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1 Introduction

The principal goal of this paper is to study a special class of Lie superalgebras
which, in our opinion, plays the same role in the theory of Lie superalgebras
as the Kac–Moody Lie algebras play in the theory of Lie algebras. Since the
terminology is not completely uniform even in the case of Lie algebras, we
start with brief discussion of this case.

Given an arbitrary matrix A, one can define a contragredient Lie algebra
g (A) by generators and relations (see [2] or Section 2 for precise definition).
People are usually interested in the subclass of so called Kac–Moody Lie alge-
bras; by definition those are contragredient Lie algebras whose matrices satisfy
the conditions: aii = 2, aij ∈ Z≤0, and aij = 0 implies aji = 0. The main pro-
perty which distinguishes Kac–Moody Lie algebras among all contragredient
Lie algebras is the local nilpotency of generators in the adjoint representation.
That allows one to define the Weyl group and the notion of an integrable repre-
sentation whose character has a large group of symmetries. Finite-dimensional
semisimple Lie algebras and affine Lie algebras can be characterized as the
only Kac–Moody superalgebras which are of polynomial growth.

The first indication of usefulness of the notion of a contragredient Lie
superalgebra appeared in [1]: a significant part of the list of finite-dimensional
simple superalgebras is contragredient. Many properties of contragredient Lie
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algebras are shared by contragredient Lie superalgebras; one notable exception
is the uniqueness of representation: contragredient Lie superalgebras g (A) and
g (B) might be isomorphic even if A is essentially different from B.

Our understanding of contragredient Lie superalgebras advanced a lot in
the last three decades. In [10] Kac classified finite growth contragredient su-
peralgebras whose Cartan matrices do not have zeros on the diagonal. Su-
peralgebras of this class have the Weyl group and nice character formulas.
But this class does not cover all finite-dimensional simple contragredient Lie
superalgebras, and that makes one to look for further generalization.

Van de Leur in [8] studied a class of contragredient superalgebras with
symmetrizable matrices. The condition that A is symmetrizable is equivalent
to existence of an even invariant symmetric form on the superalgebra g (A).
He classified such superalgebras of finite growth; as in the usual case, those
superalgebras are either finite-dimensional, or central extensions of (twisted)
loop superalgebras (the latter are called affine superalgebras).

Representation theory of affine superalgebras has interesting applications
in physics and number theory (see [11] and [12]). (These applications are based
on conjectural character formulae for highest-weight representations; we prove

these formulae for algebras sl (1|n)
(1)

and osp (2|n)
(1)

.)
In this paper we discuss some aspects of structure theory and representa-

tions of contragredient Lie superalgebras. In particular, we suggest a definition
of a Kac–Moody Lie superalgebra as a contragredient superalgebra with locally
nilpotent adXi

and adYi
for any choice of a set of contragredient generators

Xi, Yi, hi. The observation that all finite-growth contragredient Lie superalge-
bras are in this class led to a classification of finite-growth contragredient Lie
superalgebras ([9]); this gives an evidence that such definition is reasonable.
Defined in this way, Kac–Moody superalgebras have a very interesting repla-
cement of the notion of Weyl group; it is not a group but a groupoid which
acts transitively on the set of all Cartan matrices describing the given algebra.
(This groupoid was the tool used in [9] to classify contragredient superalge-
bras of finite-growth; also see Section 7.) [9] also incorporates the classification
of Kac–Moody superalgebras with indecomposable Cartan matrices satisfying
certain nondegeneracy conditions; this classification was obtained by C. Hoyt
in her thesis [3].

In the first part of the paper we review the classification results mentioned
above, as well as develop the structure theory similar to [2]. The main new
result of this part is Theorem 4.14, which provides an algorithm listing all
Cartan matrices defining the same Kac–Moody superalgebra. This result is
parallel to the transitivity of the Weyl group action on the set of bases (see
[2] Proposition 5.9).

In Section 2 we define contragredient Lie superalgebras, introduce the no-
tions of admissibility and type, and apply restrictions of quasisimplicity and
regularity. The purpose of the restriction of quasisimplicity is, essentially, to
simplify the discussion; on one hand, the regularity is a key restriction requi-
red by methods of this paper; on the other hand, in the examples we know,
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similar results seems to hold without this restriction. In Section 3 odd reflec-
tions and Weyl groupoid for a contragredient Lie superalgebra g are defined.
We use odd reflections to construct a “large contragredient Lie subalgebra”
g (B) of g and to investigate the span of roots of g (B), as well as the cone
spanned by positive roots of g (B). In Section 4 we introduce notions of Kac–
Moody superalgebra, Weyl group, real and imaginary roots, and discuss some
geometric properties of roots of Kac–Moody superalgebras. Next, we provide
useful examples of quasisimple Kac–Moody superalgebras: in Section 5, of
rank 2, and in Section 6, what would turn out to be all quasisimple regu-
lar Kac–Moody Lie superalgebras. In Section 7 we collect together all known
classification results for contragredient Lie superalgebras. Section 8 contains
amplifications of several results from Sections 3 and 4. In Section 9 we revisit
the examples and provide a more detailed description of their structure.

In the rest of the paper we use the Weyl groupoid to study highest weight
representations of Kac–Moody superalgebras. The main results there are Co-
rollary 14.5 and Theorem 14.7, where we prove Kac–Wakimoto conjecture of
[11, 12] for completely integrable highest weight representations.

In Section 10 we define highest weight modules and integrable modules,
and classify integrable highest weight modules over regular quasisimple Kac–
Moody superalgebras. Section 11 collects results about highest weight repre-
sentations which are true for any quasisimple regular Kac–Moody superalge-
bra. In section 12 we study in detail highest weight representations for the

Lie superalgebras sl (1|n)
(1)

, osp (2|2n)
(1)

and S (1, 2, b). Those are the only
infinite-dimensional Kac–Moody superalgebras of finite growth which have
non-trivial integrable highest weight representations and a non-trivial Weyl
groupoid. The invariant symmetric form starts playing its role in Section 13;
this excludes S (1, 2, b) from the discussion; here we obtain “the non-obvious”
results on geometry of odd reflections. Finally, in Section 14 the collected
information allows us to obtain character formulae for all highest weight in-

tegrable representations over sl (1|n)
(1)

and osp (2|2n)
(1)

.
The first part of the paper is mostly a review of results obtained somewhere

else, we skip most technical proofs and refer the reader to the original papers.
In the second part all proofs are written down as most of results there are
new.

The author thanks I. Zakharevich for careful and belligerent reading of
a heap of versions of the manuscript and for providing innumerable useful
suggestions and comments. The author also thanks M. Gorelik for pointing
out defects in the initial version of the manuscript.

2 Basic definitions

Our ground field is C. By p (x) we denote the parity of an element x in a
vector superspace V = V0̄ ⊕ V1̄.
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Let I be a finite set of indices, p : I → Z2, and A = (aij) , i, j ∈ I be a
matrix. Fix an even vector space h of dimension 2|I| − rk (A). It was shown
in [2] that one can choose linearly independent αi ∈ h∗ and hi ∈ h such
that αj (hi) = aij for all i, j ∈ I, and this choice is unique up to a linear
transformation of h. Define a superalgebra ḡ (A) by generators Xi, Yi, i ∈ I
and h with relations

[h, Xi] = αi (h)Xi, [h, Yi] = −αi (h)Yi, [Xi, Yj] = δijhi, [h, h] = 0.
(1)

Here we assume that h ∈ h, p (Xi) = p (Yi) = p (i).
By g (A) (or g when the Cartan matrix is fixed) denote the quotient of

ḡ (A) by the (unique) maximal ideal which intersects h trivially. It is clear
that if B = DA for some invertible diagonal D, then g (B) ∼= g (A). Indeed,
an isomorphism can be obtained by mapping hi and Xi to diihi and diiXi

respectively. Therefore, without loss of generality, we may assume that aii = 2
or 0. We call such matrices normalized .

