensional right vector space over a division ring D. In this case a

can be described as the set of endomorphisms which annihilate some subspace, W, of V

(a == Ac, e
2 == e, and W = ker e). The fact that Ab + a = A guarantees that ker b n W == o.

Write V^W^W'==&W©U. Now we can clearly construct an automorphism u such

that z / |W==6 |W and ^(W')=U. (Note that W^W=>W'^U.) Since a==u—b

annihilates W, a^a and we're done.

Corollary (6.5). — n== i defines a stable range for GL(A) (in the sense of § 4).

Proof. — By definition, we must show that if Aa^+. . . +A^=A, r>i, then we

can add multiples of^to a^, . . ., a^_^ so that the resulting r— i elements still generate

the unit left ideal. Let b=a^ and a==Aa^+ .. . +Aa/, then (6.4) provides us with a

unit u = a^ + b^ +. • . + b,a,. Hence ue {A{a^ + b,a,) + Aa^ +. .. + A^_i), as required.

The following is a technical little argument with two important corollaries: Let a

and (B be unimodular in (BA®P. Writing a=(B6+ap we have A==o(a) =A6+o(ap).

By (6.4) u==b+a is a unit for some fleo(ap). Let / be an endomorphism of (BA<3P

such that /(P) ==o,/(P) CjBA, and f{^p)=^a. The existence of/follows from the

definition of o(ap) =0p(ap). If (pi=i+/ then (pi(a) =;Bz/+ap. Now let g be the

endomorphism killing P such that ^((B) == —apM~1, and set ^2=
=I

+g
f I^ (P=:=?2?l

then (i) 9(a)=pz/, (ii) 9 leaves invariant all submodules containing (BA+aA, and (iii)

since f
2
==o=

:
g

2
y 9 ls an automorphism.

Corollary (6.6). — A®P^A®P'=>P^P'.

proof. — Using the hypothesized isomorphism to identify the two modules, we can

write pA©P = aAOP'. With the 9 constructed above we have, from (i), cp(aA) = (BA, so

P^(iBA©P)/pA=(p(aAeP /)/9(aA)^(aA®P')/aA^P'.

Corollary (6.7). — If M is a submodule of P, then

/-ran^A^M; A^P) =r+/-rank(M; P).

Proof. — It suffices to treat the case r = = i . Moreover, the left side is clearly at

least as large as the right.
Let oci, . . . . oc,£pA®M be a basis for a free direct summand of pA©P. (P is

assumed unimodular here of course.) Now construct <p as above with a==oci. By (ii)

above (p(a,)e(BA®M also, ^<z<,s, so we can replace a, by 9(0,) and, by (i), reduce to
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the case (BA == o^A. But then we can subtract multiples of ai from ocg, . . ., a, and further

render oc2 , . . . , a , eM. Thus, /-rank(pA®P)>^/.rank(M;P)>j—i, as required.

Corollary (6.8). — If a ^ ^ ^few^, aW S fl ^A^ o/ P, then

/-rank(S, a; P)^i +/-rank(S; P).

Proof. — Suppose /-rank(S, a; P)>:r; i.e. there is a (T : A'-^P with a

left inverse, and ImcrC(S)+aA. Let /:A®P->P by /(^)=aa+^. Then

Im(/ | (A®(S)))=aA+(S)Dlma, so we can find g : A^AOP such that a==fg

and Im^CA®(S). The left invertibility of a implies that of g, and hence

/-rank(A®(S); A®P)^r. The present Corollary now follows from the proceeding one.
Lemma (6.9). — Suppose o^, . . . , a^eP and

/-rank(ai, ..., a,.; P) =t<_s<r.

Then we can find Pi, .. ., Pg of the form

P,=a,+S,>,a,^,, ^<_i<_s,

such that /-rank(pi, . .., (Bg; P) ==t.

Proof. — We induce on t, the case t==o being trivial. If t>o we can

write P=pA®P' with p a unimodular element of P in (ai , . . . ,a , ) . Writing

^i^^i+^-i then, with a^'eP', we must have 2^A==A. By (6.4) (applied to the

opposite ring of A, since we are now dealing with right ideals) we can find a unit

u = &i + S,>i^i,- Set (B^ --= oci + ̂ j>i^ij = P^ + Pi. Then pi is unimodular in P (since

Meo(Pi)), so P==piA®Pi for some Pi. Write a,==p^+y,, ^ePi, i^'^r. Note next

that (a^, a.2, . .., a^) = (Pi, 03, . . ., a^) = (pi, Vg, . . ., Yr)- Hence, we conclude from (6.7)

that /-rank(v2, ..., Yr5 P!) == ^ — I • Ky induction, we can find

^ == Tz + ̂ zY^ 2 ̂ ^^

such that /-rank(82, . . ., 8,; P^) ==t—i. Writing

^=a,+^.>,a^,=Pi(^+^.>,^.) +8,, 2^^,

we see that (Ri, pg, . . ., pj = (Pi, §23 • • • ? S8)5 and this clearly solves our problem.

§ 7. Delocalization. The maximal spectrum.

As a basic reference for the material of this section, we refer to Bourbaki [12]

or Grothendieck [22, Ch. o].

Let A be a commutative ring and

X==max(A),

the topological space whose points are the maximal ideals of A, and whose closed sets

are the sets of all maximal ideals containing a given subset of A.

If M is an A-module and ^eX {x is a maximal ideal in A) we let M^A^^M

denote the localization of M at x. Further, define

supp M(=suppxM) ={xeX\M^o],
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The topology in X is better described, for our purposes, as follows: the closed sets in X

are precisely those of the form supp M where M is some finitely generated A-module.

Let A be a finite A-algebra (i.e. finitely generated as an A-module). If P is a

A-module, P^ is a module over the A^-algebra, A^., and our finiteness condition on A gua-

rantees that A^ is semi-local, for all xeX. Hence, if S is a subset ofP, we can consider

f-rank^(S; PJ, as defined in § 6. (Here we are confusing S with its image in P^, but

this should cause no difficulty.) We now define

/-rank^S; P) = inf^/-rank^(S; PJ,

and

/-rank^(P)-/-rank^(P;P).

When A is fixed, we shall suppress the subscript. Since the definition is local,

(6.7) immediately yields:

Corollary (7.1). — If M is a submodule of the A-module P,

/-ran^CM; A^P) ==r+/-rank(M; P).

More generally, we define the (< singularities 55 of ScP by

F,(S; P) ={^X|/-rank^(S; PJ<j}.

Thus, Fo(S;P)=0 for any S, and F,(0;P)=X for all j>o, for example. It is

essential to our method that these sets be closed, and for this we need a " coherence 9?

condition on P.

Lemma (7.2). — Suppose P is a direct summand of a direct sum of finitely presented

A-modules. Then, for all subsets S of P and for all j , F,(S; P) is closed in X.

(Recall that a finitely presented module is the cokernel of a homomorphism A^A5.)

Proof.—Let xeX.—F^.(S; P). Then if Q^A^ there is a homomorphism a : Q^->P

such that Im(jC(S) and such that ^ : Q^->P^ has a left inverse. (One simply chooses

elements in (S) whose images in P^ are a basis for a direct summand.) It suffices now

to show that { j^Xj Gy has a left inverse} is open, for the latter will then be a neighborhood

of x in X—F^.(S; P). Since Im cr is finitely generated, our hypothesis on P permits

us to reduce this last question to the case where P itself is finitely presented. Under

these conditions the natural homomorphism (P^—^P^)* is an isomorphism for all jyeX.

(see [5, Lemma 3.3]); the second * here refers, of course, to the duality ofA^-modules.

The same remark applies to the free module, Q, so that we can conclude from the

commutative square,

Wz,

(PZ —> (0:),

^ 'i-
w ̂  w,
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an isomorphism M^coker(c^)*, where M=coker(c7*). Now we have from (6.1)

that [j\^y has a left inverse }== [y \ (^)>li is surjective}={^[My=o}==X—suppM.

Since M is finitely generated (being a quotient ofQ*),supp M is closed, and this completes

the proof.

It is useful to note above that, since M==ooM — o for all ^, o has a left

inverse o^y does for all jy. Applying this to a : A->P with ( j ( i )==a we obtain:

Corollary (7.3). — With P as in (7 .2) and aeP, a z'j unimodular in P z/, W OTZ^ z/;
Fi(a;P)=0.

Examples. — i) Lemma 7 .2 applies, notably, when P is either projective or finitely

presented.

2) The inclusion Z->Z^, (rational j^-adic integers) has a left inverse only at

(^)emax(Z).

3) I fP is the Z-submodule of Q, generated by {p~
l
\p prime}, and if q is a fixed

prime, then Fi(<7'~1; P) ==max(Z)—{(<7)} is not closed, whereas P is locally free (of

rank one).

Finally, we recall some topological notions. In any topological space, X, a closed

set F is called irreducible if F =t= 0 and if F = GuH with G and H closed =>F = G or H.

We then call codim F(==codimxF) the supremum of the lengths, n, of chains,

Fo=FcFiC.. .cF,

of distinct closed irreducible sets in X. For arbitrary closed F we define codim F to

be the infimum of the codimensions of the irreducible closed subsets of F, with the

convention codim 0 == oo. The supremum of the codimensions of non empty closed

subsets of X will be called, dim X.

We call X noetherian if the closed sets satisfy the descending chain condition. In

this case every non empty closed set F is a finite union of irreducible closed sets. Such

a representation of F, when made irredundant, is unique up to order, and we call the

intervening irreducible closed sets the irreducible components of F.

For example, if A is a commutative semi-local ring, max (A) is a finite discrete

space, and hence a noetherian space of dimension zero. If A is only noetherian, then

max (A) is a noetherian space of dimension ^Krull dimension A == dim spec (A).

§ 8. Serre's theorem.

For the next four sections we fix the following data:

[ A is a commutative ring for which

(8.1) \X==max(A) is a noetherian space.

( A is a finite A-algebra.

The next theorem is a slight generalization of earlier versions. We include it

for the sake of completeness, and also for the proof below, which is perhaps a little more

manageable then its predecessors.
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Theorem (8.2). — (Serre [29]; see also [5]). Suppose P is a direct summand of a direct

sum of finitely presented A-modules. Then, if y-rank^(P)>^== dim X, P^AOP' for some P\

We will derive the theorem from the two lemmas below, wherein P is always

assumed to satisfy the coherence condition of the theorem. This assumption permits

us to invoke (7.2) which ensures that the various <( singular sets " intervening in the

proofs are closed. All codimensions refer to codimension in X.

Lemma 7. — If jf-rank P>r, there exist 04, . . ., oc^eP such that

codim F, (04, ..., a,; P)^(r+ i) —j, all j>_o.

Lemma I I . — If 04, . . ., a^eP, r>i, and A:eZ, are such that

codim F,.(o4, .. ., a,$ P) >k—j\ i <_j<_r,

then there exist ^=a^+<V^, for suitable a^eA, i^j^r—i, such that

codim F,((Bi, ...,(B,_i;P)^;-;, i '̂̂ -i.

Proof that I and II =^(8.2): Apply I to P, with r = = r f + i , to obtain

04, .. ., a^eP such that codim Fy(o4, .. ., a,.; P)^(r+ i) —j for all j^o. Now, with

k=r-}-i, apply II, (r—i)-times. The result is a single element, [BeP, such that

codim Fi((B; P ) J > A ; — i = = r = = r f + i . Since r f=dimX this implies Fi((B;P)=0, so,

by (7-3)3 P ls unimodular, and this completes the proof.
Proof of I. — We induce on r, the case r==o being trivial. Suppose 04, . . ., a^

have been constructed as in the lemma, and we want <^r+i (assuming y-rank P>r+ i).

For o^j<r, let {D^} be the ^largest" irreducible components of F^(ai, . . . , a ^ ; P ) ,

i.e. those of smallest codimension, ( y + 1 ) — ( j + 1 ) - Of course there may be none,

but that's all the better. Since codimFy(ai, . . . , O L / , P)>{r+ i) —j.D^c^F^ai, . . . ,a,;P)

for all v. It follows (since Dy^ is irreducible) that we can choose

x( j , v)eD,,-[F^, . . ., a,; P)uU^D,J.

Since x{j\ v)eF,^, ^F, we have/-rank^^.^(ai, . . ., a,; P^(,^) =j^r, for o<jXr, and

allv. It follows now from our hypothesis on P and (6.7) that we can choose Py^^P such that

/-rank^^(ai, ..., a,, P,,; P^,,))>J+ i. Since x(j, v) are (clearly) all distinct, we can

write i ==2,^ in A, with e^=S^^ mod x(h, [ L ) . Setting a^^=2^p^,, we

have a^i=P^mod.v(j,^) so, by (6.3), /-rank^.^(ai, ..., a,+i; P,;(^))J>J+ i, o^j^r.

Hence A:O", v)^F^i(ai, . . ., a,+i; P) (by definition) so also D,,4:F^(ai, . . ., a,^; P).

On the other hand, F^(ai, . . ., a^^; P) CF^i(ai, . . ., a,; P), and since the former

contains no component of extreme codimension of the latter, we conclude, as desired,

codim F,+,(ai, .... a^,; P)^(r+ i) -U+ i) + i - (^+2) -(j+ i), o^^r. For the
remaining values ofj, Fo = 0 has infinite codimension, and if j> r, (r + 2) — 0 + i) ̂ o?

whereas all codimensions are ^>o.

