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ABSTRACT 

Though adjustable autonomy is hardly a new topic in agent 
systems, there has been a general lack of consensus on 
terminology and basic concepts. In this paper, we describe the 
multi-dimensional nature of adjustable autonomy and give 
examples of how various dimensions might be adjusted in order 
to enhance performance of human-agent teams. We then 
introduce Kaa (KAoS adjustable autonomy), which extends our 
previous work on KAoS policy and domain services to provide a 
policy-based capability for adjustable autonomy based on this 
richer notion of adjustable autonomy. The current implementation 
of Kaa uses a combination of ontologies represented in OWL and 
influence-diagram-based decision-theoretic algorithms to 
determine what if any changes should be made in agent autonomy 
in a given context. We have demonstrated Kaa as part of ONR-
sponsored research to improve naval de-mining operations 
through more effective human-robot interaction. A brief 
comparison among alternate approaches to adjustable autonomy 
is provided. 

Categories and Subject Descriptors 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– intelligent agents, multiagent systems. 

General Terms 

Performance, Reliability, Human Factors 

Keywords 
Adjustable Autonomy, Policy, Trust, Human-agent Teamwork, 
KAoS, Kaa, OWL 

1. Introduction 
As computational systems with increasing autonomy interact with 
humans in more complex ways—and with the welfare of the 
humans sometimes dependent on the conduct of the agents—
there is a natural concern that the agents act in predictable ways 

so that they will be acceptable to people [3]. In addition to 
traditional concerns for safety and robustness in such systems, 
there are important social aspects relating to predictability, 
feedback, order, and naturalness of the interaction that must be 
attended to [14]. 

Policies are a means to dynamically regulate the behavior of a 
system without changing code or requiring the cooperation of the 
components being governed. They can be used to address the 
three aspects of trust: 

• Through policy, people can precisely express bounds on 
autonomous behavior in a way that is consistent with their 
appraisal of an agent’s competence in a given context. 

• Because policy enforcement is handled externally to the 
agent, malicious and buggy agents can no more exempt 
themselves from the constraints of policy than benevolent 
and well-written ones can. 

• The ability to change policies dynamically means that poorly 
performing agents can be immediately brought into 
compliance with corrective measures. 

Other benefits of policy-based approaches include reusability, 
efficiency, extensibility, context-sensitivity, verifiability, support 
for both simple and sophisticated components, and reasoning 
about component behavior [3]. 

Researchers have developed platform-independent policy services 
such as KAoS that enable people to define policies ensuring 
adequate predictability and controllability of both agents and 
traditional distributed systems [6; 22]. KAoS has been used in 
several military and space applications requiring security, 
robustness, and fault tolerance. A policy-based approach has also 
been applied to a generic human-agent teamwork model to assure 
natural and effective interaction in mixed teams of people and 
robots [2]. In each of these applications, humans have been able 
to dynamically adjust policies in order to adapt the system to 
changing situations. However, KAoS lacked a capability for 
automatically adjustable autonomy, i.e., a means to enable 
policies to be adjusted without requiring a human in the loop. 

Though adjustable autonomy is hardly a new topic in agent 
systems, here has been a general lack of consensus on 
terminology and basic concepts. Moreover, current approaches 
have been based on simplistic assumptions about the nature of 
human-automation interaction that are generally not informed by 
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the lessons learned from decades of research in human factors 
and the behavioral and social sciences [14]. 

In subsequent sections, we describe the multi-dimensional nature 
of adjustable autonomy as we construe it and give examples of 
how various dimensions might be adjusted in order to enhance 
performance of human-agent teams. We then introduce Kaa, the 
KAoS adjustable autonomy component. Finally, we provide a 
brief comparison of alternate extant approaches to adjustable 
autonomy, and offer some concluding remarks. 

2. Dimensions of Autonomy 
The word “autonomy,” which is straightforwardly derived from a 
combination of Greek terms signifying self-government (auto- 
(self) + nomos (law)) has two basic senses in everyday usage. In 
the first sense, we use the term to denote self-sufficiency, the 
capability of an entity to take care of itself. This sense is present 
in the French term autonome when, for example, it is applied to 
someone who is successfully living away from home for the first 
time. The second sense refers to the quality of self-directedness, 
or freedom from outside control, as we might say of a portion of a 
country that has been identified as an “autonomous region.” 

