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Abstract. We compute K-theory invariants of algebras of pseudodifferential
operators on manifolds with corners and prove an equivariant index theorem
for operators invariant with respect to an action of Rk. We briefly discuss the
relation between our results and the η-invariant.

Introduction

In this paper we analyze the K-groups of the norm closure of the algebra Ψ0
b(M)

of b-pseudodifferential (or totally characteristic) operators acting on the compact
manifold with corners M. In the case of a compact manifold with boundary this
class of operators was introduced in [14], see also [15] and [11]. For the general
case of a compact manifold with corners it was described in [20]. There are closely
related algebras which have the same completion, see [17].

The algebra Ψ0
b(M) can be identified with a ∗-closed subalgebra of the bounded

operators on L2
b(M) = L2(M,Ωb) (corresponding to a logarithmically divergent

measure), and its Fredholm elements can then be characterized by the invertibility
of a joint symbol consisting of the principal symbol, in the ordinary sense, and an
‘indicial operator’ (as for Fuchsian differential operators) at each boundary face,
which arises by freezing the coefficients at the boundary face in question. In view
of the invariance of the index with respect to small perturbations [9], we consider
(as in the case ∂M = ∅ for the Atiyah-Singer index theorem, [3, 24]) the C∗-algebra
obtained by norm closure, which we denote A(M). Its K-theory is easier to compute
than that of the uncompleted algebra. Just as in the case of a manifold without
boundary, the principal symbol map σ has a continuous extension to A(M) with
values in C(bS∗M), where bS∗M ≡ S∗M as manifolds.

The algebra A(M) contains the algebra of compact operators on L2
b(M), denoted

K(L2
b(M)). Let Q(M) = A(M)/K(L2

b(M)) be the quotient. If ∂M = ∅, then
Q(M) is isomorphic to the algebra C(S∗M) ‘of symbols.’ In the general case,
we call Q(M) the algebra of joint symbols, since it involves both the principal
symbol and extra morphisms giving the ‘indicial operators.’ A model space N+H
is associated to each boundary hypersurface H of M. As a manifold with corners
N+H ∼= [−1, 1] × H carries a natural action of R∗+ = (0,∞). This allows us to
introduce the (completed) indicial algebra at H, denoted A(H,M) and consisting
of the R∗+-invariant elements of A(N+H). The indicial morphism at H localizes
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A ∈ A(M) to InH,M (A) ∈ A(H,M). The joint symbol map is the direct sum of the
principal symbol and the indicial operators at all boundary hypersurfaces. Its range
is subject to compatibility conditions between symbol and indicial operators and
between indicial operators at the intersections of boundary hypersurfaces. Using
these indicial maps, we construct a composition series for A(M) :

A(M) ⊃ I0 ⊃ I1 ⊃ . . . ⊃ In, n = dimM.(1)

The subquotients of this composition series are identified in Theorem 2:

Il/Il+1
∼=

⊕
F∈Fl(M)

C0
(
Rn−l;K(L2

b(F ))
)
, 0 ≤ l ≤ n,

as the sum over the boundary faces of dimension l of the C∗ algebras of continuous
functions vanishing at infinity on Rn−l and taking values in the compact operators
on an associated Hilbert space (of dimension one when l = 0). The end cases are

In ∼= K(L2
b(M)) and A(M)/I0

∼= C(bS∗M).

The K-theory of each of these subquotients is readily computed, and this leads to
a spectral sequence for the K-theory of A(M).

To deduce the composition series (1), we first describe joint symbol maps ‘at
dimension l’ in the smooth (i.e. uncompleted) setting; the ideals Il are the com-
pletions of the null spaces of these morphisms. To show the appropriate exactness
properties for the morphisms obtained by continuous extension, we use lifting prop-
erties for the symbol and indicial morphisms.

In the particular case of a compact manifold with boundary, as already noted,
the principal symbol map induces an isomorphism of K0-groups, whereas each
component of the boundary contributes an extra copy of Z to K1; this can be
attributed to “spectral flow” invariants [2]. More precisely, if ∂M has q components,
there is a short exact sequence

0 −−−−→ Zq −−−−→ K1(Q(M)) σ∗−−−−→ K1(C(bS∗M)) −−−−→ 0.

If the boundary is connected, the index morphism Ind : K1(Q(M))→ Z provides a
splitting of this exact sequence. In a forthcoming note we will discuss the surjectiv-
ity of σ∗ in relation to boundary conditions of Atiyah-Patodi-Singer type for elliptic
operators, and use that discussion as a model for Fredholm boundary conditions
on general manifolds with corners.

We also compare the algebraic and topological K-theory of the uncompleted
algebra Ψ0

b(M), and thereby interpret a result in [16] on the η-invariant in this
setting. We conclude the paper with some results on the equivariant index of
operators on manifolds equipped with a proper action of Rk.

In summary the contents of this paper are as follows. In the first section we
recall background material and notation concerning manifolds with corners. In §2
the symbol map and indicial morphisms for the algebra of b-pseudodifferential op-
erators are discussed. In the next section the alternative description of the indicial
morphism in terms of indicial families, obtained by taking the Mellin transform,
is described. In §4 the continuous extension of the symbol map to the closure of
the algebra of the b-pseudodifferential operators in the bounded operators on L2 is
considered.

We would like to thank Is Singer for a helpful discussion and Robert Lauter for
alerting us to his related work in [13].
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1. Manifolds with corners

We shall work in the context of smooth manifolds with corners M. By definition,
in such a space every point p ∈ M has coordinate neighborhoods diffeomorphic to
[0,∞)k ×Rn−k, where n is the dimension of M, k = k(p) is the codimension of the
face containing p, and p corresponds to 0 under this isomorphism. The transitions
between such coordinate neighborhoods must be smooth up to the boundary; this is
the same as being extendible smoothly across the boundary. An open face is a path
component of the set ∂kM of all points p with a fixed k = k(p). The closure, in M,
of an open face will be called a boundary face, or simply a face. A boundary face
of codimension one may be called specifically a boundary hypersurface. In general,
such a boundary face does not have a covering by coordinate neighborhoods of the
type described above, because boundary points may be identified. To avoid this
problem, we demand, as part of the definition of a manifold with corners, that the
boundary hypersurfaces be embedded. More precisely, this means that we assume
that, for each boundary hypersurface H of M , there is a smooth function ρH ≥ 0
on M, such that

H = {ρH = 0}, where d(ρH) 6= 0 at H.(2)

If p ∈ F, a face of codimension k, then exactly k of the functions ρH vanish at p.
Denoting them ρ1, . . . , ρk, the differentials dρ1, . . . , dρk must be linearly indepen-
dent at p; it follows that the addition of some n − k functions (with independent
differentials on F at p) gives a coordinate system near p; in fact, this is what we
shall mean by a coordinate system at p.

We denote by F(M) the set of boundary faces of M, by F1(M) the set of bound-
ary hypersurfaces H ∈ F(M) (i.e. faces of codimension 1) and, more generally, by
Fl(M), for 0 ≤ l ≤ n = dimM, the set of boundary faces of codimension l. It is also
convenient to let F l(M) = Fn−l(M) denote the set of boundary faces of dimension
l. In view of the assumed existence of boundary defining functions, (2), they are
all manifolds with corners. Without loss of generality, it can be assumed that M
is connected, and hence that there is a unique face of codimension 0, namely M.
If F ∈ Fl(M) then Fk(F ) ⊂ Fk+l(M) consists of those G ∈ Fk+l(M) which are
contained in F.

It is useful to make a choice of functions ρH as in (2) and fix a metric h which
locally at any point p has the form

h = (dx1)2 + · · ·+ (dxk)2 + h0(y1, . . . , yn−k),

where x1, . . . , xk, y1, . . . , yn−k are some local coordinates at p, and

x1 = ρH1 , . . . , xk = ρHk

are the chosen defining functions. The existence of such a metric is shown in [10],
for example.

The choice of the functions ρH for all H ∈ F1(M) establishes a trivialization
NF ' F × Rk of the normal bundle to each boundary face. In fact, these bundles
are naturally decomposed as sums of trivial (but not canonically so) line bundles;
namely the normal bundles to the hypersurfaces containing F

NF =
⊕

H∈F1(M), H⊃F

NFH.(3)
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We denote by N+F ⊂ NF the closed set of normal vectors that point into the
manifold M. They are exactly those vectors which have non-negative x-components.

The group (0,∞)k = R∗k+ acts naturally on N+F by dilations. Consider the
projective compactification of the closed half-line (as in (54) in the appendix)

[0,∞) 3 s −→ s− 1
s+ 1

∈ [−1, 1].(4)

The multiplicative action of (0,∞) on [0,∞) lifts to be smooth on [−1, 1], so the k-
fold application of this compactification embeds the inward pointing normal bundle
N+F = [0,∞)k × F to any boundary face of a manifold with corners into N+F ∼=
[−1, 1]k × F with the C∞ structure on the compactification independent of the
choice of boundary defining functions used to produce the trivialization; the action
of R∗k+ lifts to be smooth on N+F.

These compactified inward-pointing normal bundles to the boundary faces play
an important rôle in the ‘localization’ of operators at the boundary. In particular,
the space N+F is a ‘model’ for M near F. If G ⊂ F is a pair of boundary faces
then the closure in N+F of the union N+

GF of the fibers over G forms a boundary
face GNF ⊂ N+F. Use of the boundary defining functions shows that there is a
natural identification of the compactified inward-pointing normal bundle of GNF ,
as a boundary face of N+F , with N+G :

N+GNF ≡ N+G.(5)

Now the action of (0,∞)k by dilations lifts to an action on L2(N+F,Ω
1
2
b ) :

(6) λε(u)(x1, . . . , xk, y1, . . . , yn−k)

= u(ε−1
1 x1, . . . , ε

−1
k xk, y1, . . . , yn−k), ε = (ε1, . . . , εk).