Proof of II. — For o^j'<r let {D,v} be the irreducible components of

F._^(oci, ..., a,.; P) of lowest possible codimension, k—(j+ i). Then

D,^F,(ai, . . . , a , ;P)
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so we can find

x( j , v)eD,,-[F,(ai, . . ., a,; P) uU^D,J;

thus /-rank^.^(ai, . .., a,; P^)) ==j<r, for o<,j<r. By (6.9) we can find elements

^Aco.v) such that, if P^-a.+a^eP^^^, we have

/-rank^.^((B^, . . ., (B(,_^; P^.^) ==j.

If we modify our choice of^, modulo the radical ofA^.^ we can even choose the a,,eA,

and hence p,,,eP. This is permissible by (6.3). Now choose ^, = 8^ ^mod ^(T, ̂
as in the proof of I, set a,==^a^e^ and put p,==a,+a^, i^<r-i. Since

(B,=[B,,mod ^0, v) we have, by (6.3) again, /-rank^.^, . .., (B^; P^.^) ̂  o^j^r,

all v. The form of the (B's makes it evident that ((B^ .... (B^, a,) = (a^, . .., a,_,, a,),

so it follows from (6.8) that F,((Bi, . . ., (B^,; P) cF,^,(a,, . .., a,; P). Since we have

arranged that the former contains no irreducible components of lowest possible

codimension, A:—(j+i) , of the latter, we conclude, as desired, that

codim F,(pi, ..., (B ;̂ P)>k-(j+ i) + i ==k-j\ o^j<r.

Counterexamples. — i) To see the necessity of the coherence condition in Serre's

Theorem, we can let P=Q©Q, where Qis the Z-submodule of the rationals generated

^ {P~
1
\P prime}. Here/-rankz(P) = 2 and dimmax(Z)=i, but P has no projective

direct summands.

2) The following example of Serre shows that P can even be made finitely

generated and locally free. Let X be a Cantor set on the real line andj/ a point of X

which is a limit point from both the left and right in X. Set DQ={X<==X\X^ y},

DI ={xeX\x<jy}. With A= G(X), the ring of continuous real valued functions on X,
it is well known that max(A)==X and is hence of dimension zero. Moreover A is

locally a field so that A-modules are locally free. Let a, be the ideal of functions

vanishing on D,, z=o, i, and let P= (A/do)®(A/ai). Since supp A/a,=Di_, we see

that P is locally free of rank one except at {^}== D^nDi, where it has rank two. Hence,

if P had a free direct summand, the complementary summand would have support {j}.
If (/o^/i)6? were in this summand, /,eA/a,=C(Di_,), /, would be a function on Di_,

vanishing everywhere except, perhaps, atj\ Since y is a limit in D^_,, /, has to vanish

also atj/, and hence /,=o. Thus the complement would have to be zero, and we have
a contradiction.

§ 9. Cancellation.

A, X, and A are as in (8.1). " Cancellation 5? refers to Theorem 9.3 below.

Theorem (9.1). — Let Q and P be protective A-modules, a a left ideal, and

a=aQ+apeQ©P an element such that o(a)+a==A. (See § 6 for definition of o(a).)

Suppose, moreover, that /-rank P>d== dim X. Then there is a homomorphism f: Q^P
such that o(/(aQ)+ap)+a==A.
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Proof. — We induce on d, and the case d=o will be subsumed in the general

induction step.

Our hypothesis makes Serre's theorem available, to the effect that P=p /A(DP'

for some unimodular [B'eP; say ocp=== (B'6+a'. Then O((XQ)+A64-o(a ' )+a==A. Let

FI, . . . , F g be the irreducible components of X, and choose ^eF^—U.^F., i^'^.

Modulo the product of the x^ A is a semi-local ring, so we can apply (6.4) to find

a^-\-a' -{-ceo{c(.q) +o(oc') +0- such that the image of b-\-a^-\-a'-\-c is a unit in A modulo

the x^ and hence already in A^ , i<^i<^s. Let ^ be an endomorphism of P such

that ^(P') =o,^(P /)C(B'A, and g{^)==^a\ The existence of g follows from the

definition of o(a') (§ 6). If cr=ip-|-^ then o- is an automorphism (since ^^o)

and (7ap=(B'(6+a') +a'. Setting p^o-'^P') and ^=G~
l
(oL

f
)eP^==(J~

l
^P

f
) we have

P=(BA®PI and ap= ̂ (b+a') +ai. Now choose/i : Q-^pACP such that /i(ocQ) = (B^Q;

again, f^ exists by the definition of o(aQ). Putting b^ == a^ -\- b + a ' , then, we have

(*) /i(^)+ap=(B6i+ai,

and &i+^ is a unit in A^ , i^'^. If dim X==o then X={^i , . . ., ;vJ, and we're

done. In general, we can find a teA belonging to none of the ^ such that tA CAb-^ + d.

(E. g. semi-localize at ^, . . . , A : g , solve ( ^+^)^= I 5 and clear denominators.)

Let A*==A/A^, A*=A/A^, a* == image of a in A*, etc. Then X^nw^A*) is

a closed subset of X containing no x^ hence no F^, so dim X^dim X. Hence,

using (7 .1) we have y-rank^=P^ ̂  y-rank^P^ =y-rank^ P — i > dim X — i ̂ dim X*.

Consider y* =aQ+a^EQ*®P^. Since A=o(ao) +A&i + o(ai) + a we have, over A*,

o(y*) + A*^ + a* == A*. Putting this together we are in a position to apply our induction

hypothesis to Y*eQ*®P^ and the left ideal A^+ci*, the result being a homomorphism

h* : Q*->P^ such that O^OCQ + o^) + A*^ + a* == A*. Since Q is project! ve we can cover A*

with an h : Q->PiCP.

Now, for the theorem we take f=fi+h: Q^(BA®Pi=P. It remains to show

that b+a=A, where b=o(/aQ+ap). By (*) above we have

/aQ+ap=(AaQ+/iaQ)+ap-AaQ+(^i+a,)=P&i+(AaQ+ai)epA®Pi.

It is thus evident that A^Cb, and that o(AaQ+oci)Cb. But since P^ is projective it

follows that the image of o(AocQ+ai) in A* is O^OCQ+O^). By construction of h* this

together with A*^ + a* generates A*. Back in A, then, o(AaQ + a^) + Ab-^ + a + At == A.

But At CAb^ + a so we have b + a^ O(A(XQ + ai) + Ab-^ + a = A, as required.

Let P be a A-module. Recall that an element oceP is unimodular if there is

an /eP*=Hom^(P, A) for which /a==i. We shall similarly call /eP* unimodular if

there is an aeP for which yix=== i (i.e. if^is surjective). Further, we shall find it useful

sometimes to identify P with Hom^fA, P); i.e. we identify oceP with g^ : A->P defined

by ^(a)==--a<2. Thus, if f: P—^A we can compose, OL/: P->P; a/ is defined by

(a/)p==a(/p) for peP. An endomorphism T of P will be called a transvection if T = ip+o/,

where aeP,/eP*,ya = o, and either a or y is unimodular. T is then necessarily an auto-

510



K-THEORY AND STABLE ALGEBRA 27

morphism, since (a/)2 == o. If q is an ideal in A we call T a q-transvection if Im(o/) CPq.

Denote by GL(P) the group of A-automorphisms ofP, and by E(P) the subgroup

generated by the transvections. More generally, if q is an ideal, let E(P, q) be the

subgroup generated by the q-transvections. Suppose T = i + vf is a q-transvection

and <reGL(P). Then r° == (T~ ̂ (T == i + (^~
l
^)(f^) is clearly again a q-transvection;

hence E(P, q) is a normal subgroup of GL(P). The next result should be compared

with Theorem 4.2 a).

Theorem (9.2). — Let M be a A-module which has a projective direct summand of

y-rank>rf+ I (rf==dim X). Then for any ideal q in A, the orbits of E(M, q) operating on

the unimodular elements of M are precisely the congruence classes mod q. In particular^

E(M) is transitive on the unimodular elements.

Proof. — By hypothesis, M^P'ON with P' projective and /-rank ?'>(/+i.

By Serre's theorem (twice), P' == pA®yA®Pi with p and y unimodular.

Let q be an ideal in A. We will first show that if a is a unimodular element of M

and if a==(B mod Mq, then there is a reE(M, q) such that ra=jB.

With P=pACPi we have M==vA®PeN. Write a^y^+^+'^N- since

a s peP mod q, we have yeq. There is an h: M->A with A a = = i , by assumption,

so we can write

(*) i ==h^==(h^)q+h^+h^.

Let a = y r + a p + a N with r=q(h^}q. To see that a is also unimodular, we first note

that o(a) ==Ar+o(ap) +o(a^). Left multiplying (*) by q, then, we find ^eo(oc), so

that o(oc) D Aq + o(ocp) + o(a^) = o(a) == A.

Now we apply Theorem 9.1 above to Q=yA, P, Yy+ocpeQ®P, and a=o(a^).

The result is an /: Q—P such that o((/y)r+ap) +0(0^) =A. Let &i= (/y)^(Ay)ePq,

and let g^ : M->A by ^i(y) == i and g^(P@'N)=o. Then TI= IM+SI<?I£E(M, q),

and Tla==Y (7+ap+aNeT^®P®N, where ap== (yY) r+ap• ^e have arranged above

that o(ocp) +o(a^) ==A, so ap+a^ is unimodular. Hence we can find an A' : M->A

with h'\oLy + a^) = i, and such that A'(y)==o.

Write ap=p6+aieP==pA©Pi. Since Tia=(BmodMq (recall T i= i^modq) we

have

(**) (B(6—i)+oci+a^Mq,

and in particular, i — & < = q . Thus, if g2=={^—b)—q)h
f
 : M->A, Im g^^q, so

^2==IM+Y<§ ^2^E(M, q). T 2 T i a = = Y ( i — ^ ) + a p + a N . Let a= i^+ P^eE(M); then

c;T2Tia==Y(i—&)+(ap+P(i—6))+ocN=T(i—&)+P+ai+aNeYA©(BA®Pi®N.

Let ^3 : M->A by ^3?=! and ^(yAePieN) ==o, and let 83== —(y( i —b) +001+0^),

which, by (**), is in (ker^q. Then Tg= 1^+83^3 eE(M, q) and T3<jT2Tia = P. The

presence of a, which need not belong to E(M, q), is harmless because (T"~ 1? === P — (B^iP == (B,

so that T=G~lT3(7T2TleE(M, q) solves our problem.
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Now for the general case, we note first (taking q=A) that we have shown E(M)

to be transitive on unimodular elements. Suppose given arbitrary unimodular elements a

and a7 in M with assa'modMq. Choose creE(M) with cra'=p (p as above). Then

CTOC = era' == (B mod Mq so the argument above produces a reE(M, q) with T(ya=<7a'.

Finally, (j'^cra^a' does the trick.

Theorem (9.3) (<( Cancellation 5?). — Let M. be a A-module which has a projective

direct summand of y-rank></=dim X, and let Q be a finitely generated projective module.

Then, if M' is another A-module,

QeM^Q©M' => M^M'.

Proof. — Since Q^Qf^A" for some n and Q' we can reduce, by induction on 72,

to the case Q^=A. Then using the given isomorphism to identify A€)M with A®M'

we can write (3A®M == aAOM' with P and oc unimodular. (BA<9M satisfies the hypo-

thesis of (9.2)3 so there is a T£GL((BA®M) with ra=p. Hence

M^(pA®M)/iBA=T(aA®M: /)/T(aA)^(aAeM')/aA^M /.

Remarks. — i) If M satisfies the coherence condition in Serre's Theorem, and

if y-rankM>2rf, then M has a free direct summand ^A^4'1 (by Serre's Theorem),

and hence M fulfills the hypothesis of (9.3) above.

2) If d==o then A is semi-local, and (6.6) gives the conclusion of (9.3) with

no restrictions on M. If d==i and A==A is commutative, then for M projective no

further hypothesis is needed. For one can reduce this case further so that spec (A) is

connected and M is finitely generated (using [6]). Then one applies Serre's Theorem

to make M and M' each a direct sum of a free module and a projective module of

rank one. The desired isomorphism then follows by taking suitable exterior powers

(see [29, no. 8]).

However, for d==i and A non commutative, (9.3) gives the best possible result

even for M projective and finitely generated (see Swan [33]). For d>i (9.3) is best

possible even with A=A commutative. For if A=='R[x,jy, ^], ^2+J;2+^2= i? is the

algebraic coordinate ring of the real 2-sphere, and if P=A3/(^,^3 ^)A is the projective

A-module corresponding to the tangent bundle on S2, then P is not free, whereas

A®P^A®A2 (see Swan [34, Example i]).

§ 10. Stable isomorphism type.

Keep A, X, and A as above (see (8.1)). The Proposition which follows is merely

a reformulation of a special case of the preceding results. We include it for the sake of

putting in evidence the faithfulness of the analogy between the present theory, and its

topological source (see Introduction).

Proposition (10.1) . — Let P^(A) denote the isomorphism types of finitely generated

projective A-modules P, such that P^A^, for all xeX. Let f^ : P^(A) -> P^i(A) be the

map induced by ®A. Then, if dimX=rf:
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1. (Serre's Theorem) j^ is surjective for n>d.

2. (Cancellation)^ is infective for n>d.

