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Abstract

Background: The ability to query many independent biological databases using a common ontology-based semantic

model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources.

Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in

semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical

data sources.

Results: We present five processes for semantic data integration that, when applied collectively, solve seven key

problems. These processes include making explicit the differences between biomedical concepts and database

records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using

declaratively represented forward-chaining rules to take information that is variably represented in source databases

and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by

presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from

18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies.

An instance of KaBOB with data about humans and seven major model organisms can be built using on the order

of 500 million RDF triples. All source code for building KaBOB is available under an open-source license.

Conclusions: KaBOB is an integrated knowledge base of biomedical data representationally based in prominent,

actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical

concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data

schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending

to work with data from multiple data sources and provides a platform for ongoing data integration and development

and for formal reasoning over a wealth of integrated biomedical data.

Keywords: Knowledge representation and reasoning, Semantic data integration, Biomedical, Databases, Open biomedical

ontologies, Semantic web, OWL, RDF

Background
The depth and breadth of curated knowledge in molecu-

lar biomedicine is staggering. The 2015 Nucleic Acids

Research peer-reviewed compilation of molecular biomed-

ical databases lists 1,621 databases [1], many of which

hold millions of detailed records about biomedically sig-

nificant entities. Much contemporary biomedical research

depends on broad and unbiased assays at genomic scale.

Interpretation of the results of such assays, which gener-

ally implicate hundreds or even thousands of relevant

gene products (or polymorphisms, etc.) in the context of

what is already known is particularly challenging, and

existing approaches are clearly inadequate to address this

challenge and others. The aggregate consequences of

this failure to capitalize on existing knowledge for the

interpretation of genome-scale experimental results is a

substantial reduction in the efficiency of the biomedical

research enterprise writ large, delaying the development

of both key insights and new therapies. The ability to

query many independent biological databases using a

common, community-driven semantic model would fa-

cilitate deeper integration and more effective utilization

of these diverse and rapidly growing resources.

Attempts to access and integrate data from multiple

public biomedical databases are often plagued with issues
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stemming from heterogeneous database schemas, idio-

syncratic file formats, data redundancy, numerous inde-

pendent identifiers, and differing curation standards

and practices. While researchers’ decisions about which

databases and which data to use should be based on their

task and on biomedical criteria, they are often based in-

stead on logistical criteria such as the underlying database

representations, the ease or difficulty of accessing the data,

and the ability to integrate a given data set with others.

Researchers need an environment not only in which these

data are readily accessible but also where they can ask

queries that are biological in nature and unencumbered

from the underlying shape or format of the data.

Goble and Stevens [2] have written of several serious

issues in need of addressing for biomedical data integra-

tion, including the need for shared identities and seman-

tics, the need to use existing standards where available,

and balancing data collection with data use; they state

that these problems have led to a current “loose feder-

ation of bio-nations”. While work to integrate various data

is progressing, Good and Wilkinson point out that we

are seeing “‘semantic creep’—timid, piecemeal and ad

hoc adoption of parts of standards” [3]. Linking data

across resources is necessary for building integrated sys-

tems; however, linking the data without understanding the

semantics of those links merely generates more data [4].

Furthermore, any data integration must be able to support

multiple modes of reasoning that can deal with the fact

that integrated data are likely to have noise and errors [5].

While many domains have developed standard file for-

mats for the consistent sharing of data, these formats

are generally domain- or task- specific, making them dif-

ficult to integrate with one another. Other existing non-

ontologically grounded approaches to data integration

include maintaining cross references that point to re-

lated identifiers and records in other sources but often

conflate semantics, e.g., by linking a protein record to a

gene record (such as some mappings provided in large

curated databases). Other linked data approaches typic-

ally have weak semantic abstractions that do not map

to a single common biomedical model and do not un-

ambiguously assert which biomedical entities are seman-

tically identical across data sources. This is a serious

hindrance, as Goble and Stevens have posited: ′The failure

to address identity will be the most likely obstacle that

will stop mashups, or any other technology or strategy, be-

coming an effective integration mechanism” [2]. Ontology-

based approaches to data integration thus far have been

either small or focused on specific domains or tasks.

Larger semantic integrations have not provided declara-

tive representations of mappings, or use non-standard

semantic models. Despite decades of effort, the goal of

integrating diverse data into a common biomedical model

remains elusive.

We have put together a set of five methods, some novel

and some that build on prior work of others, that over-

come problems commonly encountered when attempting

to semantically integrate information from multiple data

sources, When applied collectively these methods resolve

seven key problems. (1) varying identifiers used across

data sources to refer to the same concepts; (2) differing

file formats using different lexicalizations and interpreta-

tions of identifiers; (3) conflation of informational entities

(e.g., identifiers and records) with biomedical concepts

(e.g., genes and gene products, processes and interactions);

(4) the use of varying non-ontologically grounded seman-

tic models; (5) errors and inconsistency among source

data; (6) instability of identifiers and URIs over time in in-

tegrated resources; and (7) difficulty in tracing and report-

ing provenance of integrated data.

We demonstrate these solutions by presenting KaBOB

(the Knowledge Base of Biomedicine), a system that inte-

grates 18 sources of biomedical data using 14 prominent

Open Biomedical Ontologies (OBOs) as a foundation and

vocabulary for modeling, thus facilitating interaction with

the wealth of existing data and tools that already rely on

these OBOs. In KaBOB, identity across data sources is

maintained through the generation of a single biomedical

entity for each set of data-source-specific identifiers each

referring to the entity. These entities, along with the OBO

concepts, function as the building blocks for the common

biomedical representations, which can be simultaneously

modeled and thus queried at multiple levels of abstraction.

KaBOB maintains a clear distinction between source data

and biomedical concepts and represents both explicitly.

Users need only understand the common OBO-based rep-

resentations to interact with data from all of the integrated

sources that have been mapped into the biomedical rep-

resentation, rather than having to know each relevant

source’s specific modeling and the similarities and differ-

ences among each data model; however, for data that have

not been mapped to biomedical concepts, the source data

are also available for querying over a common informa-

tional metamodel. KaBOB uses declaratively represented

forward-chaining rules to map from the source data to

biomedical concepts, and the explicit representation of

both the source data and the rules together provide trans-

parent and computable provenance for every concept and

assertion. By resolving many of the issues that routinely

plague biomedical researchers intending to work with data

from multiple data sources simultaneously, KaBOB pro-

vides a platform for ongoing data integration and develop-

ment and for formal reasoning over a wealth of integrated

biomedical data.

Methods
Biomedical data sources tend to use various idiosyncratic

data models that often do not integrate well with each
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other, and no common model exists across them. Conse-

quently, there is no immediately straightforward way to

combine their data. To build KaBOB we tackle the

problem of mapping data source contents to a common

biomedical model incrementally. First we explicitly rep-

resent the contents of the data sources as informational

constructs (e.g., records, identifiers), then apply declarative

rules to create representations of the biomedical entities

they denote, grounded in a common model that is

based on the OBOs. This division of information entities

and biomedical concepts is one of the fundamental ideas

underlying KaBOB. It greatly simplifies the manner in

which biomedical representations are created and edited,

as well as provides several additional advantages: for ex-

ample, functioning as provenance. Furthermore it easily

allows multiple representations of the source data to be

generated, for example at differing levels of granularity or

generalization, all still coherent with the overall model.

Since each step in KaBOB construction is separate and in-

cremental they can be developed and debugged independ-

ently, by teams of developers with differing skill sets. For

example, the KaBOB approach separates computational

systems design decisions (e.g., how to read multiple file

formats) from ontological decisions related to biomedical

model representation, processes that are intermingled in

other approaches.

We use five methodological steps to solve major prob-

lems commonly encountered in semantic data integration.

(1) Data source records are explicitly represented using a

common informational model. (2) References to identi-

fiers in these records are canonicalized. (3) Identifier

mappings across data sources are used to derive sets of

IDs that are intended to refer to the same biomedical

concept, and (4) these identifier sets and a correspond-

ing biomedical entity for each are explicitly repre-

sented. Finally, (5) forward-chaining rules are used to

produce representations that are grounded in common

biomedical models in the form of prominent OBOs that

build upon the unified biomedical entities. This model-

ing is done in such a way as to avoid conflicts in the

event of inconsistent underlying data. Each step is dis-

cussed individually, in the context of applying them

collectively to produce KaBOB.

KaBOB has three major subdivisions of representation:

(1) an imported collection of prominent OBOs that serve

as the representational foundation for the rest of the

knowledge base; (2) the representation of source database

records, schemas, and identifiers, modeled as instances of

information content entities (extended from the Informa-

tion Artifact Ontology [6]), collectively referred to as the

ICE content of the knowledge base,; and (3) the represen-

tation of biomedical concepts such as biological processes

and interactions, diseases and phenotypes, and genes,

gene products, and other types of biological sequences

(extended from OBOs such as the Gene Ontology [7] and

the Sequence Ontology [8]), collectively referred to as the

BIO content of the knowledge base.

Figure 1 depicts how KaBOB is constructed. KaBOB,

initially an empty triplestore, is built up incrementally.

First, ontologies are downloaded and then loaded dir-

ectly into the triplestore. Database source files are down-

loaded and converted to RDF; the resultant RDF triples

are loaded into the ICE section of KaBOB. Forward-

chaining rules (OWL- > ICE) generate ICE identifiers for

each of the biomedical concepts in the ontologies.

(These additional identifiers are required since in our

representation records will only contain URIs for identi-

fiers not URIs for biomedical concepts themselves,

making the ICE-BIO distinction unambiguous). The

second set of forward-chaining rules generates identity

links between ICE identifiers, specifically, assertions of

skos:exactMatch links between identifiers denoting

the same biomedical concepts. The next step instanti-

ates an ID set in the ICE side of KaBOB corresponding

to each unique biomedical concept. Each biomedical

concept is then explicitly represented in the BIO section;

for example, a gene entity on the BIO side is created for

each such set of gene IDs. (This is the first real connection

from the ICE section to the BIO section). More forward-

chaining rules are then used to create (on the BIO side)

other biomedical concepts and assertions referred to

within the data source records, e.g., interaction events with

protein participants from protein-protein interaction data-

base records, processes with participating entities from

Gene Ontology annotations, and links from drugs to

genes or gene products from drug-related data sources.