This action is independent of the choice of defining functions; here Ωb is the b-
density bundle, with global section νb = ν/

∏
H∈F1(M) ρH .

The exponential map associated to the Levi-Civita connection of a metric of
product type, as described above, gives a diffeomorphism from a neighborhood VF
of the zero section in N+F to an open neighborhood of F in M :

ΦF = exp : VF −→M, VF ⊂ N+F.

Due to the particular choice of the metric h, ΦF is a diffeomorphism of manifolds
with corners, which maps the zero section of NF onto F.

Let ϕF be a smooth function on M, 0 ≤ ϕF ≤ 1, supported inside ΦF (VF ), and
such that ϕF = 1 in a neighborhood of F. Later we shall later use the maps

LF : L2(N+F,Ω
1
2
b ) = L2(N+F,

dx1 . . . dxk
x1 . . . xk

dy1 . . . dyn−k) −→ L2(M,Ω
1
2
b ),

where LF (u) = ϕF (u ◦ Φ−1
F ).

(7)

The maps LF are well defined since suppϕF ⊂ ΦF (VF ).
The b-pseudodifferential operators considered here are obtained by a process of

‘microlocalization’ of the Lie algebra, Vb(M), of smooth vector fields which are tan-
gent to all the boundary faces. As such, they are closely related to the b-cotangent
bundle bT ∗M. This bundle is naturally defined over any manifold with corners. Over
the interior bT ∗M is canonically identified with T ∗M, but at a boundary point p
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its fiber is the space of equivalence class of differentials∑
p∈H

aH
dρH
ρH

+ dφ, aH ∈ R, H ∈ F1(M), φ ∈ C∞(M),(8)

modulo the space of smooth differentials which, after being pulled back to F =⋂
p∈H

H, vanish at p. It can be defined more naturally as the dual bundle to the

bundle bTM , with sections consisting precisely of the space Vb(M).

2. The algebra of b-pseudodifferential operators

Two definitions of the algebra of b-pseudodifferential operators are recalled in
the appendix. The most accessible of these starts from an explicit description of
the algebra Ψ∗b(M) for the special, model, case of M = [−1, 1]n. The general case
is then obtained by localization and Ψ∗b(M) consists of operators from C∞c (M) to
C∞(M). If M is a manifold without boundary this definition reduces to that of
1-step polyhomogeneous (i.e. classical) pseudodifferential operators in the usual
sense. The second approach, readily shown to be equivalent to the first, is to
define the appropriate class of kernels directly on a stretched version of M2. This
intrinsically global approach has the virtue of making many of the proofs below
transparent.

We shall be concerned mainly here with the algebra Ψ0
b(M) of (1-step polyho-

mogeneous) b-pseudodifferential operators of non-positive integral order on M, a
given compact manifold with corners. It is a ?-closed algebra of bounded operators
on L2

b(M) and is a Frechet space.
As in the boundaryless case, the principal invariant of a pseudodifferential op-

erator is its principal symbol, it is a function on the b-cotangent space. Let bS∗M
be the quotient of bT ∗M \ 0 by the fiber action of (0,∞) and let Pm be the bundle
over bS∗M with sections which are homogeneous functions of degree m on bT ∗M.

Proposition 1. There is a natural short exact sequence

0 −→ Ψm−1
b (M) ↪→ Ψm

b (M) σm−→ C∞(bS∗M ;Pm) −→ 0,(9)

which is multiplicative if M is compact, where σm(A) is determined by ‘oscillatory
testing’ in the sense that if ψ ∈ C∞c (M), φ ∈ C∞(M) is real valued and aH ∈ R are
such that the corresponding section α of bT ∗M given by (8) is non-vanishing over
the support of ψ, then

σm(A;α)ψ = lim
λ→∞

λ−m
∏
p∈H

ρiλaHH eiλφA
( ∏
p∈H

ρ−iλaHH e−iλφψ
)
.(10)

In case m = 0, we simplify the notation and write σ0 = σ; the bundle P 0 is
canonically trivial, so the short exact sequence (9) becomes

0 −→ Ψ−1
b (M) ↪→ Ψ0

b(M) σ−→ C∞(bS∗M) −→ 0.(11)

The algebra Ψ0
b(M) acts as bounded operators on L2

b(M), and (10) gives

‖σ(A)‖ ≤ ‖A‖.

However, when the boundary is non-trivial, the ideal Ψ−1
b (M) does not map into the

compact operators. To capture compactness, we need to consider the localization of
the operators at boundary faces. To do so, we introduce a subalgebra of Ψ0

b(N+F ),
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where F ∈ F(M) and N+F is the compactified inward-pointing normal bundle
discussed above.

Definition 1. If M is a compact manifold with corners then, the indicial algebra
Ψ∗b,I(N+F ) corresponding to a boundary face F ⊂ M is the algebra consisting of
those b-pseudodifferential operators on N+F which are invariant under the natural
R∗k+ action (6).

The operators T ∈ Ψ∗b,I(N+F ) of order at most m form a subspace denoted
Ψm
b,I(N+F ), so Ψ∗b,I(N+F ) =

⋃
m Ψm

b,I(N+F ). These spaces are delineated by the
symbol maps σm defined above, with M replaced by N+F. The R∗k+ action on
bS∗N+F makes it a bundle over bS∗FM, the restriction of bS∗M to F, with fiber
[−1, 1]k. The symbols of elements of Ψ0

b,I(N+F ) are invariant under this action, so
we define a ‘reduced’ symbol map

σF : Ψ0
b,I(N+F ) −→ C∞(bS∗FM).(12)

It gives rise to a short exact sequence for the indicial operators

0 −→ Ψ−1
b,I (N+F ) ↪→ Ψ0

b,I(N+F ) σF−→ C∞(bS∗FM) −→ 0.(13)

Every b-pseudodifferential operator has an invariant indicial operator at each
boundary face. To define it, let LF be as in (7).

Theorem 1. For any boundary face F ∈ F(M) there is a surjective morphism

InF,M : Ψ0
b(M) −→ Ψ0

b,I(N+F )

independent of any choices and uniquely determined by the property

InF,M (T )u = lim
εi→0

(λε−1L∗FTLFλε)u(14)

for any u ∈ C∞c (N+F ), ε = (ε1, . . . , εk), k being the codimension of F.

Although this is a basic result of the calculus, we outline a ‘local’ proof and then
describe the global approach.

Proof. Suppose that T ∈ Ψ0
b(M). As discussed in the Appendix, T is locally of the

form (55). If x1, . . . , xk are defining functions for the face to which p belongs and
y1, . . . , yn−k are additional local coordinates then the defining formula (55) reduces
to

(15) Tu(x, y) =

∞∫
0

· · ·
∞∫

0

∫
Rn−k

T (x1, . . . , xk, x
′
1, . . . , x

′
k, y1, . . . , yn−k, y

′
1, . . . , y

′
n−k)

u(x′1x1, . . . , x
′
kxk, y

′
1, . . . , y

′
n−k)

dx′1
x′1

. . .
dx′k
x′k

dy′1 . . . dy
′
n−k,

where now T (s, x, y, y′) is conormal at x′i = 1, y = y′ or smooth as the localizing
functions are in the same or different coordinate patches; it is still rapidly decreasing
as x′i → 0 or ∞ and now has compact support in y, y′.
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Since the computation is local, we can assume that T = L∗FTLF , and then

(16) (λε−1Tλε)u(x, y)

=

∞∫
0

· · ·
∞∫

0

∫
Rn−k

T (ε1x1, . . . , εkxk, x
′
1, . . . , x

′
k, y1, . . . , yn−k, y

′
1, . . . , y

′
n−k)

u(x′1x1, . . . , x
′
kxk, y

′
1, . . . , y

′
n−k)

dx′1
x′1

. . .
dx′k
x′k

dy′1 . . . dy
′
n−k

(after a dilation in the x′-variables). This shows immediately the existence of the
limit as ε→ 0 in the statement, and that the the localized indicial operator is given
by

(17) InF,M (T )u =

∞∫
0

· · ·
∞∫

0

∫
Rn−k

T (0, . . . , 0, x′1, . . . , x
′
k, y1, . . . , yn−k, y

′
1, . . . , y

′
n−k)

u(x′1x1, . . . , x
′
kxk, y

′
1, . . . , y

′
n−k)

dx′1
x′1

. . .
dx′k
x′k

dy′1 . . . dy
′
n−k,

for any u ∈ Ċ∞(N+F ), this is an element of Ψ0
b,I(N+F ).

To see the surjectivity of the indicial morphism for F , it is enough to work locally
on F 2, since the invariance properties are preserved under such localization. Thus
T ′ can be assumed to have support in a product of coordinate patches, so takes
the form (17). Inserting cut-off factors φ(xj) and ψ(xj/x′j), for j = 1, . . . , k, where
φ, ψ ∈ C∞(R) have supports near 0 and 1, respectively, and satisfy φ(0) = 1 and
ψ(1) = 1, gives an element T ∈ Ψ0

b(M) with InF,M (T ) = T ′.

In the global description of the kernels as distributions onM2
b , the stretched prod-

uct of M with itself, the indicial morphism simply corresponds to the restriction of
the kernel to a boundary face of M2

b . Let H1, . . . , Hk be the boundary hypersurfaces
containing F. Each of the boundary faces Hi×Hi is blown up in the construction of
M2

b from M2 so corresponds to a boundary hypersurface ff(Hi) ∈ F1(M2
b). Consider

the component lying above F of the intersection of these ff(Hi). It is canonically
isomorphic to the corresponding face in the stretched product of the model space at
F, (N+F )2

b, and InF,M (A) is the unique element of Ψm
b,I(N+F ) with kernel having

the same restriction as A to this face.
Recall that if G ⊂ F are both boundary faces of M , then G determines a

boundary face GF of N+F ; using the identification (5), the boundary maps can be
iterated and identified directly from the formulæ in the proof above.