The action of h on the Lie superalgebra g = g (A) is diagonalizable and
defines a root decomposition

g = h ⊕
⊕

α∈∆

gα, ∆ ⊂ h∗;

by linear independence of αi, every root space gα is either purely even or purely
odd. Therefore one can define p : ∆ → Z2 by putting p (α) = 0 or 1 whenever
gα is even or odd respectively. By ∆0 and ∆1 we denote the set of even and odd
roots respectively. The relations (1) imply that every root is a purely positive
or purely negative integer linear combination

∑
i∈I miαi. According to this, we

call a root positive or negative, and have the decomposition ∆ = ∆+∪∆−. The
triangular decomposition is by definition the decomposition g = n+ ⊕ h⊕ n−,
where n± are subalgebras generated by Xi, i ∈ I, respectively Yi, i ∈ I.

The roots αi, i ∈ I, are called simple roots. Sometimes instead of aij we
write aαβ with α = αi, β = αj; likewise for Xα, Yα, hα instead of Xi, Yi, hi.

Remark 2.1. Obviously, given a simple root α = αi, one of the following pos-
sibilities holds:

1. if aαα = 0 and p (α) = 0, then Xα, Yα and hα generate a Heisenberg
subalgebra;

2. if aαα = 0 and p (α) = 1, then [Xα, Xα] = [Yα, Yα] = 0 and Xα, Yα and
hα generate a subalgebra isomorphic to sl (1|1); in this case X2

α = Y 2
α = 0

in any representation of g (A);
3. if aαα = 2 and p (α) = 0, then Xα, Yα and hα generate a subalgebra

isomorphic to sl (2);
4. if aαα = 2 and p (α) = 1, then [Xα, Xα] = [Yα, Yα] 6= 0, and Xα, Yα and

hα generate a (3|2)-dimensional subalgebra isomorphic to osp (1|2); in this
case 2α ∈ ∆.
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Consider a simple root α. We call α isotropic iff aαα = 0, otherwise α is
called non-isotropic; α is called regular if for any other simple root β, aαβ = 0
implies aβα = 0, otherwise a simple root is called singular .

A superalgebra g = g (A) has a natural Z-grading with 0-component being
h, 1-component being

⊕
i∈I gαi

. We say that g is of finite growth if the di-
mension of n-component grows not faster than a polynomial in n.

We say that A is admissible if adXi
is locally nilpotent in g (A) for all i ∈ I.

In this case adYi
is also locally nilpotent. One can check (see, for instance,

[9]) that A is admissible if and only if, after normalization, A satisfies the
following conditions:

1. If aii = 0 and p (i) = 0, then aij = 0 for any j ∈ I;
2. If aii = 2 and p (i) = 0, then aij ∈ Z≤0 for any j ∈ I, i 6= j and

aij = 0 ⇒ aji = 0;
3. If aii = 2 and p (i) = 1, then aij ∈ 2Z≤0 for any j ∈ I, i 6= j and

aij = 0 ⇒ aji = 0;

Note that if aii = 0 and p (i) = 1, there is no condition on the entries aij.
We call g (A) quasisimple if for any ideal i ⊂ g (A) either i ⊂ h, or i + h =

g (A). This is equivalent to saying that every ideal of g (A) is either in the
center of g (A), or contains the commutator [g (A) , g (A)]. Recall that for usual
Kac–Moody Lie algebras, g (A) is quasisimple iff A is indecomposable; g (A) is
simple if, in addition, A is non-degenerate. For finite-dimensional Lie algebras
quasisimplicity is equivalent to simplicity, but in general this is not true. For
example, affine Lie algebras are quasisimple but not simple. In supercase even
finite-dimensional contragredient superalgebras can be quasisimple but not
simple (for example gl (n|n), see Section 6).

The following theorem is proven in [9].

Theorem 2.2. (Hoyt, Serganova) If g (A) is quasisimple and has finite growth,
then A is admissible.

One can describe an arbitrary contragredient Lie superalgebra as a se-
quence of extensions of quasisimple contragredient superalgebras and Heisen-
berg superalgebras 9(see [9] for details).

Lemma 2.3. If g (A) is quasisimple, then A is indecomposable and does not
have zero rows. In particular, for admissible A, aii = 0 implies p (i) = 1, so
all simple isotropic roots are odd.

Proof. If after suitable permutation of indices A = B ⊕ C is the sum of two
non-trivial blocks, then g (A) is a direct sum of ideals g (B) ⊕ g (C). Hence A
must be indecomposable. If A has a zero row, i.e. aij = 0 for some fixed i ∈ I
and all j ∈ I, then it is not hard to see that [Xi, b] + Chi is an ideal in g (A),
here b = h ⊕ n+. Hence A can not have zero rows.

We call A regular if for any i, j ∈ I, aij = 0 implies aji = 0.
The following is a straightforward generalization of Proposition 1.7 in [2]

to the supercase.
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Lemma 2.4. Let A be regular. Then g (A) is quasisimple iff A is indecompo-
sable and not zero.

Denote by Q the lattice generated by ∆, and by Q0 the lattice generated
by even roots ∆0.

Theorem 2.5. If g (A) is quasisimple and Q0 6= Q, then either Q/Q0
∼= Z or

Q/Q0
∼= Z2. In the first case, g (A) has a Z-grading g (A) = g−1 ⊕ g0 ⊕ g1

such that g0 is the even part of g (A).

Proof. Consider the Q/Q0 grading g (A) =
⊕

i∈Q/Q0
gi, where gi =

⊕
s(α)=i gα,

s : Q → Q/Q0 being the natural projection. Obviously, g0 = g0̄, and gi ⊂ g1̄

for any i 6= 0. Choose i ∈ Q/Q0, i 6= 0. Let l = gi ⊕ [gi, g−i] ⊕ g−i. We claim
that l is an ideal of g. Indeed, [gi, gi] = [g−i, g−i] vanish if 2i 6= 0, and coincide
with [gi, g−i] if 2i = 0. For j /∈ {−i, 0, i}, [gj, g±i] = 0, thus [gj, [gi, g−i]] = 0
by Jacobi identity; [g0, [gi, g−i]] ⊂ [gi, g−i], again by Jacobi identity. Now qua-
sisimplicity of g (A) implies l + h = g (A). Therefore g (A) = gi ⊕ g0 ⊕ g−i;
hence i is a generator of Q/Q0.

If 2i = 0, then Q/Q0
∼= Z2. If 2i 6= 0, then g (A) has Z-grading with gi

being degree 1. Hence Q/Q0 must be Z.

