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Abstract

We construct the Schubert basis of the torus-equivariant K-homology of the affine
Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of
Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson
in equivariant homology. For the case where G= SLn, the K-homology of the affine
Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions.
The Schubert basis is represented by inhomogeneous symmetric functions, called
K-k-Schur functions, whose highest-degree term is a k-Schur function. The dual basis
in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a
conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our
constructions have geometric interpretations by means of Kashiwara’s thick affine flag
manifold.
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1. Introduction

Let G be a simple simply connected complex algebraic group and T ⊂G the maximal
torus. Let GrG denote the affine Grassmannian of G. The T -equivariant K-cohomology
KT (GrG) and K-homology KT (GrG) are equipped with distinguished KT (pt)-bases (denoted
by {[OXI

w
]} and {ξw}), called Schubert bases. Our first main result is a description of the

K-homology KT (GrG) as a subalgebra L of the affine K-NilHecke algebra of Kostant and
Kumar [KK90]. This generalizes work of Peterson [Pet97] in homology. Our second main result
is the identification, in the case where G= SLn(C), of the Schubert bases of the non-equivariant
K-homology K∗(GrG) and K-cohomology K∗(GrG) with explicit symmetric functions called
K-k-Schur functions and affine stable Grothendieck polynomials [Lam06]. This generalizes work
of Lam [Lam08] in (co)homology.
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1.1 Kostant and Kumar’s K-NilHecke ring

Let g be a Kac–Moody algebra and let X be the flag variety of g. Kostant and Kumar [KK90]
studied the equivariant K-theory KT (X) via a dual algebra K called the K-NilHecke ring. The
ring K acts on KT (X) by Demazure divided difference operators and scalar multiplication by
KT (pt). In particular, they used K to define a ‘basis’ {ψv

KK} of KT (X) (elements of KT (X) are
infinite KT (pt)-linear combinations of the ‘basis’).

Kostant and Kumar use the ind-scheme Xind, which is an inductive limit of finite-dimensional
schemes. Because of this, classes in KT (Xind) do not have an immediate geometric interpretation
but, rather, are defined via duality in terms of geometric classes in KT (Xind). We use instead the
‘thick’ flag variety X of Kashiwara [Kas89], which is an infinite-dimensional scheme. This allows
us to interpret theK-NilHecke ring operations geometrically and to describe (in Theorem 3.2) the
Schubert ‘basis’ of KT (X), representing coherent sheaves OXw of finite-codimensional Schubert
varieties. Our basis is different from that of Kostant and Kumar. On the other hand, in our
treatment the K-homology KT (X) is now defined via duality.

1.2 The affine Grassmannian and the small-torus GKM condition

Let g be a finite-dimensional simple Lie algebra, and let gaf be the untwisted affine algebra.
Instead of using the affine torus Taf , we use the torus T ⊂G of the finite-dimensional algebraic
group and study the equivariant K-cohomology KT (Xaf) and KT (GrG) of the affine flag variety
and affine Grassmannian. We use the affine K-NilHecke ring for g, still denoted by K, rather than
the slightly larger Kostant–Kumar K-NilHecke ring for gaf . The corresponding affine NilHecke
ring in cohomology was considered by Peterson [Pet97].

We describe (in Theorem 4.3) the image of KT (Xaf) and KT (GrG) in
∏

w∈Waf
KT (pt) under

localization at the fixed points, where Waf denotes the affine Weyl group. This is the K-theoretic
analogue of a result of Goresky et al. [GKM04] in homology. We call the corresponding condition
the small-torus GKM condition. It is significantly more complicated than the usual condition for
GKM spaces [GKM98], which would apply if we had used the larger torus Taf . This description
gives an algebraic proof of the existence of a crucial ‘wrong way’ map KT (Xaf)→KT (GrG),
which corresponds in the topological category to ΩK →֒ LK→ LK/TR where K ⊂G is a
maximal compact subgroup, TR = T ∩K, and ΩK and LK denote the spaces of based and
unbased loops, respectively. The space of based loops ΩK is a topological model for the affine
Grassmannian [PS86].

Another description of the K-homology of the affine Grassmannian is given by Bezrukavnikov
et al. [BFM05], although the methods there do not appear to be particularly suited to the study
of Schubert calculus.

1.3 The K-theoretic Peterson subalgebra and affine Fomin–Stanley subalgebra

We let L = ZK(R(T )) denote the centralizer in K of the scalars R(T ) =KT (pt) and call it the
K-Peterson subalgebra. (This centralizer would be uninteresting if we had used Taf instead of T .)
We generalize (in Theorem 5.3) the following result of Peterson [Pet97] (see also [Lam08]) in
homology.

Theorem. There is a Hopf-isomorphism k :KT (GrG)−→ L.

The Hopf-structure of KT (GrG) is derived from ΩK. We also give a description of the images
k(ξw) of the Schubert bases under this isomorphism (Theorem 5.4).
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Next, we consider a subalgebra L0 ⊂K0, called the K-affine Fomin–Stanley subalgebra, of
the affine 0-Hecke algebra. We shall show that L0 is the evaluation of L at zero, and that it is a
model for the non-equivariant homology K∗(GrG).

1.4 G = SLn and Grothendieck polynomials for the affine Grassmannian

We now focus on the case where G= SLn. In [Lam06], the affine stable Grothendieck polynomials
Gw(x) were introduced, where w ∈Waf is an affine permutation. The symmetric functions Gw(x)
lie in a completion Λ̂(n) of a quotient of the ring of symmetric functions. A subset of the
{Gw(x)} form a basis of Λ̂(n), and the dual basis elements gw(x), called K-theoretic k-Schur
functions, form a basis of a subalgebra Λ(n) of the ring of symmetric functions.

The symmetric functions Gw(x) are K-theoretic analogues of the affine Stanley symmetric
functions in [Lam06] and, on the other hand, affine analogues of the stable Grothendieck
polynomials in [Buc02, FK94]. The symmetric functions gw(x) are K-theoretic analogues of
the k-Schur functions sw(x) (see [LLM03, LM05, LM07]) and, on the other hand, affine (or k-)
analogues of the dual stable Grothendieck polynomials [LP07, Len00].

Using the technology of the K-affine Fomin–Stanley subalgebra, we confirm a conjecture of
Lam [Lam06] by proving the following result (see Theorem 7.17).

Theorem. There are Hopf-isomorphisms K∗(GrG)∼= Λ(n) and K∗(GrG)∼= Λ̂(n) that identify the
homology Schubert basis with the K-k-Schur functions gw(x) and the cohomology Schubert basis
with the affine stable Grothendieck polynomials Gw(x).

This generalizes the main result of [Lam08], and the general idea of the proof is the same.

We also obtain a Pieri rule (Corollary 7.6) for K∗(GrG). We give in Theorem 7.19 a geometric
interpretation of Gw(x) for any w ∈Waf as a pullback of a Schubert class from the affine flag
variety to the affine Grassmannian. We conjecture that the symmetric functions Gw(x) and gw(x)
satisfy many positivity properties (Conjectures 7.20 and 7.21).

1.5 Related work

Morse [Mor] gives a combinatorial definition of the affine stable Grothendieck polynomials Gw(x)
in terms of affine set-valued tableaux and also proves the Pieri rule for Gw. The original k-Schur
functions sw(x; t) in [LLM03, LM05], which arose in the study of Macdonald polynomials, involve
a parameter t. It appears that a t-analogue gw(x; t) of gw(x) exists, defined in a similar manner
to [LLMS, Conjecture 9.11]. The connection between gw(x; t) and Macdonald theory is explored
in [BM].

Kashiwara and Shimozono [KS09] constructed polynomials, called affine Grothendieck
polynomials, which represent Schubert classes in the K-theory of the affine flag manifold. It
is unclear how affine Grothendieck polynomials compare with our symmetric functions.

1.6 Organization of the paper

In § 2 we review the constructions of the K-NilHecke ring K and define our function ‘basis’
{ψv}. In § 3 we introduce Kashiwara’s geometry of ‘thick’ Kac–Moody flag varieties X and the
corresponding equivariant K-cohomologies; we show how K corresponds to the geometry of X.
Section 4 is devoted to equivariant K-theory for affine flags and affine Grassmannians with the
small torus T acting by means of the level-zero action of the affine Weyl group. In § 5 we introduce
the affine K-NilHecke ring and the K-Peterson subalgebra L, and we prove that the latter is
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isomorphic to KT (GrG). In § 6 we study the K-affine Fomin–Stanley algebra. In § 7 we restrict to
G= SLn and describe explicitly the Hopf-algebra isomorphisms between K∗(GrG) and K∗(GrG)
and symmetric functions.

A review of the cohomological NilHecke ring of Kostant and Kumar and the affine NilHecke
algebra A as well as some tables of the symmetric functions gw and Gw are provided in
Appendix A.

2. The Kostant–Kumar K-NilHecke ring

One of the themes of [KK90] is that the Schubert calculus of the torus-equivariant K-theory
KT (X) of a Kac–Moody flag manifold X is encoded by the K-NilHecke ring K, which acts
on KT (X) as Demazure operators. We review the constructions of [KK90] but use a different
‘basis’ for KT (X), namely, the classes of equivariant structure sheaves of finite-codimensional
Schubert varieties in the thick flag manifold of [Kas89].

For a statement S, we write χ(S) = 1 if S is true and χ(S) = 0 if S is false.

2.1 Kac–Moody algebras

Let g be the Kac–Moody algebra over C associated with the following data: a Dynkin node
set I, a symmetrizable generalized Cartan matrix (aij)i,j∈I , a free Z-module P , linearly
independent simple roots {αi | i ∈ I} ⊂ P , and the dual lattice P ∗ = HomZ(P, Z) with simple
coroots {α∨

i | i ∈ I} ⊂ P
∗ such that 〈α∨

i , αj〉= aij where 〈·, ·〉 : P ∗ × P → Z is the pairing,
with the additional property that there exist fundamental weights {Λi | i ∈ I} ⊂ P satisfying
〈α∨

i , Λj〉= δij . Let Q=
⊕

i∈I Zαi ⊂ P be the root lattice and Q∨ =
⊕

i∈I Zα∨
i ⊂ P

∗ the coroot
lattice. Let g = n+ ⊕ t⊕ n− be the triangular decomposition, with t⊃ P ∗ ⊗Z C. Let Φ be the
set of roots and Φ± the sets of positive and negative roots, and let g =

⊕
α∈Φ gα be the root

space decomposition. Let W ⊂Aut(t∗) be the Weyl group, with involutive generators ri for i ∈ I
defined by ri · λ= λ− 〈α∨

i , λ〉αi. For i, j ∈ I with i 6= j, let mij be 2, 3, 4, 6 or ∞ according to
whether aijaji is 0, 1, 2, 3 or at least 4. Then W has involutive generators {ri | i ∈ I} which satisfy
the braid relations (rirj)

mij = id. Let Φre = {wαi | w ∈W, i ∈ I} ⊂Q be the set of real roots, and
for α= wαi let rα = wriw

−1 be the associated reflection and α∨ = wα∨
i the associated coroot.

Let Φ+re = Φre ∩ Φ+ be the set of positive real roots.

2.2 The rational form

Let T be the algebraic torus with character group P . The Weyl group W acts on P and therefore
on R(T ) and Q(T ) = Frac(R(T )), where

R(T )∼= Z[P ] =
⊕

λ∈P

Zeλ

is the Grothendieck group of the category of finite-dimensional T -modules. Here eλ, for λ ∈ P , is
the class of the one-dimensional T -module with character λ.

Let KQ(T ) be the smash product of the group algebra Q[W ] and Q(T ), defined by KQ(T ) =
Q(T )⊗Q Q[W ] with multiplication

(q ⊗ w)(p⊗ v) = q(w · p)⊗ wv
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for p, q ∈Q(T ) and v, w ∈W . We write qw instead of q ⊗ w. For i ∈ I, define the Demazure
operator [Dem74] yi ∈KQ(T ) by

yi = (1− e−αi)−1(1− e−αiri).

The yi are idempotent and satisfy the braid relations

y2
i = yi and yiyj · · ·︸ ︷︷ ︸

mij times

= yjyi · · ·︸ ︷︷ ︸
mij times

.

Define the elements Ti ∈KQ(T ) by

Ti = yi − 1 = (1− eαi)−1(ri − 1). (2.1)

We have

ri = 1 + (1− eαi)Ti. (2.2)

The Ti satisfy

T 2
i =−Ti and TiTj · · ·︸ ︷︷ ︸

mij times

= TjTi · · ·︸ ︷︷ ︸
mij times

. (2.3)

Let Tw = Ti1Ti2 · · · TiN ∈KQ(T ), where w = ri1ri2 · · · riN is a reduced decomposition; it is well-
defined by (2.3). One can easily verify that

TiTw =

{
Triw if riw > w,

−Tw if riw < w,
and TwTi =

{
Twri

if wri >w,

−Tw if wri <w,

where < denotes the Bruhat order on W . For α ∈ Φ+re, define Tα = (1− eα)−1(rα − 1). Let
w ∈W and i ∈ I be such that α= wαi. Then

Tα = wTiw
−1. (2.4)

Note that KQ(T ) acts naturally on Q(T ); in particular, one has

Ti · (qq
′) = (Ti · q)q

′ + (ri · q)Ti · q
′ for q, q ∈Q(T ). (2.5)

Therefore, in KQ(T ) we have

Ti q = (Ti · q) + (ri · q)Ti for q ∈Q(T ). (2.6)

2.3 The 0-Hecke ring and integral form

The 0-Hecke ring K0 is the subring of KQ(T ) generated by the Ti. It can also be defined by
generators {Ti | i ∈ I} and the relations (2.3). We have K0 =

⊕
w∈W ZTw.

Lemma 2.1. K0 acts on R(T ).

Proof. We have that K0 acts on Q(T ); also, each Ti preserves R(T ) by (2.5) and the following
formulae for λ ∈ P :

Ti · e
λ =






eλ(1 + eαi + · · ·+ e(〈α∨

i ,λ〉−1)αi) if 〈α∨
i , λ〉> 0,

0 if 〈α∨
i , λ〉= 0,

−eλ(1 + eαi + · · ·+ e(−〈α∨

i ,λ〉−1)αi) if 〈α∨
i , λ〉< 0.

The assertion follows. ✷
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Define the K-NilHecke ring K to be the subring of KQ(T ) generated by K0 and R(T ). We
have KQ(T )

∼=Q(T )⊗R(T ) K. By (2.6),

K =
⊕

w∈W

R(T )Tw. (2.7)

2.4 Duality and function ‘basis’

Let Fun(W, Q(T )) be the right Q(T )-algebra of functions from W to Q(T ) under pointwise
multiplication and scalar multiplication (ψ · q)(w) = qψ(w) for q ∈Q(T ), ψ ∈ Fun(W, Q(T )) and
w ∈W . By linearity, we identify Fun(W, Q(T )) with left Q(T )-linear maps KQ(T )→Q(T ) such
that

ψ

( ∑

w∈W

aww

)
=

∑

w∈W

awψ(w).

Note that Fun(W, Q(T )) is a KQ(T )–Q(T )-bimodule via

(a · ψ · q)(b) = ψ(qba) = qψ(ba) (2.8)

for ψ ∈ Fun(W, Q(T )), q ∈Q(T ) and a, b ∈KQ(T ).

Evaluation gives a perfect pairing 〈·, ·〉 : KQ(T ) × Fun(W, Q(T ))−→Q(T ) defined by

〈a, ψ〉= ψ(a),

which is Q(T )-bilinear in the sense that

〈qa, ψ〉= q〈a, ψ〉= 〈a, ψ · q〉.