Corollary 1. If G ⊂ F are boundary faces of M , then the indicial maps satisfy

In
GF ,N+F

◦ InF,M = InG,M .(18)

The null space of the indicial map for a boundary hypersurface is easily seen from
the local coordinate discussion above, or even more readily from the more direct
global definition. Namely, for each H ∈ F1(M), there is a short exact sequence

0 −→ ρHΨm
b (M) ↪→ Ψm

b (M)
InH,M
−−−→Ψm

b,I(N+H,M) −→ 0.(19)

This has a useful extension to several hypersurfaces.
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Lemma 1. If Hi ∈ F1(M), for i = 1, . . . , L, is a collection of boundary hyper-
surfaces, the joint null space of the indicial maps InHi,M is ρ1 . . . ρLΨ0

b(M), where
ρi = ρHi are defining functions for the Hi.

Proof. Proceed by induction over L. By (19), if InH1,M (T ) = 0, then T = ρ1T1.
Now, from the fact that InHi,M is a morphism:

0 = InHi,M (T ) = InHi,M (ρ1T1) = ρ1|Hi InHi,M (T1) =⇒
InHi,M (T1) = 0, ∀ i > 1.

Applying the inductive hypothesis to T1, for these L − 1 hypersurfaces, gives the
inductive hypothesis for L hypersurfaces.

The b-pseudodifferential operators of order m define bounded operators on the
natural Sobolev spaces A : H l

b(M) −→ H l−m
b (M), for any l. As such, an operator

A is compact if and only if its symbol vanishes (hence it is in Ψm−1
b (M)) and all its

indicial operators vanish, so it is in ρΨm
b (M), where ρ =

∏
H∈F1(M) ρH , (and so, in

fact, is in ρΨm−1
b (M)).

Let us note some examples of b-pseudodifferential operators. If M is a mani-
fold with corners and M ↪→ M̃ is embedded in a manifold without boundary, of
the same dimension (say by doubling across the boundary hypersurfaces), then the
pseudodifferential operators of order m on M̃ with kernels supported in M2 are in
Ψm

b (M). Examples of the indicial operators can be obtained in a similar way. Con-
sider a pseudodifferential A operator of order m on Rk×F, where ∂F = ∅, which is
invariant under all translations in Rk and has its convolution kernel (on Rk × F 2)
compactly supported. Then compactifying Rk to [−1, 1]k by first mapping each
component xi ∈ R to ti = exp(xi) ∈ (0,∞) and then using the projective compact-
ification, (4), gives an operator in Ψm

b ([−1, 1]k × F ) which is (R∗+)k invariant. If F
is realized as a boundary face of any manifold with corners M , this construction
gives many elements of Ψm

b,I(N+F ), enough to span the space modulo Ψ−∞b,I (N+F ).

3. Indicial family

The indicial morphism is closely related to the fact that Ψm
b (M) is invariant

under conjugation by complex powers of each boundary defining function, i.e.

Ψm
b (M) 3 A 7−→ ρ−zH AρzH ∈ Ψm

b (M), z ∈ C(20)

is an isomorphism. Taking z = 1, it follows that AρHv = ρH(ρ−1
H AρH)v vanishes

on H ∈ F1(M), for any v ∈ C∞(M). Thus, if u ∈ C∞(H), then

AHu = (Aw)|H , w ∈ C∞(M), w|H = u(21)

defines an operator on C∞(H). This restriction map is a surjective morphism

Ψm
b (M)

|H−→ Ψm
b (H).(22)

Using the Mellin transform, the relationship between InH,M (A) and A|H is easily
seen to be

InH,M (A)(dρH)zf = (dρH)z(ρ−zH AρzH)|Hf,

where dρH is a well-defined function on NH and hence a distribution on N+H.
This follows directly from the limiting formulæ in the proof of Theorem 1. For a
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boundary face of codimension k, the analogous result holds using the k defining
functions for the boundary hypersurfaces containing F.

It is therefore natural to define the indicial family of A ∈ Ψm
b (M) at F ⊂ Fk(M)

by

ÎnF,M (A; z1 . . . , zk) =
(
ρ−z11 ρ−z22 · · · ρ−zkk Aρz11 ρ

z2
2 · · · ρ

zk
k

)
|F ∈ Ψm

b (F ),(23)

where A ∈ Ψm
b,I(N+F ). Note that the definition does depend on the choice of

defining functions for the boundary hypersurfaces containing F.
Although it is straightforward to characterize the range of the map in (23), less

precise information suffices for our purposes below.

Proposition 2. The indicial family ÎnF,M (A; z) determines A ∈ Ψm
b,I(N+F ) in

the sense that if ÎnF,M (A; z) vanishes for all z ∈ Rk then A = 0. For any A ∈
Ψm
b,I(N+F ), ÎnF,M (A; z) is an entire function of z ∈ Ck with values in Ψm

b (F ). If

m < 0, then, as operators on the Sobolev spaces L2
b(F )→ H

−m/2
b (F ),

‖ ÎnF,M (A; z)‖0, 12m ≤ C(1 + |z|) 1
2m, z ∈ Rk.(24)

The range of ÎnF,M includes all entire functions of g(z) with values in the space
Ċ∞(F 2;π∗RΩbF ), of fully smoothing kernels, satisfying the estimates

sup
|=z|≤C

(1 + |z|)p‖f(z, ·)‖ <∞,(25)

for every C, p and seminorm ‖ • ‖ on Ċ∞(F 2;π∗RΩbF )

Proof. Consider the second result first. Fixing a positive global section of Ωb, the
elements of Ψ−∞b (M) correspond to smooth functions on M2

b vanishing to infinite
order at all boundary hypersurfaces other than the ff(H), H ∈ F1(M). In the
case of N+F, the elements of Ψ−∞b,I (N+F ) correspond exactly to those elements of
C∞(F 2

b × [−1, 1]k) vanishing on all boundary hypersurfaces other than the ff(G)×
[−1, 1]k, G ∈ F1(F ). In particular,

Ċ∞(F 2 × [−1, 1]k) = Ċ∞(F 2
b × [−1, 1]k) ⊂ Ψ−∞b,I (N+F ),(26)

since these are the smooth functions vanishing to infinite order at all boundary
faces. Since the indicial family is obtained by taking the Mellin transform in each
of the variables in [1, 1]k, the Paley-Wiener theorem shows that entire smoothing
operators satisfying (25) are in the range of ÎnF,M .

The first part of the statement follows from similar standard estimates for the
Mellin transform (and hence the Fourier transform).

4. Joint symbols

By combining the definitions of the symbol map in (10) and of the indicial oper-
ator in (14), the compatibility condition between the two is immediately apparent

σF (InF,M (T )) = σ(T )|F , ∀ T ∈ Ψ0
b(M).

These are the only compatibility conditions. This can be formalized by defining
the joint symbol

j(T ) = σ(T )⊕
⊕

H∈F1(M)

InH,M (T ) ∈ C∞(bS∗M)⊕
⊕

H∈F1(M)

Ψ0
b,I(N+F ).
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In view of (18), all the indicial operators for boundary faces of codimension greater
than 1 can also be extracted from j(T ).

Proposition 3. The joint symbol map has as range the subspace{
(a, SH); a ∈ C∞(bS∗M), SH ∈ Ψ0

b,I(N+H) such that σH(SH) = a|H and

In
GF ,N+H

(SH) = In
GF ,N+H′

(SH′), ∀ F ⊂ H ∩H ′, F ∈ F(M)
}
.

Proof. That these compatibility conditions on the range hold has already been
shown. To prove the surjectivity of j it is convenient to prove the more gen-
eral statement that for any collection of boundary hypersurfaces Hi and and Si ∈
Ψ0
b,I(N+Hi) there exists T ∈ Ψ0

b(M) with InHi,M (T ) = Si proved that the cor-
responding compatibility conditions are satisfied, that whenever F ∈ F(M) and
F ⊂ Hi ∩Hj

In
GF ,N+Hi

(Si) = In
GF ,N+Hj

(Sj).

This is the desired result for the set of all boundary hypersurfaces and is already
known from the exactness in (19) for one hypersurface.

We proceed by induction over the number L of hypersurfaces. By the surjectivity
of the indicial map at H1 we can choose T1 ∈ Ψ0

b(M) so that InH1,M (T1) = S1;
set S′i(1) = InHi,M (T1), for i > 1. Consider the differences, Si − S′i ∈ Ψ0

b,I(N+Hi),
for each i > 1. By Corollary 1 if F ∈ F(M) is a component of H ∩ Hi and Fi is
the corresponding face of Hi then In

Fi,N+Hi
(Si−S′i) = 0. Since ρH |Hi is a product

of defining functions for these boundary faces, as boundary hypersurfaces of Hi it
follows that Si − S′i = ρH |HiS′′i , with S′′i ∈ Ψ0

b,I(N+Hi). Now the S′′i satisfy the
compatibility conditions for the remaining L − 1 hypersurfaces, therefore, by the
inductive hypothesis, there exists T ′ ∈ Ψ0

b(M) with InHi,M (T ′) = S′′i , for i > 1.
Then T = T1 + ρHT

′ satisfies the requirements of the inductive hypothesis.

More generally, if F is a boundary face of M , we can define a ‘joint symbol
morphism’ for the indicial algebra at F by

jF (T ) = σF (T )⊕
⊕

H∈F1(F )

InH,F,M (T ) ∈ C∞(bS∗FM)⊕
⊕

H∈F1(F )

Ψ0
b,I(N+H).(27)

The same argument as in the proof of the proposition above identifies the range of
this morphism as the set of operators satisfying the ‘obvious’ compatibility condi-
tions:

RF,M =
{

(f, TH) ∈ C∞(bS∗FM)⊕
⊕

H∈F1(F )

Ψ0
b,I(N+H);

InH,F,M (TH′) = InH′,F,M (TH), ∀ H,H ′ ∈ F1(F ) and σH(TH) = f |H
}
.