Some important dimensions relating to autonomy can be 
straightforwardly characterized by reference to figure 1. Note that 
the figure does not show every possible configuration of the 
dimensions, but rather exemplifies a particular set of relations 
holding for the actions of a particular set of agents in a given 
situation. There are two basic dimensions: 

• a descriptive dimension corresponding to the first sense of 
autonomy (self-sufficiency) that stretches horizontally to 
describe the actions an agent in a given context is capable of 
performing; and 

• a prescriptive dimension corresponding to the second sense 
of autonomy (self-directedness) running vertically to 
describe the actions an agent in a given context is allowed to 

perform or which it must perform by virtue of policy 
constraints in force. 

The outermost rectangle, labeled potential actions, represents the 
set of all actions across all situations defined in the ontologies 
currently in play. Note that there is no requirement that every 
action in the unknowable and potentially chaotic universe of 
actions that a set of agents may take be represented in the 
ontology; only those that are of consequence for adjustable 
autonomy need be included. 

The rectangle labeled possible actions represents the set of 
potential actions whose performance by one or more agents is 
deemed plausible in a given situation [1; 10]. Note that the 
definition of possibilities is strongly related to the concept of 
affordances [12; 17], in that it relates the features of the situation 
to classes of agents capable of exploiting these features in the 
performance of actions. 

Of these possible actions, only certain ones will be deemed 
performable for a given agent in a given situation. Capability, 
i.e., the power that makes an action performable, is a function of 
the abilities (e.g., knowledge, capacities, skills) and conditions 
(e.g., ready-to-hand resources) necessary for an agent to 
successfully undertake some action in a given context. Certain 
actions may be independently performable by either Agent A or 
B; other actions can be independently performed by either one or 
the other uniquely.1 Yet other actions are jointly performable by 
a set of agents. 

Along the prescriptive dimension, declarative policies may 
specify various permissions and obligations [9].2 An agent is free 
to the extent that its actions are not limited by permissions or 
obligations. Authorities may impose or remove involuntary policy 
constraints on the actions of agents. Alternatively, agents may 
voluntarily enter into agreements that mutually bind them to 
some set of policies for the duration of the agreement. The 
effectivity of an individual policy specifies when it is in or out of 
force. 

The set of permitted actions is determined by authorization 
policies that specify which actions an agent or set of agents is 
allowed (positive authorizations or A+ policies) or not allowed 
(negative authorizations or A- policies) to perform in a given 
context. The intersection of what is possible and what is 
permitted delimits the set of available actions. 

Of those actions that are available to a given agent or set of 
agents, some subset may be judged to be independently 
achievable in the current context. Some actions, on the other 
hand, would be judged to be only jointly achievable. 

Finally, the set of obligated actions is determined by obligation 
policies that specify actions that an agent or set of agents is 
required to perform (positive obligations or O+ policies) or for 
which such a requirement is waived (negative obligations or O- 
policies).3 Jointly obligated actions are those that two or more 
agents are explicitly required to perform. 

                                                                    
1 Although we show A and B sharing the same set of possible 

actions, this need not always be the case. Also, note that the 
range of jointly achievable actions has overlap only with Actor 
B and not Actor A in the exemplar diagram. 

2 See also the extensive literature on deontic logic. 
3 A negative obligation corresponds to the idea of “you are not 

obliged to” rather than “you are obliged not to”. 

Fig. 1. Some dimensions of autonomy 
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3. Adjustable Autonomy 
From the perspective of what is written above, adjustable 
autonomy consists of the ability to dynamically impose and 
modify constraints that affect the range of actions that the human-
agent team can successfully perform in, consistently allowing the 
highest degrees of useful autonomy while maintaining an 
acceptable level of trust. We note that is not the case that “more” 
autonomy is always better 4  since an unsophisticated agent 
insufficiently monitored and recklessly endowed with unbounded 
freedom may pose a danger both to others and to itself. 

A primary purpose of adjustable autonomy is thus to maintain the 
system being governed at a sweet spot between convenience (i.e., 
being able to delegate every bit of an agent’s work to the system) 
and comfort (i.e., the desire to not delegate to the system what it 
can’t be trusted to perform adequately). The coupling of 
autonomy with policy mechanisms gives the agent maximum 
freedom for local adaptation to unforeseen problems and 
opportunities while assuring humans that agent behavior will be 
kept within desired bounds. If successful, adjustable autonomy 
mechanisms give the added bonus of assuring that the definition 
of these bounds can be appropriately responsive to unexpected 
circumstances. 

