
SIAM REVIEW c© 2005 Society for Industrial and Applied Mathematics
Vol. 47, No. 2, pp. 301–314

k Workers in a Circular
Warehouse: A RandomWalk on
a Circle, without Passing∗

Joseph D. Skufca†

Abstract. We consider the problem of stochastic flow of multiple particles traveling on a closed loop,
with a constraint that particles move without passing. We use a Markov chain description
that reduces the problem to a generalized random walk on a hyperplane (with boundaries).
By expressing positions via a moving reference frame, the geometry of the no-passing
criteria is greatly simplified, with the resultant condition expressible as the coordinate
system planes which bound the first orthant. To determine state transition probabilities,
we decompose transitions into independent events and construct a digraph representation
in which calculating transition probability is reduced to a shortest path determination
on the digraph. The resultant decomposition digraph is self-converse, and we exploit
that property to establish the necessary symmetries to find the stationary density for the
process.
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1. Introduction. In dense traffic flow, the speed of individual vehicles is con-
strained because the cars are unable to pass one another. In protein-controlled dif-
fusion through a membrane, the narrow passage forces the transported molecules to
move single-file. A similar phenomenon develops in the motion of people along multi-
ple serving stations, such as occurs in a buffet line. Motivated by the natural problems
that develop when physical objects try to move independently along the same path,
we consider a stochastic flow of particles on a closed loop, with the constraint that
one particle may not pass another. We limit this paper to the specific problem in
which motion occurs over discrete units of time and the particles are limited to mov-
ing in some integer number of steps. We expect that our approach may have some
applicability to models of microscopic transport, cellular automata models of traffic
flow, and some queuing theory problems, as well as providing some general insight
into diffusive flows in constrained channels.

Problem Statement. Consider a warehouse with parts stored in n locations
(parts bins) arranged in a closed path. k workers move around the warehouse in a
continuous loop, filling an order on each trip through the warehouse. In real life, a
worker would collect items from those bins which contain the parts required to fill
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an order. We make a simplifying assumption and model this selection process as a
Bernoulli trial, with probability s that the worker will select a part from any given
bin. All the workers move in the same direction as they fill their orders, but without
passing each other. (Perhaps they are all driving forklifts, and there is no room to
pass; or maybe the workers are actually robotic carts moving on a common track.)
To define “time,” we assume that during one time step, each worker moves around
the closed loop until one of two conditions is met:

1. The worker has a Bernoulli success at some bin and stops to collect a part.
Or

2. since we assume the workers are not allowed to pass one another, it may
happen that one worker has stopped to gather a part, but the trailing worker
may have no Bernoulli successes before reaching the bin directly behind the
worker who is gathering a part. We call this condition a blockage. The trailing
worker is required to wait in that adjacent bin for the entire time step and
collects no part.

Blockages, therefore, represent reduced output from a worker. Our goal is to evaluate
the efficiency of our warehouse by determining the expected value of the fraction of
the time steps that an individual worker is blocked.

We apply the theory of Markov chains to this problem, which leads to a descrip-
tion of the process as a (k − 1)-dimensional generalized random walk on a compact
lattice. We develop the state space description in a moving reference frame, where the
constraint of single file motion can be simplified to a boundary condition expressible
as a coordinate plane. To determine transition probabilities, we develop an associ-
ated digraph that allows us to decompose transitions in a way that relates transition
probabilities to shortest paths between vertices of that digraph. We then exploit the
self-converse structure of that digraph to establish a stationary density on the state
space. The paper is organized as follows: in section 2, we define and enumerate the
states; in section 3, we develop an expression for the transition probabilities; in sec-
tion 4, we establish a stationary distribution for the general problem; and in section 5,
we answer the specific efficiency question of the problem statement.

