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K to pi semileptonic form factor with 2+1 flavor domain wall Fermions on the lattice

1. Introduction

The RBC and UKQCD collaborations are currently performing ajoint full lattice QCD sim-
ulation of theK to π vector form factor f Kπ

+ (0) from first principles. Our motivation lies in
the fact that the theoretical uncertainty inf Kπ

+ (0) is still dominating the extraction of the CKM
matrix element|Vus| from the experimentally very precisely measured decay rates. Palutan pre-
sented a review of the experimental situation at this conference [1] and we quote his estimate
|Vus f Kπ

+ (0)| = 0.21668(45) (cf. the PDG 2006 value|Vus f Kπ
+ (0)| = 0.2169(9) [2]).

The current experimental precision is not fully appreciated in a determination of|Vus| since it
is still common practice to determine it using the phenomenological estimatef Kπ

+ (0) = 0.961(8)

given by Leutwyler & Roos [3] in 1984 because a first principles calculation off Kπ
+ (0) on the

lattice with a reliable control of the systematic uncertainties is lacking.
The calculation on the lattice is straight forward in principle. The technique which allows to

achieve sub-per cent level precision for the prediction off Kπ
+ (0) has been set out in [4] and it has

subsequently been applied in several computations [5, 6, 7,8]. However, all these computations
were carried out in quenched or partially quenched QCD (i.e.with a quenched strange quark and
two dynamical light quarks) or with rather heavy up and down quark masses resulting in unphysical
pion masses of 500 MeV or heavier. This made it difficult to reliably extrapolate the data to the
physical point using predictions for the quark mass dependence from chiral perturbation theory.

In this talk we present the status of our calculation off Kπ
+ (0) with Nf = 2+1 dynamical quark

flavors of domain wall quarks with an unprecedented light pion mass of around 300 MeV which
will allow to estimate the systematics due to the chiral extrapolation more reliably [9, 10].

2. The simulation

TheK → π matrix element

〈π(pπ)|Vµ |K(pK)〉 = f Kπ
+ (q2)(pK + pπ)µ + f Kπ

− (q2)(pK − pπ)µ , (q = pK − pπ) , (2.1)

can be extracted from suitable Euclidean three-point correlation functions at large values of the
Euclidean time. We compute these correlation functions directly from the discretized Euclidean
QCD path integral by means of a Monte Carlo integration. In particular, we use the Iwasaki gauge
action [11] and the domain wall fermion action which for our simulation parameters turns out to
exhibit good chiral properties [12]. The ensembles of gaugeconfigurations on which we evaluate
the correlation functions have been jointly generated by the RBC and UKQCD collaborations [12].
For our choice of the bare couplingβ = 2.13 the inverse lattice spacing isa−1 ≈ 1.62 GeV.

For precision results one has to control and understand the sources of systematic errors of
which we summarise the most significant ones in the following:
quark masses: We simulate QCD with a fixed dynamical strange quark of approximately physical
mass and a pair of dynamical degenerate light up and down quarks. Since it is currently not feasible
to simulate with the latter at their physical mass in a large lattice volume we generate results for a
number of unphysically heavy up and down quark masses. Theseresults are then extrapolated to
the physical point ideally using predictions for the quark mass dependence of the form factor from
chiral perturbation theory.
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Figure 1: Typical result for f Kπ
0 (q2) (aml = 0.01). Left: Data points forq2

max and (|pK |, |p′
π |) ∈

2π/L{(0,1),(1,0),(
√

2,0),(0,
√

2)}. Right: Zoom intoq2 = 0-region with scattering of interpolation re-
sults from using different ansätze.

finite volume: The systematics due to the finite extent of the lattice can beinvestigated in chiral
perturbation theory [4]. Here we directly assess the influence of the spatial boundary by comparing
the scaling of observables between two simulations with equivalent physical parameters but two
different lattice sizes:(L/a)3 × (T/a)×Ls = 163 × 32× 16 and 243 × 64× 16 (L andT are the
spacial and time-extent of the lattice, respectively andLs the size of the 5th dimension). In physical
units the spacial volumes are(1.9fm)3 and(2.9fm)3.
In a finite volume, the momenta of the kaon and pion|~pK | and |~pπ | are quantized and take the
values 0, 2π/L and

√
22π/L, . . .. Thus, the kinematical pointq2 = 0 is generally not directly ac-

cessible in lattice simulations and one has to interpolate the form factor inq2.
cut off effects: The domain wall fermions simulated here are chirally symmetric to a good approx-
imation and therefore cut-off effects are naively expectedto be of order(aΛQCD)2 ≈ 4% (assuming
ΛQCD = 300MeV). We are currently extending our project by a simulation with a larger cut-off
which will allow us to assess cut off effects in a more reliable way.