Of course our theorems are much more general. For example, one could formulate

a similar result for all finitely presented modules, relative toy-rank. Thus, calling M

and N " stably isomorphic 33 if Q®M^Q®N for some finitely generated projective

module Q, we see that stable isomorphism == isomorphism for semi-local rings (6.6),

and more generally also for M projective of y-rank> d, or finitely presented ofy-rank> 2d.

In a special case of some interest we can make a mild improvement in Serre's

Theorem for non projective modules.

Proposition (10.2). — Let A. be a Dedekind ring of characteristic ^ero and n a finite

group. If M is a finitely generated torsion free An-module of y-rank^>i, then M=P®N

with P a projective An-module locally free of rank one.

Proof. — With L the field of quotients of A let A be a maximal order of LTC

containing ATT, and let a be the annihilator of the A-module A/ATT. Characteristic zero

guarantees a 4= o. If we semi-localize at the maximal ideals containing a we obtain

a free summand of M (Serre's Theorem in dimension zero) generated, say, by aeM.

Let P be the A-pure submodule of M generated by oeATT; this is automatically an

ATT-submodule. Then o—^P->M->M/P-^o is an exact sequence of torsion free

Arc-modules which splits at all maximal ideals containing a. At all others it splits auto-

matically because ATT there agrees with the hereditary ring A. Hence the sequence

splits — its is an element of Ext^(M/P, P) which vanishes at all localizations. P, being

locally projective, is projective.

Finally, since L®^P is LTc-free of rank one, a theorem of Swan [32] (see also [5])

guarantees that P is locally free of rank one.

Remark. — Short of the last sentence, and its special conclusion, it is clear that we

have invoked only very general properties of ATC.

Corollary (10.3). — With A and TC as above, if M is a finitely generated torsion free

Arc-module of y-rankj>2, and Q, a finitely generated projective An-module, then

QeM^QCM' => M^M'.

This Corollary responds to a question of Swan [32] and Swan himself has shown

it to be best possible [33]. He shows, moreover [33, Theorem 2], using a result of

Eichler [19], that if A is a maximal order in a semi-simple algebra over a number field,

then one can always cancel projectives unless R®zA has a quaternion factor.

§ ii. A stable range for GL(A), and a conjecture.

We keep A, X, and A fixed as in (8.1).

Theorem (11.1). — If 6?=dimX, then r f+ i defines a stable range for GL(A),

in the sense of § 4. Hence, the conclusions of Theorem 4.2 are valid for A with n == d + I.

Proof. — We must show that if r>^+ i and if S^A^==A, then there exist

^•••^r-i^ such that ^^{A{a,+b^)==A.
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Note first that a=(^, . . . ,^ , ) is unimodular in A'=A
r
~

l
@^A, Q= (o, . . . , o , i ) ;

a=a'+(Bfl, . Since /-rank A
r
~

l
=r—l>d+ i>dim X we can apply (9.1) and obtain

/: [BA-.A'-1 such that y: +/(pfl,) is unimodular. Then /P= (&i, . . ., 6,_i, o) solves
our problem.

Let q be an ideal in A, and write, in the notation of Chapter I, § i,

G/q)=GL(r,A,q)/E(r,A,q).
Let

/:G,(q)->G^(q)

be induced by the inclusions. We obtain a direct sequence of sets with base points, and

U^mG,(q)=GL(A,q)/E(A,q),

which, by (3.1) a) is an abelian group.

With this notation we can now translate parts of (4.2) in such a way as to exhibit

the (partial) analogy with Proposition 10.1.

Proposition (11.2). — Suppose dim X==rf. Then for all ideals q, we have:

a) ((4.2) c ) ) G,(q) is a group for r>d+i.

b) ((4.2) b)) /,:G,(q)->G^(q) is surjective for r;>rf+i.

c ) ((4.2) f)) G^(q) is an abelian group for r^>2(r f+ i ) and ^3.

The missing link here is an assertion that/,, becomes injective. Our prevailing

topological analogy suggests quite explicitly in this regard, the following,

Conjecture. — Under the conditions of (11.2) fy : G/q)-^G^^(q) is injective

for r>rf+i . In terms of matrix groups this says, for r>rf+i ,

E(r+ i, A, q)nGL(r, A, q) =E(r, A, q).

When A is a division ring (so d==o) it is the affirmative solution of essentially

this problem which constitutes Dieudonne's theory ofnon commutative determinants [17].

Klingenberg [24] has generalized his solution to local rings (still rf==o), although

Klingenberg's proof is not valid when q == A. On the other hand it works in any ring

provided qCradA. This procedure of axiomatically constructing determinants (see

Artin [i, Chap. V], for a good exposition) runs into severe computational difficulties

if one tries to generalize it naively.

The interest in the conjecture above stems from more than a simple love of symmetry.

One can consult § 20 below and [7, § i] for some rather striking consequences of its

affirmative solution.
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CHAPTER III

THE FUNCTORS K

§ 12. K°(A) and K^A, q).

Let A be a ring and ^=^(A) the category of finitely generated projective right

A-modules, and A-homomorphisms. Let

y=y^:obj^->K°(A)

solve the universal problem for maps into an abelian group which satisy

(A) (Additivity) If o->P'—^P—^P / '->o is an exact sequence (as A-modules) then

yP^yP'+yP".

Uniqueness of (y^, K°(A)) is the usual formality, and existence follows by reducing

the free abelian group generated by isomorphism types of obj Qfi by the relations dictated

by (A).
Let T be an infinite cyclic group with generator t. We build now a new category,

^[T] ==^[t, F^], whose objects are A-automorphisms, a, of modules P=dom aeobj ̂ .

If a'eAut^P') is another, a morphism, a-xx', is an A-homomorphism, f: P->P',

such that ya==ay.

If aeAut^(P) then a defines an A-representation ofT on P, t acting as a. In this

sense we can think of ^[TJ as a category of A[T]=A[^, f^J-modules, and as such

we may speak of " exact sequences " of a's.

Let q be an ideal in A (possibly q==A) and let ^q[T] be the full subcategory

of ^[T] whose objects are those a for which " 0 = 1 mod q 5 ? ; i.e. if P=dom a, we

require that a®^A/q === i on P®^A/q.

We define the group K^A, q) by letting

W,:obj^[T]-^Kl(A,q)

solve the universal problem for maps into an abelian group which satisfy

(A) (Additivity) If o-xx^a-^a^o is exact then W^a^WqOc' 4-W^a".

(M) (Multiplicativity) If doma=dom(B then W^ap ==W^a+W^.

Existence and uniqueness are clear by a remark analogous to that above for K°.

Although we have no need for this fact, the reader will be able to determine easily that K1

is unaltered if we relax (A) to apply only to split exact sequences.

When q==A we call K\A) =K1(A, A) the " Whitehead group " of A, and

W==W^ the < ( Whitehead determinant 3?.
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Let a be a automorphism in ^[T] and Peobj ffl. Then (M) implies W^p==o,
so (A) further implies that W^(<x®ip) =W^a.

If aeGL(^,A, q^GL^^^Aut^A^ then we can regard aeobj ̂ [T]. With

our convention, GL{n, A) cGL{n+m, A), a is identified with aCi^m. The last para-

graph shows that Wq respects this convention, and hence we have a map, also denoted Wq,

W,: GL(A, q) = U^GL(^ A, q) -^(A, q),

which, by (M), is a homomorphism. Suppose aeGL(A, q) and (BeGL(A). Then

a^p-1^, so W^a^W^p^ap). This means that [GL(A), GL(A, q)] =E(A, q) Cker W,,
so we have an induced homomorphism

f:GL{A,q)IE{A,q)->K\A,q).

Proposition (12. i). — The inclusions GL(TZ, A, q)Cobj ̂ ^t, r"1] induce an isomorphism

^GHA.q^A.q^K^A.q).

Proof. — Let aeobj ̂ [T], P==dom a. We can find a Qsuch that P®Q^^An

(some n). This isomorphism induces an isomorphism a®iQ^a^eGL(7z, A, q). With Q^

fixed a^ varies in its conjugacy class in GL{n, A), so its image in G=GL(A, q)/E(A, q)

doesn't change. If we replace Q by QOA", o^ is replaced by a conjugate of

oc^i^m, and again its image in G is unaffected. Finally, if POQ^A^ then

QeA^CLePeQ'^A^Q', so we see that the image of o^ in G is independent of Q.
We define thus a map

^:obj^[T]->G,

and we propose to show that g is additive and multiplicative. Once shown, the uni-

versality of W^ produces a unique homomorphism K^A, q)->G, which is manifestly
an inverse fory.

g is multiplicative. For if dom a==P==dom (B an isomorphism PeiQ^A" induces

a®iQ^,p©lQ^, and a(B®iQ^aA.

g is additive. Let o-^a'-^a-^a^-^o be an exact sequence, with domains P',

P, P", respectively. Choose Q' and Q" with isomorphisms P/®Q'^An^P//®Q/'.

Since the exact sequence induces P^P'®?", we can choose an isomorphism

P©Q;®Q"^An®An compatible with the direct sum of the given sequence with

O->IQ»-^IQ,®IQ,,->IQ,/->O. With these isomorphisms, we have a^iQ^a^, a"®!^,,^^',

Wqand a®iQ^Q,^a^==

Since the second factor is manifestly in £(272, A, q), and since

^
o

°L ^n

0
mod E(27z, A, q),

by the Whitehead Lemma (1.7)3 we see that a^ and a '̂ do indeed agree in G, as

required.
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K-THEORY AND STABLE ALGEBRA 33

Suppose H is a normal subgroup of GL(A). Then, by Theorem 3.1,

E(A, q)cHcGL(A, q) for a unique q, and H/E(A, q) is, via Proposition 12.1 above,

a subgroup of K^A, q). Conversely any subgroup of K^A, q) defines in this way

a normal subgroup of GL(A). Thus we see that a determination of all normal subgroups

ofGL(A) is equivalent to a determination of all subgroups of K^A, q), for all q.

Finally we note that K° and K1 are functors. If <p : A-.B is a ring homomorphism,
then ®^B : ̂ (A) -^(B) induces

^.•K^A^K^B).

I fq is an ideal in A and q' an ideal ofB containing <p(q), then ®^ig induces

^K^A.q^K^B.q').

Note that the isomorphism of Proposition 12.1 is an isomorphism of functors.

§ 13. The exact sequence.

Let 9 : A->B be a ring homomorphism. If P and/are a right A-module and

A-homomorphism, we shall abbreviate PB=P®^B, and /B==/®^ig.

Our objective is to construct a relative group, K°(A, y), which will fit into an

exact sequence (Theorem 13. i, below). To this end we manufacture the category ^(^)

whose objects are triples, a= (P, a, Q,), with P, Qeobj ^(A) (i.e. finitely generated

projective right A-modules) and a a B-isomorphism, PB->QB. If o' == (P', a', Q;) is

another such triple, a morphism CT'-^G- is a pair, (/, g), of A-homomorphisms, /: P'->P
and g : Q'->Q,, making

P'B -a^ Q'B

/B gB

PB -^> QB

commutative. We call a
f
^a

(r
^G

f (( exact 55 if P^P^P" and Q'-̂ Q^Q"
are both exact sequences of A-modules.

Note that the objects of ^(9) are a groupoid. Thus, if G==(P ,a ,P ' ) and
CT' = (P', a', P") then we write (T'(T==(P, a'a, P").

Now we define K°(A, 9) by letting

Rrobj^Op^K^A.q))

solve the universal problem for maps into an abelian group which satisfy:

(A) (Additivity) If o->(T/->o•-^<7"->o is exact then

RG^RO'+RCT".

(M) (Multiplicativity) If G'G is defined then

R(7'<7=R(7'+RCT.
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We need to know K°(A, 9) in some detail, and it will be convient to introduce

some provisional terminology for this purpose. A triple T == (P, (B, P) will be called

an " automorphism 5?. Since (BeAut^PB), WgpeK^B) is defined, and we shall write

WgT^WgP in this case. T p = = ( P , i p , P ) will be called an cc identity ". Since

TpTp==Tp, (M) implies

(1) Rrp=o.

If there is an exact sequence

(2) O^TP-^(T->TQ->O,

then (A) further implies RCT==O.
Let peGL(B)=U^GL(^B); say peGL^, B) =AutB(AnB). Then

^(A^p.A^eobj^).

Viewing (BeGL(7z+m, B) replaces CT by o-Oi^m, so RCT is unaltered. Hence we have

a well defined map

(3) GL(B)->K°(A,9),

which is a homomorphism, by (M). Now if P is elementary, then a appears in an exact

sequence of type (2), with P^A71-1, Q/==A. Hence E(B) is in the kernel of (3), so (3)

induces a homomorphism

8 : K^B) =GL(B)/E(B)->K°(A, 9).

Let T==(P, P, P) be an automorphism. If WgT^o then, by Proposition 12.1,

we can find a Q so that TOTQ^A^ y, A71), with y^^ B), and hence RT=O. Now

if (T, G'eobj ^(9) write
<7^(7

if there exist identities, T and T', and an automorphism e with WBS=O, such that

((jOT^^CT'eT'). A tedious, but straightforward, exercise shows that ^ is an equi-

valence relation. Our earlier remarks show that CT^CT'^RCT^RO'. Hence, if

R' : obj ^(cp)->G=obj ^(cp)/-

is the natural projection, then R=AR' for a unique h : G-^K°(A, 9). An easy check

shows that ̂  respects <9, so that ® induces on G the structure of a monoid, with neutral

element the class of the identities, and relative to which h is clearly a homomorphism.