2. Labeling and Counting States. Markov chain theory requires that the prob-
abilities of future states of the system depend only upon the current state of the
system, so the initial step in applying these techniques is to identify a state space
description that satisfies this requirement. Since all the bins have the same probability
for selection, a blockage event does not depend upon the specific bin location of
the worker, but rather it is the distance from one worker to the next that is of
critical importance. Therefore, we focus on these distances to provide a state space
description. Let

d = w − z (mod n)

be the distance from a worker at bin z forward to a worker at bin w (in the direction
of motion of the workers). We specify that two different workers may not occupy the
same bin, so d ≥ 1. We let X = (x1, . . . , xk), X ∈ Rk, with xi the distance from
worker i forward to worker i+1 (mod k), and we say that vector X defines a physical
configuration of the system (or simply configuration). This vector description can be
viewed as using a moving reference frame (moving with the workers), which replaces
the fixed frame of the bin numbers. Each configuration is actually an equivalence class
of bin locations for the workers. Figure 1 provides a visual example of this method of
configuration identification.
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Fig. 1 A warehouse of n = 16 bins. The positions of the k = 4 workers are shown in circles. Note
that x1 + x2 + x3 + x4 = 3 + 6 + 2 + 5 = 16 = n. The bin locations of the four workers
in the fixed frame, (2, 5, 11, 13), constitute a member of the equivalence class denoted by
configuration (3, 6, 2, 5).
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Fig. 2 With k = 2 and n = 8, we see two possible transitions from the state (4, 4). The Bernoulli
trial results are indicated with F for failure and S for success. Both transitions end in the
same physical configuration. However, in the second case, worker 1 does not have a Bernoulli
success before he is forced to stop because he cannot occupy the same bin as worker 2. In
this second case, worker 1 would not collect a part.

Since the workers are restricted to a warehouse of n bins, we have
∑k
i=1 xi = n.

Counting configurations is simply a way of approaching the problem, How many ways
can you arrange k positive integers that sum to n? This well-known problem, generally
covered in a first course in combinatorics, yields the formula

C(k, n) =
(
n− 1
k − 1

)
(1)

possible configurations. To extend the set of configurations to describe all the states of
the system, we must consider blockages. In a blocked situation, the blocked worker is
physically a distance d = 1 from the worker ahead. The physical configuration is the
same in both cases. The difference, however, is that at the bin where he is stopped,
the blocked worker had a Bernoulli failure instead of a Bernoulli success (and therefore
does not collect a part on that time step). To distinguish this condition, we use the
symbol 1∗ to represent that blocked condition. Figure 2 illustrates this difference.

By defining |1∗| := 1, we can formally represent states as vectors:

X = (x1, . . . , xk), xi ∈ {1∗, 1, 2, . . . , n− k + 1},
k∑
i=1

|xi| = n.(2)

Geometrically, the blockage condition forms a boundary on the configuration space,
where these boundaries can be treated as hyperplanes that are parallel to each of
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the coordinate planes.1 The simplicity of this boundary expression results from our
having shifted to the moving coordinate system. In a fixed reference (with states
described by bin locations), the geometry of the blockage state becomes significantly
more complex as k increases [2].

We enumerate the blocked states as follows: Suppose we want to count the number
of states with b blockages. An arbitrary state can be considered an ordered list of
k elements, and we seek to count the number of valid ways to fill those k elements.
Forming such a sequence can be broken down into two steps: first, place a 1∗ for each
worker that is blocked; then, fill the other elements with positive integers to satisfy
the summation constraint of (2). There are

(
k
b

)
ways to insert the 1∗’s into the stream.

The other k − b elements must be filled with positive integers that sum to n− b. We
use (1) with new arguments (k− b) and (n− b) to count the possibilities for the other
integers, which come to

(
n−b−1
k−b−1

)
. Applying the multiplicative rule of counting, we

find that N, the number of states with b blockages, is given by

N(b, k, n) =
(
k

b

)(
n− b− 1
k − b− 1

)
.(3)

Example. Let k = 5 and n = 16. An arbitrary state is (�,�,�,�,�). Suppose
b = 2. We must place two 1∗’s into five possible slots; there are

(5
2

)
ways to do so,

and (�,�, 1∗,�, 1∗) would be a specific choice. We now must fill the other three
positions with positive integers which sum to 14, and there are

(13
2

)
ways to do so.

