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1. INTRODUCTION

There exist presently two approaches tolabelling representations of the super-
1 . . . .
groups SU(N/M), Kac 1 has proposed a unique labelling of irreducible representa-
tions in analogy to Dynkin diagrams. We shall refer to these as Kac-Dynkin diagrams.
. (2-4) , .
Balantekin and Bars introduced supertableaux in analogy to Young tableaux,
which rely on the properties of the permutation group, to arrive at irreducible
supertensors which provide a basis for supergroup representations. The relation be-—
(5)

tween these approaches has been found . Our aim is to elaborate further on this

connection, add new insights and clarifications and establish a useful dictionary.

A Kac-Dynkin diagram providesthe highest weight A. The remaining weights
are in principle obtained by applying lowering operators. This requires lengthy
(but straightforward) calculations (7), which yield the eigenvalues of the generators
belonging to the Cartan subalgebra. With this method necessary and sufficient con—

ditions as well as dimension formulas for "typical" re resentations have been
P

(1,7)

given . Also branching rules for supersubalgebras, especially irxrregular ones,

7

have been computed .

The supertableaux, and the associated supertensors, provide all the states in

a representation and the content of the states is immediately obvious. This makes

(8,9}

them very useful in physical applications . Typical and atypical representa-

tions are not distinguished in this approach and the supertableau methods apply

(2)

to both. In supertableaux one uses the concept of supersymmetrization , which

means that when bosonic indices corresponding to a row are symmetxized, the fer-
e e e s . . . . . 2
mionic indices are antisymmetrized. This canr be done by an efficient method (2)

which keeps close analogy to representationms constructed via ordinary Young ta—

bleaux. These analogies can be applied as follows
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Through these analogies many practical amd useful properties have been computed
for the supergroups indicated above for all supertableau representations:

. . . . 2,7

i) Matrix representations of the SUpergroup 1n tensor space ( ? ).

11) Character formulas (2’4).

iii) Dimension formulas (2’4).

iv) Eigenvalues of Casimir operators (2’3’4).

v) Branching rules for

SU(MIN) = SukSaw s ar)
SUHt K+ 15) — Su (/0% SUm, i, i)
SU(M M, +/V,A/a/x7,ulm,,u,/—95¢rﬂf//f%)XSH/%//%)

. . . . 4,6,8
vi) Harmonic oscillator representations (4,6, ).

vii) Analytic unitary representations of noncompact SL{N/M) in a harmonic oscil-

(10) and in a superspace Z-basis (10).

lator basis

The connection to Kac-Dynkin diagrams ) for SU(M/N) can be seen by com
puting the highest weight through the aid of the SU(M/N) - SU(M) = SU(N) % U(1)
decomposition. In this paper after reviewing this procedure and giving a transla-
tion dictionary to Kac-Dynkin diagrams, and several examples, we will be able to

establish the following statements for SU(M/N)
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a) Supertableaux containing only covariant (undotted) or only contravariant
(dotted) boxes correspond to irreducible representations.

b) Supertableaux containing mixed dotted and undotted boxes correspond to irre-
ducible representations provided M,N are sufficiently large compared to the
number of boxes.

¢) Mixed supertableaux with too many boxes compared to M,N are reducible but
indecomposable.

d) All atypical representations are described by supertableaux.

e) Typical representations with 2, = integer (defined below) are naturally
described. ay = arbitrary real number is described with the additional con-—
cept of an over-all U(l) phase of the representation in addition to the ta-
bleau.

£) To a given Kac—Dynkin diagram ome can find many corresponding supertableaux.

g) One can usefully employ supertableaux to compute the decomposition of direct
product representations, provided indecomposable supertableaux are reduced

via Kac-Dynkin diagrams.

2. THE SUPERALGEBRA SU(M/N)

In the classification of Kac (1’11), this is a ciassical superalgebra of
type [, called A(M-1,K-1). SU(M/N) 1is simple for M # N. For M =N, ome has
to divide by U{l1). It consists of an even ("Bosonic") part, the subalgebra
SU(M) x SUN) xU(1), and an odd ("Fermionic") part, which transforms as the re-
presentation (M,N*}) + (M*%,N) of the even part. The Cartan subalgebra consists
of the M + N - 1 mutually commuting generators Hi’ the M~ 1 first ones
belonging to SU(M), the N - 1 last ones to su(N), HM playing a special role.
The generator Q of U(l) is a linear combination of Hi (see Eq. (2.10) below).
To each Hi corresponds a simple root o, , 4 "raising" operator E; and a

"lowering"” operator E.. We shall need the commutation relations :



{2.1)
. g - * .
where aij are the elements of the Cartan matrix of SU(M/N) given by Kac ()
M
2~
-l 22—y
{aci - . @2
—O|*+¢ It
=iz -
(2

i = . = + 1 T ]
Notice that g 0 and Al 1, otherwise we recognize the Cartan matrices

of SU(M) and SU(N).