We propose to show that a) G is a group, and that R' is b) additive and c ) multipli-

cative. Once shown, the universality ofR produces a homomorphism h' : K°(A, cp)-^G

which is clearly an inverse for h. This isomorphism will permit us to conclude:

(4) Every element of K°(A, 9) has the form R(T, creobj ^(<p). RG==OOG^O.

a) G is a group. Given (7==(P,a,QJ, let a ' = (Q, —a"1, P). Then

^©^(P®^, °^_i ^,P®QJ.
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It follows from the Whitehead Lemma (1.7) (using the fact that PB^QB) that
WB((T®(/)=O.

b) R' is additive. Let o—o-'-xr-W—o be exact. If CT' == (P', a', Q') and
^'-(P^oc^O"), then ^^^^(P'eP'^a,^®^"), where

.^-i.a Y _ a o ip^ (a7)-^
^fa'Qa'nc.

o a o a o P"B

Since WB£==O we have a^a^a", as required.

c ) R ' is multiplicative. Suppose (7=(P,a,P') and a'= (P', a', P"). We must
show CT'(7^CT®(7'. From the commutative diagram

PB P'B

IpB (-lp)B

PB P'B

we see that (T^--(J=(P, —a, P'). Hence it will suffice for us to show
((^©Tp,)^-- (7)0(7'.

and

cr'CTQTp/^PQP', p==

( — ^ © ^ ' ^ ( P e p ^ Y -

a a o

o ip/B

o a'

—a o

p^epn

p^epn

== ((7'(7®Tp,)£,

where £= (P®P', y-^ P®P'). Since PB^P'B it follows from the Whitehead

Lemma (1.7) that W^==o, and this completes the proof of c ) , hence also of (4).
Finally, we define a homomorphism

rf:K°(A,(p)->K°(A)

by rf(R(P, a, Q)) =Y^P—Y^Q. It is clear that d is well defined.

Theorem (13.1). — Let 9 : A->B be a ring homomorphism. Then the sequence

K\A) -^(B) ̂ K°(A, 9) -^K°(A) XK°(B)

^ exact. If 9 : A-^A/q is the natural map, then

K\A, q^K^A^K^A/q^K^A, ^-^K^^-^K^A/q)

u exact.

(In the second sequence, K°(A, q) = K°(A, y), and d^ is induced by the inclusion
GL(A,q)cGL(A).)

Proof. — Exactness at K°(A).

9°</(R(P, a, Q,.)) =90(YAP-YAQ,) -TBPB-YBQB^O
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(since a : PB^QB). Suppose p^TA1^-^^) =YBPB—TBQB =°- Then there exists an

a : PBCB^QBQB" for some n, and hence YAP—nQ^^W^A^ a, (^©A^).

Exactness at K°(A, 9). If (BeGL(7z, B) then

rf8(W^) =rf(R(A1, (B, A-)) =Y^AW-^An=o.

Suppose rf(R(P, a, Q^—YAP—YAO^0- Then P^P'^QPP' for some P', and we
can even arrange POP'^A^ Hence (POP', aCipB, OOP^^A", (3, A") for some

peGL(^B) and R(P, a, QJ =8(WB(jB)).

Exactness at K^B). If aeGL(^A), then S^W^a) =8(WB<pa) =R(An, aB, A^

(note 9a=aB). But the commutative square

A nTl (xr' A nT»A^ A^B

aB l.nB

A^B ̂  A^

shows that R(A^ aB, A^ =o. Now suppose |BeGL(^ B) and S(WBP)==O. Then,

by (4) above, (T= (A^ (B, A^^/o. This means that cOrp^e for some automorphism e,

with Wg£==o. We can add an identity to both sides and further assume P=AW

and e== (A""^, y^ A^^). Then the isomorphism cr^T^m^e is given by isomorphisms

/, geGLi{n + m^ A) making

"Dn+w
)1.M

Bn+^

fB ^B

'Dn+m 'Dn+m

commutative. Hence, in GL^+m, B), p == (^^"^(p./)- Since Wgy=o we have

WBP=WB(9(5-1/))==91(W^-1/)).

Now suppose 9 : A->A/q.

Exactness at K^A). If aeGL(A, q) then (p^i(Wc,a) -^(W^a) =W^(ya) -o,

since 900 = = i . Suppose aeGL(A) and y^W^a) ==W^q(9a) =o. Then 9a£E(A/q),

so it follows by Homotopy Extension ( 1 . 1 ) that there is an eeE(A) with 92 ==90.

Hence ocs-^eGI^A, q) and ^=^^~
1
) -^(W^ocs-1)).

If we knew how to define, and extend the exact sequence to, K2 the next result

would be an immediate corollary.

Proposition (13.2). — Suppose A=Ao®q (as abelian group) with Ag a subring and q

an ideal. Then there are split exact sequences

o-^K^A, q) ̂ K^A) ̂ K^Ao) -^o, z==o, i.
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Proof. — Let <p : A-^A() be the retraction with kernel q. Since 9 has a

right inverse, so does 9', z==o, i. Hence the Proposition follows from (13.1)

provided we show K^A, cO—^K^A) has a left inverse. If aeGL(A), a==aoai

where ao==(paeGL(Ao), and a^= ((pa^aeGL^A, q). If also (BeGL(A) then

(oc(B)i ̂ (ap)-^ = ((pp)-1^)-1^ == (^r^P = [<p(B, ar-1]^^-1? = [Po. a^aA-

Now [^ar^KGI^GHA.q^^A.q). Hence W,(a(B)i=W,ai+W^, and

we have constructed a homomorphism GL(A)-^K1(A, q) whose restriction to GL(A, q)

is W(p This clearly induces the required retraction K1(A)->K.1(A, q).

Examples. — i) If A is a local ring (e.g. a field) then K°(A)=Z, and K^A)

is the commutator quotient group of A* == GL (i, A). The latter is due to Dieudonne [ 17]

for division rings, and to Klingenberg [24] in general.

2) If qCradA (Jacobson radical) and 9 : A-»A/q, then <p1 is easily seen to be

surjective, and <p° to be injective (see Lemma 18. i below). Hence K.°(A, q) ==o. The

methods of Klingenberg [24] adapt without essential change to compute K^A, q) also

in this case. In case A is q-adic complete, or if (p has a right inverse, then 9° is even

an isomorphism.

3) The following remark is often useful. Let A be semi-local and P, Qeobj ̂ (A).

Then YA^YAQ^^Q.- For TA^TAO. implies PCA^QCA" for some n, so our
conclusion follows from (6.6) by induction on n.

4) In § 16 we describe in detail the exact sequence associated \yith the embedding

of a Dedeking ring in its field of quotients.

§ 14. Algebras*

Tensor products endow our functors with various ring and module structures,

and it is convenient to record these circumstances now.

Let A be a commutative ring, A and A' A-algebras, and q an ideal in A. If

Pe^(A) and P'e^(A') then P'^Pe^A^A), and this induces a pairing,

(i') K^A^xK^-^K^A'®^).

If ae^(A)q[^, t~1
], then ip^ae^A'^A)^^^, F1

] and this induces a pairing

(2') K^A') xK^A, q^K^A'®^ A'®q).

Taking A'==A=A in (i'), K°(A) becomes a ring. Then with A'=-A in (i ')

and (2'), K°(A) and K^A, q) become K° (A)-modules. Moreover, the pairings are

K° (A)-bilinear, so they define

(1) K°(AO(X)KO(A)K°(A) -^(A'O^A)

and

(2) KW^K^A, q) -^(A'c^A, A'®q).

These structures have the obvious naturality properties with respect to A-algebra

homomorphisms.
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In order to treat K° and K1 simultaneously we shall sometimes consider the following

situation. Let q be an ideal in A. For an A-algebra, A, write

K*(A, qA) =K\A)@K\A, qA).

K*(A, qA) is/as noted above, a K°(A)-module. Moreover, (2) above gives us

K^A, q^^K^A^K^A, qA) ^K^AOO^A, q®A).

Hence, if we view K^A, q) as a graded ring, zero in degrees >2, then K*(A, qA)

is a graded K*(A, q)-module.

Finally, if A->B is a homomorphism of commutative rings, then B®^ induces

K*(A, q)->K*(B®^A, B®q). In case B is finitely generated and projective as an

A-module, then there is an obvious " restriction 3? functor

^(B^B^^J^A)^ r1],

and this induces a homomorphism K*(B®^A, B®q)-^K*(A, q) which, following the

one above, gives the homothetie of K*(A, q) defined by Y^(B)(=K°(A).

§ 15. A filtration on K°.

There seem to be several cc geometrically reasonable " nitrations on K° (under

suitable circumstances). We choose one here with the properties needed for our

applications.

Let A be a commutative noetherian ring, and X==max(A). All modules and

A-algebras will be understood finitely generated as A-modules. Let A be an A-algebra.

We shall consider complexes,

C:...->P,->P,_^...

of right A-modules which are finite and projective (i.e. P^ is projective, and==o for

almost all i). Then -/(C) =^(C) ==^{—i)\^P,eK°{A) is defined. Our finiteness

conditions guarantee that H(C) is a finitely generated A-module, so supp H(C) is a

closed subset of X. Since localization, being exact, commutes with homology, we see

that
supp H(G) ={^eX|H(G),+ 0}

=[xeyL\C^ is not acyclic}.

Definition. — K°(A)^ consists of all i;eK°(A) with the following property:

Given Y closed in X, there is a complex G, as above, such that 7(G)=^, and

codimy(Ynsupp H(C))^z.

Proposition (15.1). — The K°(A)^ are subgroups of K°(A) which satisfy:

1) K^o-K^DK^iDK^A)?...

2) IfF is another A-algebra the pairing

T : K^^Ko^r^K^A^r) [see § 14)
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induces

K^A^K^F^K^A®^)^,.

In particular, K°(A) is a filtered ring, and K°(A) a filtered K°(A) -module.

3) 77^ filtration is natural with respect to homomorphisms of A-algebras.

4) K°(A),=o for z>dimX.

A very useful consequence of this Proposition is

Corollary (15.2). — If d=dimX, then K^A^+^o.

Proof of 15.1. — K^A,) is a subgroup because the support of a direct sum is the

union of the supports, and the codimension of a (finite) union is the infimum of the
codimensions.

1) follows from the definition.

2) Let ^K°(A)^7]eK°(r),, and let Y be closed in X. Choose C' over A

with ^(C')=^ and codin^Ynsupp H(C'))^z. Choose C" over F with Xr^O^

and codimYnsuppH(c')(YnsuppH(G')nsuppH(G' /))^J. Then, if C^C^C" over

A®^r, it is clear that XA®^!^) =T(^®7^). Moreover the inequality above implies

codimY(Ynsupp H(C')nsupp H^^^+j. Hence we can conclude by showing

that supp H(C)Csupp I^C^nsupp H^C"). But if, say, C^ is acyclic, then it is

homotopic to zero (a finite acyclic complex of projective modules), so likewise for

c^c^c,.
3) Let / :A—^r be a homomorphism of A-algebras, and ^eK^A),; we want

f^eK^r),. Given Y, choose C over A with y^(C) =S and codin^Ynsupp H(C))^'.

Since f
Q
^=t^^®A

Y
}
 it suffices to note that supp N(0®^) Csupp H(C). But if C^

is acyclic it is homotopic to zero, so likewise for C^O^ ̂ = (C^A^a:-

4) Take Y==X in the definition.

Proposition (15.3). — K°(A)i= D ker(K°(A)-^K°(AJ).

proof.—If ^K°(A)i and Y=={^} then ^=^{C) with codimY(Ynsupp H(G))>i.

This implies ^^suppH(G), so C^ is acyclic. But then the image of ^ in K°(AJ is

XA^CJ-O.

Conversely, given ^ = YAP—YAQ.EK•0(A)3 to belong to the right side of our equation

means YA^ = ̂ AyQ^x ^or au x
'> a^ then by (6.6) (see Example 3) in § 14), P^Q^.

Now, given Y closed in X, let Y^, . . ., Yg be the irreducible components ofY, and choose

^eY^—U^Y^.. Then, if we reduce modulo the product of the ^, P and Q become

isomorphic. Lift such an isomorphism to /: Q—^P$ then f^ is an isomorphism,
I<

l
^<

!l
s
' Let C be the complex withy the differential in degree i, and zero in all degrees

+o or i. Then ^(C) = (-1)\^+ (-i^P-S. Since Y^supp H(C), i^i<s,

codimy(Ynsupp H(C))^i, as required.

Proposition 15.3 gives a description of the first term of the filtration which behaves

well without any finiteness assumptions on A, as we shall see below.

Let A be now an arbitrary commutative ring, and let spec (A) denote its prime
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ideal spectrum (Zariski topology). If Peobj ^(A) and ^espec(A), then P^ is a free

Ap-module of rank pp(^),

pp : spec(A)—^Z.

It is easy to see that pp is continuous (for the discrete topology on Z).

Let C(A) denote the ring of all continuous functions from spec (A) to Z. Since pp

is (clearly) additive and multiplicative in P it induces a ring homomorphism

p:K°(A)^C(A).

p even has a right inverse cp. To define (p, suppose f: spec(A)—^Z is continuous, and

let ^K.^-==f~
l
(n). Since spec (A) is quasi-compact, X^=0 for almost all n. Now disjoint

decompositions spec (A) = U^Xyp all X^ open, correspond, bijectively, to decomposi-

tions i =^
e
n °f ! as a sum °^ orthogonal idempotents, almost all zero (see e.g. [30,

Chap. I]). Define cp(/) =Z^/(^)y^(A^); 9 is clearly the desired right inverse to p.