Then N(2, 5, 16) =
(5

2

)(13
2

)
= 780.

To count the entire state space, we simply sum over all possible values for b. (We
note that the maximum number of blockages is b = k − 1, since one worker must be
stopped in order to block the other workers.) The total number of states would be
given by

M(k, n) =
k−1∑
b=0

N(b, k, n) =
k−1∑
b=0

(
k

b

)(
n− b− 1
k − b− 1

)
.(4)

3. Transition Probabilities. Given the state description of section 2, we number
those states from 1 to M. To establish the Markov property, we must identify the
transition probabilities

pij = P [System in state Xj at time τ + 1| System in state Xi at time τ ] .(5)

(For our general problem, there is no obvious scheme for a preferred numbering of
the states. Therefore, we develop transition probabilities as pXY , the probability of
transitioning from state X to state Y, and identify pij ≡ pXiXj .) First, we will consider
only the transitions between unblocked states, and then we extend that formulation
to describe transitions from and to the blocked states.

3.1. Transition Probabilities for Unblocked States. Recall that s is the proba-
bility of Bernoulli success, and let q = 1−s.We decompose a transition from unblocked

1Alternatively, we could have used 0 instead of 1∗ to represent a blockage, which makes it easier
to interpret the blockage states as the coordinate hyperplanes xj = 0 forming the boundary of the
physical configurations which lie strictly in the first orthant. We find the |1 ∗ | = 1 symbology more
useful in providing an algebraic and physical description of the state.
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state X to unblocked state Y into a sequence of independent events:

Event:

Each worker has Q
Bernoulli failures be-
fore one of the work-
ers has a success.︸ ︷︷ ︸

All workers
have one
success.︸ ︷︷ ︸

After one worker has stopped,
the other workers have addi-
tional failures to move the sys-
tem from configuration X to
configuration Y.︸ ︷︷ ︸

Probability: qkQ sk f(X,Y )

We compute the transition probability by taking the product of the independent
events and summing over all Q to give

pXY =
∞∑
Q=0

qkQskf(X,Y ) = sk
1

1− qk f(X,Y ),(6)

where f(X,Y ) remains to be specified. We call f(X,Y ) the arrangement probability
and note that it is a conditional probability (conditioned upon one of the workers
having stopped). Our visualization is that all workers simultaneously move to an
adjacent bin and conduct a trial. If all workers had failures, they would all index by
one bin and repeat. Until the first success, the physical configuration does not change.
However, when one of the workers has a success, that worker stops, and the other
workers keep moving. The change in configuration is the result of workers moving,
i.e., Bernoulli failures. Therefore, f(X,Y ) = ql, where l is the total number of bins
that the workers must pass to take the system from configuration X to configuration
Y, given that one of the workers passes 0 bins. We use a geometric and graph-theoretic
approach to resolve the problem of counting these Bernoulli failures.

Background Geometry to Address Arrangement Probability. Let X be an
unblocked state: a k-tuple of positive integers which sum to n. Then X lies on the
hyperplane in Rk given by

∑k
i=1 xi = n, with orthogonal vector u = (1, . . . , 1) ∈ Rk.

Specifically, X is a lattice point in the first orthant that lies on that hyperplane.
Define vector V r = (v1, . . . , vk) by

vi =

{
n− k + 1, i = r,

1, i 	= r.
(7)

Geometrically, each V r specifies a vertex of the polytope containing all the config-
urations. Figure 3 illustrates this geometry for the case k = 3, n = 7: Figure 3(a)
shows how the hyperplane and lattice points are situated in R3, and Figure 3(b)
shows the view from a position orthogonal to the plane, illustrating the structure on
the (k − 1 = 2)-dimensional subspace. Vertices V i are labeled on both figures.

