

QUT Digital Repository:
http://eprints.qut.edu.au/

Geva, Shlomo (2000) K-tree : a height balanced tree structured vector quantizer. In:
NNSP-2000, IEEE Neural Network for Signal Processing Workshop 2000, 11-13
December 2000, Sydney.

 © Copyright 2000 IEEE

K-tree: A HEIGHT BALANCED TREE
STRUCTURED VECTOR QUANTIZER

Shlomo Geva
Machine Learning Research Centre

School of Computing Science
Queensland University of Technology

GPO Box 2434, Brisbane
Queensland 4001

Australia
s.geva@qut.edu.au

Abstract: We describe a clustering algorithm for the design of height
balanced trees for vector quantisation. The algorithm is a hybrid of the
B-tree and the k-means clustering procedure. K-tree supports on-line
dynamic tree construction. The properties of the resulting search tree
and clustering codebook are comparable to that of codebooks obtained by
TSVQ, the commonly used recursive k-means algorithm for constructing
vector quantization search trees. The K-tree algorithm scales up to larger
data sets than TSVQ, produces codebooks with somewhat higher
distortion rates, but facilitates greater control over the properties of the
resulting codebooks. We demonstrate the properties and performance of
K-tree and compare it with TSVQ and with k-means.

1. INTRODUCTION

Vector quantisation is a powerful computational procedure that has many
uses in signal and image processing, data compression, and in statistical and
machine learning applications. A comprehensive coverage of vector
quantisation methods can be found in [1] and numerous applications are
described in [2] and in the current literature.

Vector quantisation is encountered in two basic forms, which depend on the
application. In data compression one is concerned with the identification of a
set of cluster vectors (or a codebook) that typify vectors that are to be
compressed. In such cases one usually applies an unsupervised cluster
discovery procedure, such as k-means [3]. In classification problems, on the
other hand, supervised learning algorithms are used. The codebook is
constructed from a set of labelled data. The procedure is then concerned not
only with clustering, but also with correct labelling of the codebook vectors,
as for instance in LVQ [4]. This paper is concerned with unsupervised
clustering, although the K-tree algorithm is also useful in the context of
supervised clustering and classification.

mailto:s.geva@qut.edu.au

The k-means algorithm [3] is a classical clustering algorithm. The procedure
is also known, in various variations and extensions, as GLA, the Generalized
Lloyd Algorithm, or as LBG, after the authors who described it [1]. Given a
training data set T, the objective is to design a codebook C having N
codebook vectors that minimise the quantization distortion error of the
codebook. The quantisation distortion is most commonly defined as the
average (mean square) distortion resulting from replacing each training
vector by its nearest codebook vector. The Euclidean distance is usually
applied in measuring the distortion error, but other measures, such as the
absolute error or the worst case error, are also encountered.

The k-means procedure starts by an initial estimation (usually random
selection) of N vectors from T. The procedure then proceeds in two iterated
steps until convergence. In the first step the training set is partitioned into N
subsets {T1..TN} defined by the Voronoi tessellation of T by the current
codebook vectors {C1..CN}. Each vector Ci is the nearest codebook vector to
the training vectors in partition Ti. The second step is the re-estimation of
codebook vectors - each vector Ci is re-assigned the mean value of all the
vectors in partition Ti. These two steps are iterated until some termination
condition is met. Usually, until the procedure converges into a stable
configuration. It can be shown that each iteration must reduce or leave
unchanged the average distortion [1].

A common variation to the basic k-means algorithm involves splitting and
supports incremental construction of a codebook. The procedure starts with
the application of k-means to two codebook vectors. Once convergence is
reached a small perturbation is applied to a copy of each codebook vector thus
splitting the codebook into four vectors. The clustering algorithm is then re-
applied to the new codebook. The process of splitting and clustering is
continued until the desired number of codebook vectors is reached, or until
the distortion error of the codebook falls below a pre-determined value.