Proposition 4. For any boundary face F of M , the joint symbol map at F gives
a short exact sequence

0 −→ ρFΨ−1
b,I (N+F ) −→ Ψ0

b,I(N+F ) −→ RF,M −→ 0,(28)

where ρF ∈ C∞(F ) is the product of boundary defining functions for the boundary
hypersurfaces of F.
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Combining the indicial operators at the boundary faces of a given dimension
with the symbol, consider

jl : Ψm
b (M) −→ C∞(bS∗M)⊕

⊕
F∈Fl(M)

Ψm
b,I(N+F ), jl(A) = (σm(A), InF,M ).(29)

The range of this map is the subspace satisfying the appropriate compatibility
conditions on a and AF ∈ Ψm

b,I(N+F ), F ∈ F l(M):

σm(AF ) = a|bS∗FM , InG,F,M (AF ) = InG,F ′,M (AF ′), ∀ F ′ ∈ F l−1(M), G ⊂ F ∩ F ′.
(30)

The null space is simply

ker(jl) = {A ∈ Ψ−1
b (M); InG,M = 0, ∀ G ∈ F l(M)},(31)

with jF given in (27).

5. The norm closure, A(M)

Next we discuss the properties of the algebra, A(M), obtained by taking the
norm closure of Ψ0

b(M) as an algebra of bounded operators on L2
b(M). The com-

pactified normal space of a boundary face is a special case and then we also
denote by A(F,M) ⊂ A(N+F ) the closure in norm of the invariant subalge-
bra Ψ0

b,I(N+F ) ⊂ Ψ0
b(N+F ). The closure in norm of Ψ−1

b,I (N+F ) ⊂ Ψ0
b,I(N+M)

will be denoted A−(F,M) ⊂ A(F,M). Thus A(M) = A(M,M) and A−(M,M)
will be similarly denoted A−(M). Notice that A−(F,M) is also the closure of
Ψ−∞b,I (N+F ) ⊂ Ψ−1

b,I (N+F ), since by standard properties of conormal distribu-
tions, Ψ−∞b,I (N+F ) is dense in Ψ−1

b,I (N+F ) in the topology of bounded operators
on L2

b(M). The same argument shows that A−(F,M) is the closure of Ψ−εb,I(N+F )
for any ε > 0.

Each of these norm closed algebras of operators on a Hilbert space is closed under
conjugation, so by the theorem of Gelfand and Naimark they are all C∗-algebras.
Below we will use the fact that any algebraic morphism of C∗-algebra is continuous
and has closed range [8]. In particular, as in the case of a compact manifold without
boundary the symbol map extends by continuity.

For a locally compact space X, we shall denote by C0(X) the C∗-algebra of
those continuous functions on X that vanish at infinity. It is the norm closure in
supremum norm of the algebra Cc(X) of continuous compactly supported functions
on X. If X is a smooth manifold the set of compactly supported smooth functions
will be denoted by C∞c (X); it is also dense in C0(X).

Proposition 5. The symbol maps in (13) and (12) extend by continuity to surjec-
tive maps

σ : A(M) −→ C(bS∗M) and σF : A(F,M) −→ C(bS∗FM).(32)

Proof. Consider first the full algebra A(M). From the oscillatory testing property
of the principal symbol map, Proposition 1, it follows that ‖σF (T )‖ ≤ ‖T‖, for all
T ∈ Ψ0

b(M). Moreover, the principal symbol morphism σF is a ∗-morphism, i.e. it
satisfies

σF (T ∗) = σF (T ).
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Consequently its range is closed [8]. The same is true for the indicial algebras, just
replacing M by N+F. Since the range of σF contains C∞(bS∗FM), which is dense in
C(bS∗FM), the maps in (32) are surjective.

Essentially the same proof shows that the indicial morphisms also extend to the
norm closed algebras introduced above.

Proposition 6. For any boundary faces F of M , the indicial morphisms extend
to surjective maps

InF,M : A(M) −→ A(F,M),
and for any pair of boundary faces G ⊂ F

InG,F,M : A(F,M) −→ A(G,M)(33)

is defined by continuous extension of In
GF ,N+F

, and hence satisfies

InF,F,M = InF,M,M = InF,M and InF ′′,F ′,M ◦ InF ′,F,M = InF ′′,F,M
for any triple of boundary faces F ′′ ⊂ F ′ ⊂ F.

Proof. It follows from the definition of the indicial morphisms InF,M given in The-
orem 1 that they satisfy

‖ InF,M (T )u‖ = ‖ lim
εi→0

(λε−1L∗FTLFλε)u‖ ≤ ‖T‖ ‖u‖

and hence ‖ InF,M (T )‖ ≤ ‖T‖. This show that InF,M extends by continuity to the
norm closure. The surjectivity follows from the corresponding surjectivity of the
indicial maps in Theorem 1; the remainder of the proof now follows from Corollary 1.

6. Cross-sections

In order to analyze the null spaces of the symbol map, (32), and of the indicial
morphism, (33), we construct a cross-section for InG,F,M .

Proposition 7. For each F ∈ F(M) and each G ∈ F1(F ), there is a linear map
λF,G : A(G,M) −→ A(F,M) with the following properties:

λF,G(Ψ0
b,I(N+G)) ⊂ Ψ0

b,I(N+F ),(34)

InG,F,M ◦λF,G(T ) = T, ∀ T ∈ A(G,M),(35)

‖λF,G(T )‖ ≤ ‖T‖,(36)

and, whenever G′ ∈ F(F ) is another face with G′ 6⊂ G, then

InG′,F,M ◦λF,G(T ) = 0, if G ∩G′ = ∅
InG′,F,M ◦λF,G(T ) = λG′,K ◦ InK,G,M (T ), if K is a component of G ∩G′.

(37)

Note that in (37), G∩G′ is either empty or else is a non-trivial union of boundary
hypersurfaces of G′.

Proof. Initially, we define λH,M , for every H ∈ F1(M), by the formula

λM,H(T ) = LHTL
∗
H ,

where LH is as in (7).
For an arbitrary pair (F,G), as in the statement, there exists a unique H ∈

F1(M) such that G is a component of F ∩ H; let the other components be Gi,
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i = 1, . . . , L. Using the local coordinate representations above we see that the
indicial operator InF,M ◦λM,H(T ) depends only on InG,H(T ) and the InGi,H(T ).
Hence we can define the linear section λF,G by the requirement

(38) λF,G ◦ InG,H(T ) = InF,M ◦λM,H(T ),

∀ T ∈ A(H,M) with InGi,H,M (T ) = 0, i = 1, . . . , L.

Here we use the disjointness of these boundary hypersurfaces to conclude that
InG,H.M is still surjective onto A(G,M) when the domain is restricted as in (38).

Consider now three faces F, G and G′, G ∈ F1(F ), G′ ⊂ F, as in the statement
of the proposition. Let H ∈ F1(M) be such that G is a component of F ∩H, with
the Gi as above. Then, for all T ∈ A(H,M) with InGi,H(T ) = 0

InG′,F ◦λF,G ◦ InG,H(T ) = InG′,F ◦ InF,M ◦λM,H(T ) = InG′,F ◦λM,H .

Thus

InG′,F ◦λF,G ◦ InG,H(T ) = 0, if G′ ∩H = ∅.

This is enough to conclude the proof in the case G′ ∩G = ∅.
On the other hand, if G′ ∩ H 6= ∅ and K is one of its components, then it is

necessarily a boundary hypersurface of G′, so λG′,K is defined and

InG′,F ◦λF,G ◦ InG,H(T ) = λG′,K ◦ InK,G ◦ InF ′,F0(T ),

where we have used the definition (38), the properties of the indicial morphisms
proved in the previous proposition. This completes the proof of the Proposition.

By placing extra conditions on the functions φF it is actually possible to define
λG,F satisfying InG,F ◦λG,F = Id and λG′,G ◦ λG,F = λG′,F .

Corollary 2. Let TF ′ ∈ A(F ′,M), respectively TF ′ ∈ Ψ0
b,I(N+F ′), F ′ ∈ F1(F ),

satisfy the compatibility condition

InG,F ′(TF ′) = InG,F ′′(TF ′′)

for all pairs F ′, F ′′ and any connected component G of F ′ ∩ F ′′. Then we can
find T ∈ A(F,M), respectively T ∈ Ψ0

b,I(N+F ), such that TF ′ = InF ′,F (T ) and
‖T‖ ≤ C max ‖TF ′‖, where the constant C > 0 depends only on the face F.

Proof. Let F1(F ) = {F1, F2, . . . , Fm} and define T1 = λF,F1(TF1) ∈ A(F,M) (re-
spectively T1 ∈ Ψ0

b,I(N+F )) and

Tl+1 = Tl + λF,Fl+1(TFl+1 − InFl+1,F (Tl)).

We will prove by induction on l that InFj ,F (Tl) = TFj for all indices j ≤ l. Indeed,
for l = 1, this is the basic property of the sections λ. We first prove the inductive
statement for l + 1 and j ≤ l.

If Fj ∩ Fl+1 = ∅, then InFj ,F ◦λF,Fl+1 = 0. If Fj ∩ Fl+1 6= ∅, we have

InFj ,F ◦λF,Fl+1 = λFj ,Fj∩Fl+1 InFj∩Fl+1,Fl+1 .
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Using the inductive hypothesis for l and the compatibility relation from the as-
sumptions of the Corollary, we have

InFj∩Fl+1,Fl+1(TFl+1 − InFl+1,F (Tl))

= InFj∩Fl+1,Fl+1(TFl+1)− InFj∩Fl+1,F (Tl)

= InFj∩Fl+1,Fl+1(TFl+1)− InFj∩Fl+1,Fj ◦ InFj ,F (Tl)

= InFj∩Fl+1,Fl+1(TFl+1)− InFj∩Fl+1,Fj (TFj ) = 0.