Following [1], we call g (A) of type I, if Q/Q0
∼= Z, and of type II if

Q/Q0
∼= Z2. In case when g (A) is finite dimensional and quasisimple, g (A)

is of type I if it is isomorphic to sl (m|n) , m 6= n, gl (n|n), or osp (2|2n), and
of type II if it is isomorphic to osp (m|2n) with m 6= 2, G3 or F4. For more
examples, see Corollary 7.4.

Remark 2.6. It is useful to note that if g (A) is of type I, then all its odd simple
roots are isotropic.

3 Odd reflections, Weyl groupoid and principal roots

A linearly independent set Σ of roots of a Lie superalgebra g (A) is a base if
one can find Xβ ∈ gβ and Yβ ∈ g−β for each β ∈ Σ such that Xβ, Yβ, β ∈ Σ,
and h generate g (A), and for any β, γ ∈ Σ, β 6= γ

[Xβ , Yγ] = 0. (2)

If we put hβ = [Xβ , Yβ], then Xβ, Yβ and hβ satisfy the relations

[h, Xβ] = β (h)Xβ , [h, Yβ] = −β (h)Yβ , [Xβ , Yγ] = δβγhβ . (3)

This induces a natural surjective mapping ḡ (AΣ) → g (A), here AΣ =
(β (hγ)), β, γ ∈ Σ; since g (AΣ) and g (A) have the same Cartan subalge-
bra h, the kernel must coincide with Ker ḡ (AΣ) → g (AΣ). Therefore, g (A) is
isomorphic to g (AΣ). The matrix AΣ is called the Cartan matrix of a base
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Σ. The original set Π = {αi} is called a standard base. If g is a Kac–Moody
Lie algebra, then every base can be obtained from the standard one by the
Weyl group action (and, maybe, for infinite roots systems, by multiplication
by −1). It is crucial for our discussion that this is not true for superalgebras.

Let Σ be a base, α ∈ Σ, aαα = 0 and p (α) = 1. For any β ∈ Σ, define
rα (β) by

rα (α) = −α,

rα (β) = β if α 6= β and aαβ = aβα = 0,

rα (β) = β + α if aαβ 6= 0 or aβα 6= 0.

Lemma 3.1. The set rα (Σ) = {rα (β) | β ∈ Σ} is linearly independent. Mo-
reover, if α is regular, then rα (Σ) is a base.

Proof. The linear independence of rα (Σ) is obvious.
To prove the second statement, set

X−α = Yα, Y−α = Xα, Xrαβ = [Xα, Xβ ] , Yrα(β) = [Yα, Yβ] (4)

for any β ∈ Σ such that rα (β) = β + α. First, we have to check that[
Xrα(β), Yrα(γ)

]
= 0 if β, γ ∈ Σ and β 6= γ. If β, γ 6= α, then rα (β)− rα (γ) =

β − γ or β − γ ±α /∈ ∆, hence
[
Xrα(β), Yrα(γ)

]
= 0. So assume that β = α. A

simple calculation shows that if aαγ = aγα = 0, then [Yα, Yγ ] = [Xα, Xγ ] = 0.
Therefore if rα (γ) = γ, then [X−α, Yγ ] = [Yα, Yγ ] = 0. If rα (γ) = γ + α, then

[
X−α, Yrα(γ)

]
= [Yα, [Yα, Yγ ]] =

1

2
[[Yα, Yα] , Yγ ] = 0,

since [Yα, Yα] = 0. Similarly, one can deal with the case α = γ.
Now we have to check that h, Xrα(β) and Yrα(β) generate g (A). Note that

if rα (β) = α + β, then

Xβ =
1

β (hα)
[Yα, [Xα, Xβ ]] =

1

β (hα)

[
X−α, Xrα(β)

]
.

Similarly, Yβ = 1
β(hα)

[
Y−α, Yrα(β)

]
. Hence every generator Xβ , Yβ, β ∈ Σ, can

be expressed in terms of Xrα(β), Yrα(β).

Remark 3.2. It is useful to write down the generators hrα(β) of the reflected
base rα (Σ)

hrα(β) = hβ if aαβ = aβα = 0, hrα(β) = aαβhβ+aβαhα if aαβ 6= 0 or aβα 6= 0.

If α is singular, then rα (Σ) generates a subalgebra in g (A) (see Section 6,
examples D (2, 1; 0), S (1, 2,±1)).
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We see from Lemma 3.1 that, given a base Σ with the Cartan matrix AΣ

and a regular isotropic odd root α ∈ Σ, one can construct another base Σ′

with the Cartan matrix AΣ′ such that g (AΣ) ∼= g (AΣ′). Using (4), one can
construct an isomorphism g (AΣ) → g (AΣ′); denote it by the same symbol
rα. We say that AΣ′ is obtained from AΣ and a base Σ′ is obtained from Σ
by an odd reflection with respect to α. If Σ′ = rα (Σ) and Σ′′ = rβ (Σ′) one
can define a composition rβrα : g (AΣ) → g (AΣ′′). It is clear from definition
of rα that r−αrα (Σ) = Σ.

For any base Π denote by ∆± (Π) the set of positive (negative) roots with
respect to the base Π . If α ∈ Π , then −α ∈ rα (Π) ⊂ ∆+ (rα (Π)).

Lemma 3.3. Let Σ = rα (Π), where α ∈ Π is an odd isotropic regular root.
Then ∆+ (Π) r {α} = ∆+ (Σ) r {−α}.

Proof. Assume γ ∈ ∆+ (Π) r {α}. Then γ =
∑

β∈Π mββ for some non-
negative integers mβ , moreover, mβ > 0 for at least one β 6= α. Note that
rα (β) = β + nβα for some integer nβ ; hence

γ =
∑

β 6=α

mβrα (β)+



mα −
∑

β 6=α

mβnβ



α =
∑

β 6=α

mβrα (β)+




∑

β 6=α

mβnβ − mα



 rα (α) .

At least one of mβ is positive, β 6= α, therefore γ ∈ ∆+ (Σ). Hence ∆+ (Π) r

{α} ⊂ ∆+ (Σ) r {−α}, and lemma follows by symmetry.

Definition 3.4. g (A) is called a regular contragredient superalgebra if any
A′ obtained from A by odd reflections is regular.

Consider a category C, which has an object g (A) for every square matrix
A. A C-morphism f : g (A) → g (A′) is by definition an isomorphism of super-
algebras which maps a Cartan subalgebra of g (A) to the Cartan subalgebra
of g (A′). A Weyl groupoid C (A) of a contragredient superalgebra g (A) is a
connected component of C which contains g (A).

Let g (A) be a regular superalgebra. With each base Σ of g (A) we as-
sociate a Dynkin graph ΓΣ whose vertices are elements of Σ, and α and β
are connected iff aαβ 6= 0. If one denotes even, odd non-isotropic and odd
isotropic roots by white, black and gray circles respectively, and writes aαβ

and aβα above and under the edge joining α and β, then one can reconstruct
the Cartan matrix of AΣ from ΓΣ.

Definition 3.5. Call an even root α ∈ ∆0 principal if there exists a base Π ′

obtained from a standard base Π by odd reflections such that α or α/2 belongs
to Π ′. Let B denote the set of all principal roots. For each β ∈ B choose Xβ ∈
gβ, Yβ ∈ g−β, set hβ = [Xβ , Yβ], and define the matrix B = bαβ = β (hα),
α, β ∈ B.