We also note the commutation relations

[E:, E; ] = Sc'J' HJ- Ve j# M (2.3

and the anticommutation relations of the two odd generators corresponding to the

simple root Gy

+ -
LEM;EM]-f:HM (2.4)

The full system of commutation (anticommutation) relations can either be obtained
from (2.1) to (2.4) which characterize "simple" generators, plus the generalized

Jacobi identity (1,11)

» or by the explicit realization of the fundamental repre-
sentation of dimension M + N. This will now be done. The generators are the ma-

trices X :



L

(2.5)

X
C|D I~

with the restriction for the supertrace :@

Sty X = trA-¢trD=o 2.6

. . i . .
Introducing the matrices Ej with matrix elements :

¢ ) a _ Ja
/EJ /e = 5% dje 7
R S A M+ A

one gets for the Cartan subalgebra

H - E"' E"'H Y A ..
(T =0 T (30 e Mt Mt A/
H,= EM, ght

M= EpmtEy

(2.8)

all Hi have zero supertrace.

. s i, . . i, .
The raising operators are E; ,1 < j, the lowering gperators Ej s 1> 1,
the "simple" generators of Eq. (2.1) correspond to j = i + 1, resp. i - 1. For
the odd generators, 1 <M, j>»Mori>M, j<HM Notice that the anticommutator

of two odd raising or two odd lowering operators is zero.

Finally, the generator Q of U(1) is given, up to a counstant, by
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i
K = - <
- 2.9
i ‘
N
which corresponds to
M“f A/’/
. s K,y 2//1/4/7,7,
k= M~ ez/ VvV
From (2.1) and (2.2) one gets :
-+ M-| A £
- =+ ('-—— a - ,_:/ a
[Qf EM ] - M —(IH A H-H’H]EM (2.11)
- +(’_!__:_) +
M x)
3. THE KAC-DYNKIN DIAGRAM
According to Kac (l), the irreducible representations (IR) of the superalge~

bra SU(M/N) are characterized in a similar way as TR of Lie algebras. They are
uniquely determined by the highest weight A, which is a vector in the root space.

The state in the representation space corresponding to A is defimed by :

+ .
EL. //‘ >:O f:- /"" M‘f‘l/—/ (3.1)

‘Hi [N = K IAD (= - Mrar~/ (3.2)

The numbers a, are non negative integers for i # M. aM may be any real

number ,
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An IR of SU(M/N) 1is thus defined by the values a, of the highest weight,

which can be noted on a Kac-Dynkin diagram

ai q(_ Q” q
St UM Qs a .
OO OO OHM i (3.3

The part without ® decomposes into ordinary Dynkin diagrams for SU(M} and

SU(N). ® corresponds to the odd root oy (whose length is zero '), or to the

special generator HM.

One distinguishes typical and atypical TR. For the latter, one of the fol-

lowing conditions must be satisfied : (Kac, Ref. (1), Hurni and Morel, Ref. (7))

*

J r-t ‘ ‘
Q== 0 -2 G, 21+ ¢t
t= M+l £=y

Adei 4« M £ g% Hev—d

(3.4)

For the typical representations, none of these relations is satisfied. Their
'interpretation is the following. One gets all the weights of a given. IR by
starting with the highest weight and applying lowering operators. The action of
the even operators is well known. There are MN odd generators which anticommute.
Hence, each one can be applied at most omnce, and the state obtained by applying
two different odd gemerators is antisymmetric. If [y> is some state in the re-
presentation space, it may happen that E;Eilw> = 0. This is just the case when
one of the relations (3.4) is gatisfied. For example, if ay = o, E;E;[A> =0
where A 1is the highest weight. This means that the state E;|w> does not belong

to the same representation : either the representation starting with |A> is not

irreducible, or we must put E;|w> = g. This is the atypical case.
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For typical representations, one can apply each odd generator exactly once.
If d is the dimension of the IR of SU(M) x SU(N) x U(1) corresponding to the

highest weight A, the dimension D of the corresponding IR of SU(M/N) is

M
D=2 Nc{ (3.5)

For atypical representations, the dimension will always be lower.
The fundamental representation (D =M+ N) is given by :

O—0..... ®.--0 (3.6)
Since ay =0, it is atypical (put i =3 =M into Eq. (3.4}). For SU(1/M),
we have :
I D o
(3.7)
Here 4y = 3 = 2, + 1, which satisfies again (3.4) (put i =M=1, i=M+1=2).
The conjugate representation (D = M + N) is

OO .- ® - 0-0 (3.8)

and is again atypical, also for Su(M/1).