Thus in both cases InFj ,F (Tl+1) = InFj ,F (Tl) = TFj . Finally, for j = l + 1,
InFj ,F ◦λF,Fl+1 = Id and

InFl+1,F (Tl+1) = InFl+1,F (Tl)− TFl+1 − InFl+1,F (Tl) = TFl+1 .

From this construction we may take C = 3m−1.

It is also possible to construct a cross-section for the symbol map; however, we
content ourselves with the existence of suitable liftings.

Proposition 8. For any compact manifold with corners M there is a constant C
such that for any a ∈ C∞(bS∗M) there exists A ∈ Ψ0

b(M) with

σ(A) = a and ‖A‖L2
b (M) ≤ C‖a‖L∞(bS∗M).(39)

In the case of a normal space N+F, if a ∈ C∞(bS∗FM), then A can be chosen in
Ψ0
b,I(N+F ).

Proof. It suffices to assume that a is real-valued. We will prove the general state-
ment following (39) using induction over the maximal codimension of boundary
faces for F (not M, the manifold of which it is a boundary face.) Note that we al-
ready know the symbol map to be surjective, it is the norm estimate on an element
in the preimage of a that we need.

The basic case where M is compact without boundary is well known. Indeed,
for any A ∈ Ψ0(M) with symbol a, the spectrum of A outside the disk of radius
‖a‖L∞(S∗M) is discrete and consists of finite rank smooth eigenspaces. Since A can
be replaced by its self-adjoint part, it splits as a sum of the orthogonal actions on
the eigenspaces corresponding to eigenvalues in |z| ≤ 2‖a‖L∞ and those outside
this disk. The latter part is a smoothing operator, so subtracting it gives (39) with
C = 2.

To complete the initial step in the induction we need the more general, indicial,
case with F a manifold without boundary which is a boundary face of M. Thus,
given a ∈ C∞(bS∗FM), we need to find A ∈ Ψ0

b,I(N+F ) with symbol a and satisfying
(39). We can replace M by N+F ∼= [−1, 1]k × F and then a can be interpreted
as a smooth function on the sphere bundle of Rk × T ∗F. Consider the compact
manifold F̃ = Tk × F, Tk = Rk/Zk being the standard torus. Now, T ∗F̃ =
Tk×(Rk×T ∗F ) under the standard Rk action. Thus a can be interpreted as an Rk
invariant function on S∗F̃ . As such the discussion for a compact manifold applies,
and gives A1 ∈ Ψ0(F̃ ) with symbol a satisfying (39). In fact, A1 can be taken to
have kernel supported in any preassigned neighborhood of the diagonal in F̃ 2; it is
only necessary to take a sufficiently fine partition of unity, φi on F̃ and discard all
terms φiA1φj , where the supports of φi and φj are disjoint. Furthermore, if this
neighborhood is invariant under the diagonal Rk action, it can be assumed that
A is invariant, by averaging (over the dual torus). Now such a sufficiently small
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neighborhood of the diagonal in F̃ 2 can be identified unambiguously as the image
under projection on both factors of a neighborhood of the diagonal in (Rk × F )2

which is invariant under the diagonal Rk action. The kernel A1 lifts to a unique Rk
invariant kernel A with support in this neighborhood of the diagonal. As noted in
§ 2 operators of this type are in Ψ0

b([−1, 1]k × F ). Certainly, A has symbol a, and
the estimate (39) holds, for a larger C.

Proceeding by induction suppose that the result is known for all faces F them-
selves having boundary faces only up to codimension k−1 in any compact manifold
with corners. Suppose F has boundary faces up to dimension k and a ∈ C∞(bS∗FM)
is given. Order the boundary hypersurfaces of F as H1, H2, . . . , HL, and let H ′i
be the corresponding boundary faces of M. The inductive hypothesis applies to
a|H′1 giving A1 ∈ Ψ0

b,I(N+Hi). Using the section for indicial operators, choose
A′1 ∈ Ψ0

b,I(N+F ) with InHi,F,M (A′1) = A1. Subtracting the symbol of A′1 from
the given a, we can now assume that a|H1 = 0. Proceeding successively with the
boundary faces, we can assume that a|Hi = 0, for i < j, provided we can then con-
struct A′j ∈ Ψ0

b,I(N+F ) with symbol aj such that aj = a on Hi, i ≤ j (so vanishes
for i < j). Simply choose Aj ∈ Ψ0

b,I(N+F ) as above, for j = 1, by extension of
A′j ∈ Ψ0

b,I(N+Hj) with symbol A|Hj . By construction and the properties of the
section for indicial operators, the symbols of all the InHi,F,M (Aj), for i < j, vanish.
Proceeding in this way, and then summing the Ai over the boundary hypersurfaces
of F gives an element A′ ∈ Ψ0

b,I(N+F ) which satisfies the norm estimate (39) and
has all InHi,H,M (A′) with the correct symbols.

Thus we are reduced to the case that a ∈ C∞(bS∗FM) vanishes when restricted
to each of the bS∗HM with H a boundary hypersurface of F, i.e. vanishes at the
boundary of F. Let ρ be the product of defining functions for the boundary hy-
persurfaces of F. Thus we can choose B ∈ Ψ0

b,I(N+F ) with σF (Bρ) = a. Select
φ ∈ C∞(R) with 0 ≤ φ(r) ≤ 1, φ(0) = 1 and ρ(r) = 0, r > 1

2 . Then the function
φ(ρ/δ) ∈ C∞(F ) is 1 on the boundary but with support in ρ < 1. In this case we
can cut off close to the boundary of F. Thus

‖Bρφ(ρ/δ)‖ ≤ δ‖B‖

and σF (Bρφ(ρ/δ) = aφ(ρ/δ). Choosing δ small we are finally reduced to the case
that the symbol takes the form a′ = (1− φ(ρ/δ))a, so vanishes identically near the
boundary of F. Returning to the beginning of the induction, we can simply double
F across all its boundary hypersurfaces to a manifold without boundary and choose
an appropriately bounded A′ with symbol a′. Again cutting off the kernel near the
boundary of F, in both factors, does not change the symbol and gives an element
of Ψ0

b,I(N+F ). This completes the inductive step.

7. Symbol sequences

Using these cross-sections, we can now analyze the short exact sequences for the
symbol maps on the completed algebras.

Proposition 9. The symbol map (12) gives a short exact sequence

0 −→ A−(F,M) −→ A(F,M) σF−→ C(bS∗FM) −→ 0,(40)

where A−(F,M) is the norm closure of Ψ−1
b,I (N+F ).
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Proof. Only the exactness at A(F,M) remains to be shown. By continuity of the
symbol map, the algebra A−(F,M) is contained in the null space of σF , so suppose
A ∈ A(F,M) and σF (A) = 0. By definition, there is a sequence Bn ∈ Ψ0

b,I(N+F )
with Bn → A in norm. Continuity of the symbol map shows that an = σF (Bn)→ 0
in L∞. Using Proposition 8 we can choose An ∈ Ψ0

b,I(N+F ) with σ(An) = an and
‖An‖ ≤ C‖an‖ → 0. Then Bn − An → A in norm and σF (Bn − An) = 0, so
A ∈ A−(F,M).

For a given face F of M we are particularly interested in the joint symbol mor-
phism jF and the replacement for (28) for the completed algebras. Denote by K(H)
the algebra of compact operators on a Hilbert space H,

Proposition 10. For any boundary face F of codimension k in M the (continuous
extension of) the joint symbol map at F gives a short exact sequence

0 −→ KF,M −→ A(F,M) −→ RF,M −→ 0,(41)

where there is an isomorphism of C∗ algebras

KF,M ≡ C0(Rk;K(L2
b(F ))(42)

and

RF,M =
{

(f, TH) ∈ C(bS∗FM) ⊕
⊕

H∈F1(F )

A(H,M); InG,H′,M (TH′) = InG,H,M (TH),

∀ G,H,H ′ ∈ F1(F ), G ⊂ H ∩H ′ and σH(TH) = f |H
}
.

Proof. Use of the sections for the indicial morphisms and the lifting property for the
symbol map, as above, shows that the norm completion of RF,M in (28) is precisely
RF,M as defined above. Similarly, as in the proof above, the sequence (41) is exact
if KF,M is interpreted as the norm completion of the null space, ρFΨ−1

b,I (N+F ) in
(28). Thus the significant part of the proposition is the identification of the null
space, equation (42). This identification follows from Proposition 2.

Similar considerations apply to the maps jl in (29).

Proposition 11. For each l, the map jl extends by continuity to a morphism defin-
ing a short exact sequence

0 −→ Il −→ A(M) −→ Bl,M −→ 0,(43)

where Bl,M ⊂ C(bS∗M) ⊕
⊕

F∈Fl(M)

Ψ0
b,I(N+F ) is the subalgebra fixed by the com-

patibility conditions in (30), and where the null space Il if given by

Il = {A ∈ A−(M); InF,M (A) = 0, ∀ F ∈ F l(M)},(44)

just the closure of the space in (31).

8. Composition series

Using these results on the joint symbols we can now see that the null spaces of
the morphisms jl give a composition series for the completed algebra.
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Theorem 2. The norm closure A(M) of the algebra of b-pseudodifferential op-
erators of order zero on the compact connected manifold with corners M has a
composition series

A(M) ⊃ I0 ⊃ I1 ⊃ . . . ⊃ In , n = dim(M),

consisting of the closed ideals in (44); the partial quotients are

σ0 : A(M)/I0
∼−→ C0(S∗M),

and

Il/Il+1 '
⊕

F∈Fl(M)

C0(Rn−l,K(L2
b(F )), 0 ≤ l ≤ n.(45)

The composition series and the isomorphisms are natural with respect to maps of
manifolds with corners which are local diffeomorphisms.