Figure 1 KaBOB Construction. Depicts the incremental construction of KaBOB. Labeled arrows represent processes that flow from inputs to

outputs. Construction starts with downloading files and flows through translating them into RDF and then iteratively querying and producing

more RDF. Steps marked with ** involve multiple sets of rules being run and their output loaded in sequence.
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When the rules have finished running and their output

has been loaded into the BIO side, KaBOB is ready to be

queried and used. Each of the steps required to build an

instance of a KaBOB knowledge base is discussed in

greater detail in the following subsections. A detailed list

of the steps used to build KaBOB is provided in Additional

file 1.

Sources

The initial release of KaBOB has been designed to in-

clude a wide variety of biomedical data from a number

of prominent publicly available sources. These data range

from attributes of core biomedical entities (e.g., genes,

proteins) to interactions between these entities (e.g.,

protein-protein interactions, gene/transcription-factor

interactions) to biological functions attributed to the en-

tities (e.g., Gene Ontology annotations). KaBOB is designed

to be extensible; as such, the list of data sources should not

be considered exhaustive or limiting. New data sources are

being added as needed to accomplish specific reasoning

and querying tasks.

KaBOB currently imports the following 14 ontologies:

1. Basic Formal Ontology (BFO) [9]

2. BRENDA Tissue / Enzyme Source (BTO) [10]

3. Chemical Entities of Biological Interest (ChEBI) [11]

4. Cell Type Ontology (CL) [12]

5. Gene Ontology including biological process, molecular

function, and cellular component (GO) [7]

6. Information Artifact Ontology (IAO) [6]

7. Protein-Protein Interaction Ontology (MI) [13]

8. Mammalian Phenotype Ontology (MP) [14]

9. NCBI Taxonomy [15]

10. Ontology for Biomedical Investigation (OBI) [16]

11. Protein Modification (MOD) [17]

12. Protein Ontology (PR) [18]

13. Relation Ontology (RO) [19]

14. Sequence Ontology (SO) [8]

KaBOB currently imports data from the following 18

data sources:

1. Database of Interacting Proteins (DIP) [20]

2. DrugBank [21]

3. Genetic Association Database (GAD) [22]

4. UniProt Gene Ontology Annotation (GOA) [23]

5. HUGO Gene Nomenclature Committee (HGNC) [24]

6. HomoloGene [25]

7. Human Protein Reference Database (HPRD) [26]

8. InterPro [27]

9. iRefWeb [28]

10. Mouse Genome Informatics (MGI) [29]

11. miRBase [30]

12. NCBI Gene [31]

13. Online Mendelian Inheritance in Man (OMIM) [32]

14. PharmGKB [33]

15. Reactome [34]

16. Rat Genome Database (RGD) [35]

17. Transfac [36]

18. UniProt [37]

The utility of KaBOB is predicated not only on the

knowledge it contains but also by how up-to-date this

knowledge is. We have eased this knowledge acquisition

process by automatically downloading individual data

sources from their corresponding locations on the Inter-

net and constructing file parsers that can detect changes

in data source file formats and report back if the parsers

need to be updated. Logs are kept for every download

recording the date and location of each source file, and

logs are generated for every file parse recording warn-

ings and errors that need to be addressed. The entire

process from download to final knowledge base creation

can be accomplished in under 2 days, allowing KaBOB

to be updated at the same frequency as the major data

sources it depends on. Changes to the format of the data

sources can require modifications to the file parsers,

which is relatively straightforward, but does require some

time, typically about a day. Efficient storage of and access

to historic copies of all ICE data is being investigated (see

Future Work).

Database record representation

All database content is directly modeled as information

content entities (ICEs) as defined in the Information

Artifact Ontology, one of the Open Biomedical Ontologies

[6]. An initial model for the database record representa-

tion is discussed in detail in a previous publication [38].

Briefly, each database, schema, record, field, and field

value is modeled as an ICE. The obo:has_part relation

is used to connect record ICEs to their corresponding field

value ICEs and database schema ICEs to component field

ICEs, while the kiao:has_template relation is used

to link record ICEs to their corresponding schema ICEs

and field value ICEs to corresponding field ICEs. The sim-

plicity and generality of this record representation permits

its use toward the many different data sources being in-

corporated into KaBOB, regardless of the underlying file

format (e.g., CSV, XML). An example of this representa-

tion can be seen in the ICE panel (left side) of Figure 2.

This figure in part depicts two simplified Gene Ontology

annotation records (record1 and record2), which are each

connected to two field values, one a UniProt ID and one a

GO ID. Note that since both source records use the same

GO ID, these two record ICEs use the same field value

ICE instance (fieldvalue4); each such reuse of a field value

ICE instance keeps the three triples required to define it

from being redundantly represented in the knowledge
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base. At the scale of the complete knowledge base, this re-

use of field values results in a large reduction in the total

number of triples required to represent the ICEs. For the

NCBI Gene Info file this amounts to an approximate 44%

reduction in the number of required triples. Each field

value is linked to an associated template that indicates the

field for which it serves as a value (e.g., in a CSV file this

would be the column name), since fieldvalue3 and vieldva-

lue5 are values of the same field, they point to the same

field ICE instance. Each field is connected to its corre-

sponding value.

The record representation used by KaBOB differs from

the previously published representation of Bada et al.

[38] by being more record-centric. We now allow records

to share structure with other records, for example to share

field value instances such as in the aforementioned ex-

ample, greatly reducing the number of triples required. A

minor difference between the current and former repre-

sentations is that record ICE instances are now linked

via obo:has_part to field value ICE instances in

KaBOB, whereas field value ICE instances were linked

via obo:part_of to record ICE instances in the former

representation of data source records.

The use of the SHA-1 hash enables the ICE URIs to

be deterministically generated and reused whenever a

field with the identical value is encountered without the

need to keep track of field values previously encountered

during construction. This also provides consistency across

KaBOB instance builds, which aids in checking for differ-

ences and debugging. For example, when specifying the

URI for an NCBI Gene database taxonomy field with

value 9606, our optimization uses the SHA-1 hash

function [39] over the field value (“NCBITaxon:9606” in

this case) and incorporates the resultant hash value into the

URI, e.g., http://kabob.ucdenver.edu/iao/eg/F_

EntrezGeneInfoFileData_taxonID_0bUKStY0wb-

D665TtwobPzrc1xI.

Canonicalization of identifiers in records

While we attempt to generate records that are as faithful

to the source representation as possible, we do modify

the records by transforming identifier strings to canoni-

calized URIs. For example, the NCBI Gene identifier for

the human ATP5D gene is rendered in source records as

“EG513”, “EG_513”, “EG:513”, “513” (in a field designated to

contain identifiers from the NCBI Gene database), etc., all of

which would be canonicalized to the same URI for that

NCBI Gene identifier, i.e., http://kabob.ucdenver.

edu/iao/eg/EG_513_ICE.

Forward-chaining rules

Assertions in KaBOB are generated using a series of de-

claratively represented forward-chaining rules. These rules

take information that is variably encoded among the re-

cords of the disparate source databases and create RDF

assertions uniformly represented in terms of prominent

OBOs. There are several batches of forward-chaining

rules, as depicted in Figure 1, and the triples generated

by the rules are saved in compressed N-Triple files and

then loaded into the KaBOB triplestore.

Figure 2 Example ICE Records and corresponding BIO Concepts. Depicts an excerpt of the knowledge representation in KaBOB. Ovals are used

to depict instances, and rectangles classes. Single line arrows represent triples and point from their subject to their object and are labeled with

their property. The iao:denotes links that cross from the ICE to the BIO side are emphasized with dashed arrows. The double arrows are shorthand

for representing an owl:Restriction on the given property with some values from the object value. This figure depicts two GO annotation records that

are then converted to biomedical concepts using the same rule (rule not depicted). Additionally sets of gene identifiers are also depicted that denote

their corresponding gene concept. On the BIO side the relations between genes, proteins, and gene or gene product aggregate classes are also

shown. Other than the records and their field values, generated by the file parsers, all other links are the output of applying rules.
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The following is an example rule that corresponds to

the example in Figure 2, where some of the symbol

names have been simplified for readability. (A full version

of this rule is provided in Additional file 2). This rule

queries record ICEs imported from the Gene Ontology

Annotation database [23] to retrieve UniProt ID ICEs and

GO biological process ID ICEs. It uses the triples linking

ID ICEs to biomedical concepts (via the iao:denotes

relation) to retrieve the corresponding protein class for

the protein ID and the corresponding biological process

for the GO ID using the following graph pattern.

The rule then uses the following template (depicted here

in Turtle RDF format) to construct additional triples.

These five triples specify a new process class, formally

defined as a subclass of the given GO process with a re-

striction that the given protein is a participant in the

process. This new class captures the “all-some” seman-

tics of a GO biological process annotation, describing

the subclass of the biological process such that for each

instance of that subclass there exists some instance of

the specified protein that participates in that process

[40]. It uses existing known values for ?protein and

?goProcess retrieved as bindings by the body of the

forward-chaining rule, and it creates new URIs for the

restriction ?participant and the dynamically gener-

ated ?newProcess class. Figure 2 shows an example

of the input and output to such a rule. The rule would

be run for record1 and record2, it would get the protein

ID value of the UniProt ID field, and the GO ID value

of the GO ID field in each of these records, then get

the denoted concepts (i.e., the corresponding protein

and biological process classes) by following the dotted

lines into the BIO representation (Figure 2, BIO panel,

right side). Then, new classes of biomedical concepts

would be dynamically generated (BIO11 and BIO12)

and connections made to existing biomedical concepts.