" The adjoint representation is

(3.9)

This is atypical, except for SU(1/2)



-0 (3.10)

whose dimension is 2-22 = 3.

Another convenient characterization of the highest weight A 1is obtained by

considering the eigenvalue q of the U(1l) generator Q :

QIAY =9, 147 G

Using (2.10), (3.2) one gets

P Y w-e)a,
q/\ = Z AN QS QM— 2 / Mre (3.12)
K=t M =/ N

Applying odd lowering operators, one gets the other SU(M) xSU(N) xU(1) multiplets.
Each odd operator is obtained by the commutator of E; with "simple" even genera-—
tors. Since the latter commute with Q, it is enough to consider the commutator

given by Eq. (2.11), applied on a state [g> :
[Q £ JI¥D= RENIE2- T bmlt?

= =(i7 %) Em 147

(3.13)

Thus, for M < N, resp. M > N, the odd generators E& lowers, resp. raises

the value of g . Hence, the "highest" weight A corresponds to

v

I
2

1

maximum for MeA/
(3.14)

mMindm um fok M>N
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For typical representations, one has to apply the MN odd generators in a
completely antisymmetric way to get the lowest weight A. Since such an antisym-
metric combination is a singlet under SU(M) x SU(N), the state JA> belongs to

the same IR of this subalgebra. The eigenvalue q, is given, using (3.13), by :

Q;\:q/\#- M-N (3.15)

where Q{}) —_ ﬁ) /A)
E x>y =0 Ve o

For atypical representations, q, will be different from the expression (3.15),

namely larger if M < N and smaller if M > N.

In conclusion, the Kac-Dynkin diagram characterizes uniquely all IR of
SUM/N). It gives immediately the eigenvalues of Hi and Q of the highest weight.
It allows a usually lengthy but straightforward computation of all states of the
representation. It gives immediately the dimension and SUM) x SU(N) x U(1)

content of typical representations, but not those of atypical representations.

4. SUPERYOUNG TABLEAUX FOR SU(M/X)

Young tableaux for Lie algebras are very convenient for computing branching
rules for representations of subalgebras and for establishing the Clebsch~Gordan
series of tensor products of IR. They are very useful in practical physics appli-
cations because it is possible to describe states in tensor notation with the sym-
metries of Young tableaux.

(2,3,4)

Balantekin and Bars have introduced Young supertableaux for SU(M/K)



-11-

and showed that these in addition to providing a very convenient labelling of re-—

presentations, are useful in calculating many properties of super-representations.

For SU(M), Young tableaux give the symmetry of the indices of covariant

A'B'C'
tensors tABC"' . One can alsc introduce contravariant tensors ¢t

P ]

They are related to the former omres by the completely antisymmetric symbol
EAI"“’AM’ which is invariant due to the determinant of SU{M) group elements
being one. Although this is not necessary, King (12) has introduced Young tableaux
for contravariant tensors (distinguished graphically by a point in the box). A next

' A'BT.
step is to introduce traceless mixed tensors tAB

For SUM/N), the ¢ symbol is not invariant. Thus both co— and contravariant
tensors are necessary. These correspond to mixed supertableaux. Furthermore, it is
possible to have tensors corresponding to long colums in the supertableaux with

more than M + N dotted or undotted boxes.

BB (2,3) assign to the covariant tensor tAB the Young supertableaux :

C' 4 0= " Ch
v ldVa’4 "_’f
VNS
/17 _
/| (4.1)
| bm

bi (i =1,...,m) counts the boxes in the row i,

Cj (j = 1,...,n) counts the boxes in the column j, with the conditions :

824,72 - - 26m 70
G2 T - - Zno 4.2
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The conjugate tableau is obtained by interchanging rows and columns :

V17 1-l7) @
vl Vel V.l :
: 4.3
L1/ : (4.3)
s Cp
The supersymmetry property of 1:AB under interchange of the indices
A,B... 1is analogous to SU(M+N) except that when bosonic indices in a2 row are

symnetrized, fermionic indices are antisymmetrized. This is the meaning of super~

symmetrization.

Consider now the IR of the subalgebra SU(M) x SU(N) x U(1) contained in an
IR of SU(M/N). The procedure to get these IR is the same as for SU(M+N), with
the essential difference that the tableau one would obtain for an IR of the second

algebra SU(N) has to be replaced by the conjugate tableau. This follows from

supersymmetrization.

