
To be presented at the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’04),
Seattle, WA, USA, Augsut 2004

k-TTP: A New Privacy Model
for Large-Scale Distributed Environments ∗

Bobi Gilburd, Assaf Schuster, Ran Wolff
Computer Science Department

Technion – Israel Institute of Technology

{bobi,assaf,ranw}@cs.technion.ac.il

ABSTRACT
Secure multiparty computation allows parties to jointly com-
pute a function of their private inputs without revealing
anything but the output. Theoretical results [3] provide
a general construction of such protocols for any function.
Protocols obtained in this way are, however, inefficient, and
thus, practically speaking, useless when a large number of
participants are involved.

The contribution of this paper is to define a new privacy
model – k-privacy – by means of an innovative, yet natural
generalization of the accepted trusted third party model.
This allows implementing cryptographically secure efficient
primitives for real-world large-scale distributed systems.

As an example for the usefulness of the proposed model,
we employ k-privacy to introduce a technique for obtaining
knowledge – by way of an association-rule mining algorithm
– from large-scale Data Grids, while ensuring that the pri-
vacy is cryptographically secure.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining

Keywords
Privacy, security, data mining

1. INTRODUCTION
The objective of large scale distributed database systems,

such as the Data Grid, is to maximize the availability and
utilization of data that was often obtained through the in-
vestment of much labor and federal capital. Maximal uti-
lization would be achieved if the owners of different data
(resources) were able to share it with each other and with

∗We thank Intel Corporation and the Mafat Institute for
Research and Development for their generous support of this
research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’04, August 22-25, 2004, Seattle, WA, USA
Copyright 2004 ACM 1-58113-737-0/03/0008 ...$5.00.

the research community at large – i.e., make it available for
everyone. Nevertheless, this is frequently prohibited by le-
gal obligations or commercial concerns. Such restrictions
usually do not apply to cumulative statistics of the data.
Thus, the data owners usually do not object to having a
trusted third party (such as a federal agency) collect and
publish these cumulative statistics, provided that they can-
not be manipulated to obtain information about a specific
record or a specific data source. Trusted third parties are,
however, difficult to find, and the procedure involved is nec-
essarily complicated and inefficient.

This scenario is most evident in the health maintenance
business. Health Maintenance Organizations (HMOs) have
a high interest in sharing medical data, both for public
health reasons, such as plague control and the evaluation
of different medical protocols, and for commercial reasons,
such as detecting medical fraud patterns or medical miscon-
duct. Similar examples can be found in the financial domain
where, for instance, account information should be shared
in order to detect money laundering. However, sharing data
is very problematic: it is legally forbidden to expose specific
records – i.e., a patient’s medical record – and it is commer-
cially undesirable to expose statistics about a single HMO –
e.g., mortality rates or the average expenditure per client.

Distributed data mining allows data to be shared with-
out compromising privacy. On the one hand, data mining
techniques have been shown to be a leading tool for data
analysis, and as such they are likely to satisfy researchers’
needs as an interface to the data stored in a Grid. On the
other hand, the models produced by data mining tools are
statistical and thus satisfy the privacy concerns of the data
owners. As a result, different HMOs can choose to reveal
their databases not for direct reading but rather to a dis-
tributed data mining algorithm that will execute at the dif-
ferent sites and produce a statistical model of the combined
database. That the algorithm produces statistics still does
not guarantee privacy: an HMO also has to make certain
that the data mining algorithm itself does not leak infor-
mation. For instance, an algorithm in which each HMO
computes its mortality rate and then sends it to a polling
station which computes the global statistics would not meet
this criterion because the polling station would be informed
of the mortality rate for each HMO. This calls for a specific
type of distributed data mining algorithm that is privacy-
preserving.

The common approach [4, 10, 6] for privacy-preserving
data mining is to replace each message exchange in an or-
dinary distributed data mining algorithm with a crypto-

graphic primitive that provides the same information with-
out disclosing the data of the participants: for example,
replacing a sum reduction with a cryptographically secure
sum reduction in which the participants learn only the total
sum and not each other’s partial sums.