In this case, each would be made a subclass of the GO

process specified in the original GO annotations (oxidative

phosphorylation) and a subclass of a restriction specifying

the given protein as a participant in the process.

The rules are represented using a domain-specific lan-

guage written using Clojure s-expressions. It is an exten-

sion of the pattern language provided in the open-source

KR Clojure library [41]. The rules are applied using a

straightforward implementation of a forward chainer in

Clojure. The rules could also be serialized to other formats.

SWRL [42] is an obvious potential target; however, SWRL

rules cannot have unbound variables in the head, thus

blocking reification, which is needed for many (though

not all) rules. The rules could be realized as SPARQL

CONSTRUCT queries as well. This avenue has not been

explored in great detail, as SPARQL 1.1 was still in its in-

fancy and access to the functions necessary to reify new

entities was extremely limited at the time of the start of

the KaBOB project. This can be reinvestigated as future

work, along with providing RIF (Rule Interchange Format)

[43] export and import of rules. A complete example of a

rule and more discussion is provided in Additional file 2.

Identifiers and identifier sets

Since different data sources use different identifiers to

refer to the same given concept, aggregating data across

sources requires managing sets of identifiers that are

intended to refer to the same concepts. In KaBOB, identifier

sets are built incrementally. First, mappings between identi-

fiers mentioned in the underlying data sources are extracted

and explicitly represented. Then, unified identifier sets are

derived from all relevant extracted mappings. A correspond-

ing biomedical entity is created for each identifier set, e.g., a

protein for a given set of protein IDs that refer to this pro-

tein. We do this work in a series of stages, allowing the out-

put of each stage to be used on its own as well as enabling

the results to be easily inspected and debugged, as identifier

mappings in individual data sources can be idiosyncratic

and occasionally incorrect. These data further serves as

provenance for how the biomedical entities are created.

Identifier mapping idiosyncrasies can arise from infor-

mation in data sources being represented at varying levels

of abstractions and granularity, requiring additional effort

to understand and disambiguate the identifier mappings

that they provide. For example, data sources, such as

NCBI Gene Info [31], often use a field called “database

cross-reference” (or “dbXref”) that may have mappings

to different types of things, e.g., related drugs, diseases,

pathways. Care must be taken when navigating these

fields to prevent links from being constructed between

identifiers that are not actually semantically exact matches,

e.g., between drugs and diseases, or between genes and

proteins. In order to be able to sift through the seman-

tic ambiguities in cross-referencing fields, a step was

introduced to help identify the cross-referencing intent.

Identifying the intent of a cross-reference field requires
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knowing something about what a given identifier will

ultimately refer to; however, at this stage in KaBOB

construction entities are not fully represented. This cir-

cular logic was overcome by bootstrapping the KaBOB

construction process with simple type information of

what will be the ultimate resulting entities. Rules were

created to generate this information and break the cycle.

These entity typing rules connect IDs from data sources

to corresponding biomedical classes (subclasses of which

will be ultimately created); for example, all NCBI Gene

IDs are asserted to refer to types of DNA (pointing to the

DNA class of the OBO Sequence Ontology) using kiao:

denotesSubClassOf, a macrorelation for the property

chain of iao:denotes and rdfs:subClassOf. (That

is, a kiao:denotesSubClassOf assertion of the form

X kiao:denotesSubClassOf Z entails the two triples

X iao:denotes Y and Y rdfs:subClassOf Z.). After

these denotesSubClassOf assertions are created, a

second set of ICE-to-ICE rules use these assertions to ex-

tract only those mappings between ICE IDs from the vari-

ous data sources (e.g., the UniProt ID mappings file [37])

that denote semantically identical entities. For example, so

as to extract only the mapped IDs stored in the dbXref

field of a given NCBI Gene Info record that are denota-

tionally semantically equivalent (i.e., that denote the

same entity as that denoted by the NCBI Gene ID), the

executed rules pick out only those IDs that kiao:

denotesSubClassOf SO:DNA, as the entities denoted

by the IDs that do not satisfy this criterion are not

DNA sequences and are therefore unlikely to be the

same entity denoted by the NCBI Gene ID. Filtering

mapped IDs by making use of our explicit linkages of

ID types to types of biomedical concepts is a prag-

matic solution that is both effective and efficient. The

output of these identifier-mapping rules are skos:

exactMatch links between ID ICEs.

Great care is taken to not link things across type. For

example, even though the protein denoted by the identi-

fier UniProt:P30049 (ATP synthase subunit delta, mito-

chondrial) is coded by the gene denoted by the identifier

HGNC:837 (ATP5D), they are not linked with an skos:

exactMatch relation, because they do not refer to pre-

cisely the same concept, in that the former denotes a

class of proteins and the latter a class of genes. On the

other hand, a skos:exactMatch link is created between

HGNC:837 and EG:513, as they denote the same gene.

(Proteins are connected to the genes that code for them by

subsequent rules in the construction of the BIO portion of

KaBOB). The kiao:denotesSubClassOf assertions

are essential to sorting this out. A simplified example of

this type of representation can be seen in Figure 2: On the

ICE side are pairs of gene identifiers that refer to the

same genes on the BIO side, i.e., HGNC_837_ICE and

EG_513_ICE, which both denote Gene6, and HGNC_

9604_ICE and EG_5742_ICE, which both denote Gene9.

Note that the gene identifiers denoting the same genes are

linked to each other via the skos:exactMatch relation;

however, there is no asserted relationship between corre-

sponding protein identifiers and gene identifiers on the ICE

side (e.g., between UniProt_P30049_ICE and EG_513_ICE),

only a relation between the denoted protein (Protein7) and

corresponding gene (Gene6) on the BIO side.

After the skos:exactMatch links are created, their

transitive closure is computed using the union-find algo-

rithm [44]. The union-find algorithm is an efficient method

for building a collection of disjoint (non-overlapping) sets

given a list of pairs of members that are in the same set. It

incrementally builds and merges sets of connected compo-

nents as it streams through the list of pairs. An explicit

identifier set is then created for each set of ICE identifiers

with a URI based on an SHA-1 hash of the sorted mem-

bers of the set. The use of a hashing function in this man-

ner allows the identifiers to be computed consistently over

time, which ensures that two KaBOB instances computed

from the same sources produce the same identifiers. (Like

using UUIDs, hashed URIs have no dependency on each

other and can be computed in parallel, unlike sequential

identifiers, e.g., set1, set2, …). The computation of this tran-

sitive closure, along with constructing the initial ICE RDF,

are the only parts of KaBOB construction not performed

using the forward-chaining rule system. It is possible to

compute this transitive closure with forward-chaining rules;

however, the union-find algorithm is extremely efficient,

with a running time of O(log*n), compared to potentially

needing multiple passes with forward chaining to compute.

As an example of computing and creating a set of iden-

tifiers each denoting the same biomedical concept, we

start with the following three triples, which specify map-

pings between IDs denoting the same gene.

After passing through the union-find algorithm the four

identifiers in these triples are grouped into a single identi-

fier set. The following four triples (in Turtle RDF syntax)

specify this set, which is given the URI kiao:KaBOB-

ID-Set-qn-3e2r15NYu8WUNe-a2BXB_nZ, based on

the SHA-1 hash of its members. The set is comprised of

four identifiers whose membership is the set is asserted

via the kro:hasMember relation:

Representation of biomedical concepts

More rules are used to build up biomedical representations.

First, a biomedical concept is created for each identifier set,
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e.g., a gene class corresponding to the set of ID ICEs denot-

ing the given gene. Layers of biomedical sequence abstrac-

tions (discussed in the Representation at Multiple Levels

of Abstraction subsection of the Discussion section) are

added, e.g., aggregate gene-or-gene-product classes and

gene-or-gene-product-or-variant classes. Connections are

made between corresponding genes and gene products,

e.g., representing that a given gene serves as the indir-

ect template for a given protein, and connecting that

protein to the corresponding gene-or-gene-product ag-

gregate classes.

The last set of rules continue to convert information

variably represented in the ICE records into unified bio-

medical representations in terms of relevant OBO classes.

Generally, each KaBOB assertion derived from a source

database requires one rule and results in at least one dy-

namically generated subclass to model the assertion in

OWL. A rough estimate is one rule per field in the source

records; however, some fields require multiple rules. For

example, the gene type field in the NCBI Gene database

requires one rule per possible sequence type (e.g., protein-

coding gene, noncoding gene, pseudogene) to accurately

model the value of the field, as these values are curated

by NCBI using a small custom controlled vocabulary,

each term of which is uniquely mapped to a Sequence

Ontology class. On the other hand, extracting other types

of assertions requires looking at multiple fields in one rule.

For example, extracting a drug-gene association assertion

from PharmGKB requires the examination of four fields,

as PharmGKB uses two fields to specify the identifiers of

the interacting entities and two more fields to specify the

types of these entities (e.g., gene, drug).

As an example of a dynamically rule-generated biomedical

concept extended from existing OBO concepts, the following

nine triples (in Turtle RDF syntax) represent the interaction

(obo:MI_0000) between the drug isoflurane (kbio:BIO_

e7687a66889760a757dd0bdc6b12ea67) and the

gene ATP5D (or one of its products or variants) (kbio:

GorGPorV_BIO_8b130947230c6d1bdb2a067cba251

4de), derived from the Drugbank database [21] :

The first block of triples models the OWL restric-

tion class (kbio:R_I4hmhKlPj3PLuD__6T2QucrTfWk)

representing the class of all things in which the gene ATP5D

or one of its products or variants participates. The second

analogously models a restriction class (kbio:R_mSPMJTg

Ch1qGqP7t_SNOf1KF-Kk) of all things in which isoflur-

ane participates. The third block formally defines a class

(kbio:I_IB7hiBNOSmq0zEGYg6D7NXd9kQ0) as the

subclass of both of these restriction classes and an OBO

interaction class, i.e., the subclass of interactions such that

for each of its members, there exists some isoflurane that is

a participant, and there exists some ATP5D or one of its

products or variants that is a participant.

