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AT-THEORY OF AZUMAYA ALGEBRAS

CHARLES A. WEIBEL1

Abstract. Quilien has defined a AT-theory for symmetric monoidal categories. We

show that Quillen's groups agree with the groups Kq, Kx, and K2 defined by Bass.

Finally, we compute the if-theory of the Azumaya algebras over a commutative

ring.

The purpose of this paper is to advertise the ÄT-theory of symmetric monoidal

categories, and to compute the AT-theory of the category of Azumaya Ä-algebras.

The point is that Quillen's theory (introduced in [6]) is a natural generalization of

the "classical" theory for K0, Kx, K2 defined by Bass in [2], [3], [4]. On the other

hand, it provides a wealth of examples of infinite loop spaces (see [1], [9], [10], [12]

and [13]).

A symmetric monoidal category is a category S with a unit 0: * -» S and a

product □: S X S —* S which is commutative and associative up to coherent

natural isomorphism; the precise definition may be found in [7]. We shall be

especially interested in the following examples (from [2]):

(1) P, the fin. gen. projective modules over a ring R. The product □ is direct

sum, and we consider only isomorphisms.

(2) FP, the fin. gen. faithful projective modules over a commutative ring R. The

product □ is the tensor product, and the arrows are isomorphisms.

(3) Pic, the full subcategory of FP of rank one projective modules.

(4) Az, the Azumaya algebras over a commutative ring R. The arrows are

A-algebra isomorphisms, and the product is the tensor product. If R is a field an

Azumaya algebra is just a central simple algebra.

In the language of [3, Chapter VII], a symmetric monoidal category is a "cate-

gory with product □", with the additional condition that there be a special object 0

and natural isomorphisms 0ns£sjss.srj0 satisfying the coherence conditions

on page 159 of [7]. Groups K,det(S) (i = 0, 1, 2) were defined and studied in [2], [3]

and [4], using only the objects, isomorphisms and product of the category S.

We will restrict our attention to the category SMCat of small symmetric

monoidal categories and relaxed morphisms. We require in addition that every

symmetric monoidal category S in SMCat satisfies (i) every arrow is an isomor-

phism, and (ii) every translation s[J: Aut(f) —» A\it(s □ f) is an injection. The

categories P, FP, Pic, Az all belong to SMCat, as do the categories:
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2 C. A. WEIBEL

(5) Quad^iyl, A), the category of nonsingular (À, A)-quadratic A -modules defined

in [4]. Here A is a ring with involution, X is a central element of A satisfying

XX = 1, and A is a additive subgroup of {a e A: a = -Xa} containing {a — Aa*}

and closed under r H» ara. The product is direct sum. The principal goal of [4] was

to calculate the groups A7det(QuadA) for various (A, X, A).

(6) Ens, the category of finite sets and their isomorphisms, the product being

disjoint union. It is easy to see that ÄT0det(Ens) = Z, ATdet(Ens) = { ±1); it is known

(see   [1])   that   the   Quillen   ÄT-groups   Ä^(Ens)   are   the   "stable   stems"   it'

= colim irn+i(S"). The "free module" functor from Ens to P(Z) induces the map

< -Ttf.(Z).

1. Quillen AT-theory. In [6], Quillen defined groups Km(S) for every S in SMCat.

This is achieved by associating to every S in SMCat a new symmetric monoidal

category S~lS (not in SMCat) properly containing S. Applying geometric realiza-

tion yields a topological space BS~lS; the groups K0(S) are defined to be the

homotopy groups tt^BS^S). It is shown in [6] that the groups A^iP) coincide with

the algebraic A"-groups K+(R) of the underlying ring R.

One pleasing property of these topologically defined groups is that they agree

with the classically defined A"-groups. Classically, Kqc\S) is the group completion

of the abelian monoid of isomorphism classes of objects of S. Bass (in [2], [3])

defined   Kxdet(S)   to   be   the   direct   colimit   of   the   groups   Hx(Auts(s)) =

Auu»/[Aut(s), Aut(s)].

Proposition 1. Quillen's groups K¡(S) agree with Bass's groups A,det(S) for

i = 0, 1.