Starting from fundamental representation (dimemsion M + N)

St/ ) SutH)  Sum)

= (D, I) +(',E]) (. 4)

the rule is shown in the following example where the decomposition of an IR of

SU(M+N) is compared to the decomposition of an IR of SU(M/N)

Su(n+wn) Sutm)  sow)

= (E O 1)+ (E 1)D)+(EED,EI)

(0« H) - (o, |
4_(1, ]_))

J)+(D,E[Il)+

-
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Sulttin) Suin)  Sviw)
é/l/l:[_q [ 1, 1) +( ] o EED []) HB)

*(E[j’l:[‘_'])-*r([\ | D'H ___1) .8)

This rule is easy to understand in tensor notation (2). Also from the point of
view of the algebra, each time one replaces an SU(M) index by an SU(N) index,
one has to apply an odd generator. Since the product of odd generators is anti-
symmetric, rows (symmetric) are changed in to columms (antisymmetric) and vice

versa.

Eqs (4.4) and (4.5) are independent of M and N, except if M or (and) X
are too small. For example, for SU(L/Z), the following terms are illegal, ap-

plying the rules for SUCM) » SUN)

o g (@FPo@Beg (CF)

N

The eigenvalue q of the U(l) generator Q 1is obtained from Eq. (2.9).

Thus for the fundamental representation :

= (D, ‘) | + ( b, D) ' (4.8)
?"Fl - N
Hence the q value of some SU(M) x SU(N) IR is given by i times the num-

ber of SU{M) Dboxes plus % times the number of SU(N) boxes. For example, for

the first two terms of (4.6) one gets @

( || lj, l. )7‘_: ( L1 JI U | (4.9)

RgEN
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Notice that the difference of these two q values agrees with (3.13),

Contravariant tensors tAB"' correspond to conjugate representations of
SU(M/N), as well as for the subalgebra SU(M) x SU(N) xU(1l). The fundamental con-

jugate IR is denoted by

Sutt/u) SUtn)  sow
- ( b, E]) (4.10)

Both q wvalues are negative because the supertrace of Q must be zero (Eq. (2.6)).

Apart from this, the rules are similar as for the covariant tensor. For ex-

ample :

=-z =14 =. %
= 141 1=-2  wan
A'B',.
Finally, mixed tensors tup *  correspond to IR only if the supertrace

T
Z(-)g(x)téi """ =0, where g(x) = 0,1 for even, odd components is zero. They
. -

are necessary if an IR of SU(M/N) contains IR of the subalgebra with q = 0.

This is the case for the adjoint representation

E:]za = ([:]:] ' '4 + ( Eq, CJ}

=e §=- L4+
MmN (4.12)
«(0.8) _, , .0 « (1, ..

7_1‘1 N 1:0
The notation for the general supertableau for SU{M/N) will be 3

_ E,,: C-: € ... €Cn

L UL AZTZA 6

N .l.f' ///

= o ST

bn’ 717
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5. RELATIONS BETWEEN KAC-DYNKIN DIAGRAMS AND SUPERYOUNG TABLEAUX

1 . . . .
Kac () has used the highest weight to uniquely determine an IR of SU(M/N).

What is the relationm between Kac-Dynkin diagrams and supertableaux ?

From (3.14) we know the properties of the eigenvalue q, of ¢ for the state

corresponding to the highest weight A :

4/\: maximum for [M<N

{5.1)
da=minimum for Mo>N
The case M = N will not be comsidered.
From (3.12) we know the relation to the Dynkin labels a;
M- (
q,=3 Loy 5 Apee (5.2)
—_ . .
A k; M i_’f’V

We now need only the corresponding information for supertableaux.

Let us start with tableaux corresponding to covariant tensors (see Tableau

4.1).

From (4.8) we know for the fundamental representation :
SUlt/n) Svin) x Svin)

= (D/l) +(" U}‘i:

o (5.3)
[

4
N

From (5.1) we see that the highest weight belongs to ([:],1). From (5.2) it is

clear that
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1 (5.4)
Hence
! o o o
/] = oo ® -0
(5.5)

in agreement with (3.6).

For a general covariant tableau, one gets q by counting boxes. From (5.1)
and (5.3) one sees that q, is obtained with the maximum number of SU(M) boxes.
If e s the number of rows, does not exceed M, the number of SU(M) boxes can
be taken to be equal to the number of SU(M/N) boxes. The Dynkin labels are given
by the familiar formula for SU(M), while 2y is fixed by (5.2), remembering

that for SU(M), a is the number of columms with K hoxes :

Q.= 6;-&,, izt - M=y
ql“l: gH

(5.6)
C!ﬂ_,.j: o =t - A
C, £ M
In pictures :
c, .. Cn
1717171 & 7
i dvs . —_— l
/. ' ’ (5.7a)
/] L. B

_ 26,
1° =

where in the SU(M) x SU(N) x U(1) decomposition we have shown just the component

with the value q corresponding to the highest weight. This immediately yields
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b-b, 8.5 n o o
o_o__,o [ @ -‘—--O”--—'O
(5.7b)
f S = m £M

If c¢. exceeds M, to determine the highest state one writes first the step of
Eq. (5.7a), then one has to cut the supertableau in two pieces. The first piece,
which contains the first M rows is assigned to SU(M), the remaining rows are
assigned to SU(N}, after conjugating them. The SU(M) x SU(N) xU(1l) Young ta-

bleau thus defined is the first non—vanishing compoment in the decomposition of

SU(M/N) - SU(M) x SU(N) xU(1) which will have the right value g corresponding

to the highest state.