A large amount of redundant generation of semantically

equivalent OWL Restriction classes is avoided through the

use of assertions that generate unique hashes for the re-

strictions. For example, the URI for the restriction

kbio:R_I4hmhKlPj3PLuD__6T2QucrTfWk is gen-

erated from a SHA-1 hash of the property and object

values of the triples used to define it. Reusing OWL

fragments like this significantly reduces the number of

triples and in doing so reduces the load on reasoners

that will eventually operate over KaBOB.

Currently there are 75 rules. Depending on the com-

plexity of the rule, and if other rules that look at similar

source records or that have similar output representa-

tions exist, a new rule can be written in anywhere from

minutes (if it is closer to a cut and paste) to an hour or

so (if more thought and exploration is required).

Implementation

Command-line build scripts for installations in both

AllegroGraph (v4.14) [45] (a state-of-the-art commercial

triplestore provided by Franz Inc.) and Virtuoso (v7)

[46] (an open-source triplestore based on relational data-

bases provided by OpenLink Software) are provided in

the open-source release. We run these scripts via a Hud-

son server in order to monitor performance and output;

however, they could be run just as easily without Hud-

son. While we have targeted AllegroGraph and Virtuoso,

there is nothing specific about KaBOB to either. To

query the triplestore, the rule engine and identifier-set

creation code uses the open-source KR Clojure library,

which can talk to any triplestore that speaks Sesame or

Jena. At most, one small function for establishing the

connection to the source triplestore would have to be

extended, but more than likely speaking to a different

server requires only changing the parameters for server

location and authentication. The build scripts would

have to be extended for additional triplestores to provide

a command-line call for loading a directory of RDF files

into the triple store. Porting the scripts from Allegro-

Graph to Virtuoso was done in about a day. The

command-line scripts are written in BASH, and all other

code is Java or Clojure (a Lisp dialect that runs on the

JVM), both configured with Maven, allowing the code to
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be run anywhere the JVM can. We have done all of our

work on a custom-built machine with 24 cores, 96 GB

RAM, 2 TB of SSD drives LVM RAID-0 (for the OS and

triplestore), and 3.6 TB of spinning disk RAID (for man-

aging the RDF files), running Fedora v17.

Results
Two fully functional versions of KaBOB have been built,

along with one partial version. One fully functional version

has been built using only human source data and another

using human data plus data for seven major eukaryotic

model organisms (listed along with their NCBI Taxonomy

IDs): Mus musculus (10090), Rattus norvegicus (10116),

Drosophila melanogaster (7227), Saccharomyces cerevisiae

(4932), Caenorhabditis elegans (6239), Danio rerio (7955),

and Arabidopsis thaliana (3702). (Data for subtaxa of these

taxa also represented in the NCBI Taxonomy, e.g., subspe-

cies of mice and strains of yeast, have been included.)

Ideally, a version of KaBOB would be built using data for

every organism included in the data sources; however, that

is out of reach of our current hardware/software configur-

ation (see discussion in the Current Limitations and Future

Work section). For the all-organism version, only the ICE

records have been produced. For the two fully functional

versions, all KaBOB steps are performed, from initial

ICE record representation to running of all of the BIO

concept generating rules. Each version can be built in

approximately two days.

Data is parsed from a total of 43 different files from 18

data sources. Table 1 shows the numbers of triples and

compressed file sizes for the three versions of KaBOB

and for these versions in total as well as for the three

primary triple subsets of imported OBOs, ICEs of original

source data, and rule-generated data. All versions of

KaBOB use the same 14 ontology files, which amount

to 13,830,676 triples. The triple subsets of imported OBO

content and RDFized original source data are the two

primary sources of data to KaBOB and are shown in

the two parallel paths on the left side of Figure 1. The

rule-generated data comprise all other triples in KaBOB

and includes all of the RDF files depicted under the

KaBOB block in Figure 1. Table 2 shows the number of

identifier sets in each version of KaBOB, along with the

number of triples required to represent those sets, and

the size of those triples in compressed N-triple format.

The ability to answer complex queries that target the

common OBO-based biomedical model is demonstrated

by a series of example queries. An extended use case is

discussed in the “Following up on GSEA results; a case

study for using KaBOB” section, and several other exam-

ples are provided in Additional file 3.

This project has also produced or substantially expanded

three open-source software libraries. First, this project was

the primary motivation for the already released KR library

for working with RDF and SPARQL in Clojure [41], which

has been downloaded more than 800 times. In addition,

timed with the publication of this paper is the release of

two more libraries of code. The first is a Java-based project

consisting of the file parsers for all of the data sources serv-

ing as input into KaBOB and code to convert the parsed

files into RDF. The second project released in conjunction

with this paper is the KaBOB-specific code itself. This code

includes the scripts for building KaBOB, as well as the ID

set merging code and all of the declarative rules.

In addition to building an integrated system that in-

creases the value of the data from the underlying sources,

we are also able to detect potential errors in the data

sources and report them to their curators. Errors can be

detected by querying KaBOB for assertions that should

not exist, e.g., a protein asserted to exist in two disjoint or-

ganismal taxa. In this way, we were able to find a mapping

in DIP that erroneously equated a mouse protein to the

homologous rat protein, an error that was replicated in

the iRefWeb aggregation. During the identifier-merging

step, we have also looked for collapses of what should be

multiple entities into single entities. This has revealed er-

rors in our own code, such as bugs in the ID canonicaliza-

tion inadvertently truncating IDs and causing them to

collide, as well as revealing bad mappings in the under-

lying data sources, including finding over 300 cases in

DrugBank where multiple DrugBank records mapped to

the same external identifier. Pipelined approaches to using

Table 1 Size of KaBOB

imported OBOs ICE records generated (rules and id sets) KaBOB total

subset # triples size .owl (GB) # triples size .nt.gzip (GB) # triples size .nt.gzip (GB) # triples size (GB)

human only 13,830,676 1.5 144,489,737 2.0 7,615,547 0.2 165,935,960 3.6

human +7 major
model organisms

13,830,676 1.5 369,027,022 4.9 34,968,305 0.7 417,826,003 7.1

all organisms 13,830,676 1.5 9,584,033,541 126 n/a n/a n/a n/a

Lists the size of the various collection of RDF generated in the KaBOB build process, recorded in number of triples and size on disk. The first three major columns

include the imported OBOs, the ICE records (output of the file parsers), and the generated triples (output of the rules and ID merging). The fourth column is the

sum of the first three. The rows represent subsets of the KaBOB data based on organisms included. The subsets are human-only, human plus seven major model

organisms (listed in the paper), and the final row is for all organisms combined. Due to the scale of the data in the final subset this data is currently incomplete.
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these data sources would be susceptible to propagating

such errors, as they would blindly hop through whatever

mappings are being used to the target ID, potentially

producing erroneous mappings. See Additional files 4

and 5 for a more detailed discussion of queries used to

find errors, and a more complete explanation of the

DrugBank example.

Discussion

In this section we discuss the solutions to data integra-

tion problems that our methods overcome, and how they

are manifested in KaBOB. We also provide a detailed

example of querying KaBOB using SPARQL 1.1 and con-

clude with a discussion of limitations and future work.

Solutions to data integration problems

The methods and knowledge representations that we

have developed to integrate multiple data sources into a

unified knowledge base provide solutions to seven seman-

tic data integration problems. These solutions include: (1)

distinct representations of data and biomedical concepts;

(2) common biomedical representations; (3) identity reso-

lution across data sources; (4) consistency despite poten-

tial errors or contradictions in source data; (5) the ability

to represent and query data using multiple different levels

of abstraction or granularity simultaneously; (6) stable and

reusable URIs; and (7) traceable provenance.

Distinct informational entities and biomedical concepts

Previous work integrating large quantities of biomedical

data either use source-specific modeling and thus are ac-

tually disjoint, or do not include the portions of the

source data that have not yet been represented in the

common biomedical model (see discussion in Related

Work). Another common problem when dealing with

biomedical data is overloading the meaning of common

identifiers (e.g., using a UniProt identifier to simultan-

eously represent an identifier, a record, and a protein).

KaBOB resolves these problems by clearly modeling both

biomedical concepts (e.g., genes and gene products, dis-

eases and phenotypes, interactions and processes) and

informational entities referring to these concepts (e.g.,

database schemas, records, fields, field values, and iden-

tifiers) and maintaining an explicit distinction between

the two categories. For example, KaBOB has distinct,

explicitly represented concepts for a UniProt identifier,

the corresponding UniProt record, and the class of protein

that the identifier denotes and the record describes.

All of the aforementioned informational entities of the

source databases are represented as information content

entities on the ICE side of KaBOB. Biomedical represen-

tations are derived from these ICE data and represented

on the BIO side of KaBOB. (These representations are

further discussed in the next subsection). The only links

that cross the demarcation between ICE and BIO repre-

sentations are relations that indicate that a given informa-

tional entity on the ICE side “is about” some biomedical

concept on the BIO side. There are three relations from

the IAO that are used to make these connections: iao:

denotes is the most frequently used one, indicating that

a given ICE exists for the sole purpose of identifying a

given BIO concept (e.g., UniProt:Q3B891 denotes the hu-

man BRCA1 protein); iao:mentions is a weaker rela-

tion stating some part of the ICE denotes the BIO concept

(e.g., a given sentence mentioning the human BRCA1 pro-

tein ); and iao:is_about is the parent relation of the

two, encompassing a more general sense of aboutness.

The vast majority of these ICE-to-BIO links are iao:

denotes assertions that are generated to link identi-

fiers to their denoted concepts. Rules can also assert an

iao:mentions link between a record from which

information was retrieved to the BIO class that was dy-

namically created in order to represent that the class

was based on information in that record. These links

across the ICE-BIO divide serve as a primary source of

identifying provenance data for biomedical concepts.