We shall use 9 to identify C(A) with a subring of K°(A). Thus,

K°(A)=C(A)©J(A),

where J(A) ==kerp. Suppose ^=^A
P
~fAQJ=3(

A
}' Then p^ pp—-pQ=o. Thus

P ̂ 0-L x— ̂ x

for all A:espec(A). Conversely, if P^CL for all A:emax(A), then we see by localizing

in two steps that P^Q,, for all ;vEspec(A), so ^—^Q^JW'

Let us summarize:

Proposition (15.4). — Let A be an arbitrary commutative ring and let

^^n^1-^-^0^-
Then

K°(A)=C(A)®J(A),

where C(A) is isomorphic to the ring of all continuous functions from spec (A) to Z. J(A) is

both the nil and Jacob son radical of K°(A).

proof. — It remains to prove the last assertion, and it clearly suffices to show that

every ^ == yP — yQeJ (A) is nilpotent. If A were noetherian and of finite Krull dimension

this would follow from (15.2) and (15.3). In general, however, ^ is induced from a

finitely generated subring of A, and such a subring is of the latter type. Hence our

conclusion is a consequence of the following lemma:

Lemma.— If f: B->A is a homomorphism of commutative rings, then (/^"^(A^Dj^B),

with equality if f is injective.

proof. — If ^eJ(B) we want /°(^EJ(A); i.e. if ^espec(A) we want /°(^ to

go to oin K°(AJ. But B-^A-^A, is the same as B->B^A^, where ^==/~l(^)espec(B)

and ^ goes to o in K°(B^).

Conversely, if ^K°(B) we want to show /°(^EJ(A) =>^eJ(B). Thus, given
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^espec(B), we must show that ̂  the image of ^ in K°(B^, is zero. Let S=/(B—^);

since / is injective, this multiplicative set in A does not contain zero. Moreover

B -^ A

B. ̂  S-A

is commutative. If S-^ is the image of/°(^) in K^S-^A), then S-1^ = (S~1/)0^ ).

Since B^ is local, ^=%GZ=K°(B^, and hence also S-^^eK^S^A). But our

hypothesis implies that this n vanishes in K° of any localization of S~
1
A, and hence

n==o as desired.

Nowforany ^eK°(A) we can write S = p ^ + ( ^ — p ^ ) , with p^eG(A), ^-p^eJ(A).

We shall call p^ the mnA of S, and often identify it with a function from spec (A) to Z.

In particular, p (YP)==pp is the "rank" of the projective module, P. Expressions

like " rank ^r ", reZ, make sense now, where we think of r as a constant function.

If P is a projective A-module, rank P^r is equivalent to "/-rank PJ>r " in the sense
o f § 7.

Proposition (15.5). — Let A. be a commutative ring and P a finitely generated projective

A-module. Then the following conditions are equivalent:

a) P is faithful.

b) rank P^ i.

c) Every K°{A) -module annihilated by y^P is torsion.

d) I^YA? generates the unit ideal in Q®^^)-

Proof. — a)ob) because P is locally free, and a finitely generated projective module
is faithful if, and only if, it is locally non zero.

b) => c ) . Since pp is everywhere positive and bounded, there is a function /eC(A)

with /pp = n>o. Hence /yP == n +j, with jeJ(A) nilpotent. Thus, modulo yP. K°(A),

n is nilpotent, so ^e^'P.'KP^A) for some m>_o.

c ) ^ b ) . IfA:espec(A) and P^=o, then K°(AJ^Z is a K° (A)-module annihilated
by yP.

c ) o d ) is evident.

Proposition (15.6). — Let A be a commutative ring for which max (A) is a noetherian

space of dimensioned. Then, if ^eK°(A) has rank>_d, ^=yP for some P. If rank P>d

WyP^yQ, then P^Q,.

Proof. — We can write ^ == YQ—yA^ Then ?Q = p^ + n>^d + TZ. Hence, by Serre's

Theorem (8.2), Q^PeA", so ^=^V.

If YP=rQ. for some P and Q, then POP'^QeP' for some projective P'. If

rankP>rf we can invoke the Cancellation Theorem (9.3) and conclude that P^Q,.

Ri)C
t)w0
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CHAPTER IV

APPLICATIONS

§ 16. Multiplicative inverses. Dedekind rings.

Throughout this section all modules are finitely generated right modules.

Proposition (16 .1 ) . — Let A be a commutative ring with max(A) a noetherian space

of dimension d<co, and let A be a finite A-algebra. If P is a projective A-module such

that I^YA^ generates Q®zK°(A) as a (QOOzK0 (A)) -module, then there is a projective

A-module Q^ such that Q®^P is A-free.

Proof. — I^YA^ is a Q®K°(A) multiple of i®-^? and ^ choosing n large

we can solve I®YAAn== ^^(YA^ with •^K°(A). Hence TAAn—7^TAP is a torsion

element in K°(A). If then we replace n by a multiple of n, we can achieve YA^ = ̂  • TA?-

Let A:£max(A); K°(AJ^Z and the image there of T) is (p-^)W (see § ^ for the

definition ofp) . The equation above together with (6.6) (see also Example 3) in § 13)

implies that A^ (p7]) (x) . P^ and this evidently implies (?•/]) [x) >o. Thus, if we replace n

by a further multiple, if necessary, we can achieve pv]^>rf. It then follows from (15.6)

that ^=YAQ.? fo1' some projective A-module Q. Our equation above then becomes

Y^(An) =YA(Q(X)AP)• Since, by this time, n>d, we can invoke the Cancellation

Theorem (9.3) and conclude that QOO^P^A^ as desired.

Corollary (16.2). — Let A be any commutative ring and P a faithful projective A-module.

Then Q®^ is A-free for some projective A-module Q .̂

Proof. — Since P is induced from a finitely generated subring of A, it suffices to

solve our problem there, so we may assume A a noetherian ring of finite Krull dimension.

We can now invoke (16.1) provided i^yP generates Q®K°(A), but the latter is

a consequence of (15.4).
Let A be a commutative ring and m the class of faithful projective A-modules.

Write P^Q if P^A^^Q®^^ for some n, m>o. Then ̂  is an equivalence relation

respecting ®^ so that
M(A)==m/—

is an abelian monoid with neutral element the class of the free modules. Corollary 16.2

says that M(A) is even a group.
Proposition (16.3). — Let A be a commutative ring for which max(A) is a finite

dimensional noetherian space. Then

M(A) =GL(i, Q^K°(A))/GL(i, %).
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Proof. — Let us write B =-- Q®zK°(A), and B* = GL(i, B). If Pern, let (JiP denote

its class in M(A). By (15.4) i®^Pey',
 let 7TP denote its class in B*/Q;. Evidently

f: M(A)^B*/Q* by y(piP)=7rP is a well defined homomorphism. Suppose 7rP=i;

i.e. i®yPeQ;. Since K°(A) =C(A)®J(A) (15.4),we have B= (Q®C(A))®(Q®J(A)),

and writing yP==pp4-(YP—pp) we see that I®YP= I(x)PpEQ*• Hence %(yP—pp)==o

for some n>o, so 7^YP==Y(An®P) =meZ. Choosing n sufficiently large we conclude

from (15.6) that A^P^A^, so [jiP==i. This shows that^is a monomorphism.

To see that / is surjective consider an element of B*. Modulo Q* we can assume

it has the form i®^ with ^eK°(A) of rank ,> dim max (A). Hence S^yP for some P

by (15.6), and the class of 2; mod Q* is 7rP=/(piP).

The classical Steinitz-Ghevalley theory [15] of modules over a Dedekind ring

furnishes a familiar setting in which to illustrate the general shape of our theory.

We consider finitely generated torsion free (hence projective) modules P, over

a Dedekind ring A. First P^a®F, a an ideal and F free — Serre's Theorem. If

POA^P'eA then P^P'; if we required rank Pj> 2 this would be the Cancellation

Theorem. The stronger conclusion here is possible only because of commutativity.

If a and b are non zero ideals, a<3b^A®(ab). As an equation in K°(A) we recover

thisfromthenilpotencyofJ(A) (Proposition 15.4): ( i—Y<'0( 1 —^h)=o in K°(A).

We indicate below (Proposition 16.4) how to recover the actual isomorphism, as well

as a variety of similar identities.

With these facts we see easily that, as a ring, K°(A)^Z®J(A) withJ(A) an ideal

of square zero, additively isomorphic to the ideal class group G of A. Alternatively,

if I is the augmentation ideal of the integral group ring ZG, then K°(A)^ZG/I2 as

an augmented ring.

Let 9 : A—^L be the inclusion of A in its field of quotients. We propose now

to interpret the exact sequence

K^A^K^L^K^A, ^->K°{A)^K°(L).

The composite K^A^K^L^Z is the augmentation, cc rank55, with kernel J(A)^G.

Next we recall that K°(A, 9) is built out of triples (P, a, QJ with P and Q^ A-projective,

and oc : L®^P^L®^Q^ an L-isomorphism. Using the description of K°(A, 9) given

in § 13 one can show easily that every element is represented by a triple (a, u, A)

with a an ideal and z/eL*, viewed as a homothetie of L. Moreover, the fractional

ideal au is an invariant which defines an isomorphism of K°(A, <p) with the group of

fractional ideals in L.

With this identification, K^A, <p)->G^ker <p° assigns to each ideal its class.

Moreover, K^L)—>L*, and K^L^—^K^A, y) assigns to ueL* the principal ideal Au.

Thus, the kernel is A* == GL (i, A) == Im (p1. Finally, ker (p1 = SL (A) /E (A) is the commu-

tator quotient group of SL(A). We shall see in § 19 that if A is the ring of integers in

a (finite) algebraic number field, then this group is finite.
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Now let A be any commutative ring. If P is an A-module, and n a non negative

integer, let nP denote a direct sum of n copies of P, and P0" a tensor product of n copies

of P. Also, if CHs another A-module, write P+Q/=P®Q, and PO^P^d- with

these conventions, if /(Ti, . . ., TJ -S^^T^. . .T^eZ[Ti, . . ., TJ is a polynomial

with non negative coefficients, and if Pi, . . . , P^ are A-modules, we can write

/Yp p ^ — y / , p®1! p0^
J^l? • • • ? ^J —^i...^1-! " '^n •

Proposition (16.4). — Let A be a commutative ring such that max(A) is a noetherian

space of dimension <n. Then, if Pi, . . ., P^ are invertible A-modules and if S,(Ti, . .., TJ

is the i111 elementary symmetric function, we have

SS,(PI , . . . ,PJ=SS,(PI , . . . ,PJ .
i even t odd

proof. — i —yP,eJ(A) for all i, so II^i(i —yPJ "=0 by (15.2). Thus the equation

is valid after applying y to it. Since the ranks of the two sides of the equation exceed

dim max (A), (15.6) permits us to remove the y.

§17. Some remarks on algebras.

For a ring A let A-mod and mod-A denote the categories of left, respectively,

right, A-modules. A generator for such a category is a module whose homomorphic

images suffice to generate any other module.

Let E be a right A-module and put F=Hom^(E,E) and E*==Hom^(E, A).

We are in the situation (pE^,^Ep), and there are natural bimodule homomorphisms:

(i)

E^pE-^A.

E^E^r

Moreover, we shall consider the functors:

E*®? : r-mod-> A-mod.
w E®^ : A-mod ->r-mod

The following basic result is due essentially to Morita [26], although the best exposition

of these, and other matters in this section, is in Gabriel [21, Chapter V, § i].

Theorem (Morita). — Let A. be a ring, E a right A-module, r=Hom^(E, E), and

E*=Hom^(E, A). Then the following conditions are equivalent:

a) E is a finitely generated projective generator for mod-A.

b) The homomorphisms (i) are isomorphisms. (It suffices that they be epimorphisms.)

c) The composites of the functors (2) are each naturally equivalent to the identity functors.

In this case q<->Eq defines a bijection between the two-sided ideals of A and the

F-A-submodules of E.

Conversely, if A and F are rings and A-mod is equivalent to F-mod, then any such

equivalence is isomorphic to one as in (2) above, with E determined up to F-A-isomorphism.

Thus, the situation above is entirely symmetric with respect to E and E* and to A and F.
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Now let A be a commutative ring and A an A-algebra. Then, in the above

setting, A-mod is an " A-category 95 (i.e. all the Horn's are A-modules), likewise for

the A-algebra F, and the functors in (2) are cc A-functors '5 (i.e. induce A-hornornorphisrns

on the Horn's). The converse part of the Morita Theorem remains true also in this

sense, provided the given equivalence from A-mod to F-mod is assumed to be an A-functor.

If A-mod and F-mod are A-equivalent we shall call A and F Morita equivalent,

denoted A^^F.

Let E be a finitely generated, projective right A-module. It is easy to see (e.g. using

Proposition 15.5) that E is then a generator for mod-A o E is faithful. Using the Morita

Theorem we then see that, if r==Hom^(E, E), r®^A^Hom^(E®^A, E®^A)^A. In

this situation we shall write A^^F^A) and call the two algebras Brauer equivalent.