We carry out the following 3-step procedure [4] to extract the form factor f Kπ
+ (0) = f Kπ

0 (0):

1) Compute the scalar form factor

f Kπ
0 (q2) = f Kπ

+ (q2)+
q2

m2
K −m2

π
f Kπ
− (q2) (2.2)

at q2
max = (mK −mπ)2 from

R(t, t ′) =
CKπ

4 (t ′, t;0′,0)CπK
4 (t ′, t;0′,0)

CKK
4 (t ′, t;0′,0)Cππ

4 (t ′, t;0′,0)

t,(t ′−t)→∞−→ (mK +mπ)2

4mKmπ

[

f Kπ
0 (q2

max)
]2

, (2.3)

where
CKπ

µ (t ′, t,~p′,~p) = ∑
~x,~y

e−i~p′(~y−~x)e−i~p~x〈0
∣

∣Oπ
∣

∣π
〉〈

π
∣

∣Vµ
∣

∣K
〉〈

K
∣

∣O
†
K

∣

∣0
〉

, (2.4)

are Euclidean three point correlation functions from whichthe matrix element (2.1) can be
extracted for large values of the Euclidean timest.
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2) Computef Kπ
0 (q2) from ratios similar to (2.3)1 with the combinations of Fourier momenta

of the kaon and pion(|pK |, |p′
π |) ∈ 2π/L{(0,1),(1,0),(

√
2,0),(0,

√
2)}. A typical example

of the resulting data is shown in the left plot in figure 1. We use this data to constrain an
interpolation toq2 = 0. The corresponding ansatz is a priori not known and we estimate the
resulting systematic uncertainty from the scattering of the results atq2 = 0 as obtained from
different fit ansätze:

f pole
0 (q2) = f0(0)/(1−q2/M2) ,

f lin
0 (q2) = f0(0)(1+q2/M2

0) , (2.5)

f quad
0 (q2) = f0(0)(1+q2/M2

0 +q4/M4
1) ,

f z−fit
0 (q2) =

1

φ(q2,q2
0,Q

2)

2

∑
k=0

ak(q
2
0,Q

2)z(q2,q2
0)

k .

For the z-fit [13] in the last line we use the same parameters asalready described in [9]. An
example of the performance of the different ansätze is givenin the right plot in figure 1. We
mention that a new approach for the computation off Kπ

0 (0) on the lattice has been developed
and tested in [14] in which the interpolation is completely avoided, thus eliminating one
source of systematic uncertainty.

3) At this point the results forf Kπ
0 (0) are still for unphysically heavy up- and down quark

masses. Contact with the physical point is made using predictions from chiral perturbation
theory. Here it is crucial to note that firstlyf Kπ

0 (0) = 1 in theSU(3)-symmetric limit and
that thanks to the Ademollo-Gatto theorem [15]f Kπ

0 (0) is analytic up to includingp4 contri-
butions and can be expressed purely in terms meson masses [3],

f Kπ
0 (0,mK ,mπ) = 1+ f2(mK ,mπ)+O(p6) , (2.6)

where we takef2(mK ,mπ) from [3]. In our simulation we therefore only compute the cor-
rections beyondp4. To this purpose we determine the quantity

R∆ f (mπ ,mK) =
f Kπ
0 (0,mπ ,mK)− (1+ f2(mπ ,mK))

(m2
K −m2

π)2
, (2.7)

and extrapolate it linearly in(m2
K + m2

π) to the physical point. The linear fit-ansatz is sup-
ported by visual inspection of the data in the l.h.s. plot in figure 2. We also extrapolate
linearly the quantity

∆ f (mK ,mπ) = f Kπ
0 (0,mK ,mπ)− (1+ f2(mK ,mπ)) , (2.8)

and take the discrepancy between the result at the physical point obtained in this way and the
result at the physical point forR∆ f as an estimate of the systematic error.
We repeat the result at the physical point which we already quoted at the CKM 2006 work-
shop [9]:

∆ f = R∆ f (m
2
K −m2

π)2 = −0.0161(46)(15)(16)(7) . (2.9)

1For more details please refer to [4].
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Figure 2: Left: Linear chiral extrapolation of the form factor data interms of the ratioR∆ f . Circles represent
data points from the 163 data set and triangles the ones from the 243 data set. Empty symbols have not yet
been included into the extrapolation. Right: Results forf Kπ

+ (0,mπ ,mK) in comparison to the form factor
with only leadingSU(3)-breaking contribution 1+ f2(mπ ,mK).

The errors are statistical, systematic due to the extrapolation to the chiral limit, systematic
due to the interpolation inq2 and cut-off effects. Since this quantity is only theO(p6)-
correction to f Kπ

0 (0) the current precision is sufficient to yield a sub-per cent error for the
form factor itself. Our final result is then readily obtainedby using

f Kπ
0 (0) = 1+ f phys

2 +Rphys
∆ f

(m2
K −m2

π)2 , (2.10)

evaluated at the physical point.

We here quote our preliminary result [9]:f Kπ
0 (0) = 0.9609(51). If we combine this result

with Palutan’s estimate for|Vus f Kπ
+ | from his review at this conference we determine|Vus| =

0.2255(4)exp(12) f Kπ
+ (0).

In the r.h.s. plot of figure 2 we also plotted our preliminary results for f Kπ
+ (mπ ,mK) as a

function of the pion mass squared,(amπ)2. Our results suggest thatf Kπ
+ (0) receivesSU(3)-

breaking contributions beyondf2(mπ ,mK) which are of the same sign and of about the same
magnitude asf2(mπ ,mK) (dashed red line), itself.

3. Outlook and conclusions

We presented our most recent data for the precision determination of theKl3 form factor from
lattice simulations of full (Nf = 2+ 1) QCD with good chiral properties. We will shortly finalize
our study with a single lattice spacing. A more reliable estimate of cut-off effects will be possible
in the near future after analysing the relevant correlationfunctions on a gauge field ensemble with
a larger cut-off which is currently being generated by the RBC and UKQCD collaborations.

Since the CKM 2006 workshop [9] we extended our simulation bythe data point ataml =

0.005 which yields pions of massamπ ≈ 300MeV. We are currently increasing statistics on it.
Once this data point is finalised it will help to further constrain the chiral extrapolation of our data.
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We hope to be able to present final numbers including this datapoint at this year’s Lattice confer-
ence.
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