Proof. From [6] we know that Hm(BS'xS) = colim H^(BS), where the colimit is

taken over the directed set of (isomorphism classes of) objects s in S under

translation. For * = 0 we obtain the K0 result. Reading this for * = 1 yields

KX(S) = tt^BS^S) = H^BqS^S) = colim HX(B Aut(s)) = Kfc\S).

Remark. In [4], Bass defined groups A"det(S). In the next section we will show

that this agrees with the K2(S) of Quillen.

Another pleasing property is that the spaces BS~lS are infinite loop spaces. This

follows from the fact that ir0BS'lS is the group A^XS) and Proposition 2 below.

For example, B Ens'Ens is the space ß^S00, and fiP'P is the space K^R) X B

Gl(R)+ (see page 91 of [1]).

Proposition 2. If T is a small monoidal category, BT is a homotopy associative

H-space. If T is symmetric monoidal, BT is also homotopy commutative, and BT is an

infinite loop space if and only if tr0(BT) is an abelian group.

Remark. There is a simple, purely algebraic definition of tt0(BT). If F is a small

symmetric monoidal category, define w0F to be the set of objects of T, modulo the

equivalence relation generated by requiring s ~ f whenever there is an arrow from

s to f. The product □ makes tt0T an abelian monoid. If F is in SMCat, ir0T is the

monoid of isomorphism classes of objects. Since ir0T is -ttq(BT), the topological

space BT is an infinite loop space iff ir0T is a group.
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Proof. The functor fj: T X T-* T induces B\J- BT X BT at B(T XT)-* BT,

making B T an //-space. Associativity (and commutativity in the symmetric case) of

□ up to natural equivalence translates directly into homotopy associativity (and

commutativity) of BT. To determine when BT is an infinite loop space, we use

Segal's machine [12]; this is appropriate since Thomason has shown in [13] that BT

is the initial space of a T-space. By [15, p. 461], /?□ has a homotopy inverse iff

7T0(BT) is a group, and by [12] this is necessary and sufficient for BT to be an

infinite loop space.

Remark. We could have also used May's machine. In the relevant vocabulary,

BT is an Ax space if T is monoidal, and BT is an Ex space if T is symmetric

monoidal. This was shown in [9]. The above formulation of Proposition 2 was

shown to me by Z. Fiedorowicz.

The usefulness of Proposition 2 is that some of the 5 in SMCat already have a

group for it0S. In this case, the natural map BS -* BS ~lS is a homotopy equiva-

lence (it is an infinite loop space map which is a homology isomorphism). For

example, this is true of S = Pic. It follows from [2] or [3] that B Pic ¡a Pic(R) X

BU(R), where Pic(Ä) is the Picard group of the commutative ring R, and U(R) is

the group of units of R. We have the

Corollary. K0 Pic = Pic(Ä), A", Pic = U(R), and the groups A^Pic are zero for

* > 2.

2. The plus construction and K2. If the category S has a countable, cofinal

subcategory, we can construct a group Aut(S) playing the role that G1(Z?) does for

P. The construction is given on page 355 of [3], although the constructions of [2, p.

25], [4, p. 197], and [14] may be used where appropriate.

The groups Aut(5) are easy to compute in the sample categories given in the

introduction. The free modules in P and FP allow us to take Aut(P) = Gl(R),

Aut(FP) = Gl^Ä) = colim{Gl„(Ä); aH>a® I}. Aut(Pic) is just U(R). The ma-

trix rings in Az allow us to take Aut(Az) to be the direct colimit of the Ä-algebra

automorphisms of the Mn(R). We have AutiQuad^/l, A)) = UX(A, A) =

colim U2n(A, A) and Aut(Ens) = Sœ = colim 2„.

Proposition 3. Suppose that S has a countable, cofinal subcategory, so that

Aut(S) exists. Then the commutator subgroup E of Aut(S) is a perfect, normal

subgroup, so the plus construction may be applied to B Aut(S). The resulting space is

the basepoint component of BS^S, i.e., BS^S ^ Ar/S) X B Aut(S)+. Moreover,

KX(S) = Aut(5)/F.

Proof. As F is a direct colimit, every element of F is a product of elements, each

represented by a commutator [a, ß] in some Aut(s). We compute in

Aut(i QjDj) that [a, ß] □ 1 □ 1 = [a □ a"1 □ 1, ß □ 1 Hß'1], which repre-

sents an element of [E, E] by the Abstract Whitehead Lemma on page 351 of [3].