For example :

& ... Cn .

/17171 7] %

vavaG '- ] 1

Yavavs b 3 -

/1717 bies L (5.8)
_/‘ H

7 &

On the r.h.s. we have shown the IR of SU(M) xSU(N) corresponding to the highest

weight. The value of qA is

- ¢ Co-M
9==7" = 90— m) (5.9)

where only ¢, ? M contributes.

As far as the SU(M) content is concerned, one can subtract SU(M) singlets
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for each columm with M boxes. On the other hand, a supertableau is illegal un-

less

e 2N

(5.10)

because otherwise every component in the decomposition vanishes.

With (5.2), (5.9) and the rules for SU(M) and SU(N), we get the generaliza-

tion of (5.6) :

{
a, . = C,/-C’ =7 .. (5.11)

ij = Cj-ﬁ}é’(d‘j-ﬁj
‘@I“‘H-! s N

These values must be put on the Dynkin diagram

a., a‘ QM [/
O—0O ---®- -0

e X"

One should not forget that the bi and cj are not independent,

For conjugate representations, the procedure is similar except for the sign

changes. For the fundamental representation, Eq. (4.1) is

Svlawy SUr)x Sviny
lZl-——(EJ,l) +(’;E}:__‘_~
1=- / N (5.12)

X~
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From (5.1), we see that the highest weight has
_ 4
qA - A/ (5.13)

Hence, comparing (3.8) and (5.12)

[ o o i

o
[? = oo--® 0o (5.14)

For a general tableau, we search for 9, using (5.1) and (5.13). If El , the

number of columns, is smaller or equal N, we can fullfil (5.1) with SU(N)

boxes only. Using again (5.2) and the rules for SU(N), not forgetting to con—

jugate the SU(N) tableau, we get :

0' =0 (=1 --- Mt
L (5.15)
A =-Cu
AR +h-j = Lt jolo-- A
n = 'g' < A
e & ]
Lr L"O o Ju'te ( I_‘[o a] = <y
1] e 7] . . :
T B T
"M o Bl Eh (5.16)
P _E” EJ - C:J.'f'f E, - 2:_
= 0. - ®0. OO

if n=5b, <N,
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Next consider the case where 51 exceeds W.

tableau in two pieces by a vertical line. If j is the index of c., the

We now must cut the super-—

contribution for j < N is as before. For i >N, one gets an SU(M) IR. Thus,

€ S lC, . C
’5 all Pl : ::j:ﬁl"‘.’:') = Ej- -. I{u I'I_' : : ;
’ . By ) .1z (5.17)
T : *
" -,

The tableau on the r.h.s. again corresponds to the highest weight of the SU(M/N)

IR. The wvalue of 4, is

—

y.v4 - T (é—,./V/ —
c ¢ .
QA - -_‘gh-/i - §, > 4 /g‘ "/V) (5.18)

A supertableau is illegal unless

——

. £
CJV-H “~ M (5.19)

Using (5.2) and (5.18), we get for the Dynkin labels a,
—_—f '

—/
M 68 (= Mot

1244

¢ =l-msla-w

QD
[

1|

OlM:“z:v";/:"Emﬁzgl—/l//ﬁ/‘é’;—/(//é(é:’ﬂ// (5.20)
Miw-y = € - C;-,,., j= 4 A

6. DISCUSSION

We have shown that to each covariant tensor (with a corresponding legal super-
tableau) one can assign a Kac-Dynkin diagram. The latter, we know, specifies an IR

of SU(M/N), for M # N. The same is true for contravariant tensors. The case of

mixed temsors will be considered in the next section.
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We now show that this correspondence is not one to one. Take for example

SU(2/3). Consider the following two supertableaux and their highest weight :

ah——:t-__\

: | s — ( J,'} =(D:'}:e
3 73?+2 ? z
: : 3

O lgezo2= (80)4s2

They clearly correspond to the same Kac-Dynkin diagrams.

For SUMM/N), we find the rule : two supertableaux correspond to the same
Kac-Dynkin diagram if (N + 1) columns of M boxes are replaced by ¥ columns

of M+ 1 boxes. This amounts to replace an SU(M) singlet with gq = by an

R

. . N
SU(N)} singlet with q =

50 provided there are enough boxes to start with.