When practiced well, this approach guarantees the privacy
of both single records and source statistics. However, all of
the algorithms which have taken this approach so far have
failed to scale above a few computers. They all rely on
cryptographic primitives that are both global – requiring
all-to-all communication patterns – and rigid – requiring
that the primitive be evaluated all over again if the data
changes even slightly or a node joins or leaves the system.
That would be unacceptable in a Data Grid system which is
expected to scale to hundreds or even tens of thousands of
nodes. (There are hundreds of HMOs in the US alone and
a typical HMO uses the services of hundreds of independent
laboratories, clinics, and medical specialists, all of which
have their separate databases.)

When dealing with very large systems, it is often rea-
sonable to permit learning partial combined statistics, pro-
vided they include a minimal number of participants’ inputs.
The contribution of this paper is to formalize this approach,
defining k-privacy as the privacy attained when no partici-
pant learns statistics of a group of less than k participants.
k-privacy is defined in terms of k-TTP – a powerful, yet nat-
ural novel generalization of the trusted third party model.
k-TTP captures practical privacy measures which are ac-
cepted by HMOs today [9]. Using k-privacy, we can imple-
ment efficient cryptographically secure primitives that do
not require all-to-all communication, and are thus practical
for real-world large-scale distributed systems.

As an example for the usefulness of the proposed model,
we use k-privacy to address the problem of preserving pri-
vacy while distributively mining association rules from large
number of database partitions. In the proposed solution, k-
privacy is the basis for a cryptographic privacy-preserving
association rule mining algorithm in which the cryptographic
primitives involve only pairs of participants and are thus
scalable. We use a non-private association rule mining algo-
rithm as a foundation, and replace the messages that were
sent by resources with encrypted versions which the recip-
ient cannot decrypt. Using k-privacy, our algorithm offers
a tradeoff between the privacy attainable (measured in the
minimal size of the population on which statistics are eval-
uated) and the computational effort required to attain it.

2. k-PRIVACY AND k-TTP
Assume that n participants P = {P1, P2, . . . , Pn}, each

owning a private input xi, wish to jointly compute the out-
put f (x1, x2, . . . , xn) of some common function f , without
revealing anything but the output. They do so by running
a protocol π. The participants are said to follow the honest-
but-curious (also called semi-honest or passive) model [2] if
they are assumed to follow the protocol exactly but may ob-
serve it in order to glean additional knowledge. Otherwise,
the participants are said to follow the malicious model [2].

Assume a trusted third party (TTP) T exists. This is
referred to as the ideal model. In this case privacy preserv-
ing protocol exists, both in the honest-but-curious and the
malicious models: the participants send their private inputs
to T, which computes and returns the output. Clearly, no
participant other than T learns anything from the protocol

but the result.
Trusted third parties are, however, difficult to find, es-

pecially when the number of participants increases. Thus,
different solutions are required. Still, it is customary to use
the ideal model to define the privacy attained by a protocol:
In the case of honest-but-curious participants, a protocol π
that computes f is said to be private if its results can be
simulated in the ideal model. In other words, the protocol is
private if any knowledge that is obtained by an honest-but-
curious adversary attacking the protocol in the real world
can also be obtained by it in the ideal model. In the case of
malicious participants, a private protocol is called secure.

Known theoretical results show that private and secure
protocols exist for any function [3]. However, the proto-
cols obtained by this general construction are inefficient and
useless in the case of a large number of participants. The
reason for this inefficiency is the all-to-all communication op-
erations required during the protocols. Such operations are
very costly in large-scale distributed networks. Several effi-
cient solutions for specific problems, in various fields, have
been proposed (see [7] for a comprehensive lists of refer-
ences), but none of them is practical for a very large number
of participants. A method for constructing efficient peer-to-
peer secure multiparty protocols for a limited set of functions
was presented in [11]. It is based on using an untrusted third
party.

We now describe the problems that a large number of
participants introduces to the ideal model. We then define
our generalization of this model.

2.1 Relaxed Privacy Model
Consider the problem of privately computing the joint

sum of the inputs: f (x1, . . . , xn) =
∑

i xi. A private (or al-
ternatively, secure) protocol will allow the honest-but-curious
(or malicious, respectively) participants to learn only the fi-
nal sum and not each other’s partial sums. However, when
dealing with very large systems, it is often reasonable to al-
ter the TTP model and permit participants to learn partial
sums, provided they include a minimal number of partic-
ipants’ inputs. The intuition is that it would suffice for
one to ‘hide’ in the combined statistics of a group of par-
ticipants, instead of ‘hiding’ in the combined statistics of
all the participants. We formalize the above by defining
k-privacy (k-security) as the privacy attained when no par-
ticipant learns combined statistics of a group of less than
k participants, in the presence of honest-but-curious (mali-
cious) participants. k-privacy (k-security) is a powerful, yet
natural generalization of the accepted trusted third party
model, which captures practical privacy measures accepted
in the real world [9]. It also provides a tradeoff between
protocol efficiency and the level of privacy, by means of the
privacy parameter k.