Note that by Lemma 3.3 a positive even root remains positive for any base
obtained from Π by odd reflections. Hence all principal roots are positive.
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Lemma 3.6. [Xα, Yβ] = δαβhβ for any α, β ∈ B.

Proof. It is sufficient to check that if α 6= β, then α−β is not a root. Assume
that γ = α − β is a root. Without loss of generality, one may assume that γ
is positive. Then α = β + γ. Choose a base Π ′ such that α or α/2 belongs to
Π ′, then α can not be a sum of two positive roots.

Generally speaking, B may be infinite. We define a contragredient Lie al-
gebra with infinite Cartan matrix as an inductive limit of usual contragredient
Lie algebras.

Let g′ denote the Lie subalgebra of g0̄ (A) generated by Xβ , Yβ for all
principal β.

Lemma 3.7. There exist a subalgebra c in the center of g (B) and a homo-
morphism q : g′ → g (B)/c which maps Xβ to the corresponding generator of
g (B). Im q = [g (B) , g (B)]/c.

Proof. Let X̄β , Ȳβ be the generators of ḡ (B). Lemma 3.6 implies that there
exists a surjective homomorphism s : [ḡ (B) , ḡ (B)] → g′ defined by s

(
X̄β

)
=

Xβ, s
(
Ȳβ

)
= Yβ . Since all principal roots are positive, one can find h in the

Cartan subalgebra of g (A) such that β (h) > 0 for all β ∈ B. Hence g′ has
an R-grading such that g′0 = h ∩ g′, [ḡ (B) , ḡ (B)] has the similar grading
and s is a homomorphism of R-graded Lie algebras. Then Ker s is a graded
ideal, in particular, Ker s = m− ⊕ m0 ⊕ m+, where m0 lies in the Cartan
subalgebra of ḡ (B), and m± are the positive (negative) graded components.
Since simple roots are not weights of m+, m0 is central and

[
Ȳβ , m+

]
⊂ m+;

likewise
[
X̄β , m−

]
⊂ m−. Therefore, m− ⊕ m+ generates the ideal in ḡ (B)

which intersects the Cartan subalgebra trivially. If p : ḡ (B) → g (B) denotes
the natural projection, then m− ⊕ m+ ⊂ Ker p. Let c = p

(
m0
)
, and p′ :

ḡ (B)/m0 → g (B)/c be the surjection induced by p. Then q : g′ → g (B)/c

given by
q (Xβ) = p′

(
s−1Xβ

)
, q (Yβ) = p′

(
s−1Yβ

)

is well defined. It is straightforward to check that q satisfies the conditions of
the lemma.

Remark 3.8. The subalgebra g′ is the best approximation to “the largest al-
most contragredient Lie subalgebra” of g0̄ we can construct explicitly (com-
pare with Lemma 3.10). In many examples q is an embedding and we suspect
that is so in general. It would be nice to prove it.

For any base Σ consider a closed convex cone

C+ (Σ) =

{
∑

α∈Σ

aαα | aα ≥ 0

}
.

Denote by C+
Π the intersection of C+ (Σ) for all bases Σ′ obtained from Π by

odd reflections. By Lemma 3.3, C+
Π contains all positive even roots.
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Remark 3.9. Note that Lemma 3.1 used only the following relation of g (A)
which is not a relation in ḡ (A) : if aαγ = aγα = 0, then [Xα, Xγ ] = 0. Thus
one could redo our discussion for any quotient of ḡ (A) in which these relations
hold.

Lemma 3.10. Assume that there are only finitely many Σ obtained from Π
by odd reflections. Then C+

Π is the convex cone generated by principal roots.

Proof. We prove the statement by induction on the number of simple roots n.
Note that C+

Π is an intersection of simplicial cones, hence a closed convex set.
Let C+ (B) be the cone generated by principal roots; obviously C+ (B) ⊂ C+

Π .
To prove inverse inclusion it suffices to show that the boundary of C+

Π belongs
to C+ (B). If γ is a point on the boundary of C+

Π , then there is Σ such that γ
lies on the boundary of C+ (Σ); in other words, γ belongs to one of the faces
of C+ (Σ). Hence there exists α ∈ Σ such that γ =

∑
β∈Σr{α} mββ for some

non-negative mβ . Let k be the contragredient subalgebra of g with simple
roots Σ′ = Σ r{α} (as proven in [9], the corresponding Xγ , Yγ , hγ generate a
subalgebra k which is contragredient; alternatively, one could use Remark 3.9,
and work with k directly). Since odd reflections of Σ′ are induced by ones of
Σ, γ ∈ C+

Σ′ . By inductive assumption γ is a non-negative linear combination
of principal roots of k. Clearly, any principal root of k is a principal root of g.
Thus γ ∈ C+ (B).

Remark 3.11. We suspect that Lemma 3.10 is true without any finiteness as-
sumption.

Denote by Q′ the sublattice of Q0 generated by all principal roots.

Lemma 3.12. For any regular contragredient superalgebra g (A) with n simple
roots and indecomposable A, the rank of Q′ is at least n − 1.

Proof. Choose a base Π of g (A), let Γ be its graph. We say that a subgraph
α1, . . . , αk is a string if it is connected, the vertices α1 and αk are of valence
1 and odd, and all vertices α2, . . . , αk−1 are of valence 2 and even. We claim
that, for each string α1, . . . , αk, either 2 (α1 + · · ·+ αs) is principal for some
s < k, or α1+· · ·+αk is principal. Indeed, note that either α1 is non-isotropic,
then 2α1 is principal, or α1 is isotropic, then rα1 (α2) = α1+α2 is an odd root.
Again either α1 +α2 is non-isotropic, then 2 (α1 + α2) is principal, or α1 +α2

is isotropic, then rα1+α2 (α3) = α1 + α2 + α3 is an odd root. Proceeding in
this manner, one gets either a principal root 2 (α1 + · · ·+ αs) for some s < k,
or a principal root α1 + · · ·+αk. Since all even simple roots are principal, one
can see that for any odd roots α and β ∈ Π joined by a string, at least one of
2α and α+β belongs to Q′. Consider all odd roots α such that 2α /∈ Q′. Since
Γ is connected, the sum or difference of any two of them is in Q′. Therefore
Q′ generates a subspace of dimension at least n − 1. Hence the rank of Q′ is
at least n − 1.



Kac–Moody superalgebras and integrability 11

4 Kac–Moody superalgebras

In this section we, finally, introduce the main character of our story.

Definition 4.1. g (A) is a Kac–Moody superalgebra if any A′ obtained from
A by odd reflections is admissible.

Lemma 4.2. Let g (A) be a regular Kac–Moody superalgebra. Then g (A) is a
direct sum of quasisimple regular Kac–Moody superalgebras and even or odd
Heisenberg superalgebras.

Proof. Follows from Lemma 2.4.

Remark 4.3. Note that the theory of highest-weight representations of Hei-
senberg (super)algebras can be formulated in a very similar way to what
we do in this paper. For “typical” representations, the Weyl character for-
mula (22) holds. For “atypical” representations, the character can be easily
described. Therefore, although this paper concentrates on regular quasisimple
Kac–Moody superalgebras, one could easily rewrite the theory for all regular
Kac–Moody superalgebras.