Define the subring Ψ⊂ Fun(W, Q(T )) by

Ψ = {ψ ∈ Fun(W, Q(T )) | ψ(K)⊂R(T )}

= {ψ ∈ Fun(W, Q(T )) | ψ(Tw) ∈R(T ) for all w ∈W}. (2.9)

Clearly, Ψ is a K–R(T )-bimodule. By (2.7), for v ∈W there are unique elements ψv ∈Ψ such
that

ψv(Tw) = δv,w (2.10)

for all w ∈W . We have Ψ =
∏

v∈W R(T )ψv.

Remark 2.1. In § 3 we show that ψv(w) is the restriction of the equivariant structure sheaf [OXv ]
of the finite-codimensional Schubert variety Xv ⊂X of the thick Kac–Moody flag manifold X to
the T -fixed point w. See Appendix A.2 for the relationship between our functions ψv and those
of [KK90].

Letting w = id, we have

δv,id = ψv(Tid) = ψv(id). (2.11)

Lemma 2.2. For v ∈W and i ∈ I,

yi · ψ
v =

{
ψvri if vri < v,

ψv if vri > v.
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Proof. For w ∈W we have Twyi = Tw(1 + Ti) = χ(wri >w)(Tw + Twri
). Therefore, by (2.8),

〈Tw, yi · ψ
v〉 = 〈Twyi, ψ

v〉

= χ(wri >w)〈Tw + Twri
, ψv〉

= χ(wri >w)(δv,w + δv,wri
)

= χ(vri > v)δv,w + χ(v > vri)δvri,w,

from which the lemma follows. ✷

Remark 2.2. From (2.11) and Lemma 2.2 we obtain the following ‘right-hand’ recurrence for
ψv(w).

(i) If w = id, then ψv(id) = δv,id.

(ii) Otherwise, let i ∈ I be such that wri <w. Then

ψv(w) =

{
ψv(wri) if v < vri,

(1− e−w(αi))ψvri(w) + e−w(αi)ψv(wri) if vri < v.
(2.12)

This rewrites ψv(w) in terms of ψv′

(w′) for (v′, w′) such that either w′ <w or both w′ = w
and v′ < v.

Lemma 2.3. We have ψv(w) = 0 unless v 6 w.

Proof. The statement is true for w = id by (2.11). Otherwise, let i ∈ I be such that wri <w
and suppose that v 66 w. Then v 66 wri and vri 66 w (see [Hum90]). The assertion is proved by
induction using (2.12). ✷

The next result follows from the definitions.

Proposition 2.4. For all v, w ∈W , we have w =
∑

v∈W ψv(w)Tv.

Remark 2.3. Proposition 2.4 leads to a ‘left-hand’ recurrence for ψv(w) as follows.

(i) For w = id we have (2.11).

(ii) Otherwise, let i ∈ I be such that riw < w. By induction on length, we obtain

w = ri(riw)

= (1 + (1− eαi)Ti)

(∑

u

ψu(riw)Tu

)

=
∑

u

ψu(riw)Tu + (1− eαi)
∑

u

Tiψ
u(riw)Tu

=
∑

u

ψu(riw)Tu + (1− eαi)
∑

u

((Ti · ψ
u(riw))Tu + (ri · ψ

u(riw))TiTu).

Taking the coefficient of Tv, we see that

ψv(w) = ψv(riw) + (1− eαi)((Ti · ψ
v(riw)) + χ(riv < v)ri · (ψ

riv(riw)− ψv(riw))).

Therefore, for riw < w we have

ψv(w) =

{
ri · ψ

v(riw) if riv > v,

eαi ri · ψ
v(riw) + (1− eαi) ri · ψ

riv(riw) if riv < v.
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Define the inversion set of v ∈W by

Inv(v) = {α ∈ Φ+re | rαv < v}.

Lemma 2.5. For all v ∈W , we have ψv(v) =
∏

α∈Inv(v)(1− e
α).

Proof. This follows directly from Remark 2.3 and Lemma 2.3. ✷

Remark 2.4. We have ψv(w) = η(w · ψv−1

(w−1)), where η : Z[P ]→ Z[P ] is given by η(eλ) = e−λ.

2.5 The GKM condition

We recall the K-theoretic Goresky–Kottwitz–Macpherson (GKM) condition as a criterion for
membership in Ψ. This condition and the associated geometry is discussed in § 3.3.

Proposition 2.6. Ψ is the set of ψ ∈ Fun(W, Q(T )) such that

ψ(rαw)− ψ(w) ∈ (1− eα)R(T ) for all α ∈ Φ+re and w ∈W . (2.13)

Proof. Let β = w−1α and ψ ∈Ψ. Then rαw = wrβ and

ψ(rαw)− ψ(w)

1− eα
= ψ((1− eα)−1(wrβ − w))

= ψ(wTβ),

which is in R(T ) since wTβ ∈K, by using (2.4) and (2.2).

For the converse, let ψ ∈ Fun(W, Q(T )) satisfy (2.13) and suppose that ψ 6= 0. Let v ∈ Supp(ψ)
be a minimal element. For every α ∈ Φ+re such that rαv < v, we have ψ(v) ∈ (1− eα)R(T )
by (2.13), Lemma 2.3 and the minimality of v. Since the factors (1− eα) are relatively
prime by [Kac90, Proposition 6.3], ψ(v) ∈ ψv(v)R(T ) by Lemma 2.5. Then ψ′ ∈Ψ, where
ψ′(w) = ψ(w)− (ψ(v)/ψv(v))ψv(w) for w ∈W . Moreover, v 6∈ Supp(ψ′) and Supp(ψ′)\Supp(ψ)
consists of elements strictly greater than v. Repeating the argument for ψ′ and so on, we see
that ψ is in

∏
v∈W R(T )ψv. ✷

2.6 Structure constants and coproduct

The proof of the following result is straightforward but lengthy.

Proposition 2.7. Let M and N be left K-modules. Define

M ⊗R(T ) N = (M ⊗Z N)/〈qm⊗ n−m⊗ qn | q ∈R(T ), m ∈M , n ∈N〉.

Then K acts on M ⊗R(T ) N by

q · (m⊗ n) = qm⊗ n,

Ti · (m⊗ n) = Ti ·m⊗ n+m⊗ Ti · n+ (1− eαi)Ti ·m⊗ Ti · n.

Under this action we have

w · (m⊗ n) = wm⊗ wn. (2.14)

Consider the case where M =N = K. By Proposition 2.7 there is a left R(T )-module
homomorphism ∆ : K→K⊗R(T ) K defined by ∆(a) = a · (1⊗ 1). It satisfies

∆(q) = q ⊗ 1 for q ∈R(T ), (2.15)

∆(Ti) = 1⊗ Ti + Ti ⊗ 1 + (1− eαi)Ti ⊗ Ti for i ∈ I. (2.16)
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Let a ∈K and ∆(a) =
∑

v,w av,wTv ⊗ Tw with av,w ∈R(T ). It follows from Proposition 2.7 that
the action of a on M ⊗R(T ) N can be computed in the following simple ‘componentwise’ fashion:
a · (m⊗ n) =

∑
v,w av,wTvm⊗ Twn. In particular, if b ∈K and ∆(b) =

∑
v′,w′ bv′,w′Tv′ ⊗ Tw′ , then

∆(ab) = ∆(a) ·∆(b) :=
∑

v,w,v′,w′

av,wbv′,w′TvTv′ ⊗ TwTw′ . (2.17)

Remark 2.5. The naive componentwise product is ill-defined on all of K⊗R(T ) K, for if
it were well-defined, then (Ti ⊗ 1)(q ⊗ 1) = (Ti ⊗ 1)(1⊗ q) or, equivalently, Tiq ⊗ 1 = Ti ⊗ q =
q(Ti ⊗ 1) = qTi ⊗ 1, which is false for q = eαi .

There is a left R(T )-bilinear pairing 〈·, ·〉 : (K⊗R(T ) K)× (Ψ⊗R(T ) Ψ)→R(T ) given by

〈a⊗ b, φ⊗ ψ〉= 〈a, φ〉〈b, ψ〉.

Lemma 2.8. For all a ∈K and φ, ψ ∈Ψ, we have 〈a, φψ〉= 〈∆(a), φ⊗ ψ〉.

Proof. First, extend the definitions in the obvious manner to KQ(T ) and Fun(W, Q(T )). Using left
Q(T )-linearity, we may then take a= w. Then 〈∆(w), φ⊗ ψ〉= 〈w ⊗ w, φ⊗ ψ〉= φ(w)ψ(w) =
〈w, φψ〉. ✷

Define the structure ‘constants’ cuv
w ∈R(T ) by ψuψv =

∑
w∈W cuv

w ψw. The structure constants
of Ψ are recovered by the map ∆.

Proposition 2.9. We have ∆(Tw) =
∑

u,v c
uv
w Tu ⊗ Tv for all w ∈W .

Proof. This follows from Lemma 2.8 and the fact that ψu(Tv) = δuv. ✷

2.7 Explicit localization formulae

For the sake of completeness, we give an explicit formula for the values ψv(w). It is a variant of
a formula due independently to Graham [Gra02] and Willems [Wil04]. Let ε : KQ(T )→Q(T ) be
the left Q(T )-module homomorphism defined by ε(w) = 1 for all w ∈W .

Proposition 2.10. Let v, w ∈W and let w = ri1ri2 · · · riN be any reduced decomposition of w.
For b1b2 · · · bN ∈ {0, 1}

N , let |b|=
∑N

i=1 bi. Then

ψv(w) = ε
∑

b∈B(i•,v)

(−1)ℓ(w)−|b|
N∏

k=1

{
(1− eαik )rik if bk = 1,

rik if bk = 0,
(2.18)

where the sum runs over

B(i•, v) =

{
b= (b1, b2, . . . , bN ) ∈ {0, 1}N

∣∣∣∣
∏

k
bk=1

Tik =±Tv

}
. (2.19)

Formula (2.18) is the K-theoretic analogue of the formula [AJS94, Bil99, (1.2)] for the
restriction of a T -equivariant Schubert cohomology class [Xv] to a T -fixed point w.
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Example 2.6. Let G= SL3, v = r1 and w = r1r2r1. Then there are three possible binary words b,
namely (1, 0, 0), (0, 0, 1) and (1, 0, 1), yielding

ψv(w) = ε((1− eα1)r1r2r1 + r1r2(1− e
α1)r1 − (1− eα1)r1r2(1− e

α1)r1)

= (1− eα1) + (1− er1r2α1)− (1− eα1)(1− er1r2α1)

= (1− eα1) + (1− eα2)− (1− eα1)(1− eα2)

= 1− eα1+α2 .

Using the reduced decomposition w = r2r1r2 instead, there is only one summand b= (0, 1, 0),
and we obtain

ψv(w) = ε(r2(1− e
α1)r1r2) = 1− er2α1 = 1− eα1+α2 .

Proof of Proposition 2.10. Let the right-hand side of (2.18) be denoted by φv(w). We prove
that ψv(w) = φv(w) by induction on w and then on v. Let i= iN . If v < vri, then in any
summand b we have bN = 0, so that φv(w) = φv(wri) = ψv(wri) = ψv(w) by induction on the
length ℓ(w) of w and (2.12). Otherwise, let v > vri. The part of φv(w) with bN = 0 is given by
φv(wri) = ψv(wri). The rest of φv(w) consists of summands with bN = 1. Consider the left-to-
right product ±Tu of Tik for which bk = 1 except that the term bN = 1 is omitted. For the b
such that u= v, the last factor TiN = Ti produces an additional negative sign, and we obtain
−(1− ewri(αi))φv(wri) = (e−w(αi) − 1)ψv(wri) because the product ri1 · · · riN −1

of the reflections

is wri. For the b with u= vri, we obtain that (wri · (1− e
αi))φvri(w) = (1− e−w(αi))ψvri(w).

In total, we obtain the right-hand side of (2.12), which equals ψv(w). ✷

3. Equivariant K-cohomology of Kac–Moody flag manifolds

Kostant and Kumar [KK90] use the ‘thin’ Kac–Moody flag manifold Xind, which is an ind-
scheme with finite-dimensional Schubert varieties [Kum02]. In contrast, we employ the larger
‘thick’ Kac–Moody flag manifold X [Kas89], which is a scheme of infinite type with finite-
codimensional Schubert varieties. Using the thick Kac–Moody flag manifold, we give natural
geometric interpretations to the constructions in the K-NilHecke ring.

3.1 Kac–Moody thick flags

For the following discussion see [Kas89]. Let T be the algebraic torus with character group P ,
U± the group scheme with Lie(U±) = n±, and B± the Borel subgroups with Lie(B±) = t⊕ n±.
For i ∈ I, let P±

i be the parabolic group with Lie(P±
i ) = Lie(B±)⊕ g±αi

. These groups are all
contained in an affine scheme G∞ of infinite type that contains a canonical ‘identity’ point e.
Let G⊂G∞ be the open subset defined by G= ∪Pi1 · · · PimeP

−
j1
P−

j2
· · · P−

jm
. It is not a group

but admits a free left action by each Pi and a free right action by each P−
j .

Given the above, X =G/B− is then the thick Kac–Moody flag manifold; it is a scheme of
infinite type over C. For each subset J ⊂ I, let P−

J ⊂G be the group generated by B− and P−
i

for i ∈ J .

Write XJ =G/P−
J . Let WJ ⊂W be the subgroup generated by ri for i ∈ J , and let W J be the

set of minimal-length coset representatives in W/WJ . For w ∈W J , let X̊J
w =BwP−

J /P
−
J where

B =B+; it is locally closed in XJ . We have the B-orbit decomposition

XJ =
⊔

w∈W J

X̊J
w.
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Let XJ
w = X̊J

w be the Schubert variety. It has codimension ℓ(w) in XJ and coherent structure
sheaf OXJ

w
. We have

XJ
w =

⊔

v∈W J

v>w

X̊J
v . (3.1)

Let S be a finite Bruhat order ideal of W J (a finite subset S ⊂W J such that if v ∈ S, u ∈W J

and u 6 v, then u ∈ S). Let ΩJ
S =

⊔
w∈S X̊

J
w =

⋃
w∈S wBP

−
J /P

−
J be a B-stable finite union of

translations of the big cell X̊J :=BP−
J /P

−
J , which is open in XJ . The big cell is an affine space

of countable dimension (finite if g is finite-dimensional): X̊J ∼= Spec(C[x1, x2, . . . ]).

3.2 Equivariant K-cohomology

Denote by CohT (ΩJ
S) the category of coherent T -equivariant OΩJ

S
-modules, and let KT (ΩJ

S) be

the Grothendieck group of CohT (ΩJ
S). For each w ∈ S, OXJ

w
belongs to CohT (ΩJ

S) and therefore

defines a class [OXJ
w
] ∈KT (ΩJ

S). Define

KT (XJ) = lim
←−
S

KT (ΩJ
S).

One may show (as in [KS09] for the case where J = ∅) that

KT (XJ)∼=
∏

w∈W J

KT (pt)[OXJ
w
]. (3.2)

Recall that KT (pt)∼=R(T )∼= Z[P ] =
⊕

λ∈P Zeλ. Elements of KT (XJ) are possibly infinite
KT (pt)-linear combinations of equivariant Schubert classes [OXJ

w
].

3.3 Restriction to T -fixed points

For w ∈W J , let iJw : {pt}→W J ∼= (XJ)T ⊂XJ be the inclusion with image {wP−
J /P

−
J }.