In the TTP model all participants behave the same. They
all send their inputs to the TTP and receive the same out-
put. This is not the case in the k-privacy model were differ-
ent participants may be given different outputs. Colluding
participants can infer additional information by comparing
the outputs they received. For example, if one has the sum
of the inputs of a group V and the other of V ∪ {i}, they
can deduce the input of i.

Therefore, in k-privacy the ideal model is augmented with
a collusion model. This collusion model is very liberal, al-
lowing collusion, for instance, of any subgroup of the partic-

ipants or even no collusion at all. As we shall see, the com-
plexity of secure protocols increases as the collusion model
becomes more liberal. We formalize this by defining C ⊆ 2P

– the collusion set : the set of all subgroups of possibly col-
luding participants. In the worst case, when any collusion
is possible, C = 2P . In the opposite case, when no collusion
is possible, C = {{P1}, . . . , {Pn}}.
2.2 Repeated Private Computations

Consider the previous example of privately computing the
joint sum of the inputs. Suppose the sum was privately
computed once and it equals S. Now suppose the sum is
computed again, and this time it equals S′. Assume that an
attacker finds out that only one specific participant changed
its input between the computations. The attacker can then
learn the change in that participant’s input. This situa-
tion is common in many real life applications. Consider, for
example, computation which take place every hour among
businesses with different opening hours. Therefore, the use-
fulness of the TTP model is severely limited [5] in such appli-
cations. k-privacy provides a natural framework for taking
care of such potential privacy breaches: it is required that
the inputs of at least k participants change before revealing
combined statistics.

2.3 Defining k-TTP
We now formalize the above discussion by defining a new

general framework we denote as k-TTP :

Definition 2.1. [k-TTP] Let P = {P1, . . . , Pn} be the
set of honest-but-curious (malicious) participants. Let C ⊆
2P be the collusion set. A k-TTP that privately (securely)
computes a function f with n inputs, under the collusion set
C, is an honest, event-based entity, such that:

• Local Variables. For each participant i: xi, initial-
ized to ⊥, is the last input the k-TTP received from
i. Gi, initialized to {φ}, is the set of the groups of
participants about whom outputs were provided to i.

• Input. At any given time t, the k-TTP may receive
the current input xi

t from participant i. The k-TTP
then sets xi ← xi

t.

• Definitions.

– Gc
.
=

⋃
j∈c Gj, is the set of the groups of partic-

ipants about whom outputs were provided to any
member of some collusion set c ∈ C.

– Ci
.
= {c ∈ C, s.t. i ∈ c}, the colluding gang of i,

is the set of all possible groups of colluding parties
which include i.

• Output. At any given time t, participant i may request
the k-TTP for an output for a group of participants V .
The k-TTP then checks if the following holds:

∀c ∈ Ci ∀G ⊆ Gc :

∣∣∣∣∣V4
(⋃

j∈G

Gj

)∣∣∣∣∣ ≥ k.

(Where 4 denotes the symmetric difference of sets.)
If the condition does not hold, the k-TTP ignores the
request. Otherwise, the k-TTP sets Gi ← Gi ∪ {V },
and sends back to i the value f (x′1, . . . , x

′
n) such that

x′i equals xi if i ∈ V and ⊥ otherwise. That is, the

k-TTP returns the output of computing the function
over the latest inputs of the participants in V only.

k-TTP defined as above preserves k-privacy. To see this,
we observe that the k-TTP does not provide output for
queries from participant i about a group V , if the colluding
gang of i can manipulate this output and the outputs they
previously received for jointly learning the output f (W) for
a group W of less than k participants.