In many applications large codebooks are involved and an efficient search
procedure is required for implementation. The TSVQ algorithm is a recursive
partitioning procedure that builds a search-tree. The procedure starts with
the generation of a codebook of N vectors {C1..CN} through the use of the k-
means algorithm. Each of the corresponding partitions {T1..TN} is then
further processed by the application of k-means to vectors in each partition Ti.
The process is repeated recursively until the desired tree depth is reached. A
common variation relaxes the requirement of having a balanced tree and
nodes are recursively split until a desired distortion rate is achieved at all
leaves. The leaf nodes of the tree define the final clustering codebook. The
search for a codebook vector nearest to a given input vector starts at the root,
progressing through the tree, selecting the next branch by nearest neighbor
comparisons, until the nearest leaf node vector is identified. It should be
noted that the TSVQ search tree does not guarantee the identification of the
nearest leaf-level codebook vector. However, when it is not the nearest

neighbor, another nearby vector is identified instead, and the error is usually
of no significant practical importance. The TSVQ tree is not necessarily
height balanced and leaf nodes are usually of unequal size. The distortion
error of codebooks obtained by TSVQ is higher than that of codebooks
designed by k-means and having the same number of clusters.

2. THE K-tree ALGORITHM

The problem of constructing a search tree in the context of keyed access to
records in a file is very well studied and understood. A classical abstract data
type for the bottom-up construction of height balanced search trees is the B-
tree. A B-tree is built by the insertion of keys into the tree at the leaf level.
Insertions proceed sequentially, and the tree is accessible as a search tree at
any point during its construction. This is in contrast to the TSVQ procedure
where the tree is built from the top down. We now describe how this
algorithm is adapted to apply in vector quantisation problems.

We start with the definition of a B-tree of order m:

1. All leaves are on the same level.
2. All internal nodes except the root have at most m nonempty children, and

at least m/2 nonempty children.
3. The number of keys in each internal node is one less than the number of

its nonempty children, and these keys partition the keys in the children to
form a search tree.

4. The root has at most m children, but may have as few as 2 if it is not a
leaf, or none, if the tree consists of the root alone.

A K-tree of order m is defined as follows:

1. All leaves are on the same level.
2. All internal nodes, including the root, have at most m nonempty

children, and at least 1 nonempty children.
3. Codebook vectors (clusters) act as search keys.
4. The number of keys in each internal node is equal to the number of its

nonempty children, and these keys partition the keys in the children to
form a nearest neighbour search tree.

5. The level immediately above the leaf level forms the clustering codebook
level.

6. Leaf nodes contain data vectors, or references to data vectors.
K-tree nodes store real valued vectors. The search through the tree is based on
nearest neighbour comparisons, rather than on key comparisons. The nature
of the distance measure used in nearest neighbour comparisons is in general
an implementation dependent choice. We have used the Euclidean distance.

A K-tree consists of two kinds of nodes. All internal branch nodes, starting
from the root, down to the last level above the leaf level, contain mean-

vectors (clusters). The leaf nodes of a K-Tree store the training data vectors
(or references to them). The clustering codebook is contained at the
codebook level - the 2nd last level of the tree. All branches above that level
define the search tree, and all leaves below that level store data vectors. If the
K-tree is used to search the original data set (for example, if the data vectors
are used in nearest neighbor classification) then the search terminates at the
leaf level, with the nearest data vector. If the application only requires the
nearest codebook vector (eg. in signal compression) then the search
terminates at the codebook level (the leaf level can in fact be discarded).

2.1 K-tree construction

In order to explain the K-tree construction procedure it is convenient to start
from an already existing tree. Insertion proceeds as follows: An input vector
x is presented for insertion. The tree is searched to identify the leaf node
containing the nearest leaf (data) vector. In the simplest case the number of
data vectors stored at the leaf node is less than N, the tree order, and the
vector is inserted at that node. All branch vectors on the path leading to that
leaf are also updated since the search tree must reflect the new cluster
structure that had changed slightly now that an additional vector was
inserted. Consider the node just above the leaf. It contains the mean vector
of the leaf into which x was inserted. This mean vector must be updated to
reflect the new cluster mean. In a similar manner, the node above the branch
node just considered needs to reflect the insertion, and again the mean vector
of that branch is updated at the level above it. The process continues all the
way to the root node. This procedure lends itself to efficient recursive
implementation similar to that of a B-tree.