This shows that F is perfect, so that /: B Aut(S) —» B Aut(S)+ exists and is any

acyclic map with ker(w,/) = E. If we copy the telescope construction of [6], we

obtain such an acyclic map from B Aut(S) to the basepoint component of BS^S,

proving the proposition.
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4 C. A. WEIBEL

We are now in a position to compare Quillen's K2 to Bass's A"2 . In Appendix

A to [4], Bass defined K2et(S) to be the direct colimit of the groups

H0(Aut(s); [Aut(s), Aut(s)]).

We remark that when Aut(S) exists we have A"det(5) = H2(E). This may be seen

by reading the proof of (A.6) on page 200 of [4]. In this case, A"2det(S') may also be

interpreted as the kernel of a universal central extension of the perfect group E (as

in [11]).

Theorem 4. Quillen's K2(S) is the same as Bass's K2ct(S).

Proof. Any S in SMCat is the direct colimit of full subcategories which are

countable, and hence for which Aut(S) exists. As Bass's and Quillen's groups both

commute with direct colimits, we are reduced to proving the theorem when Aut(S)

exists. In this case we have to show that A"2(S) = H2(E). We will use a modifica-

tion of the proof of Proposition 4.12 in [9], which is essentially due to D. W.

Anderson.

There is a homotopy fibration BE^ B Aut(S)—> B(KXS). Since KXS is an

abelian group, B(KXS) is an Eilenberg-Mac Lane space. The map B Aut(S)—>

B(KXS) factors through an //-space map B Aut(S)+ —> B(KXS) by universality of

the plus construction. If F denotes the fiber of the latter map, there is a map of

fibrations:

BE     -*      B Aut(S)      -+     B(KXS)

1 1 II
F      -+     B Aut(S)+     -►     B(KXS).

The action of KXS = trxB(KxS) on BE is trivial for the same reasons given in [9]: if

y G Aut(j) represents [ v] G KXS and z C Ht(BE), we can choose a subgroup

Aut(f) of Aut(s □ f) for some f so that z is in the image of H^(B[Aut(t), Aut(f)]).

As v commutes with Aut(f), [ v] acts trivially on z. On the other hand, the action of

KXS on //»(F) is trivial because F is connected and is the fiber of an //-space map

(see [5, p. 16-09]). It follows by the Comparison Theorem (in [8]) that Hm(E) =

H ¿BE) -» //»(F) is a homology isomorphism. On the other hand, F is simply

connected, so H2(F) s ^(F) s ^(B Aut(S)+) = K2(S).

We will need the following result which is implicit in [10, p. 96], and was pointed

out in [14]. The proof involves a comparison of the groups G1(Ä) and Glg,(Ä).

Proposition 5. A"»(FP) = Q ® A"»(P) = Q ® K+(R) for * > 1, while A~0(FP) =

t/ + (Q ® K0(R)) in the notation of[3,p. 516].

3. Azumaya algebras. In this section we compute the groups A"tAz. The computa-

tion was inspired by the calculations of [2] and [14]. I am indebted to C. McGibbon

and J. Neisendorfer for suggesting the use of the Comparison Theorem in the

proof.

There is a functor End: FP —» Az in SMCat, which sends a faithful projective

R-module P to its endomorphism ring End(F), and sends the automorphism a of P

to conjugation by a. This induces a map End: Glg,(Ä)-> Aut(Az). The following

result is proven in [2] and on page 74 of [3]:
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Proposition 6 (Rosenberg-Zeltnsky). There is an exact sequence

1 _» u(R)-*G\9(&fê Aut(Az)-> FPic(/?)^ 1,

where T Pic(Ä) is the torsion subgroup of Pic(/?).

We consider T Pic(R ) to represent outer automorphisms, and would like a

category of inner automorphisms. We define In to be the image of End. In is the

monoidal subcategory of Az whose objects are the End(F), and whose arrows are

"inner" automorphisms. The group Aut(In) = colim In A\xt(Mn(R)) is the group

PG10(Ä) = G\Sl(R)/U(R) (cf. pages 108, 119 of [2] and page 74 of [3]). We thus

have short exact sequences of groups 1 -* U(R)^>Glg,(R) —»PGlg^jR)—> 1 and

1 -> PGlg^Ä) -» Aut(Az) -> T Pic(R) -h> 1. The sequence Pic ^FP -» In gives rise

to a commutative diagram of spaces

BU(R)        -*     BGl^R)      -*     BPGl^R)

I — i 4-

Ä0Pic'Pic     -*     ÄoFP'FP     4.       Snln'ln.