The clear separation and explicit representation of

source data and biomedical concepts provide several dis-

tinct advantages. The availability of a common biomedical

model allows queries to be written in terms of biomedical

concepts, not in terms of information artifacts or database

structures with which the user must become familiar, and

queries over the biomedical modeling will not have to

change if new source information is mapped to existing

biomedical concepts and assertions. Source information

that has not yet been mapped to biomedical-concept-

based representations can still be queried given that it is

first represented as information content entities on the

ICE side. Furthermore, explicitly representing the source

data makes it available as provenance for the biomedical

representations, enabling queries of source evidence for

given biomedical assertions (discussed further below).

Table 2 Number of entities / ID sets

subset # id sets # id set triples total RDF .nt.gz file size

human only 336,472 952,807 14 MB

human +7 major model organisms 1,513,932 3,644,255 56 MB

List the number of entities or ID sets in each subset of KaBOB. Each ID set is the collection of identifiers from multiple data sources that are intended to denote

the same biomedical concept. Number of ID sets, number of triples, and size on disk is reported.
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Ontology-based representations

KaBOB is modeled using representations from existing

prominent biomedical ontologies created and maintained

by core developers with significant community input.

We rely on prominent Open Biomedical Ontologies

(OBOs) as a framework. The species-specific biological

sequences and their information from source databases

that comprise KaBOB are placed within this framework.

When necessary we extend existing ontological classes

with dynamically generated composite classes (e.g., a

composite class representing the interaction of two

given proteins, defined in terms of already explicitly

represented classes for molecular interaction and for

the two proteins). These composite classes are for-

mally defined in terms of explicitly represented OBO

classes, carefully maintaining the OWL “all-some”

quantification among related classes. The large major-

ity of KaBOB assertions rely on relations from the Re-

lation Ontology (RO) [19], those used in the OBO

cross-products effort [47], and natural extensions of

the latter. All of the ICE representations in KaBOB are

types of information content entities that we have

modeled as extensions of the Information Artifact

Ontology (IAO) [38].

Our use of ontological concepts and relations already

explicitly represented along with the dynamically gen-

erated composite concepts formally defined in terms of

these existing concepts allows us to precisely capture

biomedical knowledge, including content of source da-

tabases, to arbitrary levels of complexity. Using and

extending prominent OBOs as a framework enables

sophisticated reasoning over the content of KaBOB.

Most straightforwardly, a plethora of deductive infer-

ences can be made based on the ontologies’ fundamen-

tal taxonomic hierarchies, non-taxonomic linkages among

their classes, and the formal definitions of the active OBO

cross-product efforts. This approach also opens the door

for research into inductive and abductive reasoning meth-

odologies. Furthermore, reliance on these OBOs facilitates

interaction with the enormous amount of data annotated

with them and with other resources making use of them.

This in turn makes it easier to model and absorb source

data into KaBOB as well as easier for users familiar with

the community ontologies to interact with KaBOB and to

formulate queries and understand their output. The repre-

sentations in KaBOB are biased to be event-centric, as

they are easier to represent with all-some restriction se-

mantics. However, entity-centric representations are cre-

ated for simplicity in some cases, e.g., assertions linking

proteins to the genes that code for them (though it would

also be possible to explicitly represent the implicit tran-

scription and translation events). Event-centric represen-

tations could be translated into entity-centric classes and

assertions; however, to conform to all-some assertional

semantics, this requires a somewhat more roundabout

representation so that only the entity’s potential to partici-

pate in a particular event is represented as opposed to

stating that all instances of a given entity necessarily par-

ticipate in it.

Identity resolved across data sources

In order to integrate data from multiple data sources it

is essential to understand which identifiers across the

sources fundamentally refer to the same things. This is

complicated by the fact that data sources often use their

own source-specific identifiers to avoid external depend-

encies that could cause problems in their curation ef-

forts. Fortunately, mappings are often provided across

data sources. Sometimes these mappings provide one-

to-one mappings specifying identity; however, they are

often provided as more convoluted sets of “related”

identifiers. Great care must be taken when processing

these mappings (see the previous “Identifiers and Identi-

fier Sets” subsection).

In KaBOB, each identifier in a set, all of which denote

the same biomedical concept, is directly linked to this

single shared biomedical concept. We chose this ap-

proach as opposed to the alternative of modeling asser-

tions from each data source individually on the BIO side

of KaBOB and then connecting the BIO entities using

owl:sameAs assertions. The alternative is more opaque

and would be difficult to navigate for RDF approaches

that do not make inferences over owl:sameAs asser-

tions. Even for some systems that handle owl:sameAs

the alternative approach dramatically increases the num-

ber of triples and could result in intractability. Our

method of first generating an identifier set and then

linking to a single corresponding biomedical concept al-

leviates these problems. The identifier sets are also use-

ful in and of themselves when querying the data source

records without having to travel in and out of the bio-

medical representations.

By resolving identity across data sources, KaBOB alle-

viates one of the most critical [2], time-consuming, and

redundant steps [48] in integrating data from multiple

sources. Systems that do not do this require users to

maintain mappings across sources in every query, dra-

matically increasing the complexity of the query and cre-

ating ongoing maintenance problems. In KaBOB a set of

trusted high-quality mappings is applied first, and then

the unified entities are used to aggregate data from mul-

tiple data sources. Since the mappings are all managed

and extracted using explicitly represented sets of de-

clarative rules, it is easy to produce or maintain alterna-

tive mappings or to recompute the unified entities using

a different set of trusted sources in the event a user be-

lieves that a different set of sources should be used as

the basis for the mappings. This can be done by either
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adding rules or deactivating existing rules during KaBOB

generation. The subsequent steps to building KaBOB

would then proceed as normal, connecting representa-

tions to the alternate entities, and existing queries target-

ing the biomedical representations could still be issued

without the need to be altered. Resolving the identities of

data-source-specific identifiers, aggregating them into

sets, and linking them to biomedical concepts they de-

note in common is the essential foundation that en-

ables the querying of KaBOB in terms of the shared

biomedical modeling rather than having to perform

queries in terms of (often a series of ) data-source-

specific representations.

Tolerance for inconsistent source data

KaBOB tolerates inconsistencies in assertions among

disparate data source records on both the ICE and BIO

sides of the knowledge base. On the ICE side of KaBOB,

source data records are modeled as independent infor-

mational entities (specifically, records, fields, field values,

and identifiers). Conflicting assertions would each be in-

dependently represented as different records. This cap-

tures the fact that one of the assertions was made in its

corresponding record and the other assertion in the

other record, and these two assertions may be conflict-

ing or not if integrated. Note that our methodology also

alleviates the issue of assertional inconsistencies within a

given data source. While the semantics of conflicting as-

sertions within most of these data sources is ambiguous,

these assertions are modeled the same way as if from

separate data sources, with one assertion within one rec-

ord and the other assertion in the other record, all expli-

citly and clearly represented as informational entities.

Conflicting assertions extracted from conflicting source

records can also be modeled on the BIO side without

generating an inconsistency. This is enabled by generat-

ing dynamic subclasses for every assertion being mod-

eled in the BIO portion of the knowledge base. This

minimizes the places at which two assertions can con-

flict since each new assertion from a source database is

represented as a subclass. As such each assertion is es-

sentially in its own “world”, all contained in the KaBOB

open world. These sets of subclasses can then be aggre-

gated in multiple ways as discussed in the following

section, and demonstrated in the subsequent example

query. Since there is no guarantee that data from mul-

tiple sources, or even within one source, is necessarily

consistent (and in fact the converse is almost a given)

this is something that data integration systems, espe-

cially those using formal logics (e.g., OWL) must necessar-

ily address. Failure to do so could result in an inconsistent

(and unusable) or erroneous knowledge base. By modeling

representations with an extensive amount of subclas-

sing we create an environment where the inevitable

inconsistent or erroneous assertion will not ultimately

result in an inconsistent knowledge base. By following

this precedent when new sources are added this envir-

onment is maintained, creating a stable environment

for the ongoing integration of data.

Representation at multiple levels of abstraction

For some tasks biologists care greatly about distinctions

between corresponding biological sequences, e.g., genes

versus gene products, reference sequences versus vari-

ants, species-specific sequences versus homologs; for

other tasks, the distinctions are unimportant and so

corresponding sequence types can be aggregated into

more collective types. KaBOB provides a flexible know-

ledge model capably of representing the full spectrum

of sequence type abstractions. Representations such as

the collective class of genes, gene products, and vari-

ants can provide this freedom and are needed when a

particular source curates a given type of data at a high

level of generality. For example, with regard to a drug-

gene interaction assertion in a source database, while it

is possible that the given drug directly interacts with the

specified gene (i.e., DNA), it is much more likely that it

binds to one of its products, though which product (e.g.,

RNA, protein, or even specific protein isoform) may not

be specified at this level of curation; furthermore, it may

not be specified whether the interacting entity is a refer-

ence sequence or a variant. (This information may not

even be known to the original researchers or the curators).

We can properly model such a curated interaction by

making use of a sequence abstraction class, asserting that

there is an interaction between the drug and the gene or

one of its products, either in the form of a reference

sequence or a variant.

Certain abstractions are necessary for the current mod-

eling being done in KaBOB and have already been

explicitly modeled and used; for example, for every

species-specific gene class, we have also created a cor-

responding abstracted class of the gene and its gene

products, which subsumes the gene class and all of its

products. Other abstractions could easily be created and

layered on additively; for example, for species-specific gene

classes, we plan on creating corresponding abstracted

homology classes, i.e., the class of a given species-specific

gene and all of its homologs. This would allow consistent

modeling of situations in which the precise identity of the

homolog (e.g.. mouse vs. human) is ambiguous in the

source information. User-defined abstractions could be

layered on as well without affecting the underlying data.