All this, of course, only complicates the agent designer’s task, a 
fact that has lent urgency and impetus to efforts to develop broad 
theories and general-purpose frameworks for adjustable 
autonomy that can be reused across as many agents, domains, and 
applications as possible. Below we present general description of 
how autonomy can be adjusted through policies on each 
dimension. 

Adjusting Permissions. A first case to consider is that of 
adjusting permissions. Reducing permissions may be useful when 
it is concluded, for example, that an agent is habitually attempting 
actions that it is not capable of successfully performing—as when 
a robot continues to rely on a sensor that has been determined to 
be faulty. It may also be desirable to reduce permissions when 
agent deliberation about (or execution of) certain actions might 
incur unacceptable costs or delays. 

If, on the other hand, an agent is known to be capable of 
successfully performing actions that go beyond what it is 
currently permitted to do, its permissions could be increased 
accordingly. For example, a flying robot whose duties had 
previously been confined to patrolling the space station corridors 
for atmospheric anomalies could be given additional permissions 
allowing it to employ its previously idle active barcode sensing 
facilities to take equipment inventories while it is roaming [5]. 

Adjusting Obligations. On the one hand, “underobligated” 
agents can have their obligations increased—up to the limit of 
what is achievable—through additional task assignments. For 
example, in performing joint action with people, they may be 
obliged to report their status frequently or to receive explicit 
permission from a human before proceeding to take some action. 
On the other hand, an agent should not be required to perform any 
action that outstrips its permissions, capabilities, or possibilities. 
An “overcommitted” agent can sometimes have its autonomy 
adjusted to manageable levels through reducing its current set of 
                                                                    
4 In fact, the multidimensional nature of autonomy argues against 

even the effort of mapping the concept of “more” and “less” to 
a single continuum. See [4] for an overview of a broad theory 
of adjustable autonomy and its multi-dimensional nature. 

obligations. This can be done through delegation, facilitation, or 
renegotiation of obligation deadlines. In some circumstances, the 
agent may need to renege on its obligations in order to 
accomplish higher priority tasks. 

Adjusting Possibilities. A highly capable agent may sometimes 
be performing below its capabilities because of constraints 
inherent in the current situation. For example, a physical 
limitation on network bandwidth available through the nearest 
wireless access point may restrict an agent from communicating 
at the rate it is permitted and capable of doing. 

In some circumstances, it may be possible to adjust autonomy by 
increasing the set of possibilities available to an agent. For 
example, a mobile agent may be able to make what were 
previously impossible faster communication rates possible by 
moving to a new host in a different location. 

Sometimes reducing the set of possible actions provides a 
powerful means of enforcing restrictions on an agent’s actions. 
For example, an agent that “misbehaved” on the network could be 
sanctioned and constrained from some possibilities for action by 
moving it to a host with restricted network access. In both cases, 
autonomy is adjusted not by directly manipulating the resources 
themselves, but rather by placing the agent in a situation 
affording increased possibilities. 

Adjusting Capabilities. The capabilities of an agent affect the 
range of its performable actions. In this sense, the autonomy of an 
agent can be augmented either by increasing its own independent 
capabilities or by extending its joint capabilities through access to 
other agents to which tasks may be delegated or shared. An 
agent’s capabilities can also be affected by changing current 
conditions (e.g., externally adding or reducing needed resources, 
or perhaps reallocating one’s internal resources and efforts). 

An adjustable autonomy service aimed at increasing an agent’s 
capabilities could assist in discovering agents with which an 
action that could not be independently achieved could be jointly 
achieved. Or if the agent was hitting the ceiling on some 
computational resource (e.g., bandwidth, memory), resource 
access policies could be adjusted to allow the agent to leverage 
the additional assets required to perform some action. Finally, the 
service could assist the agent by facilitating the deferral, 
delegation, renegotiation, or reneging on obligations in order to 
free up previously committed resources (as previously mentioned 
in the context of adjusting obligations). 

Based on the principal dimensions of autonomy and the possible 
adjustments described above, we now discuss the implementation 
of these concepts in Kaa. 

4. Kaa: KAoS Adjustable Autonomy 
We have developed formalisms and mechanisms for adjustable 
autonomy and policies that will facilitate effective coordination 
and mixed-initiative interaction among humans and agents 
engaged in joint activities. We are doing this in conjunction with 
a testbed that integrates the various capabilities of heterogeneous 
systems such as TRIPS, Brahms, and KAoS [2]. 