We define Ω to be the convex hull of {V r : r = 1, . . . , k}. For X,Y ∈ Ω, we define
∆XY = (d1, . . . , dk) := Y −X. Since

∑
xi =

∑
yi = n, a necessary condition for ∆ is

k∑
i=1

di = 0.(8)

Geometrically, each ∆XY is a lattice point on the hyperplane orthogonal to vector
u = (1, . . . , 1) that passes through the origin. We call this hyperplane P. We seek
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Fig. 3 Visualization of states for k = 3, n = 7.

to describe f(X,Y ) in terms of some function g(∆XY ), with g(·) independent of X
and Y. The justification for this approach is that if no blockages occur, the workers
are not affected by each other. The rearrangement probability can be completely
characterized by the change in spacing between workers, independent of the initial
and final configurations. If such a function g exists, then the process can be treated
as a generalized random walk on Rk−1 (the hyperplane dimension). The physical
configurations simply characterize which ∆ vectors are feasible, because we require
X + ∆ = Y ∈ Ω. Since X, Y , and Ω are contained within a bounded set, our
description becomes a random walk with boundary.

Canonical Representation of∆. Suppose X describes a configuration. If worker
i + 1 has a Bernoulli failure and moves one bin, then the distance from the worker
behind has increased by 1, while the distance to the worker ahead has decreased by
1. The new configuration X̃ would be given by


x̃i = xi + 1,
x̃i+1 = xi+1 − 1,
x̃j = xj , j /∈ {i, i+ 1}.

Motivated by this effect of a single Bernoulli failure, we define vectors δi = (δi1, . . . , δik),
where

δij =




1, j = i,
−1, j = i+ 1 (mod n),
0, otherwise.

(Example: δ3 = (0, 0, 1,−1, 0, . . . , 0).) We note that {δi}ki=1 ⊂ P and span({δi}ki=1) =
P. These spanning vectors have a natural representation as edges in a digraph which
connect the configurations that result from a single Bernoulli failure. We call this
representation the rearrangement digraph. Figure 4 shows the rearrangement digraph
for k = 3, n = 7.

Any point ∆ ∈ P is a linear combination of the δi’s, so there exists vector α with
integer components such that

∆ =
k∑
i=1

αiδi.(9)
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Fig. 4 A digraph representation of rearrangements for k = 3 and n = 7 using δ vectors. Each edge
represents the effect of a single Bernoulli failure by one worker.

Since P is (k − 1)-dimensional, the representation is not unique. However, we want
that decomposition to satisfy some additional constraints: As previously stated, re-
arrangement probability is conditioned upon one of the workers having no failures.
Therefore, αj = 0 for some j ∈ {1, . . . , k}. There are at most k representations that
satisfy this requirement. We also need the representation to be a path in the rear-
rangement digraph, which implies αi ≥ 0 for all i. The following paragraphs describe
the algorithm that identifies this canonical representation.

ConstructionofCanonical Representation. Define matrixAk×k = [ δ1, . . . , δk] ,
where the δi’s form columns of A. Solutions to (9) are equivalent to solutions of
Aα = ∆. We note that rank A = k − 1, so A is singular. It is easy to verify that
the eigenvector for eigenvalue λ = 0 is u = (1, . . . , 1). The one-parameter family of
solutions to (9) is given by

α = α0 + tu,(10)

where α0 is any solution to (9) and t is an integer.
The geometric interpretation of α is that each α describes a path associated with

the displacement ∆, and each αi describes how many steps we take in the δi direction
when traversing that path. Since we want the decomposition to represent a valid
rearrangement of the workers, we seek vector β such that


Aβ = ∆,
βi ≥ 0 ∀i ∈ {1, . . . , k}, and
βj = 0 for at least one j ∈ {1, . . . , k}.

(11)

To construct this vector β, we proceed as follows: Define γ := (γ1, . . . , γk), where

γj =
j∑
i=1

di.(12)

From (8) , we see that γk = 0, simplifying the computation which verifies that

Aγ =




γ1 − γk
−γ1 + γ2

...
−γj−1 + γj

...