These abstractions can be formally defined as union

classes in OWL, and the rule engine can be used to

generate all of the specific classes (e.g., gene-specific,

protein-specific, etc.). Since these abstractions are formally

defined using ontologies and generated using rules that
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can be traced all the way back to the records used to trig-

ger the rules, it is completely unambiguous what is meant

by any given abstraction. No implicit assumptions are

made about what is being modeled. This is not true for

systems that provide weaker definitions of the abstractions

they employ.

In addition to sequence-based abstractions KaBOB

also supports varying granularity in process-based repre-

sentations as well. Multiple rules can be applied to the

same underlying data to generate representations at

multiple layers of abstraction. For example, it is possible

to look at a pathway database that associates proteins

with a pathway and initially model that as a pathway

which obo:has_participant those proteins; this

would model the pathway at a high level of granularity.

If that pathway database also modeled the interactions

that make up the pathway or the processes that inhibit

or enable other processes, subsequent rules could be

written to extract and model that information at finer

levels of granularity. All of these rules and resultant tri-

ples can exist simultaneously and without conflict.

Representing biological sequences and processes at

multiple levels of abstraction enables users to choose a

level of specificity or generality for a given query; in fact,

different parts of a query may be specified to operate at

different levels of abstraction. Further, it requires queries

to be explicit when moving between levels of abstraction

and thus highlights where a query might be making

non-deductive steps. This rightfully places decisions on

where to make inferential leaps or how to leverage ab-

stractions on the users and tools that need these infer-

ences and abstractions. KaBOB makes no preferential

commitment to any one level of abstraction or granular-

ity and allows data and queries to exist at multiples levels

simultaneously.

Stable and reusable URIs

When generating assertions in KaBOB, many new en-

tities must be explicitly represented, including informa-

tional entities such as field values and records as well as

biomedical concepts such as proteins and interactions.

OWL also requires the generation of anonymous iden-

tifiers such as those for dynamically generated owl:

Restriction classes that are commonly modeled

using RDF blank nodes. In order to provide consistency

and stability over time, URIs for these entities are de-

terministically constructed using SHA-1 hashes of the

values that functionally define these entities; for ex-

ample, a specific field value of a specific field is deter-

ministically defined by the field name and its value.

Such hashing provides stable, unique, and consistent

URIs for these identifiers, and by using a one-way hash

function we avoid encoding data into the URIs, thus

complying with the well-established guideline for URIs

to be devoid of implicit meaning. The stability of the

URIs over time supports debugging by consistently re-

generating content the same way every time, and future

work will leverage these URIs to monitor changes in

data sources over time.

These hashed URIs further enable significant savings

in terms of the number of triples by allowing representa-

tion to be shared in both ICE and BIO content. This is

most notable in the sharing of field values and OWL re-

strictions; however, it also allows different databases that

refer to the same biomedical concept, e.g., a protein-

protein interaction, to point to the same class. These

connections are made without having to look up an

existing URI or even know if there is an existing one, as

identical URIs will be minted every time. Not having to

remember or look up potentially existing URIs enables

efficient parallelization as well.

Although a hashing collision is theoretically possible with

this approach, SHA-1 should provide more than enough

space (160 bits) to avoid it empirically. The best known

theoretical attack on SHA-1 requires 269 (~5.9 × 1020)

hashes to identify a collision [49]. This is further miti-

gated by the fact that the hashed URIs have other com-

ponents as well, e.g., source-specific namespaces. A

collision would have to happen within one data source

or one type of thing represented in the BIO content,

making an extremely unlikely event even more unlikely.

There is no foreseeable need to cryptographically secure

KaBOB URIs; however, if such a need arose, SHA-2 or

SHA-3 hashes could be used instead at the cost of lon-

ger URIs.

Traceable provenance

Provenance can be tracked in two primary ways in

KaBOB. Most directly, concept-level provenance can be

assessed via the IAO links that connect ICEs to BIO

concepts, e.g., an iao:denotes link between a pro-

tein ID ICE and a protein, or between a protein-protein

interaction record ICE and the corresponding inter-

action concept in the BIO part of KaBOB. Thus, the in-

formational source of any BIO concept is directly

accessible by simply querying for the triple linking the

given ICE to its denoted biomedical concept.

The second method for acquiring provenance is by

running rules “backwards”. Every triple in KaBOB is from

one of four sources: OWL ontologies, RDF built from the

data sources, RDF output from ID set generation, or the

output of rules that use the other available triples. Every

triple can thus have its provenance dynamically re-derived

as a set of source records (and ontology parts) and rules

that created it. Note that triples in the BIO part of KaBOB

can actually have multiple sources of provenance. For ex-

ample, it is possible that two different rules and two differ-

ent sources of drug-gene interaction information lead to
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the same set of triples in the biomedical representations.

(It is in fact a goal of KaBOB that two sources of the same

information necessarily lead to the same biomedical

modeling). In addition to this provenance, records

themselves often have data-source-specific provenance,

e.g., the PubMed ID of the publication serving as the

evidential basis for the creation of a given data record.

These provenance data are mirrored in the record ICEs

and are readily accessible for querying. Future work

could include writing rules to extract and represent this

type of provenance more explicitly and consistently by

generating ICE-based links between the PubMed IDs

and corresponding records. By directly asserting

concept-level provenance assertions and by declara-

tively representing the transformations that generate

assertions, provenance in KaBOB is completely trans-

parent and unambiguous. This is in contrast to other

existing systems that bury these transforms and the

representational choices they make in procedural code

(e.g., a Perl script that generates triples from a data

source), which is then generally opaque to users and

reasoning systems. The approach taken by KaBOB af-

fords a more direct ability to inspect and update prov-

enance and resolve potential modeling errors when

they are uncovered. Errors resulting from bad source

data can also be traced back to their origins, some of

which we have reported to their curators.

Following up on GSEA results; a case study for using KaBOB

One common type of biomedical experiment is to run

a high-throughput microarray analysis and compare

transcription levels in case and control groups to get a

list of differentially expressed genes. Researchers will

then often report the results of GSEA (Gene Set En-

richment Analysis) [50] on that list. Frequently this is

where the analysis ends; however there are numerous

follow-up questions the researchers and readers likely

have. KaBOB can be used to answer these questions.

For example, Choi et al. [51] were interested in changes

in mitochondria in mice bred for high and low fear. They

showed that the genes differentially expressed in the pre-

frontal cortex (PFC) were enriched for the process of

oxidative phosphorylation. The authors conclude their

discussion by stating that “a better understanding of

the genes associated with the mitochondrial function in

the PFC may provide an opportunity to identify a novel

drug target for the treatment of mood and anxiety dis-

orders.” Natural follow-up questions to these results are:

“Which genes/gene products in humans, are localized

to mitochondria, involved in oxidative phosphorylation,

and are targets of drugs? And what are these drugs?”

These questions can be readily asked and answered

with KaBOB. For example, the following SPARQL 1.1

query retrieves drugs that bind to gene products that

are localized to mitochondria and are involved in oxida-

tive phosphorylation:

The query is broken into five major lettered blocks,

A-E. Section A queries for the restriction of all things

that have been found to localize in mitochondria, finds

the corresponding localization events, and retrieves the

gene products found to have localized there. For a

given gene product, section B retrieves the correspond-

ing gene-or-gene-product aggregate class, and section

C queries for which of these gene-or-gene-product clas-

ses pertain to humans. Section D then returns to the

gene-or-gene-product aggregate class and first retrieves

all of its subclasses, including itself. Note that to effectively
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use the aggregate classes for every biomedical assertion

one must first query for all the subclasses of the aggregate.

This allows for all of the subclasses to be queried as an ag-

gregate; if instead a variable was reused across clauses,

that query would effectively be asking for one specific

gene product known to satisfy all conditions (for which, in

this case, none would be found). Section D continues by

querying for all things in which these gene products par-

ticipate, and then selecting only those that are a subclass

of oxidative phosphorylation. Section E again gets a new

subclass of the aggregate abstraction, then retrieves all

events in which it has been found to participate, finds

other participants of these events, and then makes sure

that the second participant is realizing the role of (i.e.,

acting as) a drug in that interaction. Finally, the query

retrieves the names of the resulting drugs.

This query highlights some of the benefits of the

KaBOB representations discussed in earlier sections. Se-

quence abstractions are utilized, as seen in section B of

the query. The extensive use of subclassing is also evi-

dent throughout the query. For example, section A is

looking for the subclass of localization, that is the sub-

class of all things that result in localization to the mito-

chondria, and then queries for the other parent classes

that provide information about what is being localized.

This query also highlights the fact that the query is asked

only in terms of biomedical concepts (e.g., genes/gene

products/variants, organismal taxa, oxidative phosphoryl-

ation, mitochondria, drugs), with no informational entities

(e.g., names of specific databases, fields, identifiers) ever

referenced.

With only PharmGKB integrated as a source of drugs

and drug targets, the query above returns the two drugs

adefovir dipivoxil and tenofovir. By extending the SELECT

statement to include the variable ?gorgporv (the vari-

able representing gene-or-gene-product aggregate classes)

the query is modified to return gene-drug interacting

pairs, instead of just the drugs. Executing this query

shows that both drugs interact with the AK2 gene or its

products.

After writing three rules to also integrate DrugBank

into KaBOB using the same common biological repre-

sentation, the query can be run without changes and the

results are extended to 8 genes that collectively interact

with 26 different drugs. These eight genes include two

from the PFC gene list in Choi et al. (UQCRB, UQCRC1),

two more that are mentioned in another gene list in Choi

et al. (AK2, UQCRC2) and four that appear in neither

gene list (ATP5C1, ATP5D, COX1, UQCRH).

Looking up all the drugs that interact with the PFC

gene list produces 169 potential compounds. Running

the query above produces a far more targeted list of 26

compounds. The five in bold do not occur in the list of

169 and thus are unique to this approach; this is due to

the fact that KaBOB can identify other potentially rele-

vant genes that were not in the experimental results

that are drug targets, in this case genes involved in oxi-

dative phosphorylation that have been found to localize

in mitochondria that were not in the experimental PFC

gene list.