Restriction to the T -fixed points induces an injective R(T )-algebra homomorphism

KT (XJ)
resJ

−−−−→ KT ((XJ)T )∼=KT (W J)∼= Fun(W J , R(T )),
c 7−→ (w 7−→ iJ ∗

w (c))
(3.3)

(see [HHH05, KK90]), where Fun(W J , R(T )) is the R(T )-algebra of functions W J →R(T ) with
pointwise multiplication and R(T )-action

(qψ)(w) = qψ(w)

for q ∈R(T ), ψ ∈ Fun(W J , R(T )) and w ∈W J . Let ιJ : Fun(W J , R(T ))→ Fun(W, R(T )) be
defined by extending functions to be constant on cosets in W/WJ :

ιJ(ψ)(w) = ψ(w′)

for ψ ∈ Fun(W J , R(T )), where w′ ∈W J is such that w′WJ = wWJ .

Define ΨJ ⊂ Fun(W, R(T )) by ψ ∈ΨJ if and only if ψ is in the image of ιJ and

ψ(rαw)− ψ(w) ∈ (1− eα)R(T ) for all w, rαw ∈W , α ∈ Φre. (3.4)

We call this the GKM condition1 for KT (XJ).

1 The corresponding criterion was proved in [GKM98] for equivariant cohomology for more general spaces,
commonly called GKM spaces. For Kac–Moody flag ind-schemes the criterion follows directly from results
in [KK90]. See also [HHH05] for more general cohomology theories and spaces.
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Theorem 3.1 [HHH05, KK90].

KT (XJ)∼= ΨJ .

For the sake of completeness, we include a proof of Theorem 3.1. For v ∈W J , define
ψv

J ∈ Fun(W J , R(T )) to be the image of [OXJ
v
]:

ψv
J(w) = iJ ∗

w ([OXJ
v
]) for v, w ∈W J . (3.5)

When J = ∅ we shall write X =X∅, Ψ = Ψ∅ and so on, suppressing ∅ in the notation. Observe
that the definition of Ψ = Ψ∅ in this section agrees with the definition (2.9) by Proposition 2.6.
Provisionally, for J = ∅, we write ψv

∅ for the functions defined by (3.5) and show that they agree
with the functions defined by (2.10) using the K-NilHecke ring.

Theorem 3.2. For all v ∈W , we have ψv = ψv
∅ .

3.4 Push–pull and yi

Fix i ∈ I. For the singleton J = {i}, let P−
i = P−

J and Xi =XJ , and let pi :X →Xi be the
projection, which is a P1-bundle. In [KS09] it is shown that

p∗
i pi ∗([OXv ]) =

{
[OXvri

] if vri < v,

[OXv ] if vri > v.
(3.6)

Proposition 3.3. The map ψ 7→ yi · ψ is an R(T )-module endomorphism of Fun(W, R(T )) such
that the following diagram commutes.

KT (X)
res //

p∗

i pi ∗

��

Fun(W, R(T ))

yi·−

��
KT (X) res

// Fun(W, R(T ))

Proof. Let xo
i ∈Xi be the point P−

i /P
−
i . Let Gi ⊃G

+
i ⊃ T be the subgroups with Lie(Gi) =

t⊕ gαi
⊕ g−αi

and Lie(G+
i ) = t⊕ gαi

.

Now let w ∈W with wri <w. Then Ad(w)G+
i ⊂B, and it stabilizes wxo

i and p−1
i (wxo

i ).
Let j : p−1

i (wxo
i )→X be the inclusion. Then for F ∈ CohB(X), the first left derived functor

L1j
∗F is Ad(w)G+

i -equivariant. For x ∈ {w, wri}, let i′
x be the inclusion {pt}→ xxo

i ⊂ p
−1
i (wxo

i ).
Hence we have the commutative diagram

KB(X)
i∗

x //

j∗

((QQQQQQQQQQQQ

KT (pt)

KAd(w)G+
i (p−1

i (wxo
i ))

i′∗

x

66mmmmmmmmmmmm

and the following isomorphisms that forget down to the Levi:

KB(X)∼=KT (X),

KAd(w)G+
i (p−1

i (wxo
i ))
∼=KT (p−1

i (wxo
i )).

This allows reduction to the case of p−1
i (wxo

i )
∼= P1, where the result is standard; see [CG97,

Corollary 6.1.17]. ✷
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Proof of Theorem 3.2. We show that the functions ψv
∅ satisfy the recurrence in Remark 2.2.

Since Xid =X, it follows that ψid
∅ (id) = 1.

Let v ∈W . By (3.1), we have w ∈Xv if and only if w > v. Therefore

ψv
∅ (w) = 0 unless v 6 w.

In particular, ψv
∅ (id) = 0 if v 6= id. Therefore the values ψv

∅ (w) satisfy the base case of the
recurrence. Proving (2.12) holds for ψv

∅ is equivalent to showing that

yi · ψ
v

∅ =

{
ψvri

∅ if vri < v,

ψv
∅ if vri > v.

But this holds by Proposition 3.3 and (3.6). ✷

Let pJ :X →XJ be the projection. Then there is the following commutative diagram of
injective R(T )-algebra maps, where the horizontal maps are restriction maps as in (3.3).

KT (XJ)
resJ

//

p∗

J

��

Fun(W J , R(T ))

ιJ

��
KT (X) res

// Fun(W, R(T ))

We have p∗
J([OXJ

v
]) = [OXv ] and ιJ(ψv

J) = ψv for v ∈W J .

Proof of Theorem 3.1. For the J = ∅ case, the result follows from (3.2), Theorem 3.2 and
Proposition 2.6. For J 6= ∅, let ψ =

∑
w awψ

w be in the image of ιJ . It suffices to show that
aw = 0 for w /∈W J . Since Ti is a Q(T )-multiple of ri − 1, we have Ti · ψ = 0 whenever i ∈ J .
Suppose that aw 6= 0 for some w /∈W J . Pick such a w with minimal length, and let i ∈ J be such
that wri <w. From Lemma 2.2 and Ti = yi − 1, we deduce that the coefficient of ψwri in Ti · ψ
is non-zero, which is a contradiction. ✷

4. The affine flag manifold and affine Grassmannian

We now specialize our constructions to the case of an affine root system, and consider the thick
affine flag manifold Xaf and thick affine Grassmannian GrG and their equivariant K-cohomology.
However, instead of using the full affine torus Taf ⊂Gaf , we shall use the torus T ⊂G and consider
KT (GrG). We give a small-torus GKM condition, which is the K-theoretic analogue of a result
of Goresky et al. [GKM04] in cohomology.

4.1 The affine flag manifold

We fix notation specific to affine root systems and their associated finite root systems.

Let g⊃ b⊃ t such that g is a simple Lie algebra over C, b is a Borel subalgebra, and t is a
Cartan subalgebra. Also, take a Dynkin node set I, a finite Weyl group W , simple reflections
{ri | i ∈ I}, a weight lattice P =

⊕
i∈I Zωi ⊂ t∗ with fundamental weights ωi, a root lattice

Q=
⊕

i∈I Zαi ⊂ t∗ with simple roots αi, and a coroot lattice Q∨ =
⊕

i∈I Zα∨
i ⊂ t.

Let G⊃B ⊃ T such that G is a simple and simply connected algebraic group over C with
Lie(G) = g, B is a Borel subgroup, and T is a maximal algebraic torus.

Let gaf = (C[t, t−1]⊗ g)⊕ Cc⊕ Cd be the untwisted affine Kac–Moody algebra with canonical
simple subalgebra g, canonical central element c and degree derivation d. Let gaf = n+

af ⊕ taf ⊕ n−
af
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be the triangular decomposition with affine Cartan subalgebra taf . Let Iaf = {0} ∪ I be the affine
Dynkin node set. Let {ai ∈ Z>0 | i ∈ Iaf} be the unique collection of relatively prime positive
integers giving a dependency for the columns of the affine Cartan matrix (aij)i,j∈Iaf . Then
δ =

∑
i∈Iaf

aiαi is the null root. The affine weight lattice is given by Paf = Zδ ⊕
⊕

i∈Iaf
ZΛi ⊂ t∗

af

where {Λi | i ∈ Iaf} are the affine fundamental weights. Let Qaf and Q∨
af be the affine root and

coroot lattices. LetWaf be the affine Weyl group, with simple reflections ri for i ∈ Iaf . Considering
the subset I of Iaf , W =WI ⊂Waf and W I

af is the set of minimal-length coset representatives in
Waf/W . We have Waf

∼=W ⋉Q∨ with λ ∈Q∨ written as tλ ∈Waf . There is a bijection W I
af →Q∨

sending w ∈W I
af to λ ∈Q∨, where λ is defined by wW = tλW . Let λ− ∈W · λ be antidominant

and u ∈W the shortest element such that uλ− = λ. Then w = tλu and ℓ(w) = ℓ(tλ)− ℓ(u).

Let Φaf = Zδ ∪ (Zδ + Φ) be the set of affine roots. The affine real roots are given by
Φre

af = Zδ + Φ. Let Φ±
af be the sets of positive and negative affine roots. The set of positive affine

real roots is defined by Φ+re
af = Φ+

af ∩ Φre
af = Φ+ ∪ (Z>0δ + Φ). A typical real root α+mδ ∈ Φre

af ,
with α ∈ Φ and m ∈ Z, has associated reflection rα+mδ = rαtmα∨ ∈Waf .

Let Gaf ⊃ P
−
I ⊃B

−
af ⊃ Taf be the schemes of § 3.1 associated with gaf , where P−

I is the
maximal parabolic group scheme for the subset of Dynkin nodes I ⊂ Iaf and B−

af is the negative
affine Borel group; then Xaf =Gaf/B

−
af is the thick affine flag manifold and GrG =XI

af =Gaf/P
−
I

the thick affine Grassmannian.

4.2 Equivariant K-theory for affine flags with small-torus action

Following Peterson [Pet97] and Goresky et al. [GKM04] in the cohomology case, we consider
the action of the smaller torus T = Taf ∩G. The goal is to formulate and prove the analogue of
Theorem 3.1 for KT (Xaf) and KT (GrG). We let Ψ′

af ⊂ Fun(Waf , R(Taf)) denote the ring defined
by (2.9) for the affine Lie algebra gaf , so that Ψ′

af
∼=KTaf (Xaf).

The natural projection Paf → P of weight lattices is surjective with kernel Zδ ⊕ ZΛ0. It
induces the projections

Z[Paf ]
φ // Z[P ]

φ0 // Z

and a commutative diagram

KTaf (Xaf)
res′

//

For
��

Ψ′
af

φ◦−

��
KT (Xaf) res

// Fun(Waf , R(T ))

(4.1)

where the horizontal maps are restrictions to Waf =XTaf

af ⊂X
T
af and the vertical map For regards

a Taf -equivariant OXaf
-module as a T -equivariant one. We change notation slightly, writing the

Schubert classes as ψ′v ∈Ψ′
af and defining ψv := φ ◦ ψ′v ∈ Fun(Waf , R(T )).

The following definition is inspired by the analogous cohomological condition in [GKM04,
Theorem 9.2]. A function ψ ∈ Fun(Waf , R(T )) can be extended by linearity to give a function
ψ′ ∈ Fun(

⊕
w∈Waf

R(T ) · w, R(T )). In the following definition we abuse notation by identifying
ψ with ψ′.

Definition 4.1. We say that ψ ∈ Fun(Waf , R(T )) satisfies the small-torus Grassmannian GKM
condition if

ψ((1− tα∨ )dw) ∈ (1− eα)dR(T ) for all d ∈ Z>0, w ∈Waf and α ∈ Φ. (4.2)
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We say that ψ ∈ Fun(Waf , R(T )) satisfies the small-torus GKM condition if, in addition
to (4.2), we have

ψ((1− tα∨ )d−1(1− rα)w) ∈ (1− eα)dR(T ) for all d ∈ Z>0, w ∈Waf and α ∈ Φ. (4.3)

Let Ψaf be the set of ψ ∈ Fun(Waf , R(T )) that satisfy the small-torus GKM condition, and
let ΨI

af be the set of ψ ∈ Fun(Waf , R(T )) that are constant on cosets wW for w ∈Waf and satisfy
the small-torus Grassmannian GKM condition.

Lemma 4.2. Suppose ψ satisfies (4.2) and let J := (1− eα)dR(T ). Then

ψ((1− tα∨ )d−1w) and ψ((1− tα∨ )d−1tpα∨w)

are congruent modulo the ideal J for all p ∈ Z.

Proof. By (4.2),

J ∋ ψ((1− tα∨ )dw) = ψ((1− tα∨ )d−1w)− ψ((1− tα∨ )d−1tα∨w)

so that the assertion holds for p= 1. Repeating the same argument for ψ((1− tα∨ )d−1tα∨w)
yields the lemma for all p ∈ Z>0. Replacing w by t−pα∨w gives the statement for all p ∈ Z. ✷

Theorem 4.3.

(i) KT (Xaf)∼= Ψaf =
∏

v∈Waf
R(T ) ψv.

(ii) KT (GrG)∼= ΨI
af =

∏
v∈W I

af
R(T ) ψv.

Proof. Owing to Lemmata 2.3 and 2.5, the set {ψv | v ∈Waf} is independent over R(T ). Arguing
as in [KS09], one can show that KT (Xaf) consists of possibly infinite R(T )-linear combinations
of the [OXv ]. By the commutativity of the diagram (4.1), we conclude that

KT (Xaf)∼=
∏

v∈Waf

R(T )[OXv ],

that the map For is surjective, and that res′ is injective with image
∏

v∈Waf
R(T )ψv. For (i)

it remains to show that Ψaf =
∏

v∈Waf
R(T )ψv. Let v ∈Waf . We first show that ψv ∈Ψaf . Let

w ∈Waf , α ∈ Φ and d ∈ Z>0. Let W ′ ⊂Waf be the subgroup generated by tα∨ and rα; it is
isomorphic to the affine Weyl group of SL2. Define the function f :W ′ →R(T ) by f(x) = ψ′v(xw).
Since ψ′v satisfies the big-torus GKM condition (3.4) for Xaf , f satisfies (3.4) for a copy of the
SL2 affine flag variety X ′. Therefore f is a possibly infinite R(T )-linear combination of Schubert
classes in X ′. By Propositions 4.4 and 4.5, proved below, φ ◦ f satisfies the small-torus GKM
condition for X ′. It follows that ψv ∈Ψaf .

Conversely, suppose that ψ ∈Ψaf . We show that ψ ∈
∏

v∈Waf
R(T )ψv. Let x= tλu ∈ Supp(ψ)

be of minimal length, with u ∈W and λ ∈Q∨. It suffices to show that

ψ(x) ∈ ψx(x)R(T )

because, upon defining ψ′ ∈Ψaf by ψ′ = ψ − (ψ(x)/ψx(x))ψx, we have Supp(ψ′) ( Supp(ψ), and
by repeating this we may write ψ as a R(T )-linear combination of the ψx.

The elements {1− eα | α ∈ Φ+} are relatively prime in R(T ). Letting α ∈ Φ+, by Lemma 2.5
it suffices to show that

ψ(x) ∈ J := (1− eα)dR(T ),
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where d= |Invα(x)| with Invα(x) being the set of roots in Inv(x) of the form ±α+ kδ for some
k ∈ Z>0. Note that for β ∈ Φ+re

af , β ∈ Inv(x) if and only if x−1 · β ∈ −Φ+re
af . We have

x−1 · (±α+ kδ) = u−1t−λ · (±α+ kδ) =±u−1α+ (k ± 〈λ, α〉)δ.

Hence

Invα(x) =

{
{α, α+ δ, . . . , α− (〈λ, α〉+ χ(α 6∈ Inv(u)))δ} if 〈λ, α〉 6 0,

{−α+ δ,−α+ 2δ, . . . ,−α+ (〈λ, α〉 − χ(α ∈ Inv(u)))δ} if 〈λ, α〉> 0.