KAoS is a collection of componentized policy and domain 
services. 5  KAoS policy services enable the specification, 
                                                                    
5 KAoS is compatible with several popular agent frameworks, 

including Nomads, the DARPA CoABS Grid, the DARPA 
ALP/UltraLog Cougaar framework, CORBA, Voyager, 
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management, conflict resolution, and enforcement of 
semantically-rich policies defined in OWL [21]. On this 
foundation, we are building Kaa (KAoS adjustable autonomy) a 
component that permits KAoS to perform automatic adjustments 
of autonomy consistent with policy.6 

Assistance from Kaa in making autonomy adjustments might 
typically be required when it is anticipated that the current 
configuration of human-agent team members has led to or is 
likely to lead to failure, and when there is no set of competent and 
authorized humans available to make the adjustments themselves. 
Ultimately, the value of performing an adjustment in a given 
context is a matter of expected utility: the utility of making the 
change vs. the utility of the status quo. 

The current implementation of Kaa uses influence-diagram-based 
decision-theoretic algorithms to determine what if any changes 
should be made in agent autonomy. An influence diagram is a 
belief network extended with special node types for actions and 
utilities [23]. When invoked, Kaa first builds an influence 
diagram based on available adjustment options, 
capabilities/conditions required for the options, and their cost. 
The utility of various adjustment options (e.g., increases or 
decreases in permissions and obligations, acquisition of 
capabilities, proactive changes to the situation to allow new 
possibilities) is computed with the cost and the risk that are 
accompanied with each option. Kaa compares the utility of 
various options, and then—if a change in the status quo is 
warranted—takes action to implement the recommended 
alternative. 

When evaluating options for adaptively reallocating tasks among 
team members, Kaa should consider that dynamic role adjustment 
comes at a cost. Hence, measures of expected utility would 
ideally be used in the future to evaluate the tradeoffs involved in 
potentially interrupting the ongoing activities of agents and 
humans in such situations to communicate, coordinate, and 
reallocate responsibilities [13]. 

4.1. A Simple Example: Robot Signaling 

One of the most important contributions of more than a decade of 
research on agent teamwork is the finding that many aspects of 
effective team behavior rely on a collection of generic 
coordination mechanisms rather than on deep knowledge of 
specific application domains [8; 20]. With previous research in 
agent teamwork, we share the assumption that, to the extent 
possible, teamwork knowledge should be modeled explicitly and 
                                                                                                                

Brahms, TRIPS, and SFX.. While initially oriented to the 
dynamic and complex requirements of software agent 
applications, KAoS services are also being adapted to general-
purpose grid computing and Web Services environments as 
well [22]. KAoS has been deployed in a wide variety of 
applications, from coalition warfare and agile sensor feeds, to 
process monitoring and notification, to robustness and 
survivability for distributed systems, to semantic web services 
composition, to human-agent teamwork in space applications, 
to cognitive prostheses for augmented cognition. 

6 In Rudyard Kipling's Jungle Book, the human boy Mowgli was 
educated in the ways and secrets of the jungle by Kaa the 
python. His hypnotic words and stare charmed the malicious 
monkey tribe that had captured the boy, and Kaa's encircling 
coils at last “bounded" their actions and put an end to their 
misbehavior. In a similar way, Kaa attempts to bound the 
autonomy of agents. 

separately from the problem-solving domain knowledge so it can 
be easily reused across applications. In such an approach, policies 
for agent safety and security (as well as contextual and culturally 
sensitive teamwork behavior) can be represented as KAoS 
policies that enable many aspects of the nature and timing of the 
agent’s interaction with people to be appropriate, without 
requiring each agent to individually encode that knowledge [3]. 
Agent designers can then concentrate on developing unique agent 
capabilities, while assuming that many of the basic rules of 
effective human-agent coordination will be built into the 
environment as part of the policy infrastructure. 

As part of this research, we are developing policies to govern 
various nonverbal forms of expression in software agents and 
robots [11]. Such nonverbal behaviors are intended to express not 
only the current state of the agent but also—importantly—to 
provide rough clues about what it is going to do next. In this way, 
people can be better enabled to participate with the agent in 
coordination, support, avoidance, and so forth. In this sense, 
nonverbal expressions are an important ingredient in enabling 
human-agent teamwork. A simple example involving a nonverbal 
expression policy will illustrate a simplified description of how 
Kaa works. 