This ambiguity is of course due to the fact that (5.11) does not determine

the bi's and cj's uniquelly from a..
1

A similar rule applies to contravariant tensors {5.20). Comsider for S$U(2/3)

the supertableaux
Swy  SU(3/

FH 1 (1, @)

I

» - * ’ L4 - * 7:_,0
2.9 3
Pl 7"3 F)
(6.2)

v oL —— E, bl g :(',E}
el /go 27 4=-1
» 3 3

N columns of M + 1 boxes are replaced by N + 1 columns of M boxes.
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Consider now the inverse problem : given Dynkin labels a; » calculate super-
tableaux labels bi' There arises a question : for typical representations, 2y
can be any real number while the supertableau describes naturally aM = integer
since the value of Q 1is determined by an integer number of boxes. However, for
typical representations it is possible to add any constant to Q, since it remains
supertraceless when the number of bosons is equal to the number of fermions. An
additional comstant in Q corresponds to an over-all U(l) phase of the whole re-
presentation. This U(1) commutes with SU(M/N). Thus, up to this over-all phase
an arbitrary representation of the group is recovered through the supertableau. The

role of this over-all phase and its significance in representation theory of super-

groups is not sufficiently clear.

Keeping this in mind, we start from a Kac-Dynkin diagram, and consider first
the SU(M) x SU(N) 1labels a, i=1,...,M~1, M+ I,...,M + ¥ - 1) which spe-
cify the highest weight A of an IR. To each set a;, we can assign either a
covariant, or a contravariant tensor. The general formulae are of course (5.11) and
(5.20). To show how they work, it is best to give an example. Consider the algebra

SU(2/3), and the diagram

Z Qa, | 2
O—-®-0-0 (6.3)

For the subalgebra SU(2) x 8U(3), this corresponds to covariant tensors with

tableaux :
2 . ro2 ]
o0 = [17] , o0 = -
(6.4)
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For the SU(3) part, we also indicate the conjugate tableau. The supertableau is

L
now given up to b2 SU(2) singlets : —_————
AN 71717171717}
Z a, ! 2 21”125 717
o8 —0—0 = ¢ S/
/]
Here, ¢, = 5 and b2 determined by 2, using (5.11)
a, = €, +3 (6.6)
To get a legal diagram, b, > 2, Hence, (6.5) can be fulfilled for a, satisfying

2

az 7 5 (6.7)

modulo the additional constant mentioned above.

Consider nmow contravariant temsors which tableaux (compare with (5.20))

[. .
: 2. OEE —
- L] »* L4 l-:-
0= EE] r} o - L’ LJ (6.8)
The supertableau is given up to E3 SU(3) singlets :
+
P
2 al ! A ./;
o—e—0—0 = 20 ¢y
L] * t’ (6.9)
L ./ :
ra
L
.

with (5.20), we get

A, =~ -2 (6.10)



_24_

Here, ¢, = 1, so that a, satisfies

Z
a, £-3 (6.11)

up to the constant mentioned above.

We will see that we can also use mixed supertableaux to obtain representa-
2 as 1 2
tions of type O 0 0 0 for SU(2/3).

Typical representations are those for which Ay is different from the r.h.s.

of (3.4) :
! M-t ,
Au# Z @, - Z &, -2 H+
M £ M ¢ er ¢ d
L€ CEME ) £ fra - (612

A necessary and sufficient condition for covariant tensors is :

o~

Em 2N

This follows from the more general discussion of next section. For example, for

$U(2/3), the following are typical IR

0O £ o
AV - O0—@—0o0—0
V17 1777 0 4 t o
/17 = O—®—0-0
VN7
3 o o s
Az . om0 -
v
O & o p
t 3 0 o A
717 - o—e—o—o 450 T
%
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s/
171/ = O—R—"C00

ININN

l

Similarly, for contravariant temsors :

—

v 2 M
For example, for SU(2/3) :
177, © -2 o o { -3 0 o
A= e (111 = o—e—oo
-0,0 O‘LO'
,..:M—O—O
V:_j o‘(o‘ 0‘300
21 | —_ (Q-H-O
f,‘d
1] e O-Zr 0
/
AT A = O0—-8—0—0
2
ol w

There are, of course, many more atypical representations than typical and the su-

pertableau approach is a convenient tool to describe both.

7. MIXED REPRESENTATIONS

We have seen that for covariant or contravariant temsors, ay is limited by

inequalities of the type (6.7) or (6.11). To get more general situations, one
A'B'...

needs mixed, traceless tensors tAB .