Suppose first that 〈λ, α〉> 0. Then d= 〈λ, α〉 − χ(α ∈ Inv(u)). Applying (4.3) to y = t(1−d)α∨x,
we get Z1 ∈ J where

Z1 = ψ((1− tα∨ )d−1(1− rα)y)

= (−1)d−1ψ((1− t−α∨ )d−1x)− ψ((1− tα∨ )d−1rαy)

= (−1)d−1ψ(x)− ψ((1− tα∨ )d−1rαy).

The last equality holds by the assumption on Supp(ψ) and a calculation of Invα(rα+dδx), giving
x > rα+dδx > t−kα∨x for all k ∈ [1, d− 1]. By Lemma 4.2, we have Z2 ∈ J where

Z2 = ψ((1− tα∨ )d−1rαy)− ψ((1− tα∨ )d−1tpα∨rαy)

for any p ∈ Z. Thus

Z1 + Z2 = (−1)d−1ψ(x)− ψ((1− tα∨ )d−1tpα∨rαy) ∈ J.

By the assumption on Supp(x) and the calculation of Invα(x),

ψ((1− tα∨ )d−1tpα∨rαy) = 0

for p= 2− d. It follows that ψ(x) ∈ J .

Now suppose 〈λ, α〉 6 0. By the previous case, we may assume that tdα∨x 6∈ Supp(ψ). Thus

ψ(x) = ψ((1− tα∨ )dx) ∈ J

by induction on Supp(ψ) and (4.2). This proves (i).

For (ii), it suffices to show that ψ ∈ΨI
af if and only if ψ ∈

∏
v∈W I

af
R(T )ψv. First, let ψ ∈ΨI

af .

Let w = tλu ∈Waf with λ ∈Q∨ and u ∈W , and take α ∈ Φ. We shall verify that ψ satisfies the
small-torus GKM condition. We have

rαw = rαtλu= trα(λ)rαu= t−〈λ,α〉α∨tλrαu.

Since by assumption ψ is constant on cosets Waf/W , we have

ψ((1− tα∨ )d−1(1− rα)w) = ψ((1− tα∨ )d−1(1− t−〈λ,α〉α∨ )tλ).

But 1− tkα∨ is divisible by 1− tα∨ for any k ∈ Z. Therefore ψ satisfies the small-torus GKM
condition because it satisfies the Grassmannian one. Part (i) and the fact that ψ is constant on
cosets Waf/W implies that ψ ∈

∏
v∈W I

af
R(T )ψv.

Conversely, it suffices to show that for every v ∈W I
af we have ψv ∈ΨI

af . But this follows from
part (i) and the fact that for such v, ψv is constant on cosets Waf/W . ✷

4.3 The small-torus GKM condition for ŝl2

In this section we prove that the Schubert classes ψv for ŝl2 satisfy the small-torus GKM condition
of Definition 4.1. To this end, we first derive explicit expressions for the ψv.
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For i ∈ Z>0, let

σ2i = (r1r0)
i, σ−2i = (r0r1)

i,
σ2i+1 = r0σ2i, σ−(2i+1) = r1σ−2i.

(4.4)

Then ℓ(σj) = |j| for j ∈ Z, W I
af = {σj | j ∈ Z>0}, and

σ2i = t−iα∨ for i ∈ Z.

Let ψi
j := ψσi(σj) for i, j ∈ Z, where we have set δ = 0. We set x= eα and let S6a be

the sum h0 + h1 + · · ·+ ha of homogeneous symmetric functions. We write Si
6a(x) to mean

S6a[x, x, . . . , x] where there are i copies of x. For i, a ∈ Z such that a, m > 0, we have

ψm
2i+2a = (1− x)mSm

6a(x) = ψm
−2i−2a−1 for m= 2i or 2i− 1, (4.5)

ψm
2i+2a+1 = (1− x−1)mSm

6a(x
−1) = ψm

−2i−2a−2 for m= 2i or 2i+ 1, (4.6)

and zero otherwise. Furthermore,

ψ−m
−i (x) = ψm

i (x−1).

These relations are easily proved by induction using the left- and right-hand recurrences for the
localization of Schubert classes together with the recurrence

Si
6a(x) = xSi

6a−1(x) + Si−1
6a (x).

We also have the explicit formula

Si
6a(x) =

a∑

j=0

xj

(
j + i− 1

i− 1

)
. (4.7)

Proposition 4.4. For all d > 1, m ∈ Z and w ∈Waf we have

ψm((1− tα∨ )dw) ∈ (1− x)dZ[x±].

Proof. We prove the claim for m= 2i and for the ranges t(−i−a)α∨ to t(i+1+b)α∨ for a, b ∈ Z>0.
The other cases are similar. Let d= (i+ a) + (i+ 1 + b) = 2i+ a+ b+ 1. We must show that

Z :=

d∑

k=0

(−1)k

(
d

k

)
ψ2i

−2i−2−2b+2k ∈ (1− x)dZ[x±].

Since ψ2i
2p = 0 for −2i− 2< 2p < 2i,

Z =

( b∑

k=0

+

d∑

k=2i+1+b

)
(−1)k

(
d

k

)
ψ2i

−2i−2−2b+2k

=

b∑

k=0

(−1)k

(
d

k

)
ψ2i

−2i−2−2b+2k +

a∑

k=0

(−1)k+2i+1+b

(
d

2i+ 1 + b+ k

)
ψ2i

2i+2k

= (−1)b
b∑

k=0

(−1)k

(
d

b− k

)
ψ2i

−2i−2−2k − (−1)b
a∑

k=0

(−1)k

(
d

a− k

)
ψ2i

2i+2k.
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Substituting (4.5), (4.6) and (4.7) gives

(−1)bZ =
b∑

k=0

(−1)k

(
d

b− k

)
(1− x−1)2i

k∑

j=0

x−j

(
j + 2i− 1

2i− 1

)

−
a∑

k=0

(−1)k

(
d

a− k

)
(1− x)2i

k∑

j=0

xj

(
j + 2i− 1

2i− 1

)
.

Therefore we must show that Z ′ := (−1)bZ(1− x)−2i is divisible by (1− x)a+b+1. Regarding Z ′

as a function of x, we need to show that its rth derivative at x= 1 vanishes, for 0 6 r 6 a+ b.
This yields the identities

(−1)r
b∑

k=0

(−1)k

(
d

b− k

) k∑

j=0

(j + 2i+ r − 1)!

j!
=

a∑

k=0

(−1)k

(
d

a− k

) k∑

j=r

(j + 2i− 1)!

(j − r)!
.

Upon shifting the sums on the right-hand side using j′ = j − r and k′ = k − r and dividing both
sides by (−1)r(2i+ r − 1)!, the inner sums simplify and we obtain

b∑

k=0

(−1)k

(
d

b− k

)(
2i+ r + k

k

)
=

a−r∑

k=0

(−1)k

(
d

a− r − k

)(
2i+ r + k

k

)
.

Setting a′ = a− r, we claim that this sum is equal to
(
a′+b

b

)
=

(
a′+b
a′

)
, which is symmetric in a′

and b and hence implies equality of the two sides. This can be seen as follows. The coefficient of
xb in (1 + x)a′+b is

(
a′+b
a′

)
. Alternatively, we can calculate

[xb](1 + x)a′

(1 + x)b(1 + x)c(1 + x)−c,

where c= 2i+ r + 1 and (1 + x)−c is meant to be expanded as a power series in x. Then

[xb](1 + x)a′

(1 + x)b(1 + x)c(1 + x)−c =

b∑

k=0

[xb−k](1 + x)a′+b+c[xk](1 + x)−c,

which is exactly the sum we wanted to evaluate. ✷

Proposition 4.5. For all d > 1, m ∈ Z and w ∈Waf we have

ψm((1− tα∨ )d−1(1− rα)w) ∈ (1− x)dZ[x±].

Proof. Note that

ψm((1− tα∨ )d−1(1− rα)w) = ψm((1− tα∨ )d−1w)− ψm((1− tα∨ )d−1rαw). (4.8)

Furthermore, by Proposition 4.4, ψm satisfies the small-torus Grassmannian GKM condition.
Hence, applying Lemma 4.2 to ψm((1− tα∨ )d−1rαw), we can shift the argument rαw so that
the equalities (4.5) and (4.6) can be used. This implies that (4.8) is zero modulo the ideal
(1− x)dZ[x±]. ✷

4.4 The wrong-way map

There is a natural inclusion map ιI : ΨI
af →Ψaf . In the case at hand, there is a map̟ : Ψaf →ΨI

af ,
of which ιI is a section. This map is specific to the case of the affine Grassmannian; it also does
not exist if one uses the larger torus Taf .
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Lemma 4.6. There is an R(T )-module homomorphism ̟ : Ψaf →ΨI
af , defined by ̟(ψ)(w) =

ψ(tλ) for w ∈Waf , where λ ∈Q∨ is such that wW = tλW .

Proof. Let ψ ∈Ψaf , w = tλu ∈Waf with λ ∈Q∨, and u ∈W , α ∈ Φ and d ∈ Z>0. Then we have

̟(ψ)((1− tα∨ )dw) = ̟(ψ)((1− tα∨ )dtλu)

= ψ((1− tα∨ )dtλ) ∈ (1− eα)dR(T ). ✷

5. K-homology of the affine Grassmannian and the K-Peterson subalgebra

Let K′ be the K-NilHecke ring for the affine Lie algebra gaf defined via the general construction
in § 2. In this section we use the affine K-NilHecke ring K, which differs from K′ in the use of
R(T ) instead of R(Taf). Our main result, generalizing work of Peterson [Pet97], gives a Hopf-
isomorphism of KT (GrG) with a commutative subalgebra L⊂K.

5.1 K-homology of the affine Grassmannian

We define the equivariant K-homology KT (GrG) of the affine Grassmannian to be the continuous
dual KT (GrG) = HomR(T )(K

T (GrG), R(T )), so that KT (GrG) is a free R(T )-module with basis

comprising the Schubert classes ξw dual to [OXI
w
] ∈KT (GrG).

The K-homology KT (GrG) and K-cohomology KT (GrG) are equipped with dual Hopf
structures, which we now explain, focusing on KT (GrG) first. Let K ⊂G be the maximal
compact form, LK the space of continuous loops S1→K, and ΩK the space of
based loops (S1, 1)→ (K, 1). Let TR = T ∩K. We denote by KTR(ΩK) the equivariant
topological K-theory of ΩK. By an (unpublished) well-known result of Quillen (see [HHH05,
PS86]), the space ΩK is (equivariantly) weak-homotopy-equivalent to the ind-scheme affine
Grassmannian G(C((t)))/G(C[[t]]). Thus we have KTR(ΩK) =KTR(G(C((t)))/G(C[[t]])), where
KTR(G(C((t)))/G(C[[t]])) denotes the topological K-theory of the topological space underlying
the ind-scheme G(C((t)))/G(C[[t]]).

The topological K-theory KTR(ΩK)∼=KTR(G(C((t)))/G(C[[t]])) is studied in [KK90], where
it is identified with the ring ΨI

af . More precisely, Kostant and Kumar studied the equivariance
with respect to the larger torus Taf , but the same argument as in our Theorem 4.3 gives
KTR(G(C((t)))/G(C[[t]]))∼= ΨI

af . Thus we obtain the sequence of isomorphisms

KT (GrG)∼= ΨI
af
∼=KTR(G(C((t)))/G(C[[t]]))∼=KTR(ΩK),

and all the isomorphisms are compatible with restrictions to fixed points.

The composite map r given by

ΩK →֒ LK −→ LK/TR

induces the map

KT (Xaf)∼=KTR(LK/TR)
r∗

−−→KTR(ΩK)∼=KT (GrG).

One can check, using a fixed-point calculation, that the map ̟ of Lemma 4.6 is related to r∗

via the isomorphisms of Theorem 4.3.

The based loop group ΩK has a TR-equivariant multiplication map ΩK × ΩK→ ΩK given
by pointwise multiplication on K, and this induces the structure of a commutative and co-
commutative Hopf algebra on KTR(ΩK)∼=KT (GrG). The co-commutativity of KTR(ΩK) follows
from the fact that it is a homotopy double-loop space (K being already a homotopy loop space).
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Via duality, we obtain a dual Hopf-algebra structure on KT (GrG). For the next result, we label
the Taf -fixed points of GrG by translation elements tλ.

Lemma 5.1. Let λ, µ ∈Q∨, and consider the maps i∗
λ, i

∗
µ :KT (GrG)→R(T ) as elements of

KT (GrG). Then in KT (GrG) we have

i∗
λ i

∗
µ = i∗

λ+µ.

Proof. It suffices to argue in KTR(ΩK). The map i∗
λ i

∗
µ is induced by the map pt→ ΩK ×

ΩK→ ΩK, where the image of the first map is the pair (tλ, tµ) ∈ ΩK × ΩK of fixed points
and the second map is multiplication. Treating tλ, tµ : S1→K as homomorphisms into K, we
see that pointwise multiplication of tλ and tµ gives tλ+µ. Thus i∗

λ i
∗
µ = i∗

λ+µ. ✷

The antipode of KT (GrG) is given by S(i∗
λ) = i∗

−λ, since the fixed points satisfy t−1
λ = t−λ

in ΩK.

5.2 The affine K-NilHecke ring and K-Peterson subalgebra

Let Waf act on the finite-weight lattice P by the (non-faithful) level-zero action (utλ · µ) = u · µ
for u ∈W , λ ∈Q∨ and µ ∈ P .

Let K be the smash product of the affine 0-Hecke ring K0 with R(T ) (rather than R(Taf))
using the commutation relations (2.6). We call this the affine K-NilHecke ring. The cohomological
analogue of K was studied by Peterson [Pet97]. We have K =

⊕
w∈Waf

R(T ) Tw.

We now define the map k :KT (GrG)→K by the formula

〈k(ξ), ψ〉= 〈ξ, ̟(ψ)〉, (5.1)

where ψ ∈Ψaf and ̟ is the wrong-way map of Lemma 4.6. We have used Theorem 4.3(ii) to
obtain the pairing on the right-hand side. By letting ψ vary over {ψv ∈Ψaf}, it is clear that (5.1)
defines k(ξ) uniquely in K.

We define the K-Peterson subalgebra L := ZK(R(T )) of K to be the centralizer of R(T )
inside K.

Lemma 5.2. We have Im(k) =
⊕

λ∈Q∨ Q(T )tλ ∩K = L.

Proof. For λ ∈Q∨, we have 〈i∗
λ, ̟(ψ)〉= ψ(tλ), so k(i∗

λ) = tλ ∈K. Since i∗
λ spans KT (GrG) (over

Q(T )), we have thus established the first equality. For the second equality,
⊕

λ∈Q∨ Q(T )tλ ∩K⊆
ZK(R(T )) holds because under the level-zero action tλ acts on P trivially for all λ ∈Q∨. For the
other direction, let a=

∑
w∈Waf

aww ∈ ZK(R(T )) for aw ∈Q(T ). Then for all µ ∈ P we have

0 = eµa− aeµ =
∑

w∈Waf

aw(eµ − ewµ)w.

Therefore, for all w ∈Waf , either aw = 0 or wµ= µ for all µ ∈ P . Taking µ to be W -regular, we
see that the latter holds only for w = tλ with some λ ∈Q∨. ✷

The algebra L inherits a coproduct ∆ : L→ L⊗R(T ) L from the coproduct of K. (In § 2.6 the
coproduct of K′ is given, and it specializes easily to a coproduct for K.) That ∆(L)⊂ L⊗R(T ) L

follows from (2.14) and the equality L =
⊕

λ∈Q∨ Q(T )tλ ∩K. We make L a Hopf algebra by
defining S(tλ) = t−λ.