(5S)-3-ANILINO-5-(2,4-DIFLUOROPHENYL)-5-METHYL-

1,3-OXAZOLIDINE-2,4-DIONE

1-ACETYL-2-CARBOXYPIPERIDINE

2-Hexyloxy-6-Hydroxymethyl-Tetrahydro-Pyran-3,4,5-

Triol

2-NONYL-4-HYDROXYQUINOLINE N-OXIDE

5-HEPTYL-6-HYDROXY-1,3-BENZOTHIAZOLE-4,7-

DIONE

5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole

Adefovir Dipivoxil

AUROVERTIN B

Bis(Adenosine)-5’-Pentaphosphate

Cholic Acid

Desflurane

Enflurane

FAMOXADONE

Halothane

Isoflurane

Methoxyflurane

METHYL (2Z)-2-(2-{[6-(2-CYANOPHENOXY)PYRI

MIDIN-4-YL]OXY}PHENYL)-3-METHOXYACRYLATE

METHYL (2Z)-3-METHOXY-2-{2-[(E)-2-PHENYLVI

NYL]PHENYL}ACRYLATE

Myxothiazol

N-Formylmethionine

N1-(2-AMINO-4-METHYLPENTYL)OCTAHYDRO-

PYRROLO[1,2-A] PYRIMIDINE

PICEATANNOL

Quercetin

Sevoflurane

Tenofovir

UBIQUINONE-2

The purpose of this example is not to demonstrate

novel biomedical findings but instead to illustrate how a

complex query expressed exclusively in terms of biomed-

ical concepts, without having to know underlying database

schemas, can be formulated and issued against our inte-

grated knowledge base. However, even a brief search of

PubMed with the results from this example shows bio-

medical relevance of the results of the example query. For

example, research has been conducted looking at the ef-

fects of isoflurane and desflurane on mitochondrial func-

tion and cognition [52].

Current limitations and future work

The primary limitations of the KaBOB methods and

knowledge model are related to issues of scale. These limi-

tations include the size of the original data source files
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and the number of records they contain, limits on the

number of triples a given machine or piece of software

can store and query, and limits on the ability to query for

triples that are entailed but not explicitly represented.

Fortunately all of these issues are major and active areas

of research and development in the Semantic Web com-

munity and by product vendors, so in addition to our at-

tempts to mitigate them, it is likely that they will continue

to be externally addressed.

Storage of the record RDF for the all-organism version

of KaBOB takes approximately 140 GB per version. Up-

dating KaBOB monthly and preserving legacy data would

require nearly 2 TB of space per year. Part of our ongoing

research is developing a methodology to require keeping

only differences to historical data instead of complete cop-

ies, hopefully greatly reducing storage requirements. This

is potentially feasible due to our use of a common under-

lying representation for records from all source databases

and SHA-1 hashing to consistently name URIs that we

are generating, which collectively provide a high level

of consistency across versions and over time.

Early steps in the KaBOB build process are possible using

the full (all-organism) data set; however, more complicated

queries later in the build process were taking inordinate

amounts of time on our hardware/software combination

and so have been temporarily placed on hold while we

work on moving to a larger machine. Triplestores tend

to scale as a function of memory, and we believe an all-

organism KaBOB can be computed on a larger-memory

machine. Our collaborators at Franz have run some of

our test queries successfully on a 384 GB RAM machine

(4x what we are running). Machines with 500 GB or even

1,000 GB are becoming more common at supercomputing

facilities, such as those being built at the University

of Colorado, and cloud-based environments such as

Amazon’s EC2 currently rent access to 244 GB ma-

chines. We will also continue to explore other potentially

large but bounded subsets of the data, e.g., all eukaryotes.

Additionally, triplestores are continuing to improve, and

the hardware needed to run them is decreasing in cost.

We are operating on the order of 10 billion triples with

hardware costing less than US$10,000. Distributed triples-

tores are an ongoing area of research, and experimental

systems have been successfully fielded on 100 billion tri-

ples already.

KaBOB satisfies the data modeling desiderata for inte-

gration put forward by [2–4]. These papers also discuss

what is required to have a more open and federated sys-

tem of data access, but this is beyond the scope of our

work. Common models for identity, semantics, and prov-

enance are prerequisites for such a federated system, and

these are some of the problems KaBOB addresses. The

knowledge representations in KaBOB lay the foundation

for how to integrate data using the OBOs such that data

from disparate source databases are interoperable, and this

work should be equally applicable to any future attempts

at federation. Future work could potentially enable

multiple independent end-points participating in a fed-

erated KaBOB.

Reasoning at scale can also be problematic. KaBOB

representations are predominantly currently modeled in

OWL-EL [53], which can be computed in polynomial

time, though we have yet to attempt to run a classifier

over billions of triples. (The only representational con-

struct outside of OWL-EL currently in KaBOB is union,

which is used in the formal definition of the sequence

abstraction classes as unions of base sequence types;

however, they can be represented in parallel as super-

classes of the base sequence types). There is also ongoing

work by triplestore providers to perform inference and

materialization faster and for more complicated inferences

[45,54]. Thus far we have taken advantage of SPARQL 1.1

property paths to reason through transitive properties

(e.g., subClassOf*); the performance of doing so var-

ies by triplestore. With some tuning to query ordering,

AllegroGraph can navigate these paths in satisfactory

time, with the slowest queries running on the order of

minutes to tens of minutes on our hardware. Alternately,

transitive properties could be materialized into the triples-

tore in order to get better performance. Given the way

Virtuoso currently implements property paths, such a step

would be necessary to query with multiple paths. Not all

inferences can be accessed with property paths alone, e.g.,

entailments from transitive properties or subclass hier-

archies nested in OWL restrictions. We are interested in

using OWL-EL reasoners such as ELK [55] to attempt to

make these queries tractable. Other alternatives include

using Datalog forward chainers to materialize the neces-

sary triples, such as the Allegro Graph Materializer [56] or

RDFox [57].

Querying OWL using only SPARQL can be tedious, but

this is also improving with time. SPARQL 1.1 provides sig-

nificant improvements over 1.0 via property paths. Other

APIs for querying triplestores and interacting with OWL

are also being developed by the community. We are inter-

ested in developing other APIs for common tasks and

queries, or extending our existing domain-specific lan-

guages to alleviate some of the strain. The rule language

for KaBOB, for example, makes available several macros

to significantly reduce the number of boilerplate triples

humans have to produce when interacting with record

ICEs.

As reasoning and query capabilities continue to improve

we are also interested in developing tools for maintaining

and monitoring the quality of KaBOB. This will include

research into systems that query for potentially erroneous

assertions in KaBOB, trace their provenance, and report

on the collective set of rules and source records used to
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create the incorrect assertions. Prior to a specific reso-

lution for these problems being provided by human inter-

vention these assertions could be blocked from generation

in subsequent builds of KaBOB or filtered from an existing

KaBOB instance.

Related work

Related research on the semantic integration of data

sources falls into two primary classes: automated inte-

gration investigated by the computer science community

(typically database or AI researchers), and the more man-

ual but domain-specific research conducted by the bio-

informatics community.

Automated database integration

The problem of integrating multiple databases has a

history almost as old as relational databases themselves;

Doan and Halevy [58] review this work and provide links

to older reviews on this topic. Research in the database

and artificial intelligence (AI) communities on automated

data integration falls into two main categories: schema

matching and data matching. Schema matching focuses

on mapping the schema for one database to another, e.g.,

figuring out that the “Surname” column of one database

is the same as the “Last Name” column of another. Data

matching is performed using actual field values, e.g., find-

ing that a record in database A has the value “Livingston”

and database B also has the value “Livingston” for a given

record, and so on for the other values of the records.

Work on automated matching is complicated by the

fact that schemas often model data at different level of

abstraction and there is not necessarily a one-to-one map-

ping across databases. For example, one schema might

have separate fields for street address, city, and state, while

another schema might represent all of that data in an inte-

grated address field. These complex matches can be diffi-

cult to identify, as increasing the number of fields that

can be combined along with the ways in which they can

be combined can result in a combinatorial explosion.

When it comes to tuple matching there is the question

of whether or not two nearly identical tuples represent

duplicate or different data. There has also been growing

evidence that there may not be one universally correct

match, but rather that mappings are application-dependent

[58]. Domain ontologies are also being used as a backbone

for mapping multiple database schemas together [59].

KaBOB maps representations to ontologies allowing for

multiple levels of abstraction to be represented simul-

taneously. These mappings are also currently produced

manually, allowing knowledge engineers to use all avail-

able background knowledge (including database docu-

mentation) to generate the matches to the OBOs.

In the development of KaBOB we have opted for a

manually built rule-based approach to schema matching,

converting the matched data into a common model

grounded in prominent biomedical ontologies. While

our approach is potentially slower than automated ap-

proaches, there are a finite number of rules to be pro-

duced. Future work could involve exploring the use of

automated mapping techniques or human-computer

hybrid techniques to accelerate the process. However,

the primary bottleneck is still creating the target know-

ledge representation for a new class of biomedical in-

formation; after a new such representation is constructed,

a second source of the same type of information can be

more easily built, copying from the first.

Doan and Halevy [58] state the core problem of seman-

tic integration is identifying if any two elements refer

to the same real-world concept. In KaBOB we expli-

citly model these mappings in terms of identifier sets

and other iao:denotes links, as well as tracking the

provenance of other concepts through declarative rules.

Provenance and explanation of matches is not always

provided by automated database integration systems,

although it is also being researched by the database

community [60].