Suppose A^^V, say A'=Hom^(P,P) with P a finitely generated projective

generator for mod-A. Can we show that A^gA', i.e. that the two equivalence relations

are the same ? Suppose there is a faithful, finitely generated, projective A-module Q,

such that Q^P^A^A^A. Then we have

A^Hom^Q, Q)®^A'^Hom^(Q®^P, QO^P)^

^ Hom,^, A^Honi^, A^A^A.

Thus, modulo the existence ofQ, ̂ ^ and ~g agree. On the other hand, Proposition 16. i

gives a criterion for the existence of Q^ which we will verify under suitable conditions

below.

Let A be an A-algebra, A° the opposite algebra, and A6 = A®^A°. To avoid

confusion we shall use E to denote A viewed as a right A-module. A is called an A^umqya

algebra (= central separable algebra in [4], see also [21, Chapter V, § i]) if it satisfies the

following equivalent conditions:

(i) A is a projective generator for A^mod.

(ii) a) E is a faithful, finitely generated, projective A-module.

b) A'^Hom^E, E) as A-algebras.

In this case every ideal of A has the form qA for some ideal q o f A [4, Corollary 3.2].

We propose now to consider the K*(A, q)-module K*(A, qA), with A an Azumaya

algebra. For this purpose we use the diagram of functors

mod-A mod-At t
^ ®(A®AAe)(A®AE)

mod-A ̂  mod-A" ̂  mod^A®^),

in which, by the Morita Theorem and condition (ii) a) above, the vertical arrows are

equivalences. We obtain thus K*(A, q)-homomorphisms

(*) K*(A,qA)-^K*(A,q)^K*(A,qA), •
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To compute them, let M be a right A-module. Then

(M®^)®^^^(A®^E)-(M®^A)^(Ae®^E)-M®^E.

It follows that gf is the homothetie defined by YA(E)£K°(A). Next we note that

(M®^AO)®^E^M®^(A.®^AO)®^E^M®JE^M (as A-modules), recalling that E=A

viewed as a left A6-, right A-module. Hence f is the " restriction " map obtained

by viewing A-modules as A-modules. In particular, ^(E) elm{f).

Now by Proposition 15.5, i®y^(P) is a unit in Q®zK°(A) for any faithful,

finitely generated, projective module P. Hence, using (ii) a ) , we see that Q®/ and

0®§f
 are isomorphisms, and we have proved:

Theorem (17.1). — Let A be a commutative ring and A an A^umaya A-algebra.

Then for all ideals q in A, Q®^K*(A, qA) is a free Q®zK*(A, q) -module generated

by I®YAP f07' anjy finitely generated faithful projective A-module P.

Using Proposition 16.1 and the discussion above we further obtain:

Corollary (17.2). — Let A be a commutative ring for which max (A) is a finite dimensional

noetherian space, and let A be an A^umqya A-algebra. Then:

1) If P is a faithful, finitely generated, projective A-module, there is an A-module Q^ of

the same type, for which P®AQ, ^ a free A-module.

2) The class of A in the Brauer group of A (see [4]) depends only on the A-category

A-mod.

Theorem 17.1 is not very useful for computing K°(A) since, in number theoretic

contexts, all the interesting invariants are torsion. On the other hand the theorem is

no longer true if we remove the " Q®z "• r^0 see ^^^ ^et ^^Q^A/^) wltn
 P

 a

prime ==. — i mod 4, let I denote the ideal group of F, P the subgroup of principal ideals,

and P'^CP those principal ideals generated by totally positive elements. If A is the

ring of integers in F, then -y^AeP, ^P4'. For if ^/pA had a totally positive generator

there would be a unit in A of norm — i , and by [23, p. 288] there is no such unit.

Hence [P : P4']^, in fact, =2. Let 2 be the standard quaternion algebra over F

and A a maximal order in S. Then S is unramified except at oo, so A is an Azumaya

A-algebra. On the other hand, Eichler [19] has completely determined K°(A) (see

Swan [33, Theorem 2]). Namely, K^A^Z^I/P4-. Hence K°(A) is not isomorphic

to K°(A)^Z®I/P (see § 16). This example was pointed out by Serre.

A further amusing example in this connection is the following: Let S be the

quaternion algebra over Q^ ramified at p and oo, p a prime == — i mod 4 and sufficiently

large (e.g. p==~ii will do). 2 has a basis i, i,j, k with z^—• l^ j
2
=k

2
=—p, and

ij == k == —ji. The result of Eichler-Swan quoted above shows that, if A is a maximal

order in S, then M(^, A) is a principal ideal ring for all 7^2. On the other hand,

according to Eichler [183 Satz 2], the class number of A itself is >i.

Finally suppose A is a field and A is a central simple A-algebra. Then K°(A)^Z,

so if B is any field extension of A, K^A)—^^®^) is a monomorphism. What
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about K1? Dieudonne [17] shows that K^A) is the commutator quotient group

of A*=GL(i, A). Therefore, if B is a splitting field for A, we have homomorphisms

A^K^A^K^B^A^B*,

and it is easy to see that the resulting map A^-^B* is the reduced norm (see Bourbaki,

[n, § 12]) and has image, therefore, in A*. Combining these remarks with the fact

that every field is contained in a splitting field, we have:

Proposition (17 • 3 )• — V^ is a central separable algebra over afield A, K^A) -^K^B^A)

is a monomorphism for all field extensions B if, and only if, the commutator subgroup of A* is

the kernel of the reduced norm,

By a theorem of Wang [35], this is the case if A is a number field.

§ 18. Finite generation of K.

We propose to show (Theorem 18.6 below) that if A is a finite Z-algebra, then

K^A; q) is a finitely generated abelian group for all ideals q.

Lemma (18. i). — a) Let A. be a ring. IfN is an ideal in rad A, then K°(A) ->K°(A/N)

is a monomorphism, and even an isomorphism if A is N-adic complete (e.g. if N is nilpotent).

b) If A is a semi-local ring, K°(A) is a free abelian group of finite rank.

Proof. — a) Suppose Y^P—YAQ.£ker(K°(A)->K°(A/N)). After adding a free

module to P and Q, we can assume that P/PN^Q/QN. Such an isomorphism lifts

to a homomorphism /: P-»Q,. /is surjective mod N, hence surjective, by Nakayama.

Hence ker/, being a direct summand of P, is finitely generated. Since ker/ is zero
mod N, it too is zero, by Nakayama.

Suppose now that A is N-adic complete, and let P be a projective (A/N)-module,

say PCQ^A/N)^ If F^Hom^A^ A1) ==M(n, A), then r/Nr=M(^, A/N). Let

ceF/Nr be an idempotent projection onto P. Since F is (NF)-adic complete, e lifts

to an idempotent e'eT (see e.g., [16, Lemma 77.4]). Now P '==Imc' is a direct

summand of A" covering P, so YA/N? is th
^ image of YA?'-

b) If A is semi-local, A/rad A is a finite product of simple Artin rings. Hence

K°(A/rad A) is free abelian, of rank equal to the number of simple factors of A/rad A.

By a) K°(A)->K° (A/rad A) is injective, so our conclusion follows.

Proposition (18.2). — Let A be a noetherian integral domain of Krull dimension one

with field of quotients L. Let A be a finite A-algebra, N the nil radical of A, and T the

torsion A-submodule o/A/N. Then N is nilpotent, T is a semi-simple Artin ring, and A/N = T x F

(product of rings), where Y is an A-order in the semi-simple L-algebra L®^F.

Proof. — L®^N is a nil, hence nilpotent, ideal in the finite dimensional L-algebra

LOO^A. Hence some power of N lies in the torsion submodule of A and is therefore a

nil ideal of finite length. Therefore some further power of N is zero.

For the rest we may assume N=o, i.e. A==A/N. Regard T as an A-algebra,

possibly without identity. If J == rad T, J can be described as the intersection of all
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kery, where/is a T-homomorphism into a simple right T-module 85 such that ST=S.

(Note that S must be an A-module, and ̂  compatible with this structure, in particular.)

Suppose g : T->T is a right T-endomorphism and f: T-^S as above. Then fg : T->S

so J^ker^; i.e. g{J)Ckerf. Letting f vary we see that g{J) Cj. Now letting g be

left multiplication by an. element of A we see that J is a left A-ideal (using the obvious

fact that T is an ideal of A). Similarly, J is a right ideal. However, T has finite length

as an A-algebra, so J is nilpotent. But A now has no nilpotent ideals 4= o, so J = o.

Hence T is semi-simple, so it has an identity element, e. If aeA, then aeeT so ae == eae.

Similarly ea=eae, so e is central. Thus A = T x F where r==( i—<?)A. Since F is

torsion free with zero nil radical, rcL®^F, and L®^F is a semi-simple L-algebra.

Lemma (18.3). — Let A. be a ring and N a nilpotent ideal finitely generated as a

^-module. Then, for all n>^ i, every subgroup of GL(n, A, N) is a finitely generated group.

Proof. — Induction on m, where N771
 == o, reduces us immediately to the case N2 = o.

Then GL(n, A, N) consists of all i+a where a is an nXn matrix with coordinates in N.

If i+a' is another, then (i +a){i +0') == i + (^+0, so GL(72,A,N)^N (the additive

group).

Theorem 18.7 below will be proved by a reduction to the following classical

results:

Lemma (18.4). — Let A be an order in a finite semi-simple (^algebra 2=Q®zA.

o) (Jordan-Zassenhaus, see [37]). If M is a finitely generated ^-module, there are

only finitely many isomorphism types of finitely generated A-submodules of M.

i) (See Siegel [31] or Borel-Harish-Chandra [9]) GL(TZ, A) is finitely generated

for all n>_ i. Moreover, ifL is simple, the subgroup of elements of reduced norm i in GL(n, A)

is likewise finitely generated.

Proposition (18.5). — Let A be a finite Zi-algebra, and let q be an ideal in A. Then

GL{n, A, q) is finitely generated for all n^i.

proof. — If N is the nil radical of A, then GL(n, A, q)->GL(n, A/N, q(A/N)) is

surjective, and GL{n, A, q)nGL(^, A, N) is finitely generated by (18.3). Hence we

can reduce to the case N=o. Then A = T x F as in (18.2) and GL{n, A, q) splits

likewise into a product. It suffices then to treat T and F separately, and T, being finite,

causes no problem. The result for F is a consequence of SiegeFs theorem above

(see Lemma 19.4 below).
Theorem (18.6). — Let A be a finite Z-algebra and q an ideal in A. Then K°(A)

and K^A, q) are finitely generated abelian groups.

Proof. — Since dim max(Z) == i it follows from (11.2) b) that K^A, q) is a

homomorphic image of GL(2, A, q), and (18.5) says the latter is finitely generated.

Now for K° :
Let N be the nil radical of A and write A/N=TxF asin(i8.2). Then.by (18.1),

K^A^K^A/N^K^T^K^r) is an isomorphism, and K°(T) is free abelian of

finite rank. It remains to show K°(r) finitely generated. Let F be a maximal order

in Q®r containing F. Then P is hereditary [3], so every projective F'-module is
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isomorphic to a direct sum of right ideals [14, Chap. I, Theorem 5.3]. By Jordan-

Zassenhaus (18.4, o)) there are only finitely many of these, up to isomorphism, so K°(r")

is finitely generated. Now F has finite index, say m, in F'. Let S be the multiplicative

set of integers prime to m. Then S"1? is semi-local, so K^S""1]^) is free abelian of

finite rank (18.1, b}). It will be sufficient for the theorem, therefore, to show that the
homomorphism

K^^-^K^r^CK^S-T),

induced by the inclusions, has finite kernel H. Let ypP—yp^eH; we may assume

n>_2. Then Vr^^r?) -Tr'^) and Ys-î "11') -Ys-r^"11^)- Since r' and
S""1? are algebras over rings with maximal spectra of dimensions i and o, respectively,

and since 72^2, (15.6) tells us that P^pr^fT^ and S-^P^S-1]^.

Let ^emax(Z). If mex then P^ is a localization of S^P, hence free. If m^x

then P^ is a localization of P^pF, hence free. Thus P^ is free of rank n for all A:emax(Z),

so we can apply Serre's Theorem (8.2) and write P^Q®?1"1, with Q^ locally free

of rank one, by (6.6). But then Qis isomorphic to an ideal in F, and again, byjordan-

Zassenhaus (18.4, o)), there are only finitely many such Q, up to isomorphism. Since

YpP—Yr^^TrQ-—Tr^ tms P^Y^ H 1s finite, as claimed.

§ 19. A finiteness theorem for SL (n, A).

Let S == 11̂  with S, a central simple algebra over a finite algebraic

number field C^. The reduced norms (see [n, § 12]) give homomorphisms

GL {n, S,) -> C^ = GL (i, C,) (compatible with the inclusions GL {n) C GL (n + i)), and

their product defines a homomorphism GL(^, S)->C*, where G= 11̂ = center 2.

We shall call this also the reduced norm, and denote its kernel by SL(n, S). If A is

an order in S and q an ideal in A we shall write SL{n, A) =GL(/z, A)nSL(^, S), and

SL(TZ, A, q) =GL(^, A, q)nSL(7z, S).

Theorem (19.1). — Let S be a semi-simple algebra finite over Q^, let A be an order in S,

and let SL(TZ, A) denote the elements of reduced norm one in GL(TZ, A) (in the sense defined above).

Then there is an integer 7Zo==7Zo(2) such that, for all n^n^ and for all ideals q in A,

SL(TZ, A, q)/E(/z, A, q) is finite.