The following results generalize properties of Peterson’s j-map in the homology case;
see [Lam08, Theorem 4.4].
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Theorem 5.3. The map k :KT (GrG)→ L is a Hopf-isomorphism.

Proof. To check that a map is a Hopf-morphism, it suffices to check that it is a bialgebra
morphism, since the compatibility with antipodes follows as a consequence.

It is clear from the definition that k is injective. Since k is R(T )-linear, to check that k
is compatible with the Hopf-structure we check the product and coproduct structures on the
basis {tλ | λ ∈Q

∨}. By Lemma 5.1 we have k(i∗
λ+µ) = k(i∗

λ i
∗
µ) = tλ tµ = tλ+µ, so k is an algebra

morphism. That k is a coalgebra morphism follows from an argument similar to that used in
proving Lemma 2.8 and Proposition 2.9. Thus k :KT (GrG)→ L is a Hopf-isomorphism. ✷

Theorem 5.4. For each w ∈W I
af , there is a unique element kw ∈ L of the form

kw = Tw +
∑

v∈Waf \W I
af

kv
wTv (5.2)

for kv
w ∈R(T ). Furthermore, kw = k(ξw) and L =

⊕
w∈W I

af
R(T ) kw.

Proof. Since the Schubert basis {ξw | w ∈W
I
af} is a R(T )-basis of KT (GrG), upon setting

kw = k(ξw) we obtain, by Theorem 5.3, a R(T )-basis of L. By (5.1) and the fact that ̟(ψv) = ψv

for v ∈W I
af , we obtain (5.2). Finally, the element kw ∈ L is unique because the set {Tw | w ∈W

I
af}

is linearly independent. ✷

Define the T -equivariant K-homological Schubert structure constants dw
uv ∈R(T ) for

KT (GrG) by

kukv =
∑

w∈W I
af

dw
uvkw (5.3)

where u, v ∈W I
af . Since ku ∈ ZK(R(T )), we have

kukv = ku

∑

y∈Waf

ky
v Ty =

∑

y∈Waf

ky
v ku Ty =

∑

x,y∈Waf

ky
v k

x
u Tx Ty.

Applying ψw with w ∈W I
af and using (5.2) gives

dw
uv =

∑

x,y∈Waf

ky
v k

x
u ψ

w(TxTy).

Since w ∈W I
af , ψw(TxTy) = 0 unless y ∈W I

af . But, for y ∈W I
af , we have ky

v = δyv by (5.2).
Therefore

dw
uv =

∑

x∈Waf

TxTv=±Tw

(−1)ℓ(w)−ℓ(v)−ℓ(x)kx
u. (5.4)

6. The K-affine Fomin–Stanley algebra and K-homology of the
affine Grassmannian

In this section we reduce to the non-equivariant setting. Our main result (Theorem 6.4) describes
the specialization at zero of L. We will rely on the corresponding known statements from the
cohomological setting, in particular [Lam08, Proposition 5.3].
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6.1 K-affine Fomin–Stanley algebra

Define φ0 :R(T )→ Z by setting φ0(e
λ) = 1 and extending by linearity. Define φ0 : K→K0 by

φ0(a) =
∑

w∈W φ0(aw)Tw, where a=
∑

w∈W awTw with aw ∈R(T ).

The K-affine Fomin–Stanley algebra is defined as

L0 = {b ∈K0 | φ0(bq) = φ0(q)b for all q ∈R(T )} ⊂K0.

The cohomological analogue of L0 was defined in [Lam08].

Lemma 6.1. Suppose that a ∈ L. Then φ0(a) ∈ L0.

Proof. φ0(ae
λ) = φ0(e

λa) = φ0(a). ✷

In what follows, we shall use the notation (such as Aw) for the cohomological nilHecke ring.
We refer the reader to Appendix A for a review of this notation. Let ⋖ denote the covering
relation in Bruhat order.

Lemma 6.2. Let v ⋖ w in Waf . Then for each λ ∈ P we have

φ0〈Tw e
λ, ψv〉= φ0〈Awλ, ξ

v〉= 〈Awλ, ξ
v〉.

Proof. Write v = wrα. By [Hum90] there exists a length-additive factorization of the form
w = u1riu2 for some i ∈ Iaf such that v = u1u2 and α= u−1

2 αi. We have

φ0〈Tw e
λ, ψv〉= φ0ψ

v(Twe
λ) = φ0(u1 · Ti · e

u2·λ) = φ0

(
eriu2λ − eu2λ

1− eαi

)
,

since φ0(wq) = φ0(q) for all w ∈Waf and q ∈R(T ). Therefore

φ0ψ
v(Twe

λ) = 〈α∨
i , u2λ〉= 〈α

∨, λ〉= ξv(Aw λ),

where we have used (2.1) acting on an exponential for the first equality, Waf -equivariance of 〈·, ·〉
for the second equality, and Lemma A.1 for the third. ✷

Lemma 6.3. Suppose that a=
∑

w∈Waf
awTw ∈ L0 where aw ∈ Z. Let ℓ be maximal so that

aw 6= 0 for some w with ℓ(w) = ℓ. Then a′ =
∑

ℓ(w)=ℓ awAw ∈ B0.

Proof. We note that for v ∈Waf with ℓ(v) = ℓ− 1, we have for each λ ∈ P that

φ0 ψ
v(a(eλ − 1)) = φ0 ψ

v

( ∑

ℓ(w)=ℓ

awTw(eλ − 1)

)
= φ0 ξ

v(a′λ),

using Lemma 6.2. Since a ∈ L0, we have φ0(a(e
λ − 1)) = 0 for all λ. Thus a′ ∈ B0, as claimed. ✷

Theorem 6.4. We have L0 = φ0(L). Furthermore, L0 =
⊕

w∈W I
af

Z φ0(kw) and φ0(kw) is the

unique element in L ∩ (Tw +
⊕

v∈W \W I
af

Z Tv).

Proof. For a ∈ L, we have φ0(ae
λ) = φ0(e

λa) = φ0(a). Thus φ0(L)⊂ L0. Now suppose that a=∑
w∈Waf

awTw ∈ L0. Define the support of a to be the w ∈Waf such that aw 6= 0. If the support

of a contains a Grassmannian element w ∈W I
af , then a− awφ0(kw) ∈ L0, but by Theorem 5.4

its support has fewer Grassmannian elements than does a. So we may suppose that a has no
Grassmannian element in its support. By Lemma 6.3, the element a′ (as defined in the lemma)
lies in B0 and has no Grassmannian support. By [Lam08, Proposition 5.3], we must have a′ = 0.
Thus a= 0. We conclude that L0 = φ0(L).
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Since the φ0(kw), w ∈W I
af , are clearly linearly independent, it follows that they form a basis.

The last statement follows from Theorem 5.4. ✷

Some examples of the elements φ0(kw), illustrating Theorem 6.4, are presented in
Appendix A.3.3.

Corollary 6.5. The ring L0 is commutative.

Proof. Let a, b ∈ L0. By Theorem 6.4, we have a+ a′ ∈ L and b+ b′ ∈ L for some elements a′ and
b′ satisfying φ0(a

′) = 0 = φ0(b
′). Since L is commutative, we have

ab= φ0((a+ a′)(b+ b′)) = φ0((b+ b′)(a+ a′)) = ba. ✷

6.2 Structure constants

We now consider the structure constants in L0. The next lemma follows from either a direct
calculation or Theorem 6.8 below.

Lemma 6.6. For a, b ∈ L, we have φ0(ab) = φ0(a)φ0(b).

Using Lemma 6.6, apply φ0 to (5.3) to get that for u, v ∈W I
af ,

φ0(ku)φ0(kv) =
∑

w∈W I
af

φ0(d
w
uv)φ0(kw). (6.1)

In other words, φ0(d
w
uv) ∈ Z are the structure constants for the basis {φ0(kv) | v ∈W

I
af} of L0.

Conjecture 6.7. For u, v, w ∈W I
af and x ∈Waf ,

(−1)ℓ(w)−ℓ(u)−ℓ(v)φ0(d
w
uv) > 0,

(−1)ℓ(x)−ℓ(u)φ0(k
x
u) > 0.

By (5.4), the second statement implies the first.

The tables of φ0(kw) in Appendix A.3.3 support Conjecture 6.7.

6.3 Non-equivariant K-homology

One defines the non-equivariant K-cohomology K∗(GrG) by considering non-equivariant
coherent sheaves in the natural way. We have K∗(GrG) =

⊕
w∈W I

af
Z [OXI

w
]0, where [OXI

w
]0

denotes a non-equivariant class. The non-equivariant K-homology K∗(GrG), defined as the
continuous Z-dual to K∗(GrG), has Schubert basis {ξ0w | w ∈W

I
af}. We have the following

commutative diagram.

KT (GrG)
φ0 //

OO

��

K∗(GrG)
OO

��
L

φ0

// L0

The subalgebra L0 is a Hopf algebra, with coproduct φ0 ◦∆. The following result
generalizes [Lam08, Theorem 5.5] to K-homology.

Theorem 6.8. There is a Hopf-isomorphism k0 :K∗(GrG)−→ L0 such that k0(ξ
0
w) = φ0(kw).
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7. Grothendieck polynomials for the affine Grassmannian

In this section we specialize to affine type A
(1)
n−1 and G= SLn(C). We first introduce elements

ki ∈ L0 which, under a Hopf-algebra isomorphism L0
∼= Λ(n) := Z[h1, . . . , hn−1] between the

K-affine Fomin–Stanley algebra and a subspace of symmetric functions, correspond to
the homogeneous symmetric functions hi. For w ∈W I

af , the image gw of φ0(kw) in Λ(n) is the
K-theoretic k-Schur function gw which contains the k-Schur function (see [LLM03, LM07]) as
the highest-degree term. The symmetric functions gw are related to the affine stable Grothendieck
polynomials {Gw | w ∈W

I
af} of [Lam06] by duality.

7.1 Cyclically decreasing permutations and the elements ki

For G= SLn, we have I = {1, 2, . . . , n− 1} and Iaf = {0} ∪ I. For i ∈ I we wish to compute the
elements φ0(kσi

) ∈ L0 where σi = ri−1ri−2 · · · r1r0 ∈Waf .

A cyclically decreasing element w ∈Waf is one that has a reduced decomposition w =
ri1ri2 · · · riN such that the indices i1, . . . , iN ∈ Iaf are all distinct and a reflection ri never occurs
somewhere to the left of a reflection ri+1; here Iaf is identified with Z/nZ, so that indices are
computed mod n). One can show that w is cyclically decreasing if and only if all of its reduced
decompositions have the above property. Since no non-commuting braid relations can occur, all
the reduced words of w also have the same indices i1, . . . , iN .

For i ∈ I, let ki ∈K0 be defined by

ki =
∑

w

Tw (7.1)

where w runs over the cyclically decreasing elements of Waf of length i. We set k0 = 1. These
elements were considered in [Lam06].

We define coordinates for the weight lattice P of sln. Let P ⊂ Zn =
⊕n

i=1 Zei, with
fundamental weights ωi = e1 + e2 + · · ·+ ei and αi = ei − ei+1 for i ∈ I. For a subset
J ⊂ {1, . . . , n}, let us write eJ =

∑
i∈J ei ∈ P for the 01-vector with 1s in the positions

corresponding to elements of J . The eJ with |J |= k form the set of weights for the kth
fundamental representation of SLn(C) with highest weight ωk, which is multiplicity-free. We
have ri · eJ = eri·J , where indices are taken mod n.

Lemma 7.1. We have

Ti · e
eJ =






0 if both i, i+ 1 ∈ J or both i, i+ 1 /∈ J ,

eeri·J if i ∈ J and i+ 1 /∈ J ,

−eeJ if i /∈ J and i+ 1 ∈ J .

Let J and K be disjoint subsets of Z/nZ such that J ∪K 6= Z/nZ. We write SJ,K · e
λ for

the action of {rj | j ∈ J} and {Tk | k ∈K} on eλ, where the operators act in cyclically decreasing
order (for example, r1 would act before T2).

Lemma 7.2. Let J and K be as above.

(i) If |[0, k − 1] ∩K| > 2, then SJ,K · e
ωk = 0.

(ii) Suppose |[0, k − 1] ∩K|= 1. Let a ∈ [0, k − 1] ∩K. Then SJ,K · e
ωk = 0 unless [0, a− 1]⊂ J .

(iii) Suppose |[0, k − 1] ∩K|= 1. Then SJ,K · e
ωk = 0 if [k,−1]⊂ (J ∪K).
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(iv) Suppose that SJ,K · e
ωk 6= 0 and [k,−1] ∩K 6= ∅. For each a ∈ ([k,−1] ∩K), we have [k, a]⊂

(J ∪K).

(v) Suppose that SJ,K · e
ωk 6= 0 and [k,−1]⊂ (J ∪K). Then [0, k − 1] ∩K = ∅.

The following lemma is general (not just for affine type A
(1)
n−1).

Lemma 7.3. Suppose a ∈K0. If λ, µ ∈ P are such that φ0(ae
λ) = a and φ0(ae

µ) = a, then
φ0(ae

λ+µ) = a.

Proof. Write a(eλ − 1) =
∑

w awTw and Twe
µ =

∑
v b

v,µ
w Tv for aw, b

v,µ
w ∈R(T ). We have

φ0(aw) = 0 for all w and φ0(a(e
µ − 1)) = 0. Then

φ0(a(e
λ+µ − 1)) = φ0(a(e

λ − 1)eµ) + φ0(a(e
µ − 1))

= φ0

(∑

w

awTwe
µ

)

=
∑

v

φ0

(∑

w

awb
v,µ
w

)
Tv = 0

since φ0 :R(T )→ Z is a ring homomorphism. ✷

Proposition 7.4. We have ki ∈ L0.

Proof. By Lemma 7.3, it is enough to prove that φ0(kie
λ) = ki for λ being either a fundamental

weight or the negative of a fundamental weight. We deal with the case where λ= ωk; negative
fundamental weights are treated similarly.

When φ0(ki(e
ωk − 1)) is expanded in the Tw basis, only a term that involves cyclically

decreasing w would occur with non-zero coefficient. Fix J . Let us show that [TJ ]φ0

(ki(e
ωk − 1)) = 0, where TJ is the product of Tj with j ∈ J in cyclically decreasing order and

[TJ ]a denotes the coefficient of TJ in a ∈K0. This is clear if |J |= i, by (2.6) and Lemma 7.1.
So suppose that |J |< i. Then

[TJ ]φ0(ki(e
ωk − 1)) =

∑

K : |K|=i−|J | and K∩J=∅

φ0(SJ,Ke
ωk). (7.2)

We will say that a subset K in the above sum is good if SJ,Ke
ωk 6= 0. Let us define an involution

ι on good subsets such that φ0(SJ,Ke
ωk) =−φ0(SJ,ι(K)e

ωk). By Lemma 7.2(i), we may write the
set of good subsets as the disjoint union S0 ⊔ S1 where

S0 = {K : |K ∩ [0, k − 1]|= 0} and S1 = {K : |K ∩ [0, k − 1]|= 1}.

The involution satisfies ι(Sa) = S1−a.

Suppose that K ∈ S0. Then K ∩ [k,−1] 6= ∅ and we may set a to be the maximal element
of K ∩ [k,−1]. Let ι(K) =K\{a} ∪ {b} where b ∈ [0, k − 1] is minimal so that j /∈ J and
[0, j − 1]⊂ J . One can check directly that ι(K) is also good. Using Lemma 7.1, one sees that
ι(K) and K contribute different signs in (7.2).