Using a k-TTP, it is straightforward to define k-private
computation in various settings. Let us recall the example of
privately computing the joint sum of the inputs. This time,
suppose the collusion set C is defined as a partitioning of
the participants into groups based on geographic locations.
In this setting, the k-TTP can be fully distributed: Because
participants collude only with members of their group, it
is enough to require that the members of each group direct
their queries to the same local k-TTP. The real world imple-
mentation of the distributed k-TTP may still be elaborated.
Yet, as we will demonstrate, locality of the collusion set can
be used to implement efficient secure protocols.

3. PRIVACY-PRESERVING DATA MINING
ON DATA GRIDS

We now slightly shift the focus of the discussion with the
purpose of demonstrating how k-TTP can be used to im-
plement a highly scalable secure association-rule mining al-
gorithm. We consider the most restrictive collusion model,
C = {{Pi}|Pi ∈ P}. The input of i, xi, is a single bit, and
the function the k-TTP evaluates is the majority vote among
the participants of a provided set V . As shown in [12], ma-
jority computations can be used to implement a distributed
association rule mining algorithm. Hence, we describe a k-
private majority voting algorithm, and show how it can be
used to implement a k-private distributed association rule
mining algorithm.

3.1 Problem Definition
Data Grid Model. A Data Grid is composed of a group

of resources, each maintaining a database partition. Each
resource is composed of two entities: the broker – through
which the resource communicates with the rest of the Data
Grid, and the controller, which tells the broker when to send
messages and when to further develop the mined model. We
denote Vt the set of resources at time t. Communication
between the resources takes place through the exchange of
messages via an overlay network. We assume that an under-
lying mechanism maintains a communication tree that spans
all the resources. We denote Eu

t the set of edges colliding
with a resource u at time t.

Association Rule Mining Model. The association
rule mining (ARM) problem is traditionally defined as fol-
lows: Let I = {i1, i2, ..., im} be the items in a certain do-
main. An itemset is some subset X ⊆ I. A transaction
t is also a subset of I, associated with a unique transac-
tion identifier. A database DB is a list that contains |DB|
transactions. Given an itemset X and a database DB,
Support (X, DB) is the number of transactions in DB which

contain all the items of X and Freq (X, DB) = Support(X,DB)
|DB| .

For some frequency threshold MinFreq ∈ [0, 1], we say that
an itemset X is frequent in a database DB if Freq (X, DB) ≥
MinFreq and infrequent otherwise. For two distinct frequent

itemsets X and Y , and a confidence threshold MinConf ∈
[0, 1], we say the rule X ⇒ Y is confident in DB if MinConf·
Freq (X, DB) ≤ Freq (X ∪ Y, DB). We call confident rules
between frequent itemsets correct. The solution of the ARM
problem is R [DB] – all the correct rules in the given database.

Database Model. We assume the database is updated
over time (for instance, in the HMO application, patient
records are accumulated), and hence, DBt will denote the
database at time t and R [DBt] the rules that are correct
in that database. In distributed association rule mining the
database is partitioned among the resources. We denote the
union of partitions belonging to a group of resources V ⊆ Vt

by DBV
t ; that is, DBt equals DBVt

t . When the number of
resources is large and the frequency of updates high, it may
not be feasible to propagate the changes to the entire system
at the rate they occur. Thus, it is beneficial to have an incre-
mental algorithm that can quickly compute interim results
and improve them as more data is propagated. Such algo-
rithms are called anytime algorithms. We denote R̃u [DBt]
the interim solution known to the resource u at time t. We
further assume that no transactions will be deleted. This
assumption can be made without loss of generality, because
deleting a transaction can be simulated by adding a ‘negat-
ing’ transaction instead (as is customary in logging).

Privacy Model. A distributed ARM algorithm is said
to be k-resources-private if it is k-private when the resources
(clinics of the HMOs, for example) are considered as the par-
ticipants in the k-TTP definition. The algorithm is said to
be k̃-transactions-private if it is k-private when the trans-
actions (patients records, for example) are considered the

participants. For simplicity, in this paper we set k and k̃ to
be equal and define an algorithm as k-private if it is both
k-resources-private and k-transactions-private.

3.2 Prerequisites
The work presented here relies on two bodies of research: a

scalable algorithm for association rule mining which does not
require global communication and a cryptographic technique
called oblivious counters.