We shall begin by deriving a reformulation of this theorem which will be useful

in its proof. The next two sections are devoted to some of its applications.

Lemma (19.2). — If q is an ideal in A, there is another ideal q' for which qnq'==o

and A/(q + q7) is finite.

Proof.—S=qS<9S', being semi-simple, and q^S'nA clearly serves our purpose.

Lemma (19.3). — If q and q' are ideals with qnq'=o, then

GL(n, A, q + q') == GL(n, A, q) x GL(^, A, q')

(direct product)^ and similarly for SL(TZ, A, q+q') and E(7z, A, q+c|'). In particular^

K^A, q+q') =K\A, q)@K\A, q').
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Proof. — If i +q+q'eGL(n, A, q+q') , where q and q ' have coordinates in q

and q7, respectively, then i +?+?'= ( I + <?) ( I + ?') £GL(^, A, q) x GL(TZ, A, q'), since
qq' == o = ̂ '^. The conclusion for SL follows from the factorwise definition of SL, and

for E it follows by applying the reasoning above to its generators.

Lemma (19.4). — GL(TZ, A, q) and SL{n, A, q) are finitely generated groups for all n

and q.

Proof. — Lemmas 19.2 and 19.3 permit us to assume A/q is finite, in which case

GL{n, A, q) has finite index in GL(^, A), so it suffices to show the latter finitely gene-

rated. If r is a maximal order containing A, then mFcA for some m>Q, so

GL(n, r, m'T) cGL{n, A), showing that GL{n, A) has finite index in GL{n, F). Since F

is a product of maximal orders in the simple factors of S, finite generation of GL{n, F)

follows from Siege? s theorem (Lemma 18.4, i)). Exactly the same proof applies to SL.

Now consider the direct system.

. . . SL(/z, A, q)/E(7z, A, q) -.SL{n + i, A, q)/E(^ + i, A, q) ->... with limit

SL(A,q)/E(A,q).

Thanks to Theorem 11. i we can apply Theorem 4.2 to A with n == 2. Hence we know

from (4.2,^)) that the maps above are surjective for n>_2, and, from (4.2,^)

and (19.4), that the terms are finitely generated abelian groups for ^4. Consequently,

since finitely generated abelian groups are noetherian, the system stabilizes; i.e. the

maps are eventually all isomorphisms. (Indeed, the conjecture of § 11 alleges they

aie isomorphisms already for n>3. If true, one could take Uo==^ in Theorem 19.1,

as the proof will show.)
By the theorem ofWang [35] (see Proposition 17.3) SL{n, S) is the commutator

subgroup of GL{n, S), and, by Dieudonne [17] (see Proposition 5.1,^) the latter

is just E(n, S) for n>_2. Thus the reduced norm induces a monomorphism

K^^GLC^/E^)-^.

Moreover, the inclusion GL(A, q) CGL(S) induces an exact sequence

o^SL(A, q)/E(A, q)->GL(A, q)/E(A, q)^GL(S)/E(S)

I I I I
Ki(A,q)————^(2)

The next corollary summarizes some of these remarks:

Corollary (19.5). — The following conditions on A and q are equivalent:

(i) There exists an ^o^2 sucft
 ̂  SL^o, A, q)/E(%o? A, q) is finite (resp. trivial).

(ii) For the same n^, SL(%, A, q)/E(7z, A, q) is finite (resp. trivial) for all n>^n^.

(iii) SL(A, q)/E(A, q) is finite (resp. trivial).

(iv) K^A, q^IC^S) has finite (resp. trivial) kernel.

Remark, — As noted above, the conjecture of § 11 asserts that HQ == 3 already suffices

in the corollary.
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Except for the dependence ot HQ only on S, Theorem 19. i is now seen to be contained

in the following result, of which the last assertion has already been noted above.

Theorem (19.6). — Let A be an order a semi-simple algebra S, finite, over Q ,̂ with

center C. Then, for any ideal q in A,

K^A.q^K1^)

has finite kernel, and its image is isomorphic to the image of GL(2, A, q) in C* under the reduced

norm.

The following sequence of lemmas will permit various reductions in the proof of

this theorem.

Lemma (19.7). — Let G be a group and R a normal subgroup. Then, if TT=G/R

and G/[G,G] are finite, so also is G/[G, R].

Proof. — R/[G, R]->G/[G, G] has finite image, so it suffices to see that it has

finite kernel. But this is just the second map in the exact sequence

H,(Tc)-^Ho(7T,Hi(R))->Hi(G)

which comes from the Hochschild-Serre spectral sequence in homology with integral

coefficients (see [14, XVI, § 6, (4^)]) for the group extension i —^R—G—^TT—^I . Since TT

is finite, so is H^rr), and this proves the lemma.

Corollary (19.8). — If A/q is finite, then so also is E(TZ, A)/E(TZ, A, q) for all n>_^.

proof. — Put G==E(^,A) and R==GL(TZ, A, q)nE(^, A). Then G/R is finite,

and G==[G,G], b y ( i . 5 , ( i ) ) . By (4.2, d)} E{n, A, q) = [G, R], so the corollary now

follows from (19.7).

Corollary (19.9). — If, for some ^o^3? SL(7?o, A)/E(^o, A) is finite, then

SL{n, A, q)/E(/z, A, q) is finite for all q and all H^HQ.

Proof. — By (19.2) and (19.3) the conclusion above for all q follows once we know

it for q with A/q finite, so we now assume this. If H^HQ, then the finiteness of

SL(7z, A)/E(^, A) follows from our hypothesis and (19.5)5 and that of E(^, A)/E(/z, A, q)

from (19.8) above. Hence SL(^, A)/E(7z, A, q) is finite, and this proves the corollary.

Lemma (19.10). — Let A and A' be two orders in 2, and let q be an ideal in A for

which A/q is finite. Then there is an ideal q' in A' with A'I q' finite such that, for all n]>_^,

E^A'.qOcE^A.q).

Proof. — mACA for some m>o, so q^ == AmqmA is a A' ideal contained in q,

and clearly A'/qi is finite. Let H=GL(^, A, q^) ==G'L(n, A, q^). Then from (i .3)

(using 7^>3) and (4.2,^)) (using ^4) we have :

E{n, A, qf) C[E(TZ, A', q,), E(n, A, q^)] C[H, H]

cE(7z,A,qi)cE(7z,A,q).

Hence q' = (q^)2 serves our purpose.

Corollary ( 1 9 . 1 1 ) . — If, for some order A' in S, K1(A/)—>-K1(S) has finite kernel,

then there is an n^ such that, for all n^n^, for all orders A, and for all ideals q in A,

SL{n, A, q)/E(7z, A, q) is finite.
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Proof. — Our hypothesis and. (19.5) imply SL(^o, A^/E^o, A') is finite for some

^o^S? so our conclusions for A' follow from (19.9). Taking ^0^4? we can B-Pply
Lemma 19.10 to any other A, and conclude that E(^o, A', q') cE(^o5 A) for some q'

with A'/q' finite. Since SL^o, A')/E(^o, A, q7) is finite, E(7Zo, A)nSL(/Zo, A') has

finite index in SL(^o, A)nSL(7Zo, A'). But the latter contains SL^o, AnA'), which

has finite index in SL^o, A). Therefore SL(^o, A)/E(/ZO, A) is finite, and the corollary

now follows from (19.9).

Corollary 19.11 reduces Theorems 19.1 and 19.6 to showing that K^A)—^!^^

has a finite kernel for some A. Since K^A) is a finitely generated abelian group

(Theorem 18.6), we need only show the kernel is torsion, and for this the following crite-

rion is useful. It is here that K1 effectively intervenes in the proof.

Proposition (19.12). — Let AcB be commutative rings with B finitely generated and

projective as an A-module. Then, if A is a finite A-algebra, the kernel of K^A^K^B^A)

is torsion.

Proof. — The nature of B provides us with a homomorphism K^B^^A^—^K^A)

(see § 14) whose composite with the one above is the homothetie of the K° (A)-module

K^A), defined by Y^(B)(=K°(A). The Proposition now results from (15.6), which

tells us that anything killed by YA^) ls torsion.
We come now to the proof that ke^K^A^K^S)) is torsion. Passing to

A^^ACL^Q^^ where A is the ring of integers in a splitting field L for 2, we can reduce,

thanks to (19.12) above, to the case where S is split. By (19.11), moreover, we may

take for A a maximal order. But then A is a product of maximal orders in the simple

factors of S, and everything decomposes accordingly, so we reduce further to the case

S=EndL(V), V a vector space over the number field L, and then (see [3] or [15])

A=End^(P), with P a projective module over the ring A of integers in L. Now the

Morita theorem (§ 17) gives us equivalences from the categories of A-modules to

A-modules (^^P)? anc^ ^rom L-modules to S-modules (®L^)? which commute with
the passages from A to L and A to 2, respectively. Thus we have

K^A^K^L)

I I ? \\l
K^A)-.!^)

commutative, and it suffices, finally, to show that ke^K^A) ̂ K^L)) is torsion. Using

(19.12) again, we see that this is a consequence of the following proposition:

Proposition (19.13). — Let A be the ring of integers in a finite extension L of Q ,̂

and let ^eke^K^A^K.^L)). Then there is a finite solvable extension V of L, such

that ^ke^K^A^K^B)), where B is the ring of integers in F.

Proof. — By (11.2,^)) ^=W^oc with oc an automorphism of A2, and

SekerfK^A^K^L)) simply means detoc=i. Passing to a quadratic extension F()

ofL, with integers Bo, we can give o^ = IB„0Aa an eigenvalue. As an automorphism of F^,

a thus has a one dimensional invariant subspace, and since Bg is a Dedekind ring, the
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latter contracts to a direct summand PQ of B^. Po is invariant under o^, and, having

rank one, PO^CI, a an ideal in Bo. Since the class group ofB^ is torsion (even finite)

(^==(0) is principal for some A>o. Let F=Fo(\/^) have integers B. Then

P==B®^P(^aB^B, and P is invariant under (B== ig®^ao== IB®^OC. If we choose a

basis for B2 the first member of which generates P, then (B is represented by a matrix of

the form
u x

0 V

U 0

0 V

I U 1^

0 I

The second factor is manifestly in E(2, B). Since det (B= i, we have v=u~
1
, so the

first factor lies also in E(2, B) by the Whitehead lemma (1.7). Therefore

W^igOO^a) =Wg([B) =o, as required.

Remarks. — i) Theorems 19.1 and 19.6 are probably valid also for semi-simple

algebras over a function field in one variable over a finite field. The proof above has

two ingredients which are not known, to my knowledge, in that case. One is Wang's

theorem. However, this can be circumvented easily since the discrepancy between E(7z, S)

and SL{n, S) is easily shown to be a torsion group for semi-simple algebras over any

field. The second point, which I don't know how to supply or outmaneuver, is the

finite generation of SL(^, A), say for n>_^ (1). Similarly, this is the only point requiring

attention if one works throughout, say, with orders in S over a ring of the form Z[y~1],

for some neZi.

2) Theorem 19.6 suggests an obvious analogue for K°. Namely, one can ask

that K^A^K^S;) have finite kernel. Jan Strooker (Utrecht thesis) has pointed out

that a necessary and sufficient condition for this is that every projective A-module P,

for which Q®zP is S-free, be locally free. He gives examples for which this fails.

§ 20. Groups of simple hoxnotopy types.

Theorem (20.1). — Let S be a finite semi-simple ^-algebra with q simple factors, and

suppose R®QS has r simple factors. Then, if A is an order in 2 and q is an ideal in A,

K^A, q) is a finitely generated abelian group of rank<_r—q, and =r—q if A/q is finite.

Theorem (20.2). — In the above setting the following conditions are equivalent:

1) K^A) is finite.

2) K^A, q) is finite for all q.

3) An irreducible ^-module remains irreducible under scalar extension from Q^ to R.

4) The center of each simple factor of 2 is either Q, or an imaginary quadratic extension

ofQ..
Proof of (20. i). — By (19.2) and (19.3) we can assume A/q is finite. Let F be

a maximal order containing A. Then GL(TZ, A, q) CGL(^, A) cGL{n, F) are both

(1) This has recently been established by O'Meara (On the finite generation of linear groups over Hasse
domains, to appear) for commutative A.
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subgroups of finite index, for all n. Thus K^A, q^K^F) has finite cokernel.

By (19.6), moreover, the maps K^A, q^K.^r^K1^) both have finite kernel.
Hence rank K^A, q) =rank K^F).

Now F is a product of maximal orders in the simple factors of 2, and K^F) splits

accordingly. Since the function r—q likewise adds over the simple factors we can

reduce to the case where E is simple (i.e. q = i), say with center L. R®JL == center R^nS

has the same number r of simple factors as R^qS, and we want to show that

rankK^F)^—!. We know from (19.6) that rank K^F) is the rank of the image

UCL* of GL(F) under the reduced norm. If A denotes the integers in L, then F

being integral over A implies UcA*. On the other hand A^cr^GI^i, F), so

(A^CU, where [S:L]=7z2 . Hence rank U = rank A*. By the Dirichlet Unit

Theorem, rankA*==r—i, and this completes the proof.

Proof of (20.2). — The equivalence of i), 2)3 and 3) is an immediate consequence

of the above theorem, and that of 3) and 4) is trivial.