Suppose that K ∈ S1. Let a be the unique element in K ∩ [0, k − 1]. Using Lemma 7.2(iii),
we pick b ∈ [k,−1]\(J ∪K) minimal in [k,−1]. Set ι(K) =K\{a} ∪ {b}. Again, one can check
that ι(K) is good and that K and ι(K) contribute different signs.

Finally, it follows from Lemma 7.2(ii) and (iv) that ι is an involution. ✷

Corollary 7.5. For 1 6 i 6 n− 1, ki = φ0(kσi
).
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Proof. By Proposition 7.4, ki ∈ L0, and by definition it has unique Grassmannian term Tσi
. The

result follows from Theorem 6.4. ✷

By forgetting equivariance, we obtain a K-homology Pieri rule for K∗(GrSLn); see [LLMS,
LM05] for the homological version.

Corollary 7.6. For 1 6 i 6 n− 1, φ0(d
w
σi,v

) equals (−1)ℓ(w)−ℓ(v)−i times the number of
cyclically decreasing elements x ∈Waf with ℓ(x) = i and TxTv =±Tw.

Proof. This follows from (5.4), (7.1) and Corollary 7.5. ✷

The K-cohomology Pieri rule is likely to be much more complicated; see [LLMS] for the
cohomological version.

7.2 Coproduct of the ki

In this section we determine the coproduct φ0(∆(ki)) explicitly.

Let J and K be two subsets of Z/nZ with total size less than n− 1. We define a sequence of
non-negative integers cdJ,K = (cd(j) : j ∈ Z/nZ) by

cd(j) = max
06t6n−1

{|J ∩ [j − t, j)|+ |K ∩ [j − t, j)| − t}.

(The intervals [j − t, j) are to be considered as cyclic intervals.) It is then clear that cd(j + 1)−
cd(j) ∈ {−1, 0, 1}.

We note that cd(j) > 0 for all j ∈ Z/nZ.

Lemma 7.7. Let J and K be two subsets of Z/nZ with total size less than n− 1.

(i) There exists j such that cd(j) = 0 and j /∈ J ∪K.

(ii) cd is the unique sequence such that cd(j + 1)− cd(j) = |j ∩ J |+ |j ∩K| − 1, except when
cd(j) = 0 and j /∈ (J ∪K).

Proof. To prove (i), suppose that no such j exists. Then cd(j + 1)− cd(j) = |j ∩ J |+ |j ∩K| − 1
for each j. But 0 = (cd(j)− cd(j − 1)) + · · ·+ (cd(j + 1)− cd(j)), so this is impossible because
|J |+ |K| 6 n− 1. Now we prove (ii). Everything except uniqueness is clear. Let cd′ be any
sequence with the asserted properties. The same calculation as in (i) shows that there is j′

such that cd′(j′) = 0 = cd′(j′ + 1) and j′ /∈ (J ∪K). By recursively calculating cd(j′ + 1) and
cd′(j′ + 1), then cd(j′ + 2) and cd′(j′ + 2), and so on, we find that cd(j) > cd′(j) for all j. But
a symmetric argument shows that cd(j) 6 cd′(j) for all j. ✷

Define t(J, K) = (ti : i ∈ Z/nZ) ∈ {L, R, B, E}n as follows (here E stands for ‘empty’, L for
‘left’, R for ‘right’, and B for ‘both’):

tj =






E if cd(j) = 0 and j /∈ J ∪K,

L if cd(j) = 0 and j ∈ J\K,

R if j /∈ J and (cd(j)> 0 or j ∈K),

B otherwise.

We say that two sequences cd and t are compatible if:

(a) tj ∈ {E, L} implies cd(j) = 0;

(b) cd(j + 1)− cd(j) = 0 if tj = L;

(c) cd(j + 1)− cd(j) ∈ {−1, 0} if tj =R;
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(d) cd(j + 1)− cd(j) ∈ {0, 1} if tj =B;

(e) tj = E for some j ∈ [0, n− 1].

Define the support of (cd, t) to be {j | tj 6= E}.

Lemma 7.8. The map (J, K) 7→ (cdJ,K , t(J, K)) is a bijection between pairs of subsets of Z/nZ

with total size k < n and pairs of compatible sequences with support of size k.

Proof. It is easy to see that (cdJ,K , t(J, K)) is compatible with support of the correct size.
We first check that the pair of sequences determines J and K. By itself, t(J, K) completely
determines J : we have j ∈ J if and only if tj ∈ {L, B}. Also, j ∈K if and only if either tj =R and
cd(j + 1) = cd(j) or tj =B and cd(j + 1) = cd(j) + 1. Thus (cdJ,K , t(J, K)) determines (J, K).

Conversely, given compatible (cd, t), we recursively construct J and K by starting at
some value j such that tj = E. For such a value we have j /∈ J ∪K. We then decide whether
j + 1 ∈ J and/or j + 1 ∈K, and so on. By construction, we obtain two subsets J and K such
that cd(j + 1)− cd(j) = |j ∩ J |+ |j ∩K| − 1, unless cd(j) = 0 = cd(j + 1) and j /∈ J ∪K. By
Lemma 7.7, we have cdJ,K = cd. Using compatibility, one can check that the size of the support
of (cd, t) is equal to |J |+ |K|. But then it follows that t(J, K) = t. ✷

Proposition 7.9. We have φ0(∆(kr)) =
∑

06j6r kj ⊗ kr−j .

Proof. Our proof follows the strategy in [Lam08, § 7.2]. Let J = {i1, . . . , ir} ⊂ Z/nZ.
Using (2.16), we calculate φ0(∆(TJ)) by expanding

D = φ0(∆(Ti1) ·∆(Ti2) · · ·∆(Tiℓ)),

where ri1 · · · riℓ is a cyclically decreasing reduced expression and · means the ‘componentwise’
product on ∆(K) of (2.17).

Let us expand this product by picking, for each component, one of the three terms of (2.16).
As usual, we write αij = αi + · · ·+ αj−1 for any cyclic interval [i, j]. We first note that

Tj(1− e
αi,j ) = (1− eαi,j+1)Tj +

1− eαi,j+1 − (1− eαi,j )

1− eαj

= (1− eαi,j+1)Tj + eαi,j .

Because of the cyclically decreasing condition, whenever the above calculation is encountered,
the coefficient eαi,j will always commute with any Ti which occurs to the left.

We shall now show by induction that the only terms in the expansion of ∆(Tik) · · ·∆(Tiℓ)
that contribute to D look like

Tv ⊗
∏

i∈S

(1− eαi,ik+1)qTw (7.3)

where:

(i) either S is empty and
∏

i∈S(1− eαi,ik+1) = 1, or S ⊂ {ik, ik+1, . . . , iℓ};

(ii) q ∈R(T ) commutes with ri1 , . . . , rik−1
and satisfies φ0(q) = 1.

Such a term contributes nothing to D if |S|> 0 and ik /∈ {i1, . . . , ik−1}. To prove the inductive
step, we assume that ik−1 = ik + 1 and calculate (using (2.5))

Tik+1

∏

i∈S

(1− eαi,ik+1)q =
∏

i∈S

(1− eαi,ik+2)qTik+1 +
∏

i∈S′

(1− eαi,ik+2) + q′, (7.4)
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where S′ ⊂ S and q′ ∈R(T ) commutes with ri1 , . . . , rik−2
and satisfies φ0(q

′) = 0. Clearly, the
term involving q′ contributes nothing to D, and the first two terms lead to expressions of
the form (7.3).

Given a choice of one of the three terms in (2.16), we define a sequence tj by:

(a) tj = E if j /∈ J ;

(b) tj = L if we pick Tj ⊗ 1;

(c) tj =R if we pick 1⊗ Tj ;

(d) tj =B if we pick Tj ⊗ (1− eαj )Tj .

Furthermore, let us make a choice of one of the two terms in (7.4), whenever we have such a
choice. At each step of our calculation we are looking at a term of the form (7.3). We set cd(j)
to be the size of S in the term just before ∆(Tj) is applied. If j /∈ J , then cd(j) = 0. If this
entire process produces a non-zero term of D, then (cd, t) is a compatible sequence: the sequence
cd ‘wraps around’ properly because eventually the coefficient

∏
i∈S(1− eαi,ik+1) has to equal 1,

otherwise it will vanish when φ0 is applied. Conversely, a compatible pair (cd, t) with support
equal to J always arises in this fashion.

By Lemma 7.8, there is a bijection between compatible pairs (cd, t) with support of size r
and pairs of subsets (J, K) with total size equal to r. It is easy to check that the term in D
corresponding to (cd, t) is exactly TJ ⊗ TK . ✷

7.3 Symmetric function realizations

Let Λ =
⊕

λ Zmλ be the ring of symmetric functions over Z, wheremλ is the monomial symmetric

function [Mac95] and λ= (λ1 > λ2 > · · · > λℓ > 0) runs over all partitions. Let Λ̂ =
∏

λ Zmλ be
the graded completion of Λ. Let |λ|= λ1 + · · ·+ λℓ denote the size of a partition.

Let Λ(n) = Λ/〈mλ | λ1 > n〉 denote the quotient by the ideal generated by monomial
symmetric functions labeled by partitions with first part greater than n. We write Λ̂(n) for
the graded completion of Λ(n). Now let Λ(n) = Z[h1, h2, . . . , hn−1]⊂ Λ denote the subalgebra

generated by the first n− 1 homogeneous symmetric functions. Both Λ(n) and Λ̂(n) are Hopf
algebras.

The Hall inner product 〈·, ·〉 : Λ×Z Λ→ Z extends by linearity with respect to infinite
graded linear combinations to a pairing 〈·, ·〉 : Λ×Z Λ̂→ Z, which in turn descends to a pairing
Λ(n) ×Z Λ(n)→ Z. This pairing expresses Λ(n) as the continuous (Hopf-)dual of Λ̂(n) and Λ̂(n) as
the graded completion of the graded (Hopf-)dual of Λ(n). For short, we will just say that Λ(n)

and Λ̂(n) are dual. The basis {hλ | λ1 < n} ⊂ Λ(n) and ‘basis’ {mλ | λ1 < n} ⊂ Λ̂(n) are dual under
the Hall inner product.

7.4 Affine stable Grothendieck polynomials

The affine stable Grothendieck polynomials Gv(x1, x2, . . .) for v ∈Waf are the formal power series
defined by the identity [Lam06]

∏

i>1

n−1∑

j=0

(xj
ikj) =

∑

v∈Waf

Gv(x1, x2, . . .)Tv, (7.5)

where the xi are indeterminates that commute with the elements of K0 and kj ∈K0 are the
elements defined in (7.1). Alternatively, for a composition α= (α1, α2, . . . , αℓ), the coefficient of
xα = xα1

1 xα2

2 · · · x
αℓ

ℓ in Gv(x) is equal to the coefficient of Tv in kα1
kα2
· · · kαℓ

. It is clear that
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Gv(x) is a sum of monomials such that no variable occurs with degree more than n− 1 in any
monomial. Examples of the Gv(x) are given in Appendix A.3.6.

The following result was proved directly in [Lam06, Theorem 44].

Proposition 7.10. For each v ∈Waf , we have Gv(x) ∈ Λ̂(n).

Proof. By Proposition 7.4 and Corollary 6.5, the ki commute. This implies that Gv(x) is a
symmetric function. In addition, all monomial symmetric functions mλ which occur with non-
zero coefficient in Gv(x) satisfy λ1 < n, so Gv(x) can be naturally identified with its image
in Λ̂(n). ✷

The next result follows from (2.3).

Lemma 7.11. The graded components of Gv(x) are alternating; that is, the coefficient of mλ in
Gv(x) has sign equal to that of (−1)|λ|−ℓ(v).

In [Lam06], for each v ∈Waf , a homogeneous symmetric function Fv(x), the affine Stanley
symmetric function, is defined. The next result follows by inspection.

Lemma 7.12. Let v ∈W I
af . The lowest-degree component (of degree ℓ(v)) of Gv(x) is equal to

Fv(x).

(Readers not familiar with affine Stanley symmetric functions may take this as the definition
of Fv(x).) The Fv(x), v ∈W

I
af , were called affine Schur functions in [Lam06] and are equivalent

to the dual k-Schur functions of [LM07].

Proposition 7.13. The set {Gv(x) | v ∈W
I
af} is a ‘basis’ of Λ̂(n). In other words, Λ̂(n) =∏

v∈W I
af

ZGv(x).

Proof. This follows from the fact that {Fv(x) | v ∈W
I
af} is a basis of Λ(n); see [Lam06, LM07]. ✷

Remark 7.1. Suppose w ∈Waf is such that some (or, equivalently, every) reduced expression for
w does not involve all of the simple generators r0, r1, . . . , rn−1. It then follows from comparing
the definitions that the stable affine Grothendieck polynomial Gw(x) is equal to the usual stable
Grothendieck polynomial [FK94] labeled by u ∈W = Sn, where u is obtained from w by cyclically
rotating the indices until r0 is not present.

Remark 7.2. There is a bijection between v ∈W I
af and (n− 1)-bounded partitions {λ | λ1 < n};

see [LM05, Lam06]. The partition λ associated to v can be obtained from the exponents of the
dominant monomial term xλ1

1 xλ2

2 · · · in Fv(x1, x2, . . .). We may thus relabel {Gv(x) | v ∈W
I
af}

as {G
(k)
λ (x) | λ1 < n}, where k = n− 1 (owing to historical reasons). A table showing this

correspondence is given in Appendix A.3.1. Remark 7.1 implies that G
(k)
λ (x) =Gλ(x) whenever

the largest hook length of λ is less than or equal to k, where Gλ(x) is the stable Grothendieck
polynomial labeled by partitions and studied by Buch in [Buc02].

7.5 K-theoretic k-Schur functions

Since {Gv(x) | v ∈W
I
af} is a ‘basis’ of Λ̂(n), there is a dual basis {gv(x) | v ∈W

I
af} of Λ(n). This

definition of gv(x) has been stated previously by Lam. We call the symmetric functions gv(x)
affine dual stable Grothendieck polynomials or K-theoretic k-Schur functions. Examples of the
gv(x) are given in Appendix A.3.4.

The proof of the following result is standard (see, for example, [Sta01, Lemma 7.9.2]).
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Lemma 7.14. We have ∑

λ1<n

hλ(x)mλ(y) =
∑

v∈W I
af

gv(x)Gv(y).

Let k = n− 1. The k-Schur functions {s
(k)
v (x) | v ∈W I

af} (see [LLM03, LM07]) form the
basis of Λ(n) dual to {Fv(x) | v ∈W

I
af}, and are usually labeled by the k-bounded partitions

{λ | λ1 < n}. (The k-Schur functions originally defined in [LLM03] depend on an additional
parameter t, and setting t= 1 conjecturally gives the k-Schur functions of [LM07], which are the
ones used here.)

Lemma 7.15. Let v ∈W I
af . Then the highest-degree homogeneous component of gv(x) is equal

to the k-Schur function s
(k)
v (x).

Proof. We prove this by induction on ℓ(v). The base case is clear: Gid(x) = Fid(x) = 1 = gid(x) =

s
(k)
id (x). Suppose the claim has been proven for all w satisfying ℓ(w)< ℓ, and let ℓ(v) = ℓ. One

then checks that the symmetric function

gv(x) = s(k)
v (x)−

∑

w: ℓ(w)<ℓ

〈s(k)
v (x), Gw(x)〉gw(x)

is a solution to the system of equations

〈gv(x), Gu(x)〉= δvu for all u ∈W I
af . ✷

Remark 7.3. Relabel {gv(x) | v ∈W
I
af} as {g

(k)
λ (x) | λ1 6 k}, as in Remark 7.2. Since

limk→∞ G
(k)
λ (x) =Gλ(x), it follows that limk→∞ g

(k)
λ (x) = gλ(x), where the gλ(x) are the dual

affine stable Grothendieck polynomials studied in [LP07, Len00].