3.2.1 A Scalable Distributed Association Rule Min-
ing Algorithm –Majority-Rule

In a previous paper [12] we describe Majority-Rule – a
highly scalable distributed ARM algorithm (non-privacy-
preserving). The algorithm is based on two main inferences:
That the distributed ARM problem is reducible to a se-
quence of majority votes, and that if the vote is not tied,
majority voting can be done by a scalable algorithm – which
we also present in that paper. Since it turns out that the
frequency of an overwhelming number of candidate itemsets
is significantly different from MinFreq (i.e., the vote is not
tied), the outcome of these two observations is a local, and
thus highly scalable, distributed ARM algorithm.

The input to the Scalable-Majority algorithm is a bit at
each node u and a globally known majority threshold λ.
Nodes communicate by sending pairs 〈s, c〉 to each other,
and keep records of the last message sent to each neighbor v
– 〈sumuv, countuv〉 – and the last received – 〈sumvu, countvu〉.
It is natural to represent the input bit as a message from ⊥.
We thus denote Nu

t as Eu
t ∪{⊥u}. Thus, sum⊥u equals one if

the input bit is set and zero otherwise, and count⊥u equals
one. The node will compute ∆uv = (sumuv + sumvu) −

λ (countuv − countvu) and ∆u =
∑

vu∈Nu
t

(sumvu − λcountvu).

u will send a message to v upon first contact with it and in
the case that (∆uv ≥ 0 ∧∆uv > ∆u)∨(∆uv < 0 ∧∆uv < ∆u),
and will reevaluate the condition on every change in ∆u and
∆uv. In both cases the message will equal the sum of the
messages received from other neighbors: 〈∑wu6=vu∈Nu

t
sumwu,∑

wu6=vu∈Nu
t

countwu〉. Having received 〈s, c〉 from v, u will

set sumvu to s and countvu to c. It is easy to see that when
Scalable-Majority terminates (i.e., no more messages are to
be sent) all nodes compute the same sign for ∆u; that is,
they agree on the majority.

To see how Scalable-Majority translates into an associa-
tion rule mining algorithm Majority-Rule, consider a major-
ity vote in which the transactions vote over every candidate
itemset, with each transaction voting one if it contains the
itemset and zero otherwise, and with λ set to MinFreq. A
positive majority would mean that the itemset is frequent.
Similarly, to decide whether a rule is confident, the trans-
actions again must vote. This time only transactions that
include the left-hand side of the rule vote, and their vote is
one if they contain the right-hand side and zero otherwise;
λ is set this time to MinConf . Naturally, with databases
containing many transactions, sum⊥u and count⊥u are set
according to the agglomerated vote.

Candidates generation is done using a generalization of
Apriori’s [8] criterion, and is described in [12].

3.2.2 Oblivious Counters
We denote a public-key cryptosystem from ZN by (E, D):

E(m) is the encryption of a given plain text m ∈ Zn us-
ing the encryption key, and D(c) is the decryption of a
given cipher text c using the corresponding decryption key.
(E, D) is called probabilistic if the encryption process in-
volves a random element, such that two ciphers encrypting

the same plain are seemingly nonrelated. We denote Ẽ (x)
– the rerandomization of E (x) – a different cipher such that

D
(
Ẽ (x)

)
= D (E (x)).

A public-key cryptosystem (E, D, A+, A−) is called ad-
ditively homomorphic if there exist efficient algorithms A+

and A− that allow the encryption of x + y or x− y to be ef-
ficiently calculated, given E (x) and E (y), without knowing
the decryption key. That is, for all E(x), E(y):

D
(
A± (E (x) , E (y)))

)
= x± y.

In this work we use an additively homomorphic proba-
bilistic public-key cryptosystem, which has the additional
property that A+ and A− do not require knowledge of the
encryption key. Such a cryptosystem can be easily con-
structed from any two homomorphic cryptosystems: mes-
sages are first encrypted using the first cryptosystem, then
their encryption is signed using the second. We use such a
cryptosystem for implementing oblivious counters by which
one can add two ciphers without knowing their plain, and
without knowing either the encryption or decryption keys.
Furthermore, by using A+ iteratively, one can easily calcu-
late E (m · x) from E (x) for some m ∈ N. In the inter-
est of clarity, we mark E (x) +̇E (y) for A+ (E (x) , E (y)),
E (x) −̇E (y) for A− (E (x) , E (y)), m∗̇E (x) for E (m · x),

and
∑̇

E (xi) for A+
(
...A+

(
A+ (E (x1) , E (x2)) , E (x3)

)
...