The last isomorphism reduces to In = K(L2
b(M)). Also

I0/I1 =
⊕

F∈F0(M)

C0(N∗F ) '
⊕

F∈F0(M)

C0(Rn),

since K(L2
b(F )) = C if F has dimension 0.

Proof. The fact that the principal symbol induces an isomorphism σ : A(M)/J0 '
C(bS∗M) was proved in Proposition 9.

That the ideals Il form a composition series for A(M) follows directly from their
definition in (43). To examine the partial quotients consider jl+1 acting on Il.
Essentially by definition its null space is Il+1. Since the symbol and the indicial
operators on faces of dimension less than l already vanish on Il the map jl can be
replaced by the direct sum of the symbol maps at faces of dimension l+ 1. In fact,
this gives a short exact sequence

0 −→ Il+1 −→ Il
j̃l+1−→

⊕
F∈Fl+1(M)

KF,M −→ 0, j̃l =
⊕

F∈Fl+1(M)

InF,M .

The surjectivity here follows from Proposition 10. The identification in (42) of
KF,M now leads immediately to the isomorphisms in (45).

The naturality of the composition series follows from the naturality of the prin-
cipal symbol and of the indicial maps.

The indicial algebras A(F,M) have similar composition series which are com-
patible with the indicial morphisms.

Theorem 3. The algebra A(F,M) has a composition series

A(F,M) ⊃ J0 ⊃ J1 ⊃ . . . ⊃ Jn, n = dim(F ),

where J0 = Ψ−1
b,I (N+F ) = kerσF and Jl is the closure of the ideal of order −1,

b−pseudodifferential operators whose indicial parts vanish on all faces F ′ ⊂ F of
dimension less than l. The partial quotients are determined by the natural isomor-
phisms σ : A(F,M)/J0

∼−→ C0(bS∗FM), and

Jl/Jl+1 '
⊕

F ′∈Fl(F )

C0(Rn−l,K(L2
b(F ′))) , 0 ≤ l ≤ n.

Proof. The proof consists of a repetition of the arguments in the proof of the pre-
ceding theorem, replacing M by F .
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We have the following generalization of Proposition 10.

Corollary 3. If F is a face of codimension k in M , then passage to indicial families
gives an isomorphism A−(F,M) ' C0(Rk,A−(F )).

Proof. The map

Ψ(−n−1)
b,I (N+F ) −→ C∞(Rk,Ψ(−n−1)

b,I (N+F0)).

is compatible with the composition series of A(F,M) and A(F0,M0) of the above
Theorem and induces an isomorphism on the partial quotients (after completing in
norm). The density property in the above corollary completes the proof.

Corollary 4. If M1 and M2 are two manifolds with corners then

A−(F1 × F2,M1 ×M2) ' A−(F1,M1)⊗min A−(F2,M2).

The tensor product ⊗min is the minimal tensor product of two C∗-algebras and
is defined as the completion in norm of A−(M1)⊗A−(M2) acting on L2(M1×M2).
(The space L2(M1 ×M2) is the Hilbert space tensor product L2(M1)⊗̂L2(M2), it
is the completion of the algebraic tensor product L2(M1)⊗ L2(M2) in the natural
Hilbert space norm.)

Proof. We will assume that Fi = Mi, the general case being proved similarly. We
have Ψ−∞b (M1)⊗Ψ−∞b (M2) ⊂ Ψ−∞b (M1 ×M2). From the density of Ψ−∞b,I (N+F )
in A−(F,M), discussed at the beginning of § 5, we conclude the existence of a
morphism χ : A−(M1)⊗min A−(M2) −→ A−(M1 ×M2) which preserves the com-
position series. Moreover, by direct inspection the morphisms induced by χ on the
subquotients are isomorphisms. If follows that χ is an isomorphism as well.

For a compact manifold with boundary the results can be made even more ex-
plicit. The theorem below was also obtained by Lauter [13].

Theorem 4. If M is a compact manifold with boundary then

I0 = In−1, In−1/In ' C0(R,K∂M )

and A(M)/I0 = C0(bS∗M). The algebra Q(M) = A(M)/In has the following fibered
product structure Q(M) ' Q ⊂ C0(bS∗M)⊕ A(∂M),

Q = {(f, T ), f |∂M = σ∂M (T )}.

The indicial algebra of the boundary, A(∂M), fits into an exact sequence

0 −→ ⊕GC0(R,K(L2
b(G)) −→ A(∂M) σ∂M−→ C0(bS∗∂MM)→ 0 ,

where G ranges through the connected components of ∂M .

9. Computation of the K-groups

Our starting point for the computation of the K-groups of the algebras discussed
in the previous section is the short exact sequence, of C∗-algebras,

0 −→ K(L2
b(M)) −→ A(M) −→ Q(M) −→ 0.
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This exact sequence gives rise to the fundamental six-term exact sequence in K-
theory (see [5])

K0(K(L2
b(M))) −−−−→ K0(A(M)) −−−−→ K0(Q(M))

∂

x y0

K1(Q(M)) ←−−−− K1(A(M)) ←−−−− K1(K(L2
b(M))),

(46)

where we are particularly interested in the K-groups of Q(M). Now

K0(K(L2
b(M))) ' Z,

and K1(K(L2
b(M))) ' 0, so the right vertical map is zero.

The left vertical arrow represents “the index map.” Consider an m×m matrix P
with values in the b-pseudodifferential operators on M. If P is fully elliptic, in the
sense that its image j(P ) in Mm(Q(M)) is invertible, and hence defines an element
[j(P )] ∈ K1(Q(M)), then

∂[j(P )] = Ind(P ) = dim kerP − dim kerP ∗ ∈ Z ' K0(K(L2
b(M))),(47)

see [5, 6, 12]. We proceed to study the exact sequences

0 −→ Il/Il+1 −→ Il−1/Il+1 −→ Il−1/Il → 0

corresponding to the composition series described in Theorem 2. We know that

Ki(C0(Rj ,K)) '

{
Z if i+ j is even,
0 otherwise.

(48)

We shall fix these isomorphisms uniquely as follows. For j = 0,

K0(K(L2
b(M))) ∼−→ Z

will be the dimension function; it is induced by the trace. For j > 0 we define the
isomorphisms in (48) by induction to be compatible with the isomorphisms

Z ' K2l−j+1(C0(Rj−1,K)) ∂−→

−→ K2l−j(C0((0,∞)× Rj−1,K)) ∼−→ K2l−j(C0(Rj ,K)),

where the boundary map corresponds to the exact sequence of C∗-algebras

0 −→ C0((0,∞)× Rj−1,K) −→ C0([0,∞)× Rj−1,K) −→ C0(Rj−1,K)→ 0.

For any C∗-algebra A, set SA = C0(R, A) = C0(R)⊗minA, S
kA = C0(Rk, A). Define

F ′0 = {(0, . . . , 0, 0)} × Rl−1, F0 = {(0, . . . , 0)} × [0, 1)× Rl−1,

and M0 = [0, 1)n−l+1 × Rl−1, F ′0 ⊂ F0 ⊂ M0. Also, let H = [0, 1) and 0 ⊂ L1 ⊂
L0 ⊂ A(H) be the canonical composition series of A(H), such that L0 = A−(H),
L0/L1 ' C0(R), L1 ' K, see Theorem 2.

Lemma 2. With K1 = K(L2(Rl−1)) there is a commutative diagram

0 −−−−→ ker(InF ′0,F0) −−−−→ A−(F0,M0) −−−−→ A−(F ′0,M0) −−−−→ 0y y y
0 −−−−→ Sn−lL1 ⊗K1 −−−−→ Sn−lL0 ⊗K1 −−−−→ Sn−l+1K1 −−−−→ 0
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in which all vertical arrows are isomorphisms, the bottom exact sequence is obtained
from 0→ L1 → L0 → C0(R)→ 0 by tensoring with C0(Rn−l,K1), and the boundary
map

∂ : Kn−l+1(C0(Rn−l+1,K1)) ' Kn−l+1(A−(F ′0,M0)) −→

Kn−l(ker(InF ′0,F0)) ' Kn−l(C0(Rn−l,K1))

is (the inverse of) the canonical isomorphism.

Proof. Let H l−1 = [0, 1)l−1 and F1 = {(0, . . . , 0)} × H, F1 ⊂ H l−1. It follows
from the corollary 4 that the algebra A−(F0,M0) is isomorphic to A−(F1, H

l−1)⊗
A−(Rl−1). Moreover, A−(Rl−1) = K(L2(Rl−1)). The corollary 3 further gives
A−(F1, H

l−1) ' C0(Rn−l,A−(F1, F1)) = C0(Rn−l,A−(H)). The first commutative
diagram then is just an expression of the composition series of A−(H), Theorem
2. Then an easy argument reduces the computation of the connecting morphism
∂ to that of the connecting morphism of the Wiener-Hopf exact sequence (i.e. the
Wiener-Hopf extension). This is a well known and easy computation. It amounts
to the fact that the multiplication by z has index −1 on the Hardy space H2(S1)
of the unit circle S1. See [5] for more details.

From Theorem 2 we then know that

Ki(Il/Il+1) '


⊕

F∈Fl(M)

Z if n− l + i is even

0 otherwise.

Here n = dimM.
Fix from now on an orientation of the normal bundle NF to each face F of M,

including M itself. No compatibilities are required. This uniquely determines the
above isomorphisms. This choice of orientations fixes an incidence relation [F : G]
between boundary faces. If F /∈ F1(G) and G /∈ F1(F ), then we set [F : G] = 0. If
F ∈ F1(G) then an orientation of NF induces canonically an orientation of NG.
If this orientation of G coincides with the given one, then [F : G] = 1, if it is the
opposite orientation, then [F : G] = 0. Finally, G ∈ F1(F ) then [F : G] = [G : F ].