7.6 Non-commutative K-theoretic k-Schur functions

Define ϕ : Λ(n)→ L0 by hi 7→ ki. This map is well-defined since the hi are algebraically
independent and L0 is commutative. The non-commutative K-theoretic k-Schur functions are
the elements {ϕ(gv) | v ∈W

I
af} ⊂ L0.

Proposition 7.16. Let w ∈Waf and v ∈W I
af . The coefficient of Tw in ϕ(gv) is equal to the

coefficient of Gv(x) in Gw(x) when the latter is expanded in terms of {Gu(x) | u ∈W I
af}.

Proof. Applying ϕ to Lemma 7.14 and comparing with (7.5), we have
∑

v∈W I
af

Gv(y)ϕ(gv) =
∑

w∈Waf

Gw(y) Tw.

Now take the coefficient of Tw on both sides. ✷

7.7 Grothendieck polynomials for the affine Grassmannian

The following is our main theorem.

Theorem 7.17.

(i) The map ϕ : Λ(n)→ L0 is a Hopf-isomorphism, sending gv to φ0(kv) for v ∈W I
af .

(ii) We have a Hopf-algebra isomorphism k−1
0 ◦ ϕ : Λ(n)→K∗(GrSLn), sending gv to ξ0v for

v ∈W I
af .
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(iii) There is a dual Hopf-algebra isomorphism K∗(GrSLn)∼= Λ̂(n), sending [OXI
v
]0 to Gv(x) for

v ∈W I
af .

(iv) The following diagram commutes.

K∗(GrSLn)×K∗(GrSLn) //
OO

��

Z

id

��
Λ(n) × Λ̂(n) // Z

Proof. Given the definitions and Theorem 6.8, all the statements follow from the first one. By
Theorem 6.4 and Propositions 7.13 and 7.16, we deduce that ϕ(gv) = φ0(kv). It follows that ϕ is
an isomorphism. Since ∆(hi) =

∑
06j6i hj ⊗ hi−j in Λ(n), it follows from Proposition 7.9 that ϕ

is a Hopf-morphism. ✷

Corollary 7.18. For 1 6 r 6 n− 1, we have gσr(x) = hr(x).

Recall the map r∗ :KT (Xaf)→KT (GrG) defined in § 5.1. We use r∗
0 :K∗(Xaf)→K∗(GrSLn)

to denote the evaluation of r∗ at zero.

Theorem 7.19. The image of Gw(x) under the isomorphism Λ̂(n) ∼=K∗(GrSLn) is equal to
r∗
0([OXw ]0).

Proof. As observed previously, the map ̟ of Lemma 4.6 is related to r∗ via the isomorphisms
of Theorem 4.3. By (5.1), 〈k(ξv), ψ

w〉= 〈ξv, ̟(ψw)〉. It follows that the coefficient of Tw in kv is
equal to the coefficient of [OXI

v
] in r∗([OXw ]). Applying φ0 to these coefficients and comparing

with Proposition 7.16 gives the result. ✷

7.8 Conjectural properties

In this section we list conjectural properties of the symmetric functions gw(x) and Gw(x). When
w ∈W I

af , we will use partitions to label these symmetric functions; see Remark 7.2. Recall also
that k = n− 1.

Conjecture 7.20. The basis {g
(k)
λ } of Λ(n) has the following properties.

(i) Each g
(k)
λ is a positive integer (necessarily finite) sum of k-Schur functions. (By Lemma 7.15,

the top homogeneous component of g
(k)
λ is the k-Schur function s

(k)
λ .)

(ii) The coproduct structure constants cµν
λ in ∆(g

(k)
λ ) =

∑
µ,ν c

µν
λ g

(k)
µ ⊗ g

(k)
ν are alternating

integers, that is, (−1)|λ|−|ν|−|µ|cµν
λ ∈ Z>0. Furthermore, cµν

λ = 0 unless |µ|+ |ν| 6 |λ|.

(iii) The coefficients in the expansion g
(k)
λ =

∑
µ a

µ
λ g

(k+1)
µ are alternating integers, that is,

(−1)|λ|−|µ|aµ
λ ∈ Z>0.

Conjecture 7.20(1) has been checked for n= 2, 3, 4 and 5 for |λ| 6 8 using the software package
Sage [Sag]; see also the tables in Appendix A.3.4. Data confirming Conjecture 7.20(ii) can be
found in Appendix A.3.5. Conjecture 7.20(iii) has been checked for n= 2, 3 and 4 for |λ| 6 8

using Sage. According to Conjecture 6.7, the product structure constants for {g
(k)
λ } should be

alternating.
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Conjecture 7.21.

(i) Every affine stable Grothendieck polynomial Gw for w ∈Waf is a finite alternating linear

combination of {G
(k)
λ }.

(ii) Every G
(k)
λ is an alternating integer linear combination of the affine Schur functions {F

(k)
µ }.

(iii) The structure constants in the product G
(k)
µ G

(k)
ν =

∑
λ c

µν
λ G

(k)
λ are alternating integers,

that is, (−1)|λ|−|µ|−|ν|cµν
λ ∈ Z>0. Furthermore, cµν

λ = 0 unless |µ|+ |ν| 6 |λ|.

(iv) The coefficients in the expansion G
(k+1)
µ =

∑
λ a

µ
λ G

(k)
λ are alternating integers, that is,

(−1)|λ|−|µ|aµ
λ ∈ Z>0.

By Proposition 7.16, the ‘alternating’ part of Conjecture 7.21(i) is implied by Conjecture 6.7.
Evidence for Conjecture 7.21(ii) is provided in the table of Appendix A.3.6. Conjecture 7.21(ii)
is related to Conjecture 7.20(i) via a matrix inverse. Conjecture 7.21(iii) is equivalent to
Conjecture 7.20(ii); indeed, the two sets of structure constants are identical. Conjecture 7.21(iv)
is equivalent to Conjecture 7.20(iii).

Remark 7.4. The factorization of affine Grassmannian homology Schubert classes as described
in [Mag] (see also [Lam08, LM07]) appears also to hold in some form in K-homology. Suppose
that w ∈W I

af has a length-additive factorization w = vu where u ∈W I
af is equal, modulo length-

zero elements, to the translation t−ω∨

i
by a negative fundamental coweight in the extended affine

Weyl group [Mag] or, equivalently, that the partition λ corresponding to u is a rectangle of the
form ℓ× (k − ℓ). Then it appears that gw is a multiple of gu in Λ(n).
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for their help with the open source mathematics software Sage and ∗-Combinat [HT03, Sag].

Appendix A. The affine NilHecke ring and tables

A.1 The (cohomological) affine NilHecke ring

A summary of the (notational) correspondence between (co)homology and K-(co)homology is
given in Table A1.

Some of our notation differs from that in [Lam08].

We now recall the affine NilHecke ring A. Let S = Sym(P ) where P is the weight lattice of the
finite-dimensional group G. Then Waf acts on P (and therefore on S ∼=HT (pt)) by the level-zero
action. The affine NilCoxeter algebra A0 is the ring with generators {Ai | i ∈ Iaf} and relations

A2
i = 0 and AiAj · · ·︸ ︷︷ ︸

mij times

=AjAi · · ·︸ ︷︷ ︸
mij times

.

Define Aw in the obvious way and define the NilCoxeter algebra by A0 =
⊕

w∈Waf
ZAw. Then

A0 acts on S by

Ai · λ= 〈α∨
i , λ〉,

Ai · (ss
′) = (ri · s)Ai · s

′ + (Ai · s)s
′

for i ∈ Iaf , λ ∈ P and s, s′ ∈ S.

843

https://doi.org/10.1112/S0010437X09004539 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004539


T. Lam, A. Schilling and M. Shimozono

Table A1. Terminology.

(Co)homology K-(co)homology Terminology

Ai Ti (K-)NilHecke generators

A =
⊕

w SAw K =
⊕

w R(T )Tw (K-)NilHecke ring

B = ZA(S) L = ZK(R(T )) Peterson’s subalgebra

B0 = φ0(B) L0 = φ0(L) Affine Fomin–Stanley subalgebra

{jw} ⊂ B {kw} ⊂ L Schubert basis

s
(k)
w (x) gw(x) (K-theoretic) k-Schur functions

Fw(x) Gw(x) Affine Stanley symmetric functions/stable affine
Grothendieck polynomials

The affine Kostant–Kumar NilHecke ring A (see [Pet97]) is the smash product of A0 and S.
It has relations

Ais= (ri · s)Ai + (Ai · s)

for i ∈ Iaf and s ∈ S. Then

A =
⊕

w∈Waf

SAw.

In A we have ri = 1− αiAi, and A acts on Fun(W, S) by

(a · ξ)(w) = ξ(wa),

viewing ξ ∈ Fun(W, S) as an element of HomQ(AQ, Q) (the left Q-module homomorphisms)
where Q= Frac(S).

Lemma A.1 [KK86]. In A, we have

Awλ= (w · λ)Aw +
∑

v=wrα⋖w

〈α∨, λ〉Av.

Let φ0 : S→ Z be defined by evaluation at zero. Let φ0 : A→ A0 be the map defined by
φ0(

∑
w awAw) =

∑
w φ0(aw)Aw for aw ∈ S. Let B = ZA(S) be the Peterson subalgebra [Pet97],

the centralizer subalgebra of S in A, and let

B0 = {b ∈ B | φ0(bs) = φ0(s)b for all s ∈ S}

be the Fomin–Stanley subalgebra [Lam08].

Theorem A.2.

(i) [Pet97] For each w ∈W I
af , there is a unique element jw ∈ B such that

jw ∈Aw +
⊕

v∈W \W I
af

SAv,

B =
⊕

w∈W I
af

S jw.
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(ii) [Lam08]

B0 = φ0(B).

(iii) For each w ∈W I
af , φ0(jw) is the unique element of B0 such that

φ0(jw) ∈Aw +
⊕

v∈W \W I
af

ZAv,

B0 =
⊕

w∈W I
af

Z φ0(jw).

Compare these results with the K-theoretic analogues of Theorems 5.4 and 6.4.

For G= SLk+1, the element φ0(jw) is called a non-commutative k-Schur function [Lam08].

A.2 Comparison with the fixed-point functions of [KK90]

A.2.1 Möbius inversion for Bruhat order. The Möbius function for the Bruhat order on W
is

(v, w) 7→ (−1)ℓ(w)−ℓ(v)χ(v 6 w)

where χ(P ) = 1 if P is true and χ(P ) = 0 if P is false; see [Deo77]. In other words, let M be the
W ×W incidence matrix Mvw = χ(v 6 w) of the Bruhat order, and let N be the Möbius matrix
Nvw = χ(v 6 w)(−1)ℓ(w)−ℓ(v). Then M and N are inverse to each other:

∑

v
u6v6w

(−1)ℓ(w)−ℓ(v) = δuw =
∑

v
u6v6w

(−1)ℓ(v)−ℓ(u). (A1)

A.2.2 Kostant and Kumar functions. We now return to the (K-theoretic) notation of § 2.
The following lemma is standard.

Lemma A.3.

yw =
∑

v6w

Tv. (A2)

For v ∈W define ψv
KK ∈ Fun(W, Q(T )) by2

ψv
KK(yw) = δvw.

This is equivalent to

w =
∑

v

ψv
KK(w)yv. (A3)

By (A3) and (A2) we have

w =
∑

v

ψv
KK(w)

∑

u6v

Tu =
∑

u

Tu

∑

v>u

ψv
KK(w).

By Proposition 2.4, (2.7) and (A1) we have

ψu =
∑

v>u

ψv
KK ,

ψu
KK =

∑

v>u

(−1)ℓ(v)−ℓ(u)ψv.

2 The functions denoted by ψv(w) in [KK90] are the same as the functions that we denote by ψv−1

KK (w−1).
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Recall the definition of η from Remark 2.4. One can show the following. Let ρ be the sum of
fundamental weights.

Lemma A.4. For all v, w ∈W ,

ψv
KK(w) = (−1)ℓ(v)eρ−wρη(ψv(w)).

Remark A.1. Let ∂Xv =Xv\X
o
v be the boundary of the Schubert cellXo

v in the Schubert variety
Xv. Then there is an exact sequence

0→ I∂Xv ⊂Xv
→OXv →O∂Xv

→ 0.

Since [OXu ] 7→ ψu under the isomorphism KT (X)→Ψ, [I∂Xv ⊂Xv
] 7→ ψv

KK .

A.3 Tables

A.3.1 Table on Grassmannians versus k-bounded partitions. We list the correspondence
between reduced words for Grassmannian elements and k-bounded partitions, where k = n− 1.

n k-bounded partition w ∈W I
af

2 1 0
11 10
111 010
1111 1010
11111 01010

3 1 0
2 10
11 20
21 210
111 120
22 0210
211 2120
1111 0120
221 10210
2111 02120
11111 20120

n k-bounded partition w ∈W I
af

4 1 0
2 10
11 30
3 210
21 130
111 230
31 3210
22 0130
211 2130
1111 1230
32 03210
311 32130
221 20130
2111 21230
11111 01230

A.3.2 ŜL2. Set α= α1 =−α0. We have tα = r0r1 and t−α = r1r0. Indexing Tw and kw by
reduced words, we have

tα = (1− e−α)2T01 + (1− e−α)(T0 + T1) + 1,

t−α = (1− eα)2T10 + (1− eα)(T0 + T1) + 1,

k∅ = 1,

k0 = T0 + T1 + (1− e−α)T01,

k10 = T10 + e−αT01.
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So

φ0(k∅) = 1,

φ0(k0) = T0 + T1,

φ0(k10) = T10 + T01.

In general,

φ0(kσr) = Tσr + Tσ−r ,

where σr are the elements in (4.4).