Biomedical database integration

Interchange languages, such as BioPAX [61], GAF2

[62], and PSI MIF [63] provide a common way to rep-

resent data and are playing a growing role in the bio-

medical data ecosystem for sharing data. These data

formats have done much to increase the level of data

sharing in the community; however they are generally

domain- or task-specific. Larger database integration

projects also exist, such as BioMart [64] which pro-

vides the ability to query across multiple biomedical

data sources. While this provides a common interface,

queries are still required to know which sources they

wish to query and how the data is organized in those

individual sources. Much work has gone into produ-

cing database integrations with various configurations

and goals; Louie et al. [65] provide a review-level dis-

cussion of several existing biomedical data integration sys-

tems. The remainder of our discussion will focus on

ontology-based integration of biomedical data, as this is

most related to KaBOB.

Semantic integration and querying of multiple sources

of biomedical data dates back at least to Tambis [66],

which attempted to answer queries without the user having

to know which data sources were necessary. More recently,

there has been a push to integrate biomedical data with the

Semantic Web [67,68]. This includes work in building

canonicalized and stable URIs [69,70] as well as work on

publishing and disseminating data and recording their

provenance [71,72].

Bio2RDF [73] is the most prominent project for provid-

ing access to RDF versions of many existing biomedical
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data sources. It provides canonical identifiers, and al-

though it does not attempt to explicitly assert sets of iden-

tifiers that point to the same entities, it does provide

access to identifier mappings; in this way it is primarily

analogous to the ICE portions of KaBOB. Additionally,

Bio2RDF does not attempt to align representations to a

common biomedical model, thus making querying across

data sources more difficult and convoluted in that query

writers must navigate all relevant component database

schemas themselves. Bio2RDF generates representations

using source-specific models and is primarily focused

on facilitating “mash-ups”. Given this focus, Bio2RDF

has weaker constraints on its representation and some-

times conflates things that should be semantically dis-

tinct. For example, the URI for glutathione in Bio2RDF

(http://bio2rdf.org/drugbank:DB00143) is ex-

plicitly asserted as rdf:type http://bio2rdf.org/

drugbank_vocabulary:Drug and implicitly as foaf:

Document (via a rdfs:domain constraint on an explicit

void:inDataset assertion). These representational in-

consistencies create a weak foundation if not real problems

for research that wishes to build upon it for semantic rea-

soning purposes. While it may be possible to build KaBOB

on top of something like Bio2RDF data, this remains an

open question and entails risks. We believe our ICE repre-

sentations provide a maximally general, and representation-

ally sound, foundation for KaBOB.

Subsequent work points out that “querying Bio2RDF

remains difficult due to the lack of uniformity in the rep-

resentation of Bio2RDF datasets” [74]. Their work attempts

to resolve this problem by aligning the source-specific

schemas of Bio2RDF to the Semanticscience Integrated

Ontology (SIO). They acknowledge that the SIO is limited

in its coverage and needs to be extended, thus introducing

a significant additional ontology development problem.

The manual mappings done by Callahan et al. [74] require

one-to-one relations between the source classes and prop-

erties in the Bio2RDF ontologies to those in the SIO, which

they acknowledge are often imprecise matches to high-

level concepts.

KaBOB makes very explicit the differences between data-

base entities and biomedical concepts, unlike Bio2RDF. Its

shared biomedical representations are grounded in prom-

inent, actively maintained, large-scale Open Biomedical

Ontologies. Compared to the SIO they have much greater

coverage, greater consensus among the community, and

are already used directly by many prominent curated data-

bases, greatly simplifying the mapping problem. KaBOB

also performs the translation from implicit database con-

tent to explicit biomedical representations using declara-

tively represented forward-chaining rules that are capable

of dynamically constructing new entities. In contrast to

approaches that only align ontology terms, this allows

mismatches between the abstractions implicitly used for

curation in the databases and those in the OBOs to be

more easily overcome, while still recording provenance.

When a rule (mapping) fails (perhaps due to changes in

the underlying data), it is also easily detected as the output

of the rule will produce zero triples, unlike mappings pro-

vided in hand-coded ontology files. Neurocommons [75]

is another ontology-based knowledge base aggregating

biomedical information from a range of sources. Precise

identifiers for records that maintain the distinction be-

tween entities such as genes and gene records have

been carefully created, and they are used for provenance

of biomedical assertions, but, unlike KaBOB, the content

of the records is not directly modeled. Record content that

has not been mapped to a common biomedical model in

Neurocommons is computationally inaccessible, and the

mappings to the model are performed via procedural

code. In KaBOB, record data is available for computational

systems in the ICE portion of the knowledge base even

if rules that map these data to biomedical representa-

tions have yet to be written or run. Furthermore,

KaBOB’s declaratively represented rules can also func-

tion as provenance for concepts in the common bio-

medical model.

There have been several other approaches to semantic

integration of biomedical data. Early work by Ruttenberg

et al. [76] discussed the need for uniformly structured

data across domains in order to advance translational re-

search. They further discuss how the Semantic Web might

provide a platform for such a taks. BioGateway [77] was

an approach that aggregated a large quantity of data using

a mixture of OBOs and custom ontologies. Like most earl-

ier work it did not make a distinction between ICE and

BIO content as does KaBOB nor does is integrate overlap-

ping content. The work by Marshall et al. [78] also has

similar goals to KaBOB; however it stops short in many

key areas, leaving as opportunities for future development

problems that KaBOB resolves, such as how to represent

and integrate concepts representing information arti-

facts and how can they be used to provide provenance. It

does solve other problems in ways that KaBOB has also

adopted, such as normalizing the identifiers in source

records. More recently work by Hoehndorf et al. [79]

demonstrates how integrating data from multiple sources

using OWL can support very complex querying. They in-

tegrate several types of data that KaBOB also provides;

however their model forces the use of certain abstractions,

for example, it is gene-centric mapping all data to genes,

as opposed to supporting multiple parallel abstractions as

does KaBOB. Their mappings are also done without mak-

ing an ICE-BIO distinction and preserving the informa-

tion entities as provenance. Finally they use equivalent

class axioms to merge entities in the biomedical represen-

tations, while KaBOB resolves these mappings at an earlier

stage with identifier mappings.
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Other systems for indexing and querying federated

sources of biomedical data have also been developed.

ResourceIndex [80] indexes data sources and their records

for search by using the NCBO Annotator [81] to identify

the ontology concepts mentioned in them. ResourceIndex

enriches its annotations using intra-ontology information,

such as the transitivity of the subclass hierarchy; and

inter-ontology information, such as mappings between

ontologies. NIF [82] is a neuroscience-specific environ-

ment for indexing and querying Web pages, publications,

and even databases. NIF provides the ability to use ontol-

ogies to query across data sources and even into databases

by providing an environment where data providers can

register their data and map it to the common ontologies,

and where users can issues queries that are translated into

ontology concepts and federated to all participating re-

sources. Queries can be expanded to use a neighborhood

of related ontology terms. Systems like ResourceIndex and

NIF provide incredible querying power and specificity to

users. However, these tools do not model the relationships

between concepts present in records or documents, and

they do not link or aggregate data across sources.

Existing commercial work on biomedical data integra-

tion includes Ingenuity Pathway Analysis [83], which iden-

tifies relevant molecular networks by integrating gene

expression data, gene annotations, and manually curated

data from literature. Other tools such as BioXM [84] pro-

vide a platform for data integration using a custom know-

ledge model and provide access for querying of these data.

In addition to its reliance on large, prominent biomedical

ontologies developed with significant community input

for the structuring of its integrated data, KaBOB notably

differs from these in being freely licensed.

Conclusions

We presented five processes that when collectively applied

provide solutions to seven key semantic data integration

issues. We applied these processes to 18 large biomedical

data sources to produce KaBOB (the Knowledge Base of

Biomedicine), an integrated knowledge base of biomedical

data representationally based in prominent, actively main-

tained Open Biomedical Ontologies, thus enabling queries

of the underlying data in terms of biomedical concepts

(e.g., genes and gene products, interactions and processes)

rather than features of source-specific data schemas or file

formats. In KaBOB, identity is resolved through the repre-

sentation of biomedical concepts that are referred to by

sets of identifiers, making no preferential commitments

to any identifier space. Declaratively represented forward-

chaining rules take information that is variably repre-

sented in disparate independent underlying database

models and generate representations in a common ontology-

based biomedical model but also leave the underlying source

data available for querying and provenance. These rules also

function to track provenance and allow all transformations

to be inspected and evaluated. Common biomedical abstrac-

tions are used to take into account the ambiguity of model-

ing within source data and to reflect this ambiguity in

queries of these data. KaBOB resolves many of the issues that

routinely plague biomedical researchers intending to work

with data from multiple data sources and provides a platform

for ongoing data integration and development and for formal

reasoning over a wealth of integrated biomedical data.

Availability of supporting data

We provide and maintain the open source code that

achieves the steps described above, from downloading

source files to running the rules. Usage agreements of

some data sources prohibit redistribution so we cannot

redistribute the complete set of triples. We welcome in-

quiries about specific collaborations. We intend to de-

velop tools to expose parameterized questions for more

general consumption as well.

Datasources library: https://github.com/UCDenver-ccp/

datasource

KR library: https://github.com/drlivingston/kr

KaBOB library: https://github.com/drlivingston/kabob

Additional files

Additional file 1: Appendix A. Current KaBOB Build Procedure.

Appendix A describes the steps and their sequence used to build KaBOB

in more detail than is depicted in Figure 1.

Additional file 2: Appendix B. Example Rule. Appendix B provides an

example rule in the KR rule language and a corresponding discussion.

This is the actual rule used to convert from GO biological process

annotations to biomedical concepts that is discussed in the paper and

depicted in part in Figure 2.

Additional file 3: Appendix C. Example Queries. Appendix C provides

several examples of querying KaBOB’s integrated data using the common

OBO-based biomedical model.

Additional file 4: Appendix D. Error Detection. Appendix D provides

more detailed examples of error detection queries with KaBOB.

Additional file 5: Appendix E. DrugBank Identifier Mapping Errors.

Appendix E provides more detail to one of the examples discussed in

Appendix D.
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