)
.

3.3 A k-Private Distributed Association Rule
Mining

We now describe Private-Majority-Rule, a k-private dis-
tributed association rule mining algorithm. The master plan
of Private-Majority-Rule is similar to that of Majority-Rule:
the resources perform majority votes over candidate rules
to decide whether they are frequent and confident. How-
ever, in Private-Majority-Rule the candidates are counted
in the local database by the broker, which then encrypts
the count into oblivious counters using a public encryption
key. The broker does not know the corresponding decryp-
tion key. This ensures that a broker cannot discover the data
in messages it receives from its neighbors. Only controllers
can decrypt the oblivious counters. However, a controller
will never be given the oblivious counter directly. Instead,
whenever a broker has to decide whether to send a message
to its neighbor, it performs a secure protocol with a con-
troller, by the end of which the broker learns whether the
message should be sent and the controller learns nothing.
Finally, whenever new candidates should be generated, the
broker performs a similar protocol with a controller, by the
end of which the broker learns the new candidate set and
nothing more and the controller learns nothing.

The algorithm maintains k-privacy. k specifies the least
size of a group for which our algorithm allows learning com-
bined statistics (majority vote of the participants in this
group). We achieve this by making sure that as long as
data gathered for a rule is not based on at least k additional
database portions and at least k additional transactions than
in the last query, the resource behavior is independent of the
data and therefore does not disclose anything about it.

3.3.1 Maintainingk-privacy
Consider a system composed of brokers running Majority-

Rule with all votes, and consequently all messages, encrypted
by the broker in oblivious counters. Instead of maintaining
sumuv, countuv, sumvu, countvu, ∆u, and ∆uv, a broker
will maintain their encrypted versions: sumuv

enc, countuv
enc,

sumvu
enc, countvu

enc, ∆u
enc, and ∆uv

enc. count counts transac-
tions. But, in order to maintain k-resources security, we also
need to count resources. For this purpose we add a resource
counter, num, and likewise maintain numuv and numvu.
When the broker needs to send a neighbor a message that
sums the votes provided by the rest of its neighbors, it will
use the A+ algorithm to sum the counters.

A problem arises when a broker needs to evaluate a counter;
for example, when it needs to learn whether the value it
hides is greater than zero (that is, the value’s sign). For
this, it must consult with the controller. Nevertheless, it is
essential that the controller not learn the value of x. This is
a standard secure function evaluation (SFE) problem [3] be-
tween two participants where the input of the broker is the
encrypted oblivious counter, the input of the controller is the
decryption key, and the function, whose output should be re-
vealed to the broker only, is the sign of the value encrypted
by the counter. In [3], and in many later papers, general
techniques for such evaluations are given. For our specific
problem, evaluating the sign of an encrypted counter, several
ad hoc solutions can be employed with higher performance.

A broker will use such an SFE primitive on two occasions.
The first is when a broker u in Majority-Rule evaluates the
Majority-Rule condition on ∆u and ∆uv to decide whether
a message should be sent to a neighbor v. In this case the

Algorithm 1 Private-Scalable-Majority - Algorithm for a
broker of resource u
Input: A rational majority ratio λ = λn/λd and a candi-
date rule r this voting instance represents.

Local variables: The set Eu
t of edges colliding with u, the

privacy parameter k, and the common encryption (public)
key.

Definitions: Nu
t = {⊥} ∪ {v ∈ Vt : uv ∈ Eu

t },
∆u

enc =
∑̇

v∈Nu
t

(
λd∗̇sumvu

enc−̇λn∗̇countvu
enc

)
, ∆uv

enc =

λd∗̇
(
sumvu

enc+̇sumuv
enc

) −̇λn∗̇
(
countvu

enc+̇countuv
enc

)
.

Output(): Return the output of SFE with the controller
of u, where the condition to be evaluated (revealed to
the broker only) is: Cond (x1, x2, x3) =

(
x1 − klast

1 ≥ k
)

∧ (
x2 − klast

2 ≥ k
) ∧

(x3 ≥ 0), using
∑̇

v∈Nu
t
countvu

enc,∑̇
v∈Nu

t
numvu

enc, ∆u
enc, as the inputs x1, x2, x3 respectively.

klast
1 and klast

2 are maintained by the controller of u, both
initialized to zero, and at the end of the SFE are set to the
given x1 and x2 respectively.