If TT; is a finite group then ZTT is an order in the semi-simple algebra QTT, so we may

apply the preceding results. Viewing ±7rCGL(i, Zrr) CGL(ZTT), it makes sense to

write K^ZTT)/ db7r, with a minor abuse of notation. J. H. C. Whitehead showed [36]

that if X and Y are finite simplicial complexes of the same homotopy type and funda-

mental group TT, then the simplicial homotopy equivalences from X to Y, modulo the

simple homotopy equivalences, are classified by invariants which live in ^(ZTT)/^^.

Herein lies the principal interest of the next result, which elaborates on some earlier

work of G. Higman [38]:

Corollary (20.3). — Let n be a finite group, r the number of irreducible real representations

of TT, and q the number of irreducible rational representations of n. Then the commutator quotient

group of GL(ZTI;) is a finitely generated abelian group of rank r—q.

There are well known group theoretic interpretations of r and q : q is the number

ofconjugacy classes of cyclic subgroups ofrr (Artin). Write a^b in-n: if a is conjugate

to A^. Then r is the number of ̂  classes (Berman-Witt). Both of these results can

be found in Gurtis-Reiner [16, Theorem, 42.8].

Examples. — i) If TT is abelian, then r==q if, and only if, n has exponent 4 or 6.

For each simple factor of Qrc is a cyclotomic field of rP
1 roots of unity, where 7z|exp7r.

These fields are either Q^ itself or totally imaginary. They have degree <_2 precisely

when n \ 4 or 6.

2) The rationals are a splitting field for the symmetric groups and Q/ ̂ /— i) for the

quaternions. Hence the Whitehead group is finite in these cases. For groups with this

property the results of the next section can be used to give a crude bound on its order.

It is not inconceivable that it even be trivial.

3) Ifrr is cyclic of order n, then TT has S(^) irreducible Q^ representations, S{n) =the

number of divisors of n. n has [72/2] + i irreducible R representations, where [x] = the

integral part of x. Hence the Whitehead group has rank [/z/2] 4- i—8(^) in this

case.
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4) In [7] it is shown that the Whitehead group is trivial when n is free abelian.

Milnoi has asked whether it is always a finitely generated abelian group ifn is. It seems

reasonable, though difficult to show, that K^A) is finitely generated for A any finitely

generated commutative ring over Z with no nilpotent elements. The same statement

for K° would generalize the Mordell-Weil Theorem.

§ 21. Subgroups of finite index in SL(n, A).

Does every subgroup of finite index in SL(n, Z) contain a congruence subgroup,

SL(/z, Z, §Z), for some q>o? The answer is easily seen to be cc no 3? for n==2, as

was already known to Klein. For 7zJ>3, however, the solution is affirmative; a proof

is outlined in [40]. The method consists of an application of the present results to reduce

the problem to a (rather formidable) cohomological calculation. The latter, in turn,

depends heavily on some recent results of Lazard on analytic groups over j^-adic fields.

I shall summarize here, in a form adapted to this method, the information provided

by the present material.

Let A be an order in a simple algebra S, finite over Q^. We introduce the

following abbreviations in our notation:

S=SL(/2,A) E=E(/z,A);

for each ideal q,

S,==SL(7z,A,q), E,=E(7z,A,q), and F,=EnS,.

Theorem ( 21 .1 ) . — For n>^2 center S = center E is isomorphic to the (cyclic) group

of rp1 roots of unity in the center of A. For 7^>3, a non central subgroup of S normalised by E

contains Eq for some q =t= o, and E/E^ is finite. Hence a normal subgroup of E is either finite

or of finite index, and the same is true of S as soon as S/E is finite. The latter holds for all

sufficiently large n.

Proof. — By (2.4) an element of GL{n, A), n>_2, centralized by E, has the form u. i,

with ^ecenter A. Being in S means u
71

 == i, and it then follows from (1.7) that u. i cE.

Since center Ac center 2, a field, the n^ roots of unity form a cyclic group.

The rest of the theorem is an immediate consequence of (4.2, e } ) , (19.8) and (19. i).

To avoid some technical difficulties we shall henceforth assume A is commutative,

i.e. 2 is a number field.

We shall be speaking of" profinite ?? (== compact, totally disconnected) groups,

and their cohomology, for which we give Serre's notes [39] as a general reference. If H

is any group we denote by H its completion in the topology defined by all subgroups

of finite index. Since each of the latter contains a normal subgroup of finite index we

can describe H by

H = Imî finite11/1^ •

This defines a functor from groups (and homomorphisms) to profinite groups (and conti-

nuous homomorphisms) which evidently preserves epimorphisms.
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On the other hand, S and E above can be completed also in the " congruence

topology " defined by taking the S^, resp. F(? q=t=o, as a basis for neighborhoods of

the identity. By Corollary 5.2 the inclusion ECS induces isomorphisms

•E/F^S/S^SL(7z,A/q),

for each q 4= o. Since this group splits uniquely according to the primary decomposition

ofq, and since lim^ SL{n, A/q^ == SL(^, \) for q prime, we conclude that S and E have

the same congruence completion, 11= Fl SL(^,A^). We shall write
q prime, + 0

G=ker(S-^II) and Co=ker(E^II).

The question discussed above asks whether the congruence and profinite topologies

in S coincide, i. e. whether C = o.

Theorem (21.2). — (i) There is a commutative diagram with exact rows,

i -^ C -> S -> n -> i

t t II

i -» Go -> E -> n -> i.

Here H == lmi^(,E/F,=lim^oS/S,= n SL(re,Aj.
<—— <—— q prime,+0

(ii) For 7^>3

Co = Urn, ̂  oW, and C == Urn, ̂  .(S^),

and the maps in both of these projective systems are all surjective.

(iii) For ^>3, GoCcenterE. For ^>4, CCcenterS, and E->S is a monomorphism.

(iv) Consider the following conditions:

a) S,/E,={i} for all q.

b) A non central normal subgroup of S contains S^ for some q+o.

c) A subgroup of finite index in S contains Sq for some q=t=o.

d) C={i}.

e) (SJE,)={I} for all q.

For n^3 we have a)ob) =>c)od)oe), and for n>_^ they are all equivalent. Similarly^

they are all equivalent for n>_^ if we substitue E, Fq, and Co for S, S^, a/zrf C, respectively.

(v) Writing S=S(^), G=C(7z), .̂, ^0 ^TZO^ ^z'r dependence on n, the inclu-

sions S (n — i) C S (n) and E (n — i) C E (n) induce homomorphisms G (n — i)—^C(n) and

Co{n—i)->Go(7z) which are surjective for ^3.

Proof. — Part (i) is contained in the remarks preceding the theorem.

It is immediate from (21.1) above that

(*) E=Um^E/E, for ^3,

and this makes it evident that Co == lim^ ^ o^q/Eq. S->S/E^ induces S-»(S/E^)-^i,

and hence S—^lim^o(S/E^). It follows from (si ' .i) again that this is injective. It
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is surjective since the image is (clearly) dense, and § is compact. Since S/Sq is finite

for q + o it is now evident that

C = ker(Um, ̂ (S/E,)->Um^ ̂ S/S,)

admits the description in (ii). The last part of (ii) follows once we show that, if o=h qCq',

then F^/E^F^/Eq' and S^/E^->S^/E^ are surjective. This means simply that

F^Eq, = F^ and S^E^ == Sq.. The first of these equations is a consequence of the second,

and the second is contained in Corollary 5.2.

For 7?>3 we know from (4.2, d}) that [E, FJ ==E^, so it follows from (ii) that

Go C center E. If n>_^ then from (4.2,^) we have [S, Sj ==E^, so it follows similarly

from (ii) that CCcenter S. To show that E->S is a monomorphism it suffices, by (*)

above, to show that S/E^ is separated in its profinite topology. But for 72^4, S/E.

is a central extension of a finite group S/S^ by a finitely generated abelian group

S^/E^, using (4.2, f)) and (19.4), and such a group is clearly separated. This proves (iii).

Now for (iv). Assume n>_y

a J o b ) follows from (21.1) and (ii).

b) =>c) since a subgroup of finite index contains a normal subgroup of finite

index, and the center of S is finite.

c ) o d ) since c ) asserts the coincidence of the profinite and congruence topologies.

d ) o e ) follows from (ii).

If 7z>4, then S^/Eq is a finitely generated abelian group, as already noted in

the last paragraph, so d)=>a).

The proof for E is parallel, but the last point is simplified since FJE(, is even

finite already for %>3.

For part (v) it suffices, by compactness, to show that C(n—i)->G(n) has a dense

image for ^3, and similarly for Go. Denseness means that G{n—i) projects onto

every finite quotient of C{n). But it follows from (ii) that every finite quotient of C{n)

has the form S^)/H with E,(n)cH. By (4.2,^), S^) =S,(/z- i)E,(7z) =S^-i)H,

so S^{n—i)/HnS^(7z—i) coming from C(n—i) maps onto Sq(^)/H, as required.

The proof for Co is identical, after replacing S and S^ by E and Fq, respectively.

In [40] it is shown that, when A=Z, H^I^), Q,/Z) ==o (cohomology in the

sense of [39]), and on this basis that C(n) = o for n>_^. (By virtue of (21.2, (iv)) this

is equivalent to E^==S(^ for all q>o. For 5^5 this had been shown by Brenner [13]

by direct calculation.)

In the general case one knows only the following result, which Serre has proved

using recent results ofLazard and of Steinberg (Colloque de Bruxelles, 1962).

Theorem (21.3) (Serre, unpublished) H^n, Q^/Z) is finite.

Plugging this into the argument of [40], and using the information in (21.1)

and (21.2) above, one obtains:

Corollary (21.4). — Go is a finite group for ^^3, and C is finite for n large enough,

so that S/E is finite.
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§ 22. Some remarks on polynomial rings.

Let A be commutative and noetherian, and let B=A[^, . . . , ^J with

^i, • • • 9 ^ n ( ^ 1 ) indeterminates. Grothendieck has shown that, if A is regular, the

homomorphism K^A)—^^) is an isomorphism (see [29] or [7]). It follows that

if P is a projective B-module, then YBP^TB^^AQJ ^
or tne projective A-module

Q^=P/(^ . . . ^ ^)P. Now this equation in K°(B) can be replaced by the isomorphism

P^B®^Q,, provided rank P> dim max (B) (Proposition 15.6). At this point the

unpleasant fact emerges that dim max(B) ==dim spec(B) =n
J
^dim spec(A). Thus, for

example, if A is local (so dim max (A) ==o), dim max(A[^]) can be arbitrarily large.

In any event, we can record the following conclusion, using the fact that:

A is regular and dim spec (A) ==d o global dim A=d.

Theorem (22.1). — Let A be a commutative noetherian ring of global dimension d, and

let B = A [^, . . ., ̂ ], the ^ being indeterminates. Then a projective ^-module of rank > d-\- n

has the form B®^Q^ for some projective A-module Q,.

If A is a field we see that projective B-modules of rank>7? are free, but we can't

conclude this if A is only local. However, we can make a very small compensation

in this case (Corollary 22.3 below). For here, in the equation YB^^YB^^AQJ? 0.̂ 1

be free, so we can conclude that POB^B^ for some r, s\ we want P to be free. If we

write (PQB^^QB^B7'"'1^ and apply induction, we are reduced to showing, under

suitable hypotheses, that PQB^B^P^B^1. It is easy to see (cf. proof of the Cancel-

lation Theorem, 9.3) that this conclusion is equivalent to the assertion that Aut^B^

is transitive on the unimodular elements of W.

Proposition (22.2). — Let A be commutative and noetherian and suppose

d= dim spec (A) > dim spec(A/rad A).

Then, if B==A[^, . . ., ̂ ], ^ indeterminates, E(r, B) is transitive on the unimodular elements

ofW for r>d+n.

Remark. — If we replace d + n above by d + n + i then this Proposition is contained

in Theorems 11.1 and 4.1,^3 since dim max(B) =d+n.

Proof. — Suppose a=(^i, . . . ,^)eB r is unimodular; we seek s(=E(r, B) such

that sa== (i, o, . . ., o). The remark above, together with our hypothesis, shows that

this can be done if we replace A by A/rad A. It follows, using Lemma i . i, that we

can find ^ eE (r, B) so that s^a == [a[, . . . , < ) = ( i, o, . .., o) mod rad A. B'. Since

a[= i mod rad A.B, a maximal ideal of B containing a[ cannot contract to a maximal

ideal of A. It follows that dim max(B/^B)<n+rf—i. Hence we can again apply

the remark above, this time to the (unimodular) image of (^, . . ., a,) in (B/^B)7'"1,

and transform this image into (i, o, . . ., o) with s^eE^—i, B/a^B). By Lemma i. i

again, £3 lifts to ^eE(r— i, B), and we set £3= „ sE(r, B). Then s^ioc has
0 £<>

the form {a[, i +^L ^a[, . . ., b,a[), and it is now clear how to finish with elementary

transformations.
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From the discussion preceding this proposition we derive the following corollary:

Corollary (22.3). — If, in Proposition 22.2, A is a regular ring for which K°{A)^Z.,

then a projective ^-module of rank^d-\-n is free.

As a special case, we have the following corollary:

Corollary (22.4). — If A is a semi-local principal ideal domain (so d^>_i) then a

projective A[^, . . ., t^\-module (t^ indeterminates) of rank ^>n is free.

This last corollary has recently been strengthened, for n ==2, by S. Endo [20],

who shows in this case that all projective modules are free. This generalizes the theorem

of Seshadri [27].
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