Now consider the insertion of a data vector resulting in a full leaf node. That
leaf node requires a split. The k-means algorithm is applied to the data
vectors at the leaf, to generate two new clusters (k=2) in place of the original
cluster. The two new cluster means now replace the single cluster mean at
the parent node. This of course can result in a full parent node. In that case
the parent node is split into two via k-means, except that now the clustering is
applied to cluster mean vectors at an internal branch instead of to data
vectors. The two new cluster means are then pushed up the tree. In the case
that the root node itself becomes full the tree depth increases – a new root
node is created, receiving the two new cluster means.

Starting from an empty tree, the K-tree is initialised with a root node and a
single leaf node consisting of a single data vector. Insertion of data vectors
now proceeds as described above. Initially the tree tends to grow in depth
rapidly. However, the capacity of a tree consisting of a root node with N
clusters and the corresponding leaf nodes is N2, and after another root node
split the maximum capacity of the leaf level of the K-tree is N3. As the K-tree
capacity grows very rapidly with increased depth, it reaches its final depth
(for a given number of training vectors and tree order) long before all the
vectors have been inserted. Given a data set of M vectors, a K-tree of order N

reaches its full depth after about M / N insertions. From that point on the tree
depth remains fixed and insertions occur with an almost constant rate of node
splits. The insertion time is not constant though. It slowly increases since
the average number of comparisons along the search path increases. The
number of comparisons along the search path of a K-tree is of the order
O(NlogN(m)) where N is the tree order and m the number of vectors already
stored in the tree. Consequently, the procedure scales up very well to very
large training sets.

The K-tree approach to the construction of a clustering search tree is radically
different to the traditional recursive partitioning approach. To visually
demonstrate the structure of the resulting codebook we have built a K-tree
Using a set of 5,000 vectors drawn from a random normal distribution with a
mean of 0 and a variance of 1. Figure 1 depicts the Voronoi tessellation of
the codebook level vectors in the K-tree. Figure 2 depicts the distribution of
the same number of clusters, obtained by the direct application of k-means to
the same set of training vectors. The result is qualitatively very similar, albeit
the k-means procedure leads to a lower distortion rate as expected.

3. NODE SPLITTING STRATEGIES

It is evident that the choice of the tree order N is arbitrary, and influences the
final structure of the codebook. It may be desirable to allow more flexibility
in the construction of the tree, and use some other criteria that is more closely
related to the training set characteristics, in deciding when a node should
split. One such criterion is the local distortion rate of the leaf node. The
local distortion is measured in the same manner as the global distortion
defined as the average (mean square) distortion resulting from replacing each
training vector by its nearest codebook vector. Rather than define a node as
full when the number of vectors exceeds N, it can be defined as full when its
distortion rate exceeds a threshold D. With this modifications the dynamic
behavior of the tree as it is constructed is somewhat different. In the initial
stages splits occur very rapidly as the tree does not yet cover the input domain
adequately. Consequently almost every insertion causes the local distortion to
exceed D. Many near-empty nodes are initially distributed over input space.
Once this has occurred the tree becomes more stable, and splits become less
and less frequent.

Figure 1: K-tree codebook

Figure 2: k-means codebook

One could also relax the limit of N entries at-most for leaf level nodes (note
that branch nodes are still limited to N entries). The leaf nodes can instead
only split when the local distortion exceeds D, rather than when their number
exceeds N. Consequently nodes that correspond to densely populated regions
in input space contain more data vectors. This also means that the
distribution of codebook vectors will not match the distribution of data vectors
in the training set and will be biased towards the more ‘novel’ regions of the
input space. Figure 3 complements figures 1 and 2, and depicts the
distribution of codebook vectors with D = 0.15 and N=100 at internal branch
nodes, and with no limitation on the number of vectors at leaf nodes. A
comparison of Figures 2 and 3 reveals that less K-tree clusters are dedicated
to the densely populated regions and more clusters are dedicated to the
sparsely populated regions, than is the case with the k-means clusters. The
codebooks are now qualitatively different. The overall distortion rate of the
K-tree codebook is higher than that of the k-means codebook, but the variance
in the local distortion of the K-tree clusters is lower than of the k-means
clusters.