 =




d1 + 0
−d1 + (d1 + d2)

...
−
∑j−1
i=1 di +

∑j
i=1 di

...


 =




d1
d2
...
dj
...


 = ∆.(13)
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In general, γ will not satisfy the second and third elements of (11). To find the
desired solution, we define γmin = mini γi and assign βi = γi − γmin. Clearly, all of
the components of β are nonnegative, with βj = 0 if γ achieves its minimum at j. In
vector form, β = γ − γminu. Since Aγ = ∆, we use (10) to see that β must be the
solution to (11).

Example. Let k = 5 and n = 12. Suppose X = (2, 1, 4, 4, 1) and Y = (3, 1, 2, 2, 4).
Then ∆ = Y −X = (1, 0,−2,−2, 3). We first find a solution to Aγ = ∆ by using (12)
to find γ = (1, 1,−1,−3, 0). Since γmin = −3, we find β = (4, 4, 2, 0, 3).

βi gives the number of Bernoulli failures required of worker i + 1 to achieve the
rearrangement specified by ∆, and ‖β‖ =

∑
βi gives the total number of failures to

achieve rearrangement.2 Since any other rearrangement α = β + tu that describes ∆
would result in either negative components of α (for t < 0) or all components positive
(for t > 0), both of which would fail to satisfy (11), the representation is unique.
Additionally, any other path representation would require t > 0 and ‖α‖ > ‖β‖.
Therefore, ‖β‖ describes the shortest path length. We define φ(∆) = ‖β‖, where
β is the unique vector satisfying (11). We can now state that the rearrangement
probability is given by

f(X,Y ) = g(∆XY ) = q[φ(∆XY )].

To simplify notation, we let lij = φ(∆XiXj ). Then

pij = sk
1

1− qk q
lij(14)

gives the transition probability from an unblocked state to an unblocked state.

3.2. Transition Probabilities for Blocked States. Transition probabilities from
blocked states are trivial: since the system does not care about past Bernoulli trials,
transition probabilities depend only upon the initial configuration, not whether that
configuration was the result of a blockage. So if we define a subtraction operation of
1∗ by m−1∗ := m−1, and calculate ∆ using that arithmetic, transition probabilities
from blocked states are the same as the transition probability from the unblocked
state of the same physical configuration.

To determine transition probabilities to blocked states, we note the following:
when worker j is blocked, his final action is the result of a Bernoulli failure, with no
Bernoulli success. So if we compare the two transitions from some state Y,

T1 : Y → (x1, . . . , xj−1, 1, xj+1, . . . , xk),
T2 : Y → (x1, . . . , xj−1, 1∗, xj+1, . . . , xk),

(15)

we can express one transition probability in terms of the other. Specifically,

P [T2] = P [T1] · q
s
,(16)

indicating that regardless of the specific collection of motions of the workers, transition
T2 requires one fewer success and one additional failure when compared to the T1
transition. We apply (16) recursively to (14) (once for each blockage) to yield

pij = rbj
sk

1− qk q
lij ,(17)

2In this paper, the only vector norm used is the 1-norm. For ease of notation, we drop the
subscript notation for vector norms.
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where r = q/s and bj is the number of blockages in state Xj . This formula reduces to
(14) when bj = 0, and therefore it applies to all transitions.

4. Stationary Distribution. A direct approach for finding stationary distribu-
tions is to develop a state transition matrix, P = [pij ] . Then the unit left eigenvector
of P associated with eigenvalue λ = 1 gives a stationary distribution of the states [3].
However, finding such eigenvectors for a general problem is difficult unless P is very
well structured. Although we have a formula for pij , we can find no “good” order-
ing of the states, where we interpret “good” as giving enough structure to the state
transition matrix to directly determine the eigenvector for the general problem of k
workers and n bins.

