
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUT Digital Repository:  
http://eprints.qut.edu.au/ 

Geva, Shlomo (2000) K-tree : a height balanced tree structured vector quantizer. In: 
NNSP-2000, IEEE Neural Network for Signal Processing Workshop 2000, 11-13 
December 2000, Sydney. 

 
          © Copyright 2000 IEEE 



K-tree: A HEIGHT BALANCED TREE 
STRUCTURED VECTOR QUANTIZER  

Shlomo Geva
Machine Learning Research Centre

School of Computing Science
Queensland University of Technology

GPO Box 2434, Brisbane
Queensland 4001

Australia
s.geva@qut.edu.au

Abstract:  We describe  a  clustering  algorithm for the  design  of height 
balanced trees for vector quantisation.  The algorithm is a hybrid of the 
B-tree  and  the  k-means clustering  procedure.  K-tree supports  on-line 
dynamic  tree  construction.  The  properties  of  the  resulting  search  tree 
and clustering codebook are comparable to that of codebooks obtained by 
TSVQ, the commonly used recursive  k-means algorithm for constructing 
vector quantization search trees. The K-tree algorithm scales up to larger 
data  sets  than  TSVQ,  produces  codebooks  with  somewhat  higher 
distortion rates, but facilitates greater control over the properties of the 
resulting codebooks. We demonstrate the properties and performance of 
K-tree and compare it with TSVQ and with k-means.

1. INTRODUCTION

Vector  quantisation  is  a  powerful  computational  procedure  that  has  many 
uses in signal and image processing, data compression, and in statistical and 
machine  learning  applications.   A  comprehensive  coverage  of  vector 
quantisation  methods  can  be found  in  [1]  and  numerous  applications  are 
described in [2] and in the current literature. 

Vector quantisation is encountered in two basic forms, which depend on the 
application.  In data compression one is concerned with the identification of a 
set  of  cluster  vectors  (or  a  codebook)  that  typify vectors  that  are  to  be 
compressed.  In  such  cases  one  usually  applies  an  unsupervised  cluster 
discovery procedure, such as k-means [3].  In classification problems, on the 
other  hand,  supervised  learning  algorithms  are  used.   The  codebook  is 
constructed from a set of labelled data.  The procedure is then concerned not 
only with clustering, but also with correct labelling of the codebook vectors, 
as  for  instance  in  LVQ  [4].   This  paper  is  concerned  with  unsupervised 
clustering,  although  the  K-tree algorithm  is  also  useful  in  the  context  of 
supervised clustering and classification.
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The k-means algorithm [3] is a classical clustering algorithm. The procedure 
is also known, in various variations and extensions, as GLA, the Generalized 
Lloyd Algorithm, or as LBG, after the authors who described it  [1].  Given a 
training  data  set  T,  the  objective  is  to  design  a  codebook  C having  N 
codebook  vectors  that  minimise  the  quantization  distortion  error  of  the 
codebook.   The  quantisation  distortion  is  most  commonly defined  as  the 
average  (mean  square)  distortion  resulting  from  replacing  each  training 
vector  by its  nearest  codebook vector.  The  Euclidean  distance is  usually 
applied  in  measuring  the  distortion  error,  but  other  measures,  such  as  the 
absolute error or the worst case error, are also encountered. 
 
The  k-means  procedure  starts  by  an  initial  estimation  (usually  random 
selection) of N vectors from T.  The procedure then proceeds in two iterated 
steps until convergence.  In the first step the training set is partitioned into N 
subsets  {T1..TN}  defined  by the  Voronoi  tessellation  of  T  by the  current 
codebook vectors {C1..CN}. Each vector  Ci is the nearest codebook vector to 
the training  vectors in  partition  Ti.  The second step is the re-estimation of 
codebook vectors - each  vector  Ci is re-assigned  the mean value of all  the 
vectors in partition  Ti.  These two steps are iterated until  some termination 
condition  is  met.   Usually,  until  the  procedure  converges  into  a  stable 
configuration.  It  can  be  shown  that  each  iteration  must  reduce  or  leave 
unchanged the average distortion [1].

A common variation  to the basic  k-means algorithm  involves  splitting and 
supports incremental construction of a codebook.  The procedure starts with 
the  application  of  k-means to two codebook vectors.   Once convergence is 
reached a small perturbation is applied to a copy of each codebook vector thus 
splitting the codebook into four vectors.  The clustering algorithm is then re-
applied  to  the  new codebook.   The  process  of splitting  and  clustering  is 
continued until  the desired number of codebook vectors is reached, or until 
the distortion error of the codebook falls below a pre-determined value.