Theorem 5. Suppose n− l + i is even. Then the matrix of the boundary map

∂ : Ki−1(Il−1/Il) '
⊕

F ′∈Fl−1(M)

Z −→
⊕

F∈Fl(M)

Z ' Ki(Il/Il+1)

is given by the incidence matrix. If n− l + i is odd, then ∂ = 0.

Proof. Let eF ′ ∈ Ki−1(Il−1/Il) and eF ∈ Ki(Il/Il+1) be the canonical generators
of these groups. We need to show that

∂(eF ′) =
∑

F∈Fl(M)

[F : F ′]eF .

The idea of the proof is to reduce the computation to the case M = M0, F = F0

and F ′ = F ′0 considered in the preceding lemma:

M0 = Hn−l+1×Rl−1 , F0 = {(0, . . . , 0)}×H×Rl−1 , F ′0 = {(0, . . . , 0, 0)}×Rl−1,

and F ′ = F ′0 the face of minimal dimension.
Choose a point p ∈ F ′. There exists a diffeomorphism ϕ : M0 −→M of manifolds

with corners onto an open neighborhood of p such that p ∈ ϕ(F ′0). Since we
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considered only pseudodifferential operators with compactly supported Schwartz
kernels, the open map ϕ induces an inclusion

ϕ0 : A(M0) −→ A(M),(49)

which commutes with the indicial maps and hence preserves the canonical composi-
tion series of the Theorem 2: ϕ0(I(0)

l ) ⊂ Il, where I
(0)
n ⊂ I

(0)
n−1 ⊂ · · · ⊂ A(M0) is the

composition series associated to A(M0). This composition series has the following
properties

I
(0)
l−1 = · · · = I

(0)
0 = A−(M0), I

(0)
l−1/I

(0)
l ' C0

(
Rl−1,K(L2(Rl−1)

)
and the induced map on K-theory,

ZeF ′0 = Ki−1(I(0)
l−1/I

(0)
l ) −→ Ki−1(Il−1/Il),

maps eF ′0 to eF ′ . We will first compute the boundary map

∂0 : Ki−1(I(0)
l−1/I

(0)
l ) −→ Ki(I

(0)
l /I

(0)
l+1) = ⊕Ze

F
(0)
j
,

with the generators of the second group being indexed by the faces F (0)
j of M0

dimension l. Since the boundary map in K-theory is natural, ϕ∗∂0 = ∂ϕ∗, and
ϕ0∗(eF (0)

j
) = eFj if ϕ(F (0)

j ) ⊂ Fj , the boundary morphism ∂0 will determine ∂

and thus prove the theorem. Label the faces F (0)
0 , . . . , F

(0)
n−l in the order given by

the additional coordinate (thus F (0)
0 = F0). It is enough to compute ∂0 for an

arbitrary choice of orientations, so we can choose the canonical one (given by the
order of components). We then need to prove that the coefficients cj defined by
∂eF ′0 =

∑
cjeF (0)

j
satisfy cj = (−1)j . By symmetry it is enough to assume j = 0.

The indicial map InF0,M0 restricts to an onto morphism

ψ = InF0,M0 : A−(M0) = I
(0)
l−1 −→ A−(F0,M0) = kerσ0,F0

such that ψ(I(0)
l ) = ker(InF ′0,F0 : A−(F0,M0)→ A−(F ′0,M0)) ' C0(Rn−l+1,K) and

ψ(I(0)
l+1) = 0. (Recall that F0 = F

(0)
0 , F ′0 ⊂ F0.) The induced morphism

ψ∗ : Ki(I
(0)
l /I

(0)
l+1) −→ Z

is the projection onto the first component (i.e. it gives the coefficient of eF0). Using
again the naturality of the exact sequence in K-theory, we further reduce the proof
to the computation of the boundary map in the exact sequence

0 −→ ker(InF ′0,F0) −→ A−(F0) −→ A−(F ′0) −→ 0

This computation is the content of previous lemma. The proof is complete.

10. Families of manifolds with boundary

The results obtained above on the structure of the norm closure of the algebra
of b-pseudodifferential operators on a manifold with corners can be extended to
families of operators acting on the fibers of a fibration. For brevity, we state these
results only for families of manifolds with boundary.

Let π : Z −→ X be a smooth fibration, with Z a manifold with boundary
and fibers modeled on the manifold with boundary F. We consider the algebra
Ψ0
b,c,π(Z) of families of b-pseudodifferential operators of order 0 on the fibers of π

with Schwartz kernels which are globally compactly supported. Denote its norm
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closure by Aπ(Z). If we denote by ∂π : ∂Z −→ X the fibration with fibers ∂F , then
the indicial operator

In∂π,π : Ψ0
b,c,π(Z) −→ Ψ0

c,∂π(N+∂Z)R
∗
+

is defined fiber-by-fiber and extends to the closure Aπ(Z). Denote by bS∗fZ the b-
cosphere bundle along the fibers of Z → X. Set In−1 = kerσ : Aπ(Z) −→ C(bS∗fZ),
and In = ker(In∂π,π) ∩ In−1.

Theorem 6. For a fibration π : Z −→ X with fibers manifolds with boundary and
with L0 = A−(H), H = [0, 1) as above, there are isomorphisms In ' C0(X,K),
In−1/In ' C0(X × R,K), and Aπ(Z)/In−1 ' C0(bS∗fZ). Moreover, In−1 is the
norm closure of Ψ−1

b,c,π(Z) ' C0(X,L0).

Proof. This is essentially a repetition of the arguments above, carrying a parameter
x ∈ X.

This theorem allows us to determine explicitly the K-theory groups of the norm-
closed algebras associated to families of manifolds with boundary.

Theorem 7. Let π : Z → X be as above and set Q(Z) = Aπ(Z). Then the
principal symbol σ induces isomorphisms

σ∗ : Ki(Aπ(Z)) ' Ki(C0(bS∗fZ)) ' Ki(bS∗fZ),(50)

and the boundary map ∂ : Ki(Aπ(Z)/In−1) −→ Ki+1(In−1/In) is zero, so there is
a natural short exact sequence

0 −→ Ki(R×X)
jZ−→ Ki(Q(Z)) −→ Ki(bS∗fZ)→ 0(51)

Proof. The groups Ki(C(X,L0)) can be computed using the Künneth formula [5,
23]. Since K∗(L0) = 0 it follows that K∗(In−1) = 0, which, in view of Theorem 6,
proves the first part of the theorem.

In order to prove (51), observe that, using (50), the composite map

Ki(Aπ(Z)) −→ Ki(Q(Z)) −→ Ki(bS∗fZ)

is surjective, so the map from Ki(Q(Z)) to Ki(bS∗fZ) in (51) is also surjective. This
shows that ∂ = 0.

One important problem is to explicitly compute the family index map [4]

Ind = ∂ : Ki(Q(Z)) −→ Ki−1(C0(X,K)) ' Ki−1(X)

corresponding to the exact sequence 0 → C0(X,K) → Aπ(Z) → Q(Z) → 0 along
the lines of [18]. A consequence of our computations is the following corollary.

Corollary 5. The composition

Ind ◦jZ : Ki(R×X) −→ Ki−1(X)

is the canonical isomorphism.

Proof. Indeed, Ind ◦jZ is, by naturality, the boundary map in the six term K-
Theory exact sequence associated to the exact sequence

0 −→ In−1 −→ In −→ In−1/In −→ 0.

Since Ki(In) = 0, it follows that the connecting (i.e. boundary) morphism in the
above six term exact sequence is an isomorphism. The descriptions of the ideals
In−1 and In in the previous theorem then completes the proof.
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11. An Rq-equivariant index theorem

Consider a smooth manifold X endowed with a proper, free action of Rq. We
can assume that X = Rq × F with Rq acting by translations. If D is an elliptic
differential operator on Rq × F which is invariant under the action of Rq it is
natural to look for index type invariants of D. We construct and compute such
invariants using results from the previous sections. More generally, we consider
elliptic matrices of operators.

Let n be the dimension F. We have already defined the algebra Ψ0
b,I(N+F ),

consisting of Rq-invariant, pseudodifferential operators order 0 on Rq ×F when we
studied the indicial algebra at a boundary face F of codimension q of the noncom-
pact manifold M.

Appealing to the same philosophy as before, we shall consider the closure in
norm of this algebra, denoted A(F,M), as before. We then know from Proposition
9 that there is an exact sequence

0 −→ C0(Rq,K) −→ A(F )
σ0F
−−→ C0(S∗M |F ) −→ 0.

The connecting morphism (boundary map)

∂ : Kq+1(C0(bS∗M |F )) = K0(S∗M |F ) −→ Kq(C0(Rq,K)) ' Z
can be interpreted as an Rq-equivariant index, and its computation will then be
regarded as an Rq-equivariant index theorem. Above we have used the standard
isomorphism Kq(C0(Rq,K)) ' Z, as explained in Section 9.

Denote Y = S∗M |F = S∗M/Rq, and orient it as the boundary of (the dual
of) Rq × TM, if TM is oriented as an almost complex manifold, as in the Atiyah-
Singer index theorem. Also, denote by T (F ) ∈ Heven(F ) the Todd class of the
complexified cotangent bundle of F and by Ch the Chern character.

Theorem 8. Let a be an element of Kq+1(C0(Y )) and Y = S∗M/Rq. Then

∂(a) = (−1)n〈Ch(a)p∗T (F ), [Y ]〉,
where [Y ] is the fundamental class of Y oriented as above, p : Y → F is the
projection, and n = dimF .