Often, finding general solutions requires some insight (in other words, a good
guess). Some of the observations that lead to a “good guess” for this problem are
the following: (1) since the probabilities are the same for each worker, we expect
significant symmetry in the problem; (2) the ∆ vector description of transitions yields
a random walk, and we see no reason for the random walk to prefer any particular
unblocked state; and (3) blocked states are closely related to the associated physical
configuration, acting like boundaries on the state space, and that relationship is gov-
erned by the ratio r = q/s and the number of blockages. So motivated, we postulate
an initial distribution and show that it is stationary.

Postulated Density and Outline of Proof of Stationarity. Let {Xi}Mi=1 be the
collection of all the states and bi the number of blockages in state Xi. Define

ωi = rbi .(18)

We will treat these as weighting values for the density in each state and let

ν =
1
‖ω‖ω(19)

be the initial distribution of states. We want to show that ν is stationary or, equiva-
lently, that νj =

∑M
i=1 νipij for all j. One way to describe this balance is to say that

at each time step, the density that transitions from state Xj to all states is exactly
equal to the sum of all the densities that transition into Xj . To establish the required
balance, we will prove the following logical argument:

1. Regardless of the density at time τ, at time τ + 1, the density of a state X
with b blockages is rb times the weight of the unblocked state which has the
same physical configuration as X.

2. Each unblocked state can be placed in a one-to-one correspondence with
another unblocked state (which we call the co-state), which has the property
that when the density is ν, the density that transitions into the state is the
same as transitions from the co-state. Since ν assigns the same density to
all unblocked states, the implication is that ν is stationary on the unblocked
states.

3. Since the densities of the blocked states are completely determined by item
1 (which is satisfied by ν), stationarity of the unblocked states immediately
implies stationarity of the blocked states.

The first element of the proof is straightforward.
Lemma 1 (item (1)). Let W b be a state with b blockages and let W be the state

with the same physical arrangement as W b, but with no blockages. If the total density
that is transitioned into state W is α, then the total density that transitions into state
W b will be rbα.
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Proof. From repeated application of (16), we know that for every state X,

pXW b = rbpXW .(20)

Suppose the density of state Xi at time τ is ξi. Let

α =
∑
i

ξipXiW

be the total density transitioning into W. Then the density transitioning into W b is∑
i

ξipXiW b =
∑
i

ξir
bpXiW = rbα.(21)

Item 3 of the proof follows directly from items 1 and 2, so the crux of the argument
is rigorously proving that the unblocked states are stationary. Although an algebraic
argument can be shown, it is essentially a tedious symbolic manipulation that fails
to reveal the underlying structure. Instead, we will develop a proof that exploits
(and illuminates) the symmetry that is visible in the graph-theoretic description (the
rearrangement digraph) previously introduced.

Motivating, Defining, and Analyzing Co-states. We want to show that νj(τ +
1) = νj(τ)—that the density of state j is the same at time τ + 1 as at time τ. Direct
computation is intractable. Instead, we show that for each Xj , we can match it with
another indexed state, Xj∗ , such that νj(τ + 1) = νj∗(τ). By assumption on ν, we
know that if both states are unblocked, then νj(τ) = νj∗(τ), and we achieve our goal
(for unblocked states). An alternate description is that we seek to find a state Xj∗ so
that the density that the transitions out of state Xj∗ is the same as that transitioning
into state Xj . Algebraically, we want

M∑
i=1

νj∗pj∗i =
M∑
i=1

νipij .(22)

We first consider a slightly different constraint from (22). Suppose we seek j∗

such that
C∑
i=1

νj∗pj∗i =
C∑
i=1

νipij ,(23)

where the summation is over only unblocked states. Since νi = νj for all unblocked
states, we can use (14) to simplify to

C∑
i=1

q

[
φ(∆Xj∗Xi )

]
=

C∑
i=1

q[φ(∆XiXj
)].(24)

Since q is arbitrary, (24) requires the equality of two polynomial expressions in q, which
implies that both the left and right sides must have the same collection of exponents.
In the digraph representation, each exponent (φ(∆)) is determined from the shortest
path length between vertices. So (24) will hold if the collection of paths going into Xj

is the same as the collection going out of Xj∗ . When such a relationship holds, we call
Xj∗ the co-state of Xj . Figure 5 illustrates such a pairing for our example problem,
where Xj = (2, 1, 4), with co-state (4, 1, 2).