We start with defining the Weyl group. Let g be a quasisimple Kac–Moody
superalgebra. Then an even simple root is not isotropic. Therefore, for any
principal root α, there exists an sl (2)-triple {Xα ∈ gα, hα ∈ h, Yα ∈ g−α}. De-
fine an even reflection rα : h∗ → h∗ by

rα (µ) = µ − µ (hα)α.

Since the sl (2)–subalgebra spanned by {Xα, hα, Yα} acts locally finitely on
g (A), rα is dual to the restriction of the automorphism exp adXα

exp ad−Yα
exp adXα

to h. Therefore rα permutes the roots and maps a base to a base. If β is an
odd root such that 2β is principal, then we put rβ = rα.

The group W generated by all even reflections is called the Weyl group of
g (A). The main difference between even and odd reflections is that an even
reflection depends only on a root and does not depend on a base to which the
root belongs. The following straightforward identity is very important:

wrα (Π) = rw(α)w (Π) (5)

for a base Π , a regular isotropic α ∈ Π and w ∈ W .
Note that one can define exp adXα

exp ad−Yα
exp adXα

for any even α such
that adXα

and adYα
are locally nilpotent. We do not know any example where

α is not in the W -orbit of a simple root (in which case the corresponding
automorphism of h∗ is, obviously, in W ).

Lemma 4.4. Let Σ = rα (Π), where α ∈ Π is any root (even or odd). Then
∆+ (Π) r {α, 2α} = ∆+ (Σ) r {−α,−2α}.
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Proof. The same as for Lemma 3.3.

Corollary 4.5. Let ∆ be finite, Π and Π ′ be bases. Then Π ′ can be obtained
from Π by even and odd reflections.

Proof. Assume Π 6= Π ′. There exists α ∈ Π ∩ ∆− (Π ′). Then

|∆+ (rα (Π)) ∩∆− (Π ′) | < |∆+ (Π) ∩∆− (Π ′) |.

Repeating this process, one can get Π ′′ such that ∆+ (Π ′′) ∩ ∆− (Π ′) = ∅.
But then Π ′′ = Π .

Recall notations from Definition 3.5.

Lemma 4.6. If g is a quasisimple Kac–Moody Lie algebra, then B is a Cartan
matrix of a Kac–Moody Lie algebra.

Proof. By quasisimplicity of g, α (hα) 6= 0 for any α ∈ B. We normalize hα so
that α (hα) = 2. First, we have to show that α (hβ) ∈ Z≤0 for any α, β ∈ B,
α 6= β. By definition of a Kac–Moody superalgebra, the adjoint action of sl2-
subalgebra spanned by Xβ ∈ gβ , hβ ∈ h, Yβ ∈ g−β on g is locally finite, and
Xα is a lowest vector, hence α (hβ) ∈ Z≤0.

Finally, α (hβ) = 0 implies [Xβ, Xα] = 0, therefore β (hα) = 0.

Remark 4.7. Recall that the Serre’s relations in a Kac–Moody Lie algebra
g (B) are the relations

(
adXβ

)1−bβγ
Xγ = 0,

(
adYβ

)1−bβγ
Yγ = 0.

If B is symmetrizable, then Serre’s relations together with the “contragre-
dient” relations

[h, Xβ] = β (h)Xβ , [h, Yβ] = β (h)Yβ , [Xβ, Yγ ] = δβγhβ, [h, h] = 0

define the Kac–Moody Lie algebra g (B).
Since adXβ

, adYβ
, β ∈ B, are locally nilpotent operators in g, Serre’s rela-

tions hold in g′. Thus, if B is symmetrizable, the homomorphism q constructed
in Lemma 3.7 is injective.

Remark 4.8. Later, in Section 9, we will see that for all quasisimple regular
Kac–Moody superalgebras the set B of principal roots is finite. It would be
interesting to obtain a proof avoiding use of the classification.

Remark 4.9. As the preceding remark shows, the group W is manifestly fini-
tely generated. Later the fact that we restrict our attention to (a finite set of)
principal roots leads to an effective criterion of integrability of a weight (see
Theorem 10.5).

On the other hand, the group W is also “sufficiently large”. Indeed, there
are the following indications:
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1. it induces the “even” Weyl group when reduced to the “even contragre-
dient part” g (B) of g (Corollary 4.10);

2. when character formula for integrable infinite-dimensional highest weight
irreducible representations is known for weights in general position, it
coincides with Weyl character formula (Corollary 14.5).

Corollary 4.10. Let g be a quasisimple Kac–Moody superalgebra. Then the
Weyl group W is isomorphic to the Weyl group of g (B).

Define real and imaginary roots following [2]. A root α is real iff there
exists a base Π ′ obtained from Π by even and odd reflections such that one
of α or α/2 belongs to Π ′. By definition, a principal root is real. If α is not
real, then we call it imaginary.

Lemma 4.11. (a) The set of real roots is W -invariant.
(b) If α is real, then gα is one-dimensional.
(c) If α is a real odd isotropic root, then mα ∈ ∆ implies m = ±1.
(d) If α is a real odd non-isotropic root, then mα ∈ ∆ implies m = ±1,±2.
(e) If α is an even real root, then mα ∈ ∆ implies m = ±1,±1/2.

Proof. W -invariance follows from the fact that if Π is a base, then w (Π) is a
base. The other statements easily follow from the fact that α belongs to some
base Π and Remark 2.1 .

Denote by D+
Π the intersection of C+ (Σ) for all Σ obtained from Π by

even and odd reflections. It follows from (5) that

D+
Π =

⋂

w∈W

w
(
C+

Π

)
.

Corollary 4.12. If α is an imaginary root, then α or −α belongs to D+
Π .

Proof. Assume that α is a positive root, and α /∈ D+
Π . By definition α ∈

C+ (Π), but since α /∈ D+
Π there exists some base Π ′ obtained from Π by

even and odd reflection such that α /∈ C+ (Π ′). Write Π ′ = r1 . . . rs (Π), and
choose i such that α ∈ C+ (ri+1 . . . rs (Π)) and α /∈ C+ (ri . . . rs (Π)). Then
Lemma 4.4 implies ri = rα, hence α or α/2 ∈ ri+1 . . . rs (Π). Thus α is real.
Similarly for α being a negative root.

Corollary 4.13. If ∆ is finite, then every root is real; therefore g is finite-
dimensional.

Proof. By Corollary 4.5, every base can be obtained from a standard base Π
by even and odd reflections. In particular, −Π can be obtained from Π in this
way. Therefore D+

Π = {0}. Now the statement follows from Corollary 4.12.

Theorem 4.14. Let g (A) and g (A′) be regular quasisimple Kac–Moody su-
peralgebras which belong to the same connected component of C. Then A′ is
obtained from A by a composition of odd reflections, permutation of indices,
and multiplication by an invertible diagonal matrix.

This theorem will be proven in Section 8. (See Remark 8.4.)
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5 Regular Kac–Moody superalgebras with two simple
roots

It is easy to classify rank 2 regular quasisimple Kac–Moody superalgebras.
We assume that a superalgebra g (A) has at least one simple isotropic root;
otherwise, by definition, there is no restrictions on a matrix A (except the
admissibility conditions).