Assume that a robot’s signaling behavior is governed by the 
following positive obligation policy: O+: A robot must beep for a 
few seconds before beginning to move. The intention of such a 
policy is to warn others nearby to stay out of the way when a 
robot is about to move. 

Before the robot attempts to move, the robot execution platform, 
in conjunction with platform-specific KAoS components, requires 
the robot to ask a KAoS guard responsible for managing local 
policy enforcement whether the action is authorized.7 The guard 
then retrieves and checks the relevant set of policies. In this 
example, we assume that the guard finds both an authorization 
policy allowing the robot to move in this context as well as the 
obligation policy described above. 

Under normal circumstances, the obligation policy will first 
trigger the robot to emit the beep, and then will return the 
necessary authorization for the robot to move. However, certain 
states and events, such as a failure of the robot to successfully 
                                                                    
7 KAoS policy enforcement is described in more detail in. [3]. 

Fig. 2. Kaa concept of operation for the robot beep failure 

example 
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sound its obligatory warning, will trigger an attempt by Kaa to 
intervene in a helpful way.8 

In such a case, the KAoS-Robot infrastructure9 creates an action 
instance description for the failed action and forwards it to Kaa 
(figure 2). Kaa in turn dynamically constructs an influence 
diagram based on state-specific information in the action instance 
description such as the cause of failure and a related policy type 
combined with information from the KAoS directory service 
repository (e.g., list of agents with beeping capability for possible 
delegation). 

For instance, if the beeping action is not performable due to a 
resource (e.g., beeper) failure, the failed action is required by an 
obligation policy, and there is no other agents with a beeping 
capability, Kaa excludes the possibility of delegation (i.e., 
obliging a joint activity with another robot) and determines there 
are two alternatives: increasing the range of performable actions 
(by making a non-performable action performable with resource 
change) vs. decreasing the range of obliged actions. Assume that 
Kaa determines that temporarily suspending the obligation policy 
is the best option after considering available alternatives. Then, 
with this precondition for the move action now removed, the 
guard can now return its authorization for the move to the robot, 
and the robot can perform the action. When circumstances permit, 
Kaa can reinstate the suspended policy. 

Figure 3 shows a notional functional architecture for Kaa to 
handle failures in dynamic and uncertain environment. As shown 
above, being notified of failure, Kaa reasons about its context and 
examine possible choices to deal with the situation. Contextual 
information comes from the failed robot and KAoS directory 
service, a global data repository. Decision-theoretic reasoning 
based on influence diagrams computes an optimal choice. 

                                                                    
8 Alternatively, in the future we plan to make Kaa watch for 

component status in advance and take preemptive action (e.g., 
imposing negative authorization on actions which require failed 
resources). 

9 KAoS-Robot provides an ontology-based layer of abstraction 
for various robot implementations and assists the guard in 
policy enforcement. 

4.2. Application to Naval De-mining Operations 
In the Navy’s future operations, large numbers of unmanned 
ground, air, underwater, and surface vehicles will work together, 
coordinated by ever smaller teams of human operators. A current 
scenario as a part of Naval Automation and Information 
Management Technology project is based on a lane clearing 
operation in shallow water. Using cooperative search algorithms 
with multiple robots, mine-free lanes are identified in order to 
allow the landing of amphibious vehicles on the beach. As part of 
this research we have developed and demonstrated the use of Kaa 
as described below. 

In order to be operationally efficient, effective and useful, the 
robots must perform complex tasks with considerable autonomy, 
must work together safely and reliably within policy constraints, 
must operate flexibly and robustly in the face of intermittent 
network availability and potentially rapid fluctuation of available 
infrastructure resources, and must coordinate their actions with 
each other and with human operators. In addition, the human 
operator, controlling the actions of many unmanned systems must 
observe and control them in an intuitive fashion incorporating 
capabilities for mixed-initiative interaction and adjustable 
autonomy. 

Unlike the simplified example presented in the previous section, 
in this multi-human/robot mission, either Kaa or a human 
operator or both can potentially intervene to assist the human-
robot team when necessary. For example, given lost network 
connectivity among robots, agile computing infrastructure 10 
frequently tasks an idle robot to move into a position where it can 
serve as a network relay. However, for one reason or another, a 
robot may not be authorized by policy to make a given move. 
Rather than simply turning down the authorization, the guard will 
forward the request to a classifier. The classifier examines the 
policy to determine who (if anyone) should be consulted in such 
circumstances. Normally, the classifier will forward the request to 
the human, who will decide if the need for restoring network 
connectivity should override the policy restriction. 