Having now restated the issue as a graph question, we introduce the following
definitions from graph theory [1]:
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into
(2,1,4) from

(4,1,2)

Fig. 5 Using k = 3 and n = 7, rearrangements into state (2, 1, 4) and from its co-state (4, 1, 2) are
decomposed by δ vectors, to illustrate an equivalent set of path lengths.

• A digraph D1 is isomorphic to digraph D2 if there is a one-to-one mapping Φ
from the vertex set of D1 to the vertex set of D2 such that (u, v) is an edge
of D1 if and only if (Φu,Φv) is an edge of D2.

• The converse of graph D (written
←→
D ) is the digraph with the same vertex

set as D, such that (u, v) is an edge of D if and only if (v, u) is an edge of
←→
D . (The converse is formed by reversing the direction of each edge.)

• A digraph D is self-converse if
←→
D is isomorphic to D.

Lemma 2. Let G be the digraph formed by taking physical configurations (un-
blocked states) as vertices and edges defined by the rearrangement resulting from a
single Bernoulli failure δi. Then G is self-converse.

To prove the lemma, we demonstrate the self-converse structure by providing the
necessary isomorphism.

Proof. For vertex X = (x1, . . . , xk), define map Φ (and notation (·)∗) by

X∗ := Φ(X) ≡ (xk, . . . , x1).(25)

Φ is clearly a one-to-one mapping of the vertices of G onto itself. Assume (X,Y ) is
an edge of G (and, by definition, (Y,X) is an edge in

←→
G ). Then X + δi = Y for

some i. Since vector addition in Rk is defined componentwise, reversing the order of
components (by applying Φ) does not alter the quality, so we have

X∗ + δ∗i = Y ∗.(26)

By referring to the definition of δi, one easily sees that δ∗i = −δk−i. (Example: If
k = 6, then δ2 = (0, 1,−1, 0, 0, 0) and δ∗2 = (0, 0, 0,−1, 1, 0) = −δ4.) Substituting into
(26) and rearranging, we have

Y ∗ + δk−i = X∗,

which implies that there is an edge in G from Y ∗ to X∗. So (Y,X) being an edge of
←→
G implies that (ΦY,ΦX) is an edge of G. Since each step above is reversible, Φ is
the necessary isomorphism between G and

←→
G .

Figure 6 illustrates the self-converse property of our example case.
We remark that the k-fold symmetry of the graphs leads to k different isomor-

phisms that prove the self-converse property. However, we will consider (25) as defin-
ing co-states. The graphical structure from X∗ exactly matches the structure into X,
which ensures that (24) is satisfied and establishes the balance among the unblocked
states. Moreover, the self-converse structure tells us that for any two unblocked states
X and Y,

pXY = pY ∗X∗ .
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G G GG

Fig. 6 Using k = 3 and n = 7, the first graph is G and the second is its converse, formed by reversing
the direction of all the edges. The third graph is simply a redrawing of the converse by
reflecting the image over the hashed line. The reflection preserves the direction of adjacency
between vertices, so the graph is preserved. The new redrawing more clearly shows that G is
self-converse.

However to prove that the unblocked states are stationary, we must demonstrate an
additional balance between the density transitioning into Xj from blocked states with
the density transitioning from X∗j to blocked states.