The top row is a fibration, and the bottom row is a sequence of infinite loop

spaces and infinite loop maps. The left vertical arrow is a homotopy equivalence of

infinite loop spaces by Proposition 2. As the bottom composite is trivial, there is an

infinite loop space map from B0 PUr'Pic to the fiber X of the lower right

horizontal map a. Summarizing, there is a map of fibrations

BU(R)     -»     BG\q(R)     -*    BPG\&(R)

Sf Sf ■*

X -*     ÄqFP'FP     -+       ¿oln'ln

in which the map BU(R)^>X is an //-map. Now PGlg^Ä) acts trivially on

H^(BU(R)) because U(R) is central in G18(Ä) (any element of PGl,g,(Ä) induces

the identity map on BU(R)). Moreover, ttx(B0 In_1In) acts trivially on Hm(X)

because a is an //-map and X is connected (see [5, p. 16-09]). Hence the Compari-

son Theorem [8, p. 355] applies: as the base and total space maps are homology

isomorphisms (by Proposition 3), the infinite loop space map BU(R) —» X is a

homology isomorphism, hence a homotopy equivalence. We have proven:

Theorem 7. BU(R)^> B Gl9(R)+ -» B PGlg,(Ä)+ is a homotopy fibration.

Corollary 8. For * > 3, A~»In » A^FP = Q ® K,(R). If n(R) denotes the roots

of unity of R,

K2la = n(R) © AT2FP = p.(R) © (Q ® K2(R)).

Finally, Kxln = A^FP/im U(R) and Aoln = t/+(Q ® AT0(Ä))/im(Pic(Ä)).

Proof. Use the long exact homotopy sequence and the fact that ir^BU = 0 for

*'# 1, as well as Proposition 5. The only subtleties are that in the sequence

0 -* K2FP -+ A"2(In) -+ U(R) -^ AT.FP the left map splits (by divisibility of K2FP)

and that the kernel of the right map is the torsion subgroup p(R) of U(R).
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6 C. A. WEIBEL

Theorem 9. There is a long exact sequence in K-theory:

■ ■ ■ Jr. + |Az -» AT»Pic -» A"»FP -* A",Az • • • .

/n particular: for * > 3, A"»Az = A"»FP = Q ® K.(R), K2Az = ¡x(R) © A"2FP =

u(/?)ffi(Q® A"2(Ä)),

A",Az = F Pic(Ä) © (Q/Z ® £/(/?)) © (Q ® SKX(R)),

and AqAz = Br(R) © i/ + (Q ® A:o(/î))/im Pic(R),where Br(/?) is fAe drawer group

ofR.

Proof. The map B Aut(In) —* B Aut(Az) is (up to homotopy) a covering space

map with fiber the abelian group T Pic(R). The commutator groups

[Aut(In), Aut(In)] and [Aut(Az), Aut(Az)] are isomorphic. Hence we can perform a

T Pic-equivariant plus construction on B Aut(In): for every cell we attach, all

translates of the cell are also attached. In this way we obtain the model

B Aut(In)+/FPic for B Aut(Az)+, and a fibration T Pic(R) -> B Aut(In)+ ->

B Aut(Az)+. This yields A»Az for * > 2. Bass's analysis of the low-dimensional

terms in [2] gives K0, Kx and a fibration B Pic'Pic -> B FP^FP -» B Az'Az.

Remark. We have shown that the commutator subgroup F of PGl,g>(/?) is

perfect. In fact, it is the subgroup generated by the images of the elementary

matrices in the G\n(R), so the fact that F = [F, F] may be deduced from the fact

that elementary matrices are commutators in Gl„, n > 3. More interesting is the

following consequence of Corollary 8: the torsion subgroup of H2(E) is isomorphic

to the roots of unity in the ring R. It would be interesting to find an explicit

description of this isomorphism, especially for R = C.
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