Figure 3: K-tree with controlled local distortion

4. PERFORMANCE COMPARISONS

In this section we compare the performance of the K-tree with k-means and
with TSVQ. In the first set of experiments we compare the time complexity
and scalability of the methods with simple artificial data sets. We have
conducted clustering experiments with 3-dimensional vectors from a random
normal distribution with a zero mean and a variance of 1. Starting from a set
of 1,000 vectors the tree order was held constant, at N=50, while the number
of vectors was increased in successive experiments, by doubling the training
set size, from 1,000 to 256,000 vectors. Codebooks generated by TSVQ and by
K-tree were of almost identical size. In each experiment we generated the k-
means codebook with the same number of clusters as obtained in the
codebook level of the K-tree. In this manner all comparisons relate to the
same number of codebook clusters and are therefore meaningful. Each
clustering experiment was repeated 10 times to obtain an average execution
time. The results are depicted in Figure 4. The K-tree procedure is the only
procedure that scales well to very large data sets. It is computationally
feasible with data sets that are several orders of magnitude larger than the
other methods can feasibly handle.

0 0.5 1 1.5 2 2.5 3

x 105

0

5

10

15

20

25

TSVQ

K-tree

Number of training vectors

E
xe

cu
tio

n
tim

e
(m

in
ut
es

)

k-means

Figure 4: Scalability of K-tree, TSVQ, and k-means to large data sets

In the second set of experiments we compare the global distortion rates of the
codebooks as we increase their size, by reducing N, the tree order, and
keeping the size of the training set constant. Again, the size of the k-means

codebook is set to the same size as that of the codebook level of the K-tree.
All three methods were implemented in MATLAB programs that call the
same function implementation of the k-means procedure where they spend
most of the execution time. The training set consisted of 3924, 20-
dimensional, speech cepstrum vectors. The results are depicted in figure 5.
As the number of clusters increases, the distortion of the codebooks decreases.
The k-means codebooks always outperform the TSVQ and the K-tree
codebooks, as expected. There is an inherent trade-off between distortion and
search efficiency when constructing the trees.

0 100 200 300 400 500 600 700
100

150

200

250

300

350

Number of clusters

D
is
to
rt
io
n

TSVQ
K-treek-means
K-tree

Figure 5: Comparison of codebook clustering distortion

5. CONCLUSION

We introduced the K-tree clustering algorithm for the construction of height
balanced search trees for vector quantization. The algorithm is hybrid of two
classical algorithms, B-tree and k-means. The bottom-up approach of K-tree
represents a significant deviation from the top-down recursive partitioning
approach that is at the basis of numerous variations on TSVQ and k-means.
The procedure lends itself to efficient recursive implementation and the
performance of the K-tree was compared to that of TSVQ. K-tree is
computationally more efficient for trees of higher order (node capacity) and
consequently it also scales up to data sets that are several orders of magnitude
larger. K-tree builds trees having higher distortion rates than TSVQ for the
same number of clusters and tree size so there is a trade off. By construction,
the K-tree is a height-balanced tree. K-tree has the advantage over top-down

tree building methods in that the search tree is a dynamic structure and the
codebook can be used at any time during tree construction. This allows the
deployment of an adaptive tree structured codebook. Although we have not
described the deletion procedure, deletion of vectors from a K-tree is a
straightforward extension of a deletion of keys in a B-tree. Future work will
aim to study the utility of K-trees in dynamic domains and the utility of
various node-splitting strategies in controlling the codebooks’ local distortion
rates.

References:

1. A. Gersho and R. Gray. Vector Quantisation and Signal compression,
1992, Kluwer Academic Publishers. ISBN 0-7923-9181-0

2. Huseyin abut, Editor, Vector Quantisation, EEE Selected Reprints
Series. IEEE Press, 1990,

 ISBN 0-87942-265-3
3. J. MacQueen. “Some methods for classification and analysis of

multivariate observations,” In Proc. of the Fifth Berkeley Symposium on
Math. Stat. and Prob., volume 1, pp. 281-296, 1967.

4. Kohonen T. Self-Organization and Associative Memory, 2nd Ed, 1988,
Springer-Verlag, ISBN 3-540-18314-0 2.

	169708.pdf
	Queensland University of Technology
	Australia