Theorem 5.1. ([9]) Let g (A) be a regular quasisimple Kac–Moody superal-
gebra with 2 simple roots such that at least one root is isotropic. Then g is
isomorphic to one of the following

1. g ∼= sl (1|2), A =

(
2 −1
1 0

)
with p (1) = 0, or

(
0 1
1 0

)
;

2. g ∼= osp (3|2), A =

(
2 −2
1 0

)
with p (1) = 0, or p (1) = 1.

Proof. If g has a base with two isotropic roots, then, without loss of generality,

one may assume that A =

(
0 1
1 0

)
(since multiplication by a diagonal matrix

does not change the algebra). The reflection with respect to α2 gives α′
1 = α1+

α2, α′
2 = −α2, h′

1 = h1 + h2, h′
2 = h2 (see Remark 3.2). Hence A′ =

(
2 −1
1 0

)
.

Now assume that g has a base with one non-isotropic odd root α1 and
one isotropic odd root α2. One may assume without loss of generality that

A =

(
2 2b
1 0

)
for some negative integer b. Again by Remark 3.2, the reflection

rα2 gives α′
1 = α1+α2, α′

2 = −α2, h′
1 = 1

1+2b
h1+

2b
1+2b

h2 (after normalization),

h′
2 = h2. Since α′

2 (h′
1) ∈ Z≤0, we obtain −2b

1+2b ∈ Z≤0, which is possible only if
b = −1.

Finally assume that g has a base with one even root and one isotropic
root. In this case the odd reflection will move the base to one of the above
cases. Hence theorem is proven.

The following hereditary principle is obvious but very important. If A is
a Cartan matrix of some regular Kac–Moody superalgebra, then any main
minor of A is also a Cartan matrix of some regular Kac–Moody superalgebra.

Corollary 5.2. Let A be a Cartan matrix of a quasisimple regular Kac–Moody
superalgebra. If α is an even simple root and β is an isotropic root, then
aαβ = 0,−1 or −2. If α is an odd non-isotropic root and β is an isotropic
root, then aαβ = 0 or −2.

6 Examples of regular quasisimple superalgebras

Finite-dimensional superalgebras. Finite-dimensional quasisimple Kac–Moody
superalgebras were classified in [1]. In most cases, they have non-degenerate
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Cartan matrices. However the superalgebra gl (n|n) is quasisimple, but not
simple, and its Cartan matrix has corank 1. (To get the simple superalgebra
psl (n|n) one should factor the commutator sl (n|n) = [gl (n|n) , gl (n|n)] by the
center consisting of scalar matrices). For example, the superalgebra gl (2|2) has
the following Cartan matrices




2 −1 0
1 0 −1
0 −1 2



 ,




0 1 0
1 0 −1
0 1 0



 ,




0 1 0
−1 2 −1
0 1 0





Another unusual example in this class is a family D (2, 1; a) depending on
the parameter a. If we start with the matrix




2 −1 0
1 0 a
0 −1 2





with a 6= 0,−1, then reflection rα2 transforms it to the matrix



0 1 −1 − a
1 0 a

−1 − 1
a

1 0



 ,

and the odd reflections of the latter matrix give the matrices of D (2, 1;−1− a)
and D

(
2, 1;−1− 1

a

)
(after suitable permutations of indices). Thus, the group

S3 generated by a → 1
a , and a → −1 − a acts on the space of parameters,

and the points on the same orbit of this action correspond to isomorphic
superalgebras. Hence one can describe the moduli space of such algebras as
CP1 r{0,−1,∞} modulo the above S3-action. The cases a = 0,−1,∞ corres-
pond to a non-regular Kac–Moody superalgebra. For instance, if a = 0, then
the singular odd reflection rα2 maps the generators into an ideal isomorphic to
psl (2|2). It is not hard to show that D (2, 1; 0) is isomorphic to the algebra of
all derivations of psl (2|2), and D (2, 1; 0)/ psl (2|2) ∼= sl (2). Another 3-element
S3-orbit

{
a = 1,−2,−1

2

}
corresponds to the algebra osp (4|2).

All Cartan matrices of regular finite-dimensional quasisimple Kac–Moody
superalgebras are symmetrizable, hence they have non-degenerate invariant
bilinear symmetric forms. Furthermore, ∆ is a finite set, hence any root is
real. Principal roots are the simple roots of g′ = [g0̄, g0̄].

Affine Kac–Moody superalgebras. Let s be a finite-dimensional simple
Lie superalgebra from the previous class (so s 6= gl (n|n)), (·, ·) be a non-
degenerate invariant symmetric form on s. Define an infinite dimensional su-
peralgebra s(1) as

s ⊗ C
[
t, t−1

]
⊕ CD ⊕ CK,

here D, K are even elements and the bracket is defined by
[
X ⊗ tk, Y ⊗ tl

]
= [X, Y ] ⊗ tk+l + kδk,−l (X, Y )K,

[D, K] = 0,
[
D, X ⊗ tk

]
= kX ⊗ tk.

(6)
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It is not difficult to show (as in the Lie algebra case) that s(1) is a regu-
lar quasisimple Kac–Moody superalgebra. To construct the set of generators
choose some generators X1, . . . , Xn, Y1, . . . , Yn of s, and add X0 = x ⊗ t,
Y0 = y ⊗ t−1, where x is a lowest weight vector, and y is a highest weight
vector in the adjoint module.

Quasisimplicity follows from simplicity of s. Regularity follows from exis-
tence of an invariant symmetric form defined by

(
X ⊗ tk, Y ⊗ tl

)
= (X, Y ) δk,−l, (D, K) = 1,

(
K, X ⊗ tk

)
=
(
D, X ⊗ tk

)
= (D, D) = (K, K) = 0.

(7)

Indeed, existence of the form implies that every Cartan matrix is symmetri-
zable, therefore there is no singular roots.

Now let us define the affinization of gl (n|n). Let s = psl (n|n) be the
quotient of sl (n|n) by the center, for simplicity of s we need n ≥ 2. Then s(1)

is defined as
s⊗ C

[
t, t−1

]
⊕ CD ⊕ CK ⊕ CD′ ⊕ CK′,

the bracket with additional even elements D′ and K′ is given by

[
D′, X ⊗ tk

]
=
(
1 − (−1)

p(X)
)

X ⊗ tk,
[
K′, X ⊗ tk

]
= 0,

[
X ⊗ tk, Y ⊗ tl

]
= [X, Y ]⊗ tk+l + kδk,−l (X, Y )K + δk,−l tr [X, Y ]K′,

here tr is the usual trace (not the supertrace), which is not zero only if both

X and Y are odd. The Cartan matrix of affine superalgebra psl (n|n)
(1)

has

corank 2, therefore psl (n|n)
(1)

is a regular quasisimple Kac–Moody superal-
gebra with two dimensional center. For example, one of Cartan matrices of

psl (2|2)
(1)

is 



0 1 0 −1
1 0 −1 0
0 1 0 −1
1 0 −1 0



 .

What follows is applicable for any finite-dimensional simple s. To describe
the roots of s(1), define δ ∈ h∗ by conditions δ (hi) = 0, δ (D) = 1. Denote by
∆◦ the roots of s. Then the roots of g are of the form α+kδ with k ∈ Z, α ∈ ∆◦,
or kδ with k ∈ Zr{0}. The standard base Π = {α0, . . . , αn} is obtained from
the standard base {α1, . . . , αn} of s by adding the root α0 = θ + δ, where θ is
the lowest root of s.