Update(v): sumuv
enc ← ∑̇

w 6=v∈Nu
t
˜sumwu

enc, countuv
enc ←

∑̇
w 6=v∈Nu

t

˜countwu
enc, numuv

enc ← ∑̇
w 6=v∈Nu

t
ñumwu

enc. Send

〈sumuw
enc, countuw

enc, numuw
enc〉 to v.

MajorityCond(v): Return the output of SFE with
the controller of u, where the condition to be eval-

uated is: Cond (x1, x2, x3, x4) =
(
x1 − k̂last

1 < k
) ∨

(
x2 − k̂last

2 < k
) ∨

(x3 < 0
∧

x4 < 0)
∨

(x3 ≥ 0
∧

x4 > 0),

using
∑̇

w∈Nu
t
countwu

enc,
∑̇

w∈Nu
t
numwu

enc, ∆uv
enc, ∆uv

enc−̇∆u
enc

as the inputs x1, x2, x3, x4 respectively. k̂last
1 and k̂last

2 are
maintained by the controller of u, both initialized to zero,
and at the end of the SFE are set to the given x1 and x2

respectively.

On initialization for each uv ∈ Eu
t , or on join of

a neighbor v: Set sumvu
enc, sumuv

enc, countvu
enc, countuv

enc,
numvu

enc and numuv
enc to E (0).

On receiving 〈sum′, count′, num′〉 from v: Set sumvu
enc ←

sum′, countvu
enc ← count′, numvu

enc ← num′.

On change in sum⊥u
enc from senc to s′enc: Set sum⊥u

enc

to senc+̇E (1), senc−̇E (1), s′enc+̇E (1), and s′enc−̇E (1) and
after each assignment call OnChange(). Finally, set sum⊥u

enc

to s′enc and call OnChange().

On a change in sum⊥u
enc or count⊥u

enc or on a call to
OnChange(): For each v ∈ Eu

t : if MajorityCond(v), call
Update(v).

broker will initiate SFE with the controller, where the con-
dition to be evaluated (true means that a message should
be sent) is: For the candidate rule considered, either the
Majority-Rule condition over ∆u

enc and ∆uv
enc evaluates true,

or the difference between the current and previous values

encrypted by
∑̇

v∈Nu
t
countuv

enc is less than k (meaning there

are less than k new transactions than in the last query), or
the difference between the current and last values encrypted

by
∑̇

v∈Nu
t
numuv

enc is less than k (meaning it counts less than

k new database partitions than in the last query).

Algorithm 2 Private-Majority-Rule - Algorithm for a bro-
ker of resource u
Inputs of resource u: The set Eu

t of edges colliding with
u, the set of items I, the frequency threshold MinFreq, and
the confidence threshold MinConf.

Output of resource u: The interim set of rules R̃u [DBt].

Local variables: 〈X ⇒ Y, λ〉 denotes a candidate-rule
X ⇒ Y with desired majority threshold λ. C is a set of can-
didate rules together with counters r.sumenc and r.countenc,
both initially set to E (0).

Initialization: Set C ← {〈∅ ⇒ {i} ,MinFreq〉 |i ∈ I}.
Repeat the following continuously:

• For each rule r ∈ C for which there is no active
Private-Scalable-Majority instance, initiate one using
〈r.sumenc, r.countenc, r.λ〉 as the input.

• Cyclically, read a few transactions from the database
DBu

t . For each transaction T , and rule r = 〈X ⇒ Y, λ〉 ∈
C which was generated after T was last read: If X ⊆ T ,
increase r.count. If X ∪ Y ⊆ T , increase r.sum.

• Once every few cycles:

– Set R̃u [DBt] to the set of rules r ∈ C which their cor-
responding Private-Scalable-Majority instance outputs
true.

– For each r = 〈∅ ⇒ X,MinFreq〉 ∈ R̃u [DBt], i ∈ X: if
r′ = 〈X \ {i} ⇒ {i} ,MinConf〉 6∈ C, add r′ to C.

– For each r1 = 〈X ⇒ Y ∪ {i1} , λ〉 , r2 =

〈X ⇒ Y ∪ {i2} , λ〉 ∈ R̃u [DBt], i1 < i2: if
r′ = 〈X ⇒ Y ∪ {i1, i2} , λ〉 6∈ C and ∀i3∈Y

〈X ⇒ Y ∪ {i1, i2} \ {i3} , λ〉 ∈ R̃u [DBt], add r′

to C.