A.3.3 Table of φ0(kw). We index Tw by reduced words.

n w φ0(kw)

3 ∅ 1

0 T0 + T1 + T2

10 T10 + T02 + T21

20 T20 + T01 + T12

210 T210 + T020 + T021 + T101 + T102 + T212

120 T120 + T201 + T202 + T010 + T012 + T121

0210 T0210 + T1021 + T2102

1210 T1210 + T0201 + T0212 + T1020 + T1012 + T2101 − T020 − T101 − T212

0120 T0120 + T2012 + T1201

4 ∅ 1

0 T0 + T1 + T2 + T3

10 T10 + T21 + T32 + T03 + T02 + T13

30 T30 + T01 + T12 + T23 + T02 + T13

210 T210 + T103 + T032 + T321

310 T130 + T132 + T021 + T023 + T030 + T031 + T320 + T323 + T213 + T212

+ T101 + T102 − T02 − T13

230 T230 + T301 + T012 + T123

3210 T3210 + T3212 + T3213 + T2101 + T2102 + T2103 + T1030 + T1031 + T1032

+ T0320 + T0321 + T0323

0310 T0310 + T0213 + T1302 + T1021 + T2132 + T3203

2310 T2310 + T3201 + T3230 + T3231 + T0301 + T0302 + T0312 + T0210 + T0212

+ T0230 + T0231 + T0232 + T1301 + T1303 + T1320 + T1321 + T1323

+T1012 + T1013 + T1023 + T2120 + T2123

1230 T1230 + T1232 + T1231 + T2303 + T2302 + T2301 + T3010 + T3013

+ T3012 + T0120 + T0123 + T0121
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A.3.4 Table of g
(k)
λ . We index g

(k)
λ by k-bounded partitions.

n λ g
(n−1)
λ

in terms of sλ gw in terms of s
(n−1)
λ

2 1 s1 s
(1)
1

11 s1 + s11 + s2 s
(1)
1 + s

(1)
11

111 s1 + 2s11 + s111 + 2s2 + s3 + 2s21 s
(1)
1 + 2s

(1)
11 + s

(1)
111

1111 s1 + 3s11 + 3s111 + s1111 + 3s2 + 3s3 s
(1)
1 + 3s

(1)
11 + 3s

(1)
111 + s

(1)
1111

+ 6s21 + 3s31 + 2s22 + 3s211 + s4

11111 s1 + 4s11 + 6s111 + 4s1111 + s11111 s
(1)
1 + 4s

(1)
11 + 6s

(1)
111 + 4s

(1)
1111 + s

(1)
11111

+ 4s2 + 6s3 + 12s21 + 12s31 + 8s22
+ 12s211 + 4s4 + s5 + 4s41 + 6s311
+ 5s221 + 4s2111 + 5s32

3 1 s1 s
(2)
1

2 s2 s
(2)
2

11 s1 + s11 s
(2)
1 + s

(2)
11

21 s2 + s21 + s3 s
(2)
2 + s

(2)
21

111 s1 + s2 + 2s11 + s21 + s111 s
(2)
1 + 2s

(2)
11 + s

(2)
111 + s

(2)
2

22 s2 + s21 + s22 + s3 + s4 + s31 s
(2)
2 + s

(2)
21 + s

(2)
22

211 s21 + s211 + s3 + s31 s
(2)
21 + s

(2)
211

1111 s1 + 2s2 + 3s11 + 3s21 + 3s111 s
(2)
1 + 3s

(2)
11 + 3s

(2)
111 + s

(2)
1111 + 2s

(2)
2

+ s22 + s211 + s1111

221 s2 + 2s21 + 2s22 + s211 + s221 + 2s3 s
(2)
2 + 2s

(2)
21 + s

(2)
211 + 2s

(2)
22 + s

(2)
221

+ 2s4 + 3s31 + s311 + 2s32 + s5 + 2s41

2111 2s21 + s22 + 3s211 + s221 + s2111 2s
(2)
21 + 3s

(2)
211 + s

(2)
2111 + s

(2)
22

+ 2s3 + s4 + 4s31 + 2s311 + s32 + s41

11111 s1 + 3s2 + 4s11 + 8s21 + 6s111 + 4s22 s
(2)
1 + 4s

(2)
11 + 6s

(2)
111 + 4s

(2)
1111

+ 7s211 + 4s1111 + 2s221 + 2s2111 + s
(2)
11111 + 3s

(2)
2 + 2s

(2)
21 + 3s

(2)
211

+ s11111 + 2s3 + 3s31 + s311 + s32

4 1 s1 s
(3)
1

2 s2 s
(3)
2

11 s1 + s11 s
(3)
1 + s

(3)
11

3 s3 s
(3)
3

21 s2 + s21 s
(3)
2 + s

(3)
21

111 s1 + 2s11 + s111 s
(3)
3 + 2s

(3)
11 + s

(3)
111

31 s3 + s31 + s4 s
(3)
3 + s

(3)
31

22 s2 + s21 + s22 s
(3)
2 + s

(3)
21 + s

(3)
22

211 s2 + 2s21 + s211 + s3 + s31 s
(3)
2 + 2s

(3)
21 + s

(3)
211 + s

(3)
3

1111 s1 + 3s11 + 3s111 + s1111 + s2 s
(3)
1 + 3s

(3)
11 + 3s

(3)
111 + s

(3)
1111

+ 2s21 + s211 + s
(3)
2 + 2s

(3)
21
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A.3.5 Table for the coproduct of g
(k)
λ . The following table gives ∆(g

(k)
λ ) =

∑
ν,µ c

νµ
λ g

(k)
ν ⊗

g
(k)
µ , where we suppress the superscript ‘(k)’ and write simply gν ⊗ gµ for g

(k)
ν ⊗ g

(k)
µ , with ν and

µ being k-bounded partitions.

n λ ∆(g
(n−1)
λ )

2 1 g1 ⊗ g∅ + g∅ ⊗ g1

11 g11 ⊗ g∅ + 2g1 ⊗ g1 + g∅ ⊗ g11

111 g111 ⊗ g∅ + 3g11 ⊗ g1 + 3g1 ⊗ g11 + g∅ ⊗ g111 − 2g1 ⊗ g1

1111 g1111 ⊗ g∅ + 4g111 ⊗ g1 + 6g11 ⊗ g11 + 4g1 ⊗ g111 + g∅ ⊗ g1111 − 5g11 ⊗ g1
− 5g1 ⊗ g11 + 2g1 ⊗ g1

11111 g11111 ⊗ g∅ + 5g1111 ⊗ g1 + 10g111 ⊗ g11 + 10g11 ⊗ g111 + 5g1 ⊗ g1111

+ g∅ ⊗ g11111 − 9g111 ⊗ g1 − 16g11 ⊗ g11 − 9g1 ⊗ g111 + 7g11 ⊗ g1
+ 7g1 ⊗ g11 − 2g1 ⊗ g1

3 1 g1 ⊗ g∅ + g∅ ⊗ g1

22 g2 ⊗ g∅ + g1 ⊗ g1 + g∅ ⊗ g2

11 g11 ⊗ g∅ + g1 ⊗ g1 + g∅ ⊗ g11

21 g21 ⊗ g∅ + g11 ⊗ g1 + 2g2 ⊗ g1 + g1 ⊗ g11 + 2g1 ⊗ g2 + g∅ ⊗ g21 − g1 ⊗ g1

111 g111 ⊗ g∅ + 2g11 ⊗ g1 + g2 ⊗ g1 + 2g1 ⊗ g11 + g∅ ⊗ g111 + g1 ⊗ g2 − g1 ⊗ g1

22 g22 ⊗ g∅ + 2g21 ⊗ g1 + g11 ⊗ g11 + g2 ⊗ g11 + g11 ⊗ g2 + 3g2 ⊗ g2
+ 2g1 ⊗ g21 + g∅ ⊗ g22 − g2 ⊗ g1 − g1 ⊗ g2

211 g211 ⊗ g∅ + g111 ⊗ g1 + g21 ⊗ g1 + g11 ⊗ g11 + 2g2 ⊗ g11 + g1 ⊗ g111
+ 2g11 ⊗ g2 + g2 ⊗ g2 + g1 ⊗ g21 + g∅ ⊗ g211 − 2g11 ⊗ g1 − 2g2 ⊗ g1
− 2g1 ⊗ g11 − 2g1 ⊗ g2 + g1 ⊗ g1

1111 g1111 ⊗ g∅ + 2g111 ⊗ g1 + 3g11 ⊗ g11 + g2 ⊗ g11 + 2g1 ⊗ g111 + g∅ ⊗ g1111
+ g11 ⊗ g2 + g2 ⊗ g2 − g11 ⊗ g1 − g1 ⊗ g11

4 1 g1 ⊗ g∅ + g∅ ⊗ g1

2 g2 ⊗ g∅ + g1 ⊗ g1 + g∅ ⊗ g2

11 g11 ⊗ g∅ + g1 ⊗ g1 + g∅ ⊗ g11

3 g3 ⊗ g∅ + g2 ⊗ g1 + g2 ⊗ g1 + g∅ ⊗ g3

21 g21 ⊗ g∅ + g11 ⊗ g1 + g2 ⊗ g1 + g1 ⊗ g11 + g1 ⊗ g2 + g∅ ⊗ g21 − g1 ⊗ g1

111 g111 ⊗ g∅ + g11 ⊗ g1 + g1 ⊗ g11 + g∅ ⊗ g111

31 g31 ⊗ g∅ + g21 ⊗ g1 + 2g3 ⊗ g1 + g2 ⊗ g11 + g11 ⊗ g2 + 2g2 ⊗ g2
+ g1 ⊗ g21 + 2g1 ⊗ g3 + g∅ ⊗ g31 − g2 ⊗ g1 − g1 ⊗ g2

22 g22 ⊗ g∅ + g21 ⊗ g1 + g11 ⊗ g11 + g2 ⊗ g2 + g1 ⊗ g21 + g∅ ⊗ g22

211 g211 ⊗ g∅ + g111 ⊗ g1 + 2g21 ⊗ g1 + g3 ⊗ g1 + g11 ⊗ g11 + 2g2 ⊗ g11
+ g1 ⊗ g111 + 2g11 ⊗ g2 + g2 ⊗ g2 + 2g1 ⊗ g21 + g∅ ⊗ g211 + g1 ⊗ g3
− g11 ⊗ g1 − g2 ⊗ g1 − g1 ⊗ g2 − g1 ⊗ g11

1111 g1111 ⊗ g∅ + 2g111 ⊗ g1 + g21 ⊗ g1 + 2g11 ⊗ g11 + g2 ⊗ g11 + 2g1 ⊗ g111
+ g∅ ⊗ g1111 + g11 ⊗ g2 + g1 ⊗ g21 − g11 ⊗ g1 − g1 ⊗ g11
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A.3.6 Table of G
(k)
λ . We have suppressed the superscript ‘(k)’ on F

(k)
µ in the following table.

n λ G
(n−1)
λ

in terms of sλ G
(n−1)
λ

in terms of F
(n−1)
λ

2 1 s1 − s12 + s13 − s14 + s15 − s16 ± · · · F1 − F12 + F13 − F14

+ F15 − F16 ± · · ·

11 s12 − 2s13 + 3s14 − 4s15 + 5s16 F12 − 2F13 + 3F14 − 4F15

− 6s17 +± · · · + 5F16 − 6F17 ± · · ·

111 s13 − 3s14 + 6s15 − 10s16 + 15s17 F13 − 3F14 + 6F15 − 10F16

− 21s18 ± · · · + 15F17 − 21F18 ± · · ·

1111 s14 − 4s15 + 10s16 − 20s17 + 35s18 F14 − 4F15 + 10F16 − 20F17

− 56s19 ± · · · + 35F18 − 56F19 ± · · ·

11111 s15 − 5s16 + 15s17 − 35s18 + 70s19 F15 − 5F16 + 15F17 − 35F18

− 126s110 ± · · · + 70F19 − 126F110 ± · · ·

3 1 s1 − s12 + s13 − s14 + s15 − s16 ± · · · F1 − F12 + F13 − F14

+ F15 − F16 ± · · ·

2 s2 − s21 + s211 − s2111 + s21111 F2 − F21 − F111 + F211 + F14

− s211111 ± · · · − F213 − 2F15 + F214 + 2F16 ± · · ·

11 s12 − 2s13 + 3s14 − 4s15 + 5s16 − 6s17 ± · · · F12 − 2F13 + 3F14 − 4F15

+ 5F16 − 6F17 ± · · ·

21 −s13 + 2s14 − 3s15 + s21 − s22 − s212 + s221 F21 − F22 − F211 + F221

+ s213 + 4s16 − s2212 − s214 − 5s17 + s215 + 2F213 + F15 − F2211 − 2F214

+ s2213 − s216 + 6s18 − s2214 ± · · · − F16 + F2213 + 3F215 + 3F17 ± · · ·

111 s13 − 3s14 + 6s15 − 10s16 + 15s17 F13 − 3F14 + 6F15 − 10F16

− 21s18 ± · · · + 15F17 − 21F18 ± · · ·

22 −s14 + 2s15 + s22 − 2s221 + s213 − 3s16 F22 − 2F221 − F213 + F23

+ s232s22+12 − 2s214 + 4s17 + 3s215 + 2F2211 + F214 − F231

− s231 − 2s2213 − 4s216 − 5s18 + 2s2214 − 3F2213 − 3F215 − F17 ± · · ·

+ s2312 − 2s2215 + 5s217 + 6s19 − s2313 ± · · ·

211 −s14 + 3s15 + s212 − s221 − 2s213 F211 − F221 − 3F213 − 3F15 + F23

− 6s16 + s23 + 2s2212 + 3s214 + 10s17 + 2F2211 + 6F214 + 7F16 − 2F231

− 4s215 − 2s231 − 3s2213 + 5s216 − 15s18 − 5F2213 − 14F215 − 25F17 ± · · ·

+ 4s2214 + s24 + 3s2312 − 5s2215

− 6s217 + 21s19 − 4s2313 − 2s241 ± · · ·

1111 s14 − 4s15 + 10s16 − 20s17 + 35s18 F14 − 4F15 + 10F16 − 20F17

− 56s19 ± · · · + 35F18 − 56F19 ± · · ·

221 s221 − s213 − s16 − 2s23 − s2212 + 3s214 F221 − F23 − F2211 + 3F231

+ 3s17 − 5s215 + 3s231 + 7s216 − 6s18 + 3F2213 + F215 ± · · ·

+ s2214 − s24 − 3s2312 − 2s2215 − 9s217

+ 10s19 + 3s2313 + s241 − 15s110 − s2412

− 3s2314 + 3s2216 + 11s218 ± · · ·
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2111 −2s15 + s213 + 7s16−s2212−2s214−16s17 F213 − F2211 − 3F214 + F231

+ 3s215 + s231 + 2s2213 − 4s216 + 30s18 + 3F2213 + 9F215 + 7F17 ± · · ·
− 3s2214 − s24 − 2s2312 + 4s2215 + 5s217

− 50s19 + 3s2313 + 2s241 + 77s110 − s25

− 3s2412 − 4s2314 − 5s2216 − 6s218 ± · · ·

11111 s15 − 5s16 + 15s17 − 35s18 + 70s19 F15 − 5F16 + 15F17 − 35F18 ± · · ·
− 126s110 ± · · ·
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Lam06 T. Lam, Affine Stanley symmetric functions, Amer. J. Math. 128 (2006), 1553–1586.

Lam08 T. Lam, Schubert polynomials for the affine Grassmannian, J. Amer. Math. Soc. 21 (2008),
259–281.

LLMS T. Lam, L. Lapointe, J. Morse and M. Shimozono, Affine insertion and Pieri rules for the
affine Grassmannian, Mem. Amer. Math. Soc., to appear, arXiv:math.CO/0609110.

LP07 T. Lam and P. Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmannians,
Int. Math. Res. Not. 2007 (2007), rnm 125.

LLM03 L. Lapointe, A. Lascoux and J. Morse, Tableau atoms and a new Macdonald positivity
conjecture, Duke Math. J. 116 (2003), 103–146.

LM05 L. Lapointe and J. Morse, Tableaux on k + 1-cores, reduced words for affine permutations, and
k-Schur expansions, J. Combin. Theory Ser. A 112 (2005), 44–81.

LM07 L. Lapointe and J. Morse, A k-tableau characterization of k-Schur functions, Adv. Math. 213
(2007), 183–204.

Len00 C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000),
67–82.

Mac95 I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical
Monographs, second edition (Oxford University Press, New York, 1995).

Mag P. Magyar, Notes on Schubert classes of a loop group, Preprint, arXiv:0705.3826.

Mor J. Morse, Combinatorics of the K-theory of affine Grassmannians, Preprint, arXiv:0907.0044.

Pet97 D. Peterson, Lecture notes at MIT (1997).

PS86 A. Pressley and G. Segal, Loop groups, Oxford Mathematical Monographs (Oxford University
Press, Oxford, 1986).

Sag Sage, Open Source Mathematics Software, http://www.sagemath.org/, and ∗-Combinat, http:
//wiki.sagemath.org/combinat.

Sta01 R. Stanley, Enumerative combinatorics: Vol. 2, Cambridge Studies in Advanced Mathematics,
vol. 62 (Cambridge University Press, Cambridge, 2001).
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