In  many applications  large  codebooks are involved and  an  efficient  search 
procedure is required for implementation.  The TSVQ algorithm is a recursive 
partitioning  procedure that  builds a  search-tree.   The procedure starts  with 
the generation of a codebook of N vectors {C1..CN} through the use of the k-
means algorithm.  Each  of  the  corresponding  partitions  {T1..TN}  is  then 
further processed by the application of k-means to vectors in each partition Ti. 
The process is repeated recursively until the desired tree depth is reached. A 
common  variation  relaxes  the  requirement  of having  a  balanced  tree  and 
nodes are  recursively split  until  a  desired distortion  rate  is  achieved at  all 
leaves. The leaf nodes of the tree define the final clustering codebook.  The 
search for a codebook vector nearest to a given input vector starts at the root, 
progressing through the tree, selecting the next branch  by nearest neighbor 
comparisons,  until  the  nearest  leaf node vector  is  identified.   It  should  be 
noted that  the  TSVQ search tree does not guarantee the identification of the 
nearest  leaf-level  codebook vector.    However,  when  it  is  not  the  nearest 



neighbor, another nearby vector is identified instead, and the error is usually 
of no  significant  practical  importance.   The  TSVQ tree  is  not  necessarily 
height  balanced and  leaf nodes are usually of unequal  size.  The distortion 
error  of  codebooks  obtained  by  TSVQ is  higher  than  that  of  codebooks 
designed by k-means and having the same number of clusters.

2. THE K-tree ALGORITHM

The problem of constructing a search tree in the context of keyed access to 
records in a file is very well studied and understood.  A classical abstract data 
type for the bottom-up construction of height balanced search trees is the B-
tree. A B-tree is built by the insertion of keys into the tree at the leaf level. 
Insertions proceed sequentially, and the tree is accessible as a search tree at 
any point during its construction.  This is in contrast to the TSVQ procedure 
where  the  tree  is  built  from  the  top  down.   We now describe  how this 
algorithm is adapted to apply in vector quantisation problems.

We start with the definition of a B-tree of order m:

1. All leaves are on the same level.
2. All internal nodes except the root have at most m nonempty children, and 

at least m/2 nonempty children.
3. The number of keys in each internal node is one less than the number of 

its nonempty children, and these keys partition the keys in the children to 
form a search tree.

4. The root has at most  m children, but may have as few as 2 if it is not a 
leaf, or none, if the tree consists of the root alone.

A K-tree of order m is defined as follows:

1. All leaves are on the same level.
2. All  internal  nodes,  including  the  root,  have  at  most  m nonempty 

children, and at least 1 nonempty children.
3. Codebook vectors (clusters) act as search keys.
4. The number of keys in each internal  node is equal to the number of its 

nonempty children,  and these keys partition the keys in the children to 
form a nearest neighbour search tree.

5. The level immediately above the leaf level forms the clustering codebook 
level.

6. Leaf nodes contain data vectors, or references to data vectors.
K-tree nodes store real valued vectors. The search through the tree is based on 
nearest neighbour comparisons, rather than on key comparisons. The nature 
of the distance measure used in nearest neighbour comparisons is in general 
an implementation dependent choice.  We have used the Euclidean distance. 

A K-tree consists of two kinds of nodes.  All internal branch nodes, starting 
from the  root,  down to the  last  level  above the  leaf  level,  contain  mean-



vectors (clusters).  The leaf nodes of a K-Tree store the training data vectors 
(or  references  to  them).   The  clustering  codebook  is  contained  at  the 
codebook level - the 2nd last level of the tree. All branches above that level 
define the search tree, and all leaves below that level store data vectors.  If the 
K-tree is used to search the original data set (for example, if the data vectors 
are used in nearest neighbor classification) then the search terminates at the 
leaf level, with the nearest data vector.  If the application only requires the 
nearest  codebook  vector  (eg.  in  signal  compression)  then  the  search 
terminates at the codebook level (the leaf level can in fact be discarded).
  