The most important example is the ad-

joint representation (see (3.9) and (4.12))
C) = oo @ -0 (7.1)

The algebraic rules to go from supertableau labels bi to Dynkin labels a;
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are obtained again from Eqs (5.11) and (5.20). There is however ope essential com—
plication : mixed supertableaux, while being irreducible when N,M are sufficient-
ly large compared to the number of boxes, may not always correspond to irreducible
representations of SU(M/N), when N,M are small. But we shall see that they are

indecomposable even when they are irreducible. (One of us (I.B.) thanks V, Kac for

his comment on this point.) Consider the general supertableau

7, <
T, A7 4
A7
/] (7.2)

Suppose it contaings m "covariant" boxes ]:ZI and n contravariant boxes |#].

Consider now the two SU(M) x SU(N) x U(1)} tableaux, obtained from (7.2) :

il (7.3
~ aan j= =
noN

and

”m (7.4)

L
o
il
I

9, = 4 - (m+n) /;;-'A"';) (7.5)
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Transferring a box [:j from left to right, or a box [:] from right to left,

amounts to applying and odd lowering operator. From (3.13)

{Ep[¢2 :[qﬁ/x‘(ﬁ‘;ﬁ ]E;,, (> (7.6)

we see that (7.4) is obtained from (7.3) by applying (m + n) different odd
lowering generators. Now, if all tableaux in {7.3) and (7.4) are legal, these cor-

respond to the state |A>, resp. [A> with highest, resp. lowest, weight. But for

an IR, one can apply at most MN odd lowering gemerators to [A>.

Hence, if m+ n > MN, i.e. if there are too many boxes

does not correspond to an IR of SU(M/N).

The simplest example is given by the supertableau of SU(1/2) :

2121/

ry

(7.7)

The highest weight belongs to the IR of the bosonic subalgegra SU(2) x U(1)

(0. H)

)
TN

1~
)

7 =0 7 =0

(7.8)
The corresponding Kac-Dynkin diagram would be :
o (@)
*>—0 (7.9

But (7.7) gives rise to series of SU(2) xU(l) IR:
(t) + (z)

- " |

9= 0 q_-l

+(.’..)1____, + (.'Jq_._.,] + (1')1_-_-_._

g (7.10)
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We see that we need indeed three odd generators to go from q = 0 to q = -2

which is impossible for an IR

Another way to see the reducibility is to try to comstruct the supertraceless

tensor corresponding to the supertabléau (7.7), as in Ref. (3), for SU(M/N)

48) AB) ) s
e =% ‘/ T M- [SSH 1 e 711

G @) H17) 7
) S 4 ¢
such that the supertrace is zero :

%""{ﬂ 9c) (cs) §(c):0, cc1-n

" O (7.12)
Ce < ) GC)E < Mettep
However, when N =M + 1, e.g. for SU(l/?), the denominator vanishes, so that

(AR) (BAa)
= €

(7.13)
C <

contains an invariant subspace which cannot be subtracted. This means that the

tensor is reducible but indecomposable !!

Studying the weight diagram of (7.10) in more detail, one finds the IR of

SU(1/2) :
(7.14)
The second term corresponds to the trace, All these IR are atypical. They are

connected together by odd generators of SU(1/2}, some of them being lowering,

other raising, This can be schematized as follows:
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(7.15)

()
(o) (2)
(t} /
arrows representing odd generators. A similar example has been given by Scheunert,

Nahm and Rittenberg (13).

Such a representation is said to be reducible (it containsan invariant sub-

space) but not decomposable. Another example is given by the supertableau of

suU(2/3)
T
/
(7.16)
whose highest weight corresponds to the Kac-Dynkin diagram
e O - [»]
o——0—0 (7.17)

and hence is also reducible, although here m + n < MN.

On the other hand, the adjoint representation (7.1) is clearly irreducible,

as well as the typical representation of SU(2/3) :

3 =+ e o

1T 714 = O—@—0—0 (7.18)

Also, the supertableau (7.7) corresponds to the typical representation of SU(1/3):



i i F2)
= @oo (7.19)

and to the atypical IR of SU(2/4)

el = o e (7.20)

Thus, if M,N are sufficiently large the mixed tableau is irreducible.

We can now address the following question : can every IR of SU(M/N), as
given by a Kac-Dynkin diagram, be represented by a supertableau ? We have already
discussed in Section 6 the problem of typical representations, where ome gets na-
turally integer values for Ay Allowing the over-all U(l) phase it appears that

we recover arbitrary values of Ay

For atypical representations one has to consider Eq. (5.11) for covariant
tensors, {(5.20) for contravariant tensors, and combine them for mixed tensors.
Hence, given the Kac-Dynkin labels for a,, ome has to solve for the superta-—
bleau labels bi and Bi' Clearly, there are several sclutions and in most cases
there is a supertableau corresponding to a Kac-Dynkin diagram. But again we some-
times face the difficulty of reducibility when the resulting solution contains

too many boxes relative to M,N. For example for SU(2/3) :

oL a, :3/ ag - O, aJ = 2 Qq - 0 (7.21)