Proof. We will prove the above theorem by induction on q. Consider the manifolds
with corners

M = [0, 1)q × F , F0 = [0, 1)× {(0, . . . , 0)} × F ⊂M
and identify F with {(0, 0, . . . , 0)} × F ⊂ F0. Let A(F0) be as above and consider
the following two onto morphisms and their kernels:

σ0,F0 : A(F0) −→ C0(Y ), I = ker(σ0,F0)

InF,F0 : A(F0) −→ A(F ), J = ker(InF,F0)

Denote by ∂1 = ∂, ∂2, ∂3, ∂4 the following boundary maps in K-theory:
∂1 : Kq+1(A(F0)/(I + J)) = Kq+1(C0(Y ))→ Kq(I/I ∩ J) = Kq(C0(Rq,K)) ' Z,

∂2 : Kq+1(A(F0)/(I + J))→ Kq(J/I ∩ J) = Kq(C0(Y0)) = Kq(Y0),

∂3 : Kq(I/I ∩ J)→ Kq−1(I ∩ J) = Kq−1(C0(Rq−1,K)) ' Z,
∂4 : Kq(J/I ∩ J)→ Kq−1(I ∩ J) ' Z,

where Y0 = S∗M |F0 \ S∗M |F = (0, 1) × Y and we have used the determination of
the partial quotients given by Theorem 2.
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We have that ∂3∂+∂4∂2 = 0, because the composition of connecting morphisms

Kq+1(A(F0)/(I + J)) −→ Kq((I + J)/I ∩ J) −→ Kq−1(I ∩ J)

is 0 and (I + J)/I ∩ J ' I/I ∩ J ⊕ J/I ∩ J.
Since ∂3 is the canonical isomorphism, we obtain that ∂ = −∂4∂2, after identifi-

cations. We have dimF0 = dimF + 1 = n + 1, hence the codimension q decreases
by 1. By induction, the theorem is true for F0:

∂4(a) = (−1)n+1〈Ch(a)p∗0T (F0), [Y0]〉
for all a ∈ Kq(C0(Y0)),. Here we have denoted by p0 : Y0 → (0, 1)×F the projection.
Let π : Y0 = (0, 1) × Y → Y be the projection onto the second component. Then
p∗0T (F0) = π∗p∗T (F ). Denote by ∂c the boundary map H∗c (Y )→ H∗+1

c (Y0). Using
the fact that the Chern character is compatible with the boundary maps in K-
theory (this fact is proved for algebras in general in [21, 22]) we obtain

∂(a) = −∂4∂2(a) = −(−1)n+1〈Ch(∂2(a))p∗0T (F0), [Y0]〉
= (−1)n〈∂cCh(a)π∗p∗T (F ), [Y0]〉
= (−1)n〈∂c(Ch(a)p∗T (F )), [Y0]〉
= (−1)n〈Ch(a)p∗T (F ), [Y ]〉,

where the last equality is Stokes’ theorem. The theorem is proved.

Lemma 3. The connecting morphism ∂ in the previous theorem is onto.

Proof. Choose a small contractable open subset U ⊂ Y and choose the class a ∈
Kq+1(C0(Y )) to come from a generator of Kq+1(C0(Y |U )). Then ∂a = ±1.

The following corollary determines the K-theory groups of the ‘higher indicial
algebras.’ The space bS∗M |F in the statement of the corollary plays the role of Y
in the last theorem.

Corollary 6. If F is a smooth face of the manifold with corners M , of codimension
q, then the K-theory groups of A(F,M) are

Kq+1(A(F,M)) ' ker(∂ : Kq+1(bS∗M |F )→ Z)

and Kq(A(F,M)) ' Kq(bS∗M |F ).

Proof. The result follows from the K-theory six term exact sequence applied to
the short exact sequence in Proposition 9 and the determination of the connecting
morphism of that exact sequence obtained in the above lemma.

One should compare the above theorem with other equivariant index theorems
for noncompact groups [1, 24] for discrete groups and [7] for connected Lie groups.

12. Final comments

Consider the case q = 1 in the preceding theorem, and let, as above, F be a
smooth manifold (without corners). The indicial algebra A(F ) fits into an exact
sequence

0 −→ C0(R,K) −→ A(F )
σ0,F

−−→ C0(S∗M |F )→ 0.
The above results imply that the morphism

K1(C0(R,K)) −→ K1(A(F ))
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vanishes. However at the level of the algebraic K1 and uncompleted algebras the
morphism

i : Kalg
1 (Ψ−∞b (R× F )R) −→ Kalg

1 (Ψ∞b (R× F )R)
is not zero. This follows from results of [16] who proves the existence of a onto
morphism η : Kalg

1 (Ψ∞b (R×F )R) −→ C, which coincides with the usual η-invariant
of [2] for admissible Dirac operators. Moreover, the composition η ◦ i computes the
spectral flow.

In subsequent papers [19, 18] we will use the above observation to exted the
result of [16] to families and to study the relation between the η-invariant and
cyclic cohomology [6].

Appendix. The structure of b-pseudodifferential operators

For completeness, we give a direction definition of the algebra of b-pseudodiff-
erential operators from which all the basic properties can be deduced. As model
space consider the product of intervals M = Mk = [−1, 1]k. The space Ψm

b (M) may
then be defined directly as a space of kernels. They are also defined on a similar
model space M2

b̄
= [−1, 1]2k, although this should not be thought of as the product

of M with itself. Rather the smooth map

β̄ : M2
b̄ ⊃ (−1, 1)k × [−1, 1]k 3 (τ,R) 7−→ (x, x′) ∈M2

xi =
2Ri + τ +Riτi
2 + τi +Riτi

, x′i =
2Ri − τi −Riτi
2− τi −Riτi

⇐⇒ Ri =
xi + x′i − 2xix′i

2− xi − x′i + xix′i
, τi =

xi − x′i
1− xix′i

(52)

is used to identify the interiors of M2 and M2
b̄
. Consider the ‘diagonal’ submanifold

Diagb̄ = {τi = 0, i = 1, . . . , k} and the boundary hypersurfaces B±i = {Ri = ±1}.
Then as a linear space

Ψm
b (M) =

{
A = A′ν, A ∈ Im(M2

b̄ ,Diagb̄);A ≡ 0 at B±i , ∀ i
}
.(53)

Here ν is a ‘right density’ namely

ν =
|dx′1 . . . dx′k|

(1− (x′1)2) . . . (1− (x′k)2)

and Im(M2
b ,Diagb̄) is the space of conormal distributions. If the kernel space is

embedded, M2
b̄

= [−1, 1]2k ↪→ R2k, and then rotated so that the linear extension
of Diagb̄ becomes the usual diagonal then this space is precisely the restriction to
the image of M2

b̄
of the space of kernels of (polyhomogeneous) pseudodifferential

operators on Rk. Since these kernels are smooth away from Diagb̄ the condition in
(53) that the kernels vanish in Taylor series at the boundary faces B±i is meaningful.

The identification β̄ in (52) transforms the space Ψm
b (M) to a subspace of the

space of (extendible) distributional right densities on M2, so by Schwartz’ kernel
theorem each element defines an operator. If u ∈ Ċ∞(M), the space of smooth
functions vanishing at the boundary in Taylor series, then in principle Au, for
A ∈ Ψm

b (M), is a distribution on the interior of M. In fact,

A : Ċ∞(M) −→ Ċ∞(M), ∀ A ∈ Ψm
b (M).

The space Ψm
b (M) is a C∞(M2) module, where the smooth functions on M2 are

lifted under β̄ to (generally non-smooth) functions on M2
b̄
, it is also invariant under
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conjugation by a diffeomorphism. As a consequence, for a general manifold with
corners, the space Ψm

b (X) can be defined by localization.

Definition 2. If X is any manifold with corners then the space Ψm
b (X) consists

of those operators A : Ċ∞c (X) −→ Ċ∞(X) such that if φ ∈ C∞c (X) has support in
a coordinate patch diffeomorphic to a relatively open subset of Mk then the image
of the localized operator φAφ under the diffeomorphism is an element of Ψm

b (Mk)
and if φ, φ′ ∈ C∞c (X) have disjoint supports in (possibly different) such coordinate
patches then the image of φ′Aφ is in Ψ−∞b (Mk).

The identification of [−1, 1] as the projective compactification of [0,∞)

[0,∞) 3 t 7−→ x =
t− 1
t+ 1

∈ [−1, 1](54)

interprets M as a compactification of [0,∞)k. This induces an action of (0,∞)k on
M and the invariant elements of Ψm

b (M) correspond exactly to the kernels which
are independent of the variables Ri. The compactification similarly reduces M2

b̄
to

a compactification of [0,∞)2k. The action of A ∈ Ψm
b (M) can then be written

Au(t1, . . . , tk) =

∞∫
0

· · ·
∞∫

0

A(t1, . . . , tk, s1, . . . , sk)u(s1t1, . . . , sktk)
ds1

s1
. . .

dsk
sk

,

(55)

where A(t, s) is smooth in t, conormal in s at s = 1 and vanishes rapidly (uniformly
on compact sets) with all derivatives as any si → 0 or ∞.

An alternative definition of b-pseudodifferential operators is obtained by consid-
ering as in [14] operators of the form

(Tu)(x, y) = (2π)−n
∫

ei(x−x
′)ξ+(y−y′)ηa(x, y, xξ, η)u(x′, y′)dx′dy′dξdη,

where a(x, y, ξ, η) is a classical (i.e. 1-step polyhomogeneous of integral order) sym-
bol satisfying a certain lacunary condition. The operator T is seen to be invariant
if and only if it is of the form

(Tu)(x, y) = (2π)−n
∫

ei(x−x
′)ξ+(y−y′)ηa(0, y, xξ, η)u(x′, y′)dx′dy′dξdη.
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