Let W b be a state with b blockages and W the unblocked state with the same
physical configuration as W b. We recall that transition probabilities from W b are
the same as the transition probabilities from W (because the system does not have
“memory” of how it got to some configuration). If the current density is ν, then the
density of W b is rb/‖ω‖ (by the definition of ν). The density that transitions from
blocked state W b to any unblocked state X is

pWX
rb

‖ω‖ .(27)

This is exactly the same as the density which transitions from X∗ to Φ(W b), computed
as follows: the density of X∗ is 1/‖ω‖, so the density transition from X∗ to W ∗ is

1
‖ω‖pX∗W∗ . We apply (20) b times to find that the density transitioned is

1
‖ω‖r

bpX∗W∗ =
rb

‖ω‖pWX .(28)

This additional balance of transitioning density allows us to conclude that under
assumed density ν, the unblocked state density is stationary. To complete the proof,
we invoke Lemma 1 to claim that the blocked states are stationary as well. Addi-
tionally, since pij > 0 for all transition probabilities, it is known that the stationary
density is unique [3].

5. Calculating the Expected Value for Blockages. Finding the stationary den-
sity for a Markov process enables us to answer myriad questions regarding the asymp-
totic behavior of the system. In particular, we are now ready to tackle the question
of the original problem statement. Specifically, we seek to develop a formula for
B(k, n, r) = the expected value of the fraction of the time steps for which a given
worker is blocked. Since the problem is symmetric in each worker, without loss of
generality, we analyze worker 1. νi gives the expected value of the fraction of the time
spent in state i, so

B(k, n, r) =
∑
i∈A

νi,(29)
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where A is the index of all the states when worker 1 is blocked. We note that

νi =
ωi
‖ω‖ =

rbi

‖ω‖ ,(30)

where bi is the number of blockages in state Xi. We first calculate ‖ω‖ by applying
(3):

‖ω‖ =
k−1∑
b=0

N(b, k, n)rb =
k−1∑
b=0

(
k

b

)(
n− b− 1
k − b− 1

)
rb.(31)

We now consider the set A: When worker 1 is blocked, the state is given by

X = (1∗, x2, . . . , xk).(32)

So we may formally define

A =

{
j

∣∣∣∣∣Xj = (1∗, x2, . . . , kk),
k∑
i=2

|xi| = n− 1

}
.(33)

We note that for any state Xi, i ∈ A, the total number of blockages is exactly one
more than the number of blockages in the second through kth components. We can
use our previously determined counting formulas, but with these updated arguments,
computing N(b, k − 1, n− 1), where b may range from 0 to k − 2. We then find that
the frequency of blockage of worker 1 is given by

B(k, n, r) =
∑
i∈A

νi =
∑
i∈A

rbi

‖ω‖ =

k−2∑
b=0

(
k−1
b

)(
n−b−2
k−b−2

)
rb+1

k−1∑
b=0

(
k
b

)(
n−b−1
k−b−1

)
rb

.(34)

(Note: The exponent rb+1 accounts for the formulation of one 1∗ in the first component
and b 1∗’s among components x2, . . . , xk.)

6. Conclusion. In this paper, we considered the problem of single-file motion of
multiple agents on a closed path. By using a moving reference frame of distance be-
tween workers (instead of actual bin location), we were able to simplify the geometry
of the constraint. In the (k − 1)-dimensional state space, the system reduces to a
random walk with the coordinate planes as boundaries. Distinct from the usual state
transition graph, we proposed a decomposition digraph for transitions that allowed
calculation of transition probabilities. The self-converse structure of that digraph al-
lowed us to identify the stationary density of the process. We expect that the geomet-
ric approach may simplify similar boundary descriptions of other single-file diffusion
problems. Additionally, we suspect that similar symmetries may be exploitable by
decomposition of these processes into fundamental motion digraphs.

The original motivation for this problem was an actual operations analysis ques-
tion involving zoning arrangements to achieve maximum worker efficiency in ware-
housing systems. Our simplified expression of that problem (as stated in this paper)
implies that workers may move arbitrarily far around the warehouse in one time step
before achieving a Bernoulli success. We call this situation the “infinite travel speed”
problem. As a more realistic model, one would consider an additional constraint that
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a worker could have at most f failures during a time step, since there must be some
maximum speed of travel in a real system. The closed form description of the resultant
stationary density remains an open problem.
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