PO WL I PN U AR B B n LN R R L e e ey e A R e e s 4 e e e
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—y =/
a! = é/_ ’@a *t‘g//— > <3
A, = fcfl—z,/— (; =0
;= = (7.22)
Qo= /- ¢~ =2
Go = G-G+E - = o
2/=(%;-3)604;-3)
f=(cp-2) 6(¢;-2)
The solution with the minimal number of boxes is the supertableau :
117171 (7.23)

However, this is reducible and contains not only (7.21), but also IR with lower

weights. Other solutions of (7.22) have more boxes. This means we cannot represent

i 0 2 0
0—Q0—0—0 for SU(2/3) with an irreducible temsor.

In conclusion, for each atypical IR one can find a super Young tableau.

Sometimes, this latter is reducible and contains also IR with lower weights (ob

tained by applying odd lowering operators).

8. TENSOR PRODUCTS OF IR

Scheunert, Nahm and Rittenberg (13) have shown that the temsor product of
IR of superalgebras is not always fully reducible. This is due to the fact, men-

tioned in Section 3, that atypical representations are not always fully reducible.

The example they give is for SU(L/2) :
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a,

4 x 4 = & - 3 + & (8.1)
(al # 0,1) (8.1) has been obtained by explicitly constructing all sixteen states.

There is a problem for a. = because the representations (1,0) and (0,0)

1

3

N

are atypical, that is of dimension 3, resp. 1. This means that they hide, in a nomn
reduced form, representations of dimension 1, resp. 3. It cen be shown that the

complete reduction is not possible,

Another example was shown in Section 7. Keeping this in mind, we can still
try to learn from the rules of tensor products for classical Lie algebras, espe—

cially SU(M).

There are two main methods : Dynkin diagrams and Young tableaux. If the two
IR to be multiplied have highest weights Al and Az, the decomposition of the

product contains the maximal highest weight

)

/Iqu = /1, + A»L (8.2)

The next to the maximal A is obtained by the method of minimal chain
{Ref. (14)). By dgfinition a sequence of simple roots ail,uiz...uik

is a minimal chain linking Al and A2 if the following two requirements are ful-

filled :
1) (Al,uil) ¥ 0, (ail,aiz) # 0,...,(aik,ﬂz) #0 and
2) no simple root can be removed from the sequence without violating (1). One
now gets the highest weight of an IR contained in the decomposition of the

product by subtracting the minimal chain from Amax :



_33_

Lk
A = /f,_{,/‘z,_ é ol (8.3)
=t

- )
PANNY

{8.2) obviously gives the right result for the product (8.1)
- cx =2 o
Amcu’@';&}*/ ,6)=(24,,02) (8.4)

Caution is needed to apply (8.3}, since (aM,aM) = 0., So we modify the de-
finition : % can be subtracted from a weight, that is belong to the minimal

chain, if that weight has a non-zero pth component and was not obtained itself

by subtracting Oy

For SU(1/2), Ay = oy = (0,-1), and

e /lmax“‘o(: = (Zéf, ’) (8.5)

J

which is the second term in (8.1). The third term is obtained by orthogonality.

Similarly, one may try to apply Young tableau techniques. Again, some changes
are necessary. We have shown that supertableaux correspond to integer values of
3y s for atypical representations, as they should, but also for typical represen-
tations (modulo the phase, which restores arbitrary values of aM). Actually, the
product does not depend on the value ay, as long as one stays with typical re-

presentations. Thus in the example (8.1)

(3 0
lllli = —0
(8.6)
17 /’I'
tA <~ A = A0 ¢ - B4 .

which, using (5.11), exactly agress with (8.1) for a, = 2.

1
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For pure covariant or pure contravariant tensors, we have found no example

where the usual rules for Young tableaux do not apply.

For mixed tensors, the supertableau give apain the correct result if M, N
are sufficiently large. But for M,N small compared to the number of boxes the
situation is complicated, since one encounters reducible representations., Still,
the rules are useful, TFor example, for SU(1/2)

@ « g1 = EZ12

(8.8)

The left-hand side has dimension 3 x4. From (7.10), we see that the right —hand

side has also dimensiom 12, Working with Dynkin diagrams we see that the 1.h.s. is

f—0O x  &—0 (8.9)

Using the above rule, we see that it contains an IR with highest weight
Al + A2 = (0,0), and using the minimal chain, one with A = Al + Az -, = o,D.

Thus we indeed get two IR contained in (7.14).

The conclusion is that the usual rules seem to work, provided ome decomposes

the reducible representations, as we have shown above !

B TR e T Y T e
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