Twisted affine superalgebras. Choose an automorphism φ of s of finite order
p, which preserves the invariant form on s. Let ε be a p-th primitive root of
1. One can extend the action of φ on s(1) by

φ
(
X ⊗ tk

)
= εkφ (X) ⊗ tk, φ (D) = D, φ (K) = K.

Then sφ is defined as the set of elements fixed by φ. It was proven in [5]
that the construction does not depend on ε, and if two automorphisms are
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in the same connected component of Aut s, then the corresponding algebras
are isomorphic. Up to isomorphism, there are the following twisted affine

superalgebras: (p) sl (m|n)
(2)

if mn is even, (m, n) 6= (2, 2); (p) sl (m|n)
(4)

if

mn is odd; osp (2m|2n)
(2)

; the upper index denotes the minimal possible order
of an automorphism. In the case of twisting of psl (n|n) the corank of a Cartan
matrix is 1, and the center is one-dimensional. For example,




2 −2 0
−1 0 1
0 −2 2





with parity functions (0,1,0) or (1,1,1) is a Cartan matrix of psl (3|3)
(4)

. All
twisted affine superalgebras are regular quasisimple Kac–Moody superalge-
bras.

A base in a twisted affine superalgebra can be obtained by the following
procedure. Define a Zp-grading s = s0 ⊕ s1 ⊕ · · · ⊕ sp−1 by

sk =
{
s ∈ s | φ (s) = εks

}
.

In all cases φ can be chosen so that s0 is a simple finite-dimensional superal-
gebra, s1 is an irreducible s0-module and s0 + s1 generates s. For example, for

(p) sl (m|2n)
(2)

, s0 = osp (m|2n), s1 is a unique non-trivial irreducible subquo-
tient of the symmetric square of the standard (m|2n)-dimensional s0-module;

for (p) sl (2m + 1|2n + 1)
(4)

, s0 = osp (2m + 1|2n), and s1 is the standard mo-

dule with inverted parity; for osp (2m|2n)
(2)

, s0 = osp (2m− 1|2n), s1 is the
standard module.

Let ∆0 be the set of roots of s0 and ∆j denote the set of weights of sj

with respect to a Cartan subalgebra of s0. The roots of s(p) are of the form
α+kδ, with α ∈ ∆j, k ∈ j+pZ, and kδ with k ∈ pZr{0}. The standard base
Π = {α0, . . . , αn} can be obtained from a base {α1, . . . , αn} of s by adding
the weight α0 = θ + δ, where θ is the lowest weight of s1.

Finally, let us mention that the condition that φ preserves the invariant
form on s is non-trivial. For example, an automorphism π of psl (n|n) such

that π

(
A B
C D

)
=

(
D C
B A

)
does not preserve the invariant form on psl (n|n),

and psl (n|n)
π

is not contragredient. It also explains why the Lie superalgebra
psl (2|2) does not have a twisted affinization. The subgroup of automorphisms
of psl (2|2) preserving the invariant form is connected due to existence of non-
trivial derivations, see above example for D (2, 1; 0).

A strange twisted affine superalgebra. The Lie superalgebra s = q (n) ⊂
psl (n|n) is the subalgebra of all elements fixed by the automorphism π defi-
ned above. The superalgebra q (n) is simple for n ≥ 3. The involution φ such

that φ (x) = (−1)
p(x)

x does not belong to the connected component of unity

in Aut q (n). Although the Lie superalgebras q (n) and q (n)(1) are not contra-
gredient, twisting by φ gives a regular quasisimple Kac–Moody superalgebra
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which we denote by q (n)
(2)

. As a vector space q (n)
(2)

is isomorphic to

s0̄ ⊗ C
[
t2, t−2

]
⊕ s1̄ ⊗ tC

[
t2, t−2

]
⊕ CK ⊕ CD

with D = t ∂
∂t

and K being a central element. For any x, y ∈ s, the commutator
is defined by the formula

[x ⊗ tm, y ⊗ tn] = [x, y] ⊗ tm+n + δm,−n (1 − (−1)m) tr (xy)K.

A Cartan matrix of q (n)
(2)

has size n×n. Identify the set of indices with the
abelian group Zn. Fix a parity function p : Zn → {0, 1} so that the number of
odd indices is odd. Set aij = 0 if j 6= i or i ± 1 (modulo n); set

aii = 2, ai,i±1 = −1 if p (i) = 0; aii = 0, ai,i+1 = −1, ai,i−1 = 1 if p (i) = 1.

The graph of this Cartan matrix is a cycle with odd number of isotropic ver-
tices. Any two such Cartan matrices are related by a chain of odd reflections;
it is a simple exercise to check that they are not symmetrizable. The corank
of a Cartan matrix is 1.

Roots of g = q (n)
(2)

are of the form α + mδ, where α is a root of sl (n)
and m ∈ Z or mδ with m ∈ Z r {0}. The parity of a root equals the parity of
m.

Non-symmetrizable superalgebra S (1, 2; b). This superalgebra appears in
the list of conformal superalgebras classified by Kac and van de Leur [7]. By
definition, it is the Kac–Moody superalgebra with Cartan matrix




0 b 1− b
−b 0 1 + b
−1 −1 2





and parity (1,1,0). Obviously, S (1, 2; b) ∼= S (1, 2;−b). If b = 0, then the
matrix is a matrix of gl (2|2); if b = −1, 1, the matrix has singular roots. In
all other cases the odd reflection rα2 transforms the matrix of S (1, 2; b) to
the matrix of S (1, 2; 1 + b). Hence an isomorphism S (1, 2; b) ∼= S (1, 2; 1 + b).
The moduli space of S (1, 2; b) can be identified with CP1/G where G is the

subgroup of PGL (2, Z) generated by

(
−1 0
0 1

)
and

(
1 1
0 1

)
. A Cartan matrix

of S (1, 2; b) has corank 1, hence the algebra has one-dimensional center. The
Lie superalgebra S (1, 2; b) is a quasisimple Kac–Moody superalgebra. It is
regular if b /∈ Z.

Realization of S (1, 2; b). Consider a supercommutative algebra R =
C
[
t, t−1, ξ1, ξ2

]
with an even generator t and two odd generators ξ1, ξ2. Denote

by W (1, 2) the Lie superalgebra of derivations of R, in other words W (1, 2)
is the superspace of all linear maps d : R → R such that

d (fg) = d (f) g + (−1)
p(d)p(f)

fd (g) .
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An element d ∈ W (1, 2) can be written as

d = f
∂

∂t
+ f1

∂

∂ξ1
+ f2

∂

∂ξ2

for some f, f1, f2 ∈ R. It is easy to see that the subset of all d ∈ W (1, 2)
satisfying the condition

bft−1 +
∂f

∂t
− (−1)

p(d)

(
∂f1

∂ξ1
+

∂f2

∂ξ2

)
≡ const,

form a subalgebra S̄b of W (1, 2). Let E = ξ1
∂

∂ξ1
+ ξ2

∂
∂ξ2

. Then adE is a

diagonalizable operator in S̄b which defines the grading

S̄b =
(
S̄b

)
−1

⊕
(
S̄b

)
0
⊕
(
S̄b

)
1
⊕
(
S̄b

)
2
,

such that
(
S̄b

)
2

= 0 for b /∈ Z,
(
S̄b

)
2

= Cξ1ξ2t
−b ∂

∂t for b ∈ Z. Define

Sb =
(
S̄b

)
−1

⊕
(
S̄b

)
0
⊕
(
S̄b

)
1
.