On receiving a Private-Scalable-Majority message
relevant to rule r = 〈X ⇒ Y, λ〉, from a neighbor v:
If r 6∈ C, add it to C. If r′ = 〈∅ ⇒ X ∪ Y, λ〉 6∈ C, add
r′ to C as well. In any case, forward the message to the
appropriate local Private-Scalable-Majority instance.

The second occasion is when u needs to generate new can-
didates. In this case it will initiate SFE with the controller in
order to discover, for each candidate whose oblivious coun-
ters have changed, whether the rule is correct. The condi-
tion to be evaluated in that case is that the value encrypted
by ∆u

enc is at least zero, and the differences between the

current and last values encrypted by
∑̇

v∈Nu
t
countuv and

∑̇
v∈Nu

t
numuv are at least k. It will then generate new can-

didates according to the criterion defined in the Majority-
Rule algorithm.

Algorithm 1 – Private-Scalable-Majority – gives the privacy-
preserving majority voting procedure we use. Algorithm 2 –
Private-Majority-Rule – is the main privacy-preserving dis-
tributed mining algorithm presented in this paper.

4. CONCLUSIONS
Cryptography research offers a wide toolset which can be

used to build provenly secure algorithms. However, the defi-

nitions on which these tools are based are in some cases unfit
for privacy-preserving data mining. The reasons for this are
twofold: either the definitions improperly address common
scenarios (e.g., multiple computations with minute changes
in input), or they overstate the required privacy and by that
enforce algorithms that are too computationally demanding
to be implemented in a realistic setting.

In this paper we present an alternative for one of the
fundamental cryptographic definition – trusted third party
(TTP). Our alternative definition – k-TTP – naturally gen-
eralizes TTP. Hence, it is possible to use cryptographic meth-
ods, leveraging their full power, subject to the new defini-
tion. On the other hand, a k-TTP is far more flexible than
a TTP. Therefore, it is permissive for scalable algorithms
which are suitable for modern distributed systems such as
emerging Data Grids. This is demonstrated by describing a
k-secure distributed association-rule mining algorithm.

Further research will extend our definitions to other areas
of cryptography, and present other private and scalable data
mining algorithms.

5. REFERENCES
[1] R. Agrawal and R. Srikant. Privacy-preserving data

mining. In Proc. of ACM SIGMOD’00, pages 439–450,
Dallas, Texas, USA, May 14-19 2000.

[2] O. Goldreich. Secure multi-party computation, 2002.
http:

//www.wisdom.weizmann.ac.il/∼oded/PS/prot.ps.
[3] O. Goldreich, S. Micali, and A. Wigderson. How to

play any mental game - a completeness theorem for
protocols with honest majority. In Proc. of STOC‘87,
pages 218–229, 1987.

[4] M. Kantarcioglu and C. Clifton. Privacy-preserving
distributed mining of association rules on horizontally
partitioned data. In Proc. of DMKD’02, June 2002.

[5] Y. Lindell. Lower bounds for concurrent self
composition. In Proc. of TCC’04, Cambridge,
Massachusetts, USA, February 2004.

[6] Y. Lindell and B. Pinkas. Privacy preserving data
mining. Proc. of Crypto’00, LNCS, 1880:20–24,
August 2000.

[7] H. Lipmaa. Survey of Secure Multiparty
Computations Sources.
http://www.tcs.hut.fi/∼helger/crypto/link/mpc/.

[8] R. Srikant and R. Agrawal. Fast algorithms for mining
association rules. In Proc. of VLDB’94, pages
487–499, Santiago, Chile, September 1994.

[9] L. Sweeney. k-anonymity: A model for protecting
privacy. Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[10] J. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned data.
In Proc. of ACM SIGKDD‘02, Edmonton, Alberta,
Canada, July 2002.

[11] J. Vaidya and C. Clifton. Leveraging the “Multi” in
Secure Multi-Party Computation. In Workshop on
Privacy in the Electronic Society, Washington, DC,
October 2003.

[12] R. Wolff and A. Schuster. Association rule mining in
peer-to-peer systems. In Proc. ICDM‘03, November
2003.