2.1  K-tree construction

In order to explain the K-tree construction procedure it is convenient to start 
from an already existing tree.  Insertion proceeds as follows: An input vector 
x  is presented for insertion.   The tree is searched to identify the leaf node 
containing the nearest leaf (data) vector.  In the simplest case the number of 
data  vectors stored at  the leaf node is less than  N,  the tree order,  and  the 
vector is inserted at that node.  All branch vectors on the path leading to that 
leaf  are  also  updated  since  the  search  tree  must  reflect  the  new  cluster 
structure  that  had  changed  slightly  now  that  an  additional  vector  was 
inserted.  Consider the node just above the leaf.  It contains the mean vector 
of the leaf into which  x was inserted. This mean vector must be updated to 
reflect the new cluster mean. In a similar manner, the node above the branch 
node just considered needs to reflect the insertion, and again the mean vector 
of that branch is updated at the level above it. The process continues all the 
way to  the  root  node.   This  procedure  lends  itself  to  efficient  recursive 
implementation similar to that of a B-tree. 

Now consider the insertion of a data vector resulting in a full leaf node.  That 
leaf  node  requires  a  split.  The  k-means algorithm  is  applied  to  the  data 
vectors at the leaf, to generate two new clusters (k=2) in place of the original 
cluster.  The two new cluster means now replace the single cluster mean at 
the parent node. This of course can result in a full parent node.  In that case 
the parent node is split into two via k-means, except that now the clustering is 
applied  to  cluster  mean  vectors  at  an  internal  branch  instead  of  to  data 
vectors.  The two new cluster means are then pushed up the tree.  In the case 
that  the root node itself becomes full the tree depth increases – a new root 
node is created, receiving the two new cluster means.  

Starting from an empty tree, the K-tree is initialised with a root node and a 
single leaf node consisting of a single data vector.  Insertion of data vectors 
now proceeds as described above.  Initially the tree tends to grow in depth 
rapidly.   However,  the capacity of a tree consisting  of a root node with  N 
clusters and the corresponding leaf nodes is  N2, and after another root node 
split the maximum capacity of the leaf level of the K-tree is N3. As the K-tree 
capacity grows very rapidly with increased depth,  it  reaches its final  depth 
(for a given number  of training  vectors and  tree order)  long before all  the 
vectors have been inserted.  Given a data set of M vectors, a K-tree of order N 



reaches its full depth after about M / N insertions.  From that point on the tree 
depth remains fixed and insertions occur with an almost constant rate of node 
splits.  The insertion time is not constant  though.   It  slowly increases since 
the  average  number  of comparisons along  the search  path  increases.   The 
number  of comparisons  along  the  search  path  of a  K-tree is  of the  order 
O(NlogN(m)) where  N is the tree order and  m the number of vectors already 
stored in the tree.  Consequently,  the procedure scales up very well to very 
large training sets.

The K-tree approach to the construction of a clustering search tree is radically 
different  to  the  traditional  recursive  partitioning  approach.   To  visually 
demonstrate  the structure of the resulting  codebook we have built  a  K-tree  
Using a set of 5,000 vectors drawn from a random normal distribution with a 
mean of 0 and a variance of 1.  Figure 1 depicts the Voronoi tessellation of 
the codebook level vectors in the K-tree.  Figure 2 depicts the distribution of 
the same number of clusters, obtained by the direct application of k-means to 
the same set of training vectors.  The result is qualitatively very similar, albeit 
the k-means procedure leads to a lower distortion rate as expected.

3.  NODE SPLITTING STRATEGIES 

It is evident that the choice of the tree order N is arbitrary, and influences the 
final structure of the codebook.  It may be desirable to allow more flexibility 
in the construction of the tree, and use some other criteria that is more closely 
related to the  training  set  characteristics,  in  deciding  when  a  node should 
split.   One such criterion is the  local  distortion rate of the leaf node.  The 
local  distortion  is  measured  in  the  same  manner  as  the  global  distortion 
defined as the average (mean square) distortion resulting from replacing each 
training vector by its nearest codebook vector. Rather than define a node as 
full when the number of vectors exceeds N, it can be defined as full when its 
distortion rate exceeds a threshold  D.  With this modifications the dynamic 
behavior of the tree as it is constructed is somewhat different.  In the initial 
stages splits occur very rapidly as the tree does not yet cover the input domain 
adequately.  Consequently almost every insertion causes the local distortion to 
exceed D. Many near-empty nodes are initially distributed over input space. 
Once this has occurred the tree becomes more stable, and splits become less 
and less frequent.  