Preferences for who should intervene can be expressed on a 
policy-by-policy basis. Thus, in some situations, the person 
defining the policy may feel comfortable always letting Kaa 
handle problems on its own without interrupting the operator. In 
other situations, the person may only trust the human to 
intervene. In yet other situations, the person defining the policy 
may want to give the operator the first opportunity to intervene 
and only if the operator is too busy to respond will it call on Kaa 
for help. Finally, a policy may be specified that requires Kaa to 
                                                                    
10 The agile computing module, called FlexFeed, provides the 

communication and computation framework, including mobile 
ad-hoc networks, opportunistic resource discovery and 
exploitation, and flexible, bandwidth-efficient data feeds [19]. 

Fig. 3. Notional functional architecture for Kaa 

 

Fig. 4. Relationships of Kaa to external systems 
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make the first attempt at resolving any problems, allowing it, 
however, to call upon a human for help if necessary. 

In figure 4, the notification service, in conjunction with the 
TRIPS11 behavioral agent, determines the means by which the 
human should be contacted and the urgency with which it should 
be presented given an understanding of the state of the human. If 
after a timeout period the human does not reply, the decision 
about whether to grant permission can be delegated to Kaa. 

In another example, a policy requires the robot to contact the 
human for help when the robot is not certain about the 
identification of a mine. With multiple robots moving and many 
tasks to monitor, it is possible that a robot will find an 
indeterminate object while the operator is occupied with other 
tasks. If the operator fails to respond within sufficient time to 
such a query, a request for help is forwarded to Kaa. 

Receiving such a request, Kaa builds an influence diagram where 
a decision node includes different adjustment alternatives (e.g., 
removing an obligation, enabling a failed action), and chance 
nodes represent required resources (e.g., human operator, 
communication bandwidth), their status, and a measure of utility 
(e.g., costs, risks, benefits) associated with each alternative. 

After ranking alternatives according to their expected utility, Kaa 
might decide to remove the obligation of contacting the human 
for help and grant the robot the autonomy it needs to classify the 
indeterminate object on its own and move on if the operator is not 
available and the risk of granting autonomy is minimal. 
Alternatively, Kaa might determine that the best alternative 
would be to extend the timeout period, up to some maximum 
allowed it by policy if the operator is only temporarily 
unavailable (e.g., if the operator is busy in watching a video from 
a robot which requires finite time). This timeout extension 
effectively makes a previously unavailable resource (i.e., 
operator) available. Here, the reasoning about user’s situation is 
enabled by a subscribe service in the KAoS Common Services 
Interface (CSI).12 Kaa can selectively subscribe and monitor 
events such as the start or end of video feed as an indirect means 
of inferring whether the human operator is seated at the 
workstation. 

                                                                    
11  TRIPS, an interactive planning system, addresses the 

challenges of providing an effective and natural multimodal 
interface (including spoken dialog) between the human 
operator(s) and the robotic platforms [7]. SLIK (Simple Logical 
Interface to KAoS) is the interface between TRIPS and KAoS. 

12 KAoS CSI provides registration, transport, query, command, 
subscribe, and policy disclosure services. These services are 
available to any entities desiring to interact with the robots 
including internal components (e.g., a deliberative layer) and 
external entities (e.g., client GUI, other robots or agents). 

5. A Comparison of Perspectives 
Several groups have grappled with the problem of characterizing 
and developing practical approaches for implementing adjustable 
autonomy in deployed systems. Each takes a little different 
approach and uses similar terminology somewhat differently. It 
would be helpful to the research community if there were an 
increased consensus about the concepts and terminology 
involved. 

To characterize a sampling of perspectives and terminology used 
by various research groups, we will briefly contrast our approach 
to two other implemented formulations: the SRI TRAC (now 
SPARK) framework [16] and the Electric Elves agent-based 
autonomy framework [18]. These two frameworks were 
compared in [15], making them a convenient choice for further 
comparison. 

Here we will simply consider some of the basic dimensions 
relating to the adjustment decisions, ignoring for the moment 
specific features of the frameworks (e.g., analysis tools, user 
interface, accommodation of heterogeneity) as well as 
performance and scalability issues: (i) Party taking initiative for 
adjustment; (ii) Rationale for adjustment; (iii) Type of 
adjustment; (iv) Default modality; (v) Duration of adjustment; 
(vi) Party who is final arbiter; (vii)Locus of enforcement. 

Party taking initiative for adjustment. In principle, the actual 
adjustment of an agent’s level of autonomy could be initiated 
either by a human, the agent, or some other software component. 
Figure 5-(a) illustrates how this is handled in the three 
frameworks. 

TRAC has been characterized as a framework for “user-based 
adjustable autonomy” in which policies are defined by people. 
The motivation for these policies is to compensate for limits to 
agent competence and to allow for personalization. 

In contrast, the Electric Elves approach has been characterized as 
an “agent-based autonomy” (AA) approach where adjustments to 
autonomy are the result of explicit agent reasoning. A transfer-of-
control strategy is computed in advance and offline using a 
Markov decision process (MDP) such that in each possible state 
the agent knows whether it should make the decision 
autonomously, ask the user for help, or change its coordination 
constraints (e.g., inform other agents of a delay).13 

Since KAoS runs in conjunction with several agent frameworks, 
the ability for an agent to explicitly reason about autonomy 
adjustment depends on the particular platform being used. For 
example, TRIPS allows sophisticated reasoning about these 
issues, whereas agents built with less capable frameworks may be 
capable of little or no reasoning of this sort. In addition, KAoS 
allows humans to define or change policies through a simple 
GUI. Finally, Kaa, as a selectively trusted third-party, can 
sometimes make its own adjustments to policy or other 
dimensions of autonomy. 

                                                                    
13 The theme of social laws has been investigated by the agent 

research community under two main headings: norms and 
policies. Typically, policy-based approaches impose 
prescriptive constraints on agents externally while norm-based 
approaches place the responsibility of conformance to social 
laws on the agents themselves. See [3] for a more extensive 
discussion of this topic. 

Fig 5. Perspective comparison 
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Rationale for considering adjustment. Many different factors 
can constitute the rationale for considering an adjustment. In 
TRAC, the rationale for modification to policy resides 
exclusively with the human, whereas in AA it is part of a 
precomputed set of agent strategies, with choices determined 
according to a fixed set of agent states. 

In KAoS, authorized people or agents can make changes to policy 
at any time. In addition, any event or state in the world or the 
ontology that can be monitored by the system could be set up to 
trigger a self-adjustment process in Kaa. For example, the 
impetus for Kaa to consider adjustment could be due to the fact 
that task performance has fallen outside of (or has returned 
within) some acceptable range. Alternatively, certain events or 
changes in the state of the environment (e.g., sudden change in 
temperature), an agent (e.g., agent is performing erratically), or a 
human (e.g., human is injured; or conversely is now again 
available to help out) can provide the rationale for adjustment. 

Type of adjustment. As outlined in section 2, adjustments to 
autonomy can be of several types: capabilities (more or less), 
possibilities, authorizations (positive or negative, more or less), 
and obligations (positive or negative, more or less). TRAC allows 
policies to be defined for three sorts of positive obligations: 
obligations to ask permission from a human supervisor for certain 
actions (permission requirements), obligations to defer decisions 
about certain actions to a human supervisor (consultation 
requirements), and obligations to accomplish specified tasks in a 
certain manner (strategy preference guidance). 

AA allows for agents to determine strategy for and require itself 
to act upon three kinds of obligations: asking the user for help, 
making the decision itself, and performing a coordinating action. 
Additionally, AA allows the human to represent two kinds of 
safety constraints. The first kind is a sort of negative 
authorization that can prevent agents from taking an action, while 
the second kind is a sort of positive obligation requiring them to 
take a certain action. 

KAoS is designed to allow adjustment along any of the 
dimensions described in section 2. While it is fair to characterize 
TRAC as an implementation of an approach to adjustable 
autonomy, the ability to allow humans to define policies in TRAC 
is different from the automatically adjustable autonomy 
implemented by AA and Kaa. 

Default modality. Within a given policy-governed environment, 
a default modality for authorization policies must be established. 
In a permissive environment, it is usually easiest to set a 
permissive default modality and to define a small number of 
negative authorization policies for any actions that are restricted. 
In a restrictive environment, the opposite is usually true. 