Figure 1: K-tree codebook

Figure 2: k-means codebook



One could also relax the limit of N entries at-most for leaf level nodes (note 
that branch nodes are still limited to N entries).  The leaf nodes can instead 
only split when the local distortion exceeds D, rather than when their number 
exceeds N.  Consequently nodes that correspond to densely populated regions 
in  input  space  contain  more  data  vectors.   This  also  means  that  the 
distribution of codebook vectors will not match the distribution of data vectors 
in the training set and will be biased towards the more ‘novel’ regions of the 
input  space.   Figure  3  complements  figures  1  and  2,  and  depicts  the 
distribution of codebook vectors with D = 0.15 and N=100 at internal branch 
nodes,  and  with  no  limitation  on  the  number  of vectors  at  leaf  nodes.  A 
comparison of Figures 2 and 3 reveals that less K-tree clusters are dedicated 
to  the  densely  populated  regions  and  more  clusters  are  dedicated  to  the 
sparsely populated regions, than is the case with the  k-means clusters.  The 
codebooks are now qualitatively different.  The overall distortion rate of the 
K-tree codebook is higher than that of the k-means codebook, but the variance 
in  the  local  distortion  of the  K-tree clusters  is  lower than  of the  k-means 
clusters.

Figure 3: K-tree with controlled local distortion



4. PERFORMANCE COMPARISONS

In this section we compare the performance of the  K-tree with  k-means and 
with  TSVQ. In  the first set of experiments we compare the time complexity 
and  scalability of the  methods  with  simple  artificial  data  sets.   We have 
conducted clustering experiments with 3-dimensional vectors from a random 
normal distribution with a zero mean and a variance of 1.  Starting from a set 
of 1,000 vectors the tree order was held constant, at N=50, while the number 
of vectors was increased in successive experiments, by doubling the training 
set size, from 1,000 to 256,000 vectors. Codebooks generated by TSVQ and by 
K-tree were of almost identical size.  In each experiment we generated the k-
means  codebook  with  the  same  number  of clusters  as  obtained  in  the 
codebook level of the  K-tree.   In  this manner  all  comparisons relate to the 
same  number  of  codebook  clusters  and  are  therefore  meaningful.   Each 
clustering experiment was repeated 10 times to obtain an average execution 
time.  The results are depicted in Figure 4.   The K-tree procedure is the only 
procedure  that  scales  well  to  very  large  data  sets.  It  is  computationally 
feasible with data sets that  are several  orders of magnitude larger  than  the 
other methods can feasibly handle.
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Figure 4: Scalability of K-tree, TSVQ, and k-means to large data sets

In the second set of experiments we compare the global distortion rates of the 
codebooks  as  we increase  their  size,  by reducing  N,  the  tree  order,  and 
keeping the size of the training set constant.  Again,  the size of the  k-means 



codebook is set to the same size as that of the codebook level of the  K-tree. 
All  three  methods were implemented  in  MATLAB programs  that  call  the 
same function  implementation  of the  k-means procedure where they spend 
most  of  the  execution  time.  The  training  set  consisted  of  3924,  20-
dimensional, speech cepstrum vectors.  The results are depicted in figure 5. 
As the number of clusters increases, the distortion of the codebooks decreases. 
The  k-means codebooks  always  outperform  the  TSVQ and  the  K-tree 
codebooks, as expected. There is an inherent trade-off between distortion and 
search efficiency when constructing the trees.    
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Figure 5: Comparison of codebook clustering distortion 

5. CONCLUSION

We introduced the K-tree clustering algorithm for the construction of height 
balanced search trees for vector quantization.  The algorithm is hybrid of two 
classical algorithms,  B-tree and  k-means. The bottom-up approach of K-tree 
represents  a  significant  deviation  from the  top-down recursive partitioning 
approach that is at the basis of numerous variations on  TSVQ and  k-means. 
The  procedure  lends  itself  to  efficient  recursive  implementation  and  the 
performance  of  the  K-tree was  compared  to  that  of  TSVQ.  K-tree  is 
computationally more efficient for trees of higher  order (node capacity) and 
consequently it also scales up to data sets that are several orders of magnitude 
larger.   K-tree builds trees having higher distortion rates than  TSVQ for the 
same number of clusters and tree size so there is a trade off.  By construction, 
the K-tree is a height-balanced tree.  K-tree has the advantage over top-down 



tree building methods in that  the search tree is a dynamic structure and the 
codebook can be used at any time during tree construction. This allows the 
deployment of an adaptive tree structured codebook.  Although we have not 
described  the  deletion  procedure,  deletion  of  vectors  from  a  K-tree is  a 
straightforward extension of a deletion of keys in a B-tree. Future work will 
aim  to study the  utility of  K-trees in  dynamic  domains  and  the  utility of 
various node-splitting strategies in controlling the codebooks’ local distortion 
rates. 
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