TRAC and AA implement a fixed laissez-faire modality where 
anything is permitted that is not specifically forbidden by policy 
as illustrated in figure 5-(b). KAoS implements a per-domain-
configurable default modality. In other words, for a given 
application, agents in one domain (i.e., user-defined group) might 
be subject to a laissez-faire default modality, while agents in 
another domain might be simultaneously subject to a tyrannical 
one (i.e., where everything is forbidden that is not specifically 
permitted). Modality dominance constraints are used to determine 
which modality takes priority in the case of agents belonging to 
more than one domain. 

Duration of adjustment. When constraints in any of the three 
frameworks are put into force or removed, the adjustment to the 

agent’s level of autonomy is changed indefinitely. However, 
KAoS additionally allows an authorized human or trusted 
software component such as Kaa to override current policy on a 
per event basis (e.g., exceptionally allow some action just this 
once) or for a certain fixed length of time. 

Party who is final arbiter. For some actions, there is the 
question of who is the final authority in case of disagreement 
between some person and the machine. For example, a policy 
may allow a human to take manual control of an Unmanned 
Aerial Vehicle (UAV) if there is a risk of it crashing. On the other 
hand, the UAV may have a policy preventing a human from 
deliberately steering it to a forbidden area. 

In TRAC, this issue does not arise because it is not possible to 
explicitly represent authorization policies. In AA and KAoS, 
authorization policies can definitively limit the kinds of actions 
that the agent can perform. Additionally, in KAoS, authorization 
policies can be defined to limit human actions as well. 

Locus of enforcement. In both TRAC and AA, the interpretation 
of policies is integrated with the agent’s planning and decision-
making process and the agent itself is entrusted with the 
enforcement of policy. 

While KAoS does not prohibit agents from optimizing their 
behavior through reasoning about policies (to the extent that 
policy disclosure is itself permitted by policy), the responsibility 
for enforcement is given to independent control elements of the 
trusted infrastructure. In this way, enforcement of policy remains 
effective even when agents themselves are buggy, malicious, 
poorly designed, or unsophisticated. This is essential if policies 
are to be regarded as something binding on agents, rather than 
just good advice. However, there is no reason why KAoS 
enforcement mechanisms could not be used in a complementary 
way with the agent-based enforcement in TRAC and AA. 

6. Discussion and Conclusions 
We believe that policy-based approaches hold great promise in 
compensating for limitations of competence, benevolence, and 
compliance of agent systems. Ontology-based approach in KAoS 
enables flexibility, extensibility, and power for policy 
specification, modification, reasoning, and enforcement. As the 
work in this paper demonstrates, the application of policy is now 
being extended beyond narrow technical concerns, such as 
security, to social aspects of trust and human-agent teamwork. As 
research results bring greater experience and understanding of 
how to implement self-regulatory mechanisms for agent systems, 
we expect a convergence and a concomitant increase of synergy 
among researchers with differing perspectives on adjustable 
autonomy and mixed-initiative interaction. 

One of the biggest differences between KAoS and the two other 
approaches compared in section 5 (TRAC and AA) is in where 
the locus of initiative for adjustment and enforcement lies. 
Though allowing policy to be disclosed and reasoned about by 
agents when required, KAoS policy services aim to assure that 
policy can be relied on whether or not the agents themselves can 
be trusted to do the right thing. In contrast, TRAC and AA 
depend exclusively on the agents to monitor and enforce their 
own actions. When humans are both in the loop and presumed to 
be more capable and trustworthy than the agents themselves, the 
KAoS approach would seem to have merit. However, this 
solution is insufficient for those situations where the human is 
unavailable or is judged to be less competent or trustworthy than 
the machine for dealing with an adjustable autonomy issue. 
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Our objective in developing Kaa is to address this issue: to enable 
reasoning about relevant tradeoffs and the taking of appropriate 
measures in situations where the best action may not be the blind 
following of a policy but rather the automatic adjustment of one 
or more dimensions of autonomy. While we have reservations 
about approaches that cannot enforce human-defined policies 
independently of a potentially untrustworthy or incompetent 
agent’s code, we also have qualms about approaches lacking the 
means to adjust policies and policy-related autonomy dimensions 
that have been clearly demonstrated to be ineffective in a given 
context of application. Adding the capabilities of Kaa to KAoS 
services is intended to achieve the best of both worlds: 
trustworthy adjustable autonomy regardless of the trustworthiness 
of agent code. 
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