One can see that Sb is an ideal in S̄b when b ∈ Z.
The commutator [Sb,Sb] is simple and has codimension 1 in Sb. It consists

of all derivations d ∈ Sb satisfying the condition

bft−1 +
∂f

∂t
− (−1)p(d)

(
∂f1

∂ξ1
+

∂f2

∂ξ2

)
= 0.

Set

X1 = ∂
∂ξ1

, X2 = −bξ1ξ2t
−1 ∂

∂ξ1
+ ξ2

∂
∂t , X3 = ξ1

∂
∂ξ2

,

Y1 = (b + 1) ξ1ξ2
∂

∂ξ2
+ ξ1t

∂
∂t , Y2 = t ∂

∂ξ2
, Y3 = ξ2

∂
∂ξ1

,

h1 = (b + 1) ξ2
∂

∂ξ2
+ t ∂

∂t , h2 = bξ1
∂

∂ξ1
+ ξ2

∂
∂ξ2

+ t ∂
∂t , h3 = ξ1

∂
∂ξ1

− ξ2
∂

∂ξ2
.

Then Xi, Yi, hi, i = 1, 2, 3, generate [Sb,Sb] if b 6= 0. They satisfy the rela-
tions (1) with Cartan matrix S (1, 2; b). The contragredient Lie superalgebra
S (1, 2; b) can be obtained from Sb by a suitable central extension.

Divide the fist row of the Cartan matrix S (1, 2; b) by b and the second by
−b, let a = 1

b . Then the renormalized matrix




0 1 −1 − a
1 0 −1 + a
−1 −1 2





clearly is a deformation of a Cartan matrix of the affine superalgebra sl (1|2)
(1)

.

Thus, S (1, 2,∞) ∼= sl (1|2)
(1)

. The roots and the root multiplicities of

S (1, 2; b) are the same as the roots and the root multiplicities of sl (1|2)
(1)

.



20 Vera Serganova

The family Q± (l, m, n). This family was discovered by C. Hoyt (see [3]). To
define it let us classify 3×3 matrices with zeros on the diagonal and non-zeros
anywhere else, which define regular quasisimple Kac–Moody superalgebras.
Using multiplication by a diagonal matrix, any such matrix can be reduced
to the form 


0 a 1
1 0 b
c 1 0



 .

The odd reflection rα1 transforms it to the matrix (parity= (1, 0, 0))




0 a 1
−1 2 1 + b + 1

a
−1 1 + a + 1

c 2



 .

The latter matrix must be admissible, therefore a+ 1
c , b+ 1

a ∈ Z<0. Application
of two other odd reflections produces one more condition c + 1

b ∈ Z<0. The
matrix B is 


2 1 + b + 1

a 1 + b + 1
a

1 + a + 1
c 2 1 + a + 1

c
1 + c + 1

b 1 + c + 1
b 2



 .

If all non-diagonal entries of B are zero, g (A) belongs to the family D (2, 1; a)
of finite-dimensional superalgebras defined above. If all of them equal −1, A is

of type q (3)(2). It was shown in [3] that for any three k, l, m ∈ Z≥1, klm > 1,
there exist two solutions of the system

1 + a +
1

c
= −k, 1 + b +

1

a
= −l, 1 + c +

1

b
= −m

one with −1 < a, b, c < 0 and one with a, b, c ≤ −1. We denote the correspon-
ding superalgebras Q+ (k, l, m) and Q− (k, l, m) respectively.

In conclusion, let us note that all superalgebras listed above are quasi-
simple and regular except D (2, 1; 0), which is not regular and not quasisimple,
and S (1, 2; b) with b ∈ Z, which is quasisimple but not regular.

7 Classification results

Quasisimple finite-dimensional contragredient superalgebras were listed by
V. Kac in [1]. The reader can find there the description of root systems and
Cartan matrices.

The Kac–Moody superalgebras without isotropic simple roots and of finite
growth were also classified by V. Kac in [10]. They are all affine or twisted af-
fine superalgebras (automatically symmetrizable). This result was generalized
by Van de Leur [8] as follows.
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Theorem 7.1. (Van de Leur) Any finite-growth contragredient superalgebra
with an indecomposable symmetrizable Cartan matrix is isomorphic to a finite-
dimensional superalgebra, its affinization, or its twisted affinization.

It is not difficult to see that the property of a contragredient superalgebra
to have finite growth does not depend on a choice of a base (Cartan ma-
trix). Thus, by Theorem 2.2, any finite growth contragredient superalgebra
is a Kac–Moody superalgebra; therefore hereditary principle (Corollary 5.2)
is applicable to the Cartan matrices (the original one, and those obtained by
odd reflections). That was used in [9] to obtain the following result.

Theorem 7.2. (Hoyt, Serganova) A non-symmetrizable quasisimple superal-

gebra of finite growth is isomorphic to q (n)
(2)

or S (1, 2; b).

In fact, [9] contains classification of all finite-growth contragredient super-
algebras (without assumption of quasisimplicity), we do not formulate it here,
since it is rather technical.

In [3] C. Hoyt classified all quasisimple regular Kac–Moody superalgebras.

Theorem 7.3. (C. Hoyt) Any quasisimple regular Kac–Moody superalgebra
with at least one isotropic simple root is isomorphic to a finite-dimensional

Kac–Moody superalgebra, its affinization or twisted affinization, q (n)
(2)

, S (1, 2; b)
with b /∈ Z, or Q± (k, l, m).

Corollary 7.4. A quasisimple regular Kac–Moody superalgebra of type I is
isomorphic to one of the following list:

1. sl (m|n) with 1 ≤ m < n;
2. gl (n|n) with n ≥ 2;
3. osp (2|2n) with n ≥ 2;

4. sl (m|n)
(1)

with 1 ≤ m < n;

5. psl (n|n)(1) with n ≥ 2;

6. osp (2|2n)
(1)

with n ≥ 2;
7. S (1, 2; b) with b /∈ Z.

8 Applications of classification results

In this section we prove some general results about regular quasisimple Kac–
Moody superalgebras. We use the classification (see Theorem 7.3). It would
be very desirable to obtain proofs without use of classification; unfortunately
we were unable to do so. First, we can “improve” Lemma 3.12.

Lemma 8.1. For any quasisimple regular Kac–Moody superalgebra g, the lat-
tice Q′ has a finite index in Q0.
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Proof. As follows from the proof of Lemma 3.12, for any odd roots α and
β ∈ Π joined by a string, 2α + 2β ∈ Q′. If Π contains an odd root α such
that 2α ∈ Q′ (for example, if α is non-isotropic), then 2β ∈ Q′ for any root
β, hence the rank of Q′ is n. If Γ contains a cycle with exactly three isotropic
vertices α1, α2, α3, then 2αi + 2αj ∈ Q′ implies 4αi ∈ Q′, hence the rank of
Q′ is also n.

One can see from the classification that the only regular quasisimple Kac–
Moody superalgebras which have no base with non-isotropic odd roots are
sl (m|n), gl (m|m), osp (2m|2n), D (2, 1; a), F (4), their affinizations, S (1, 2; a),

q (m)
(1)

, or Q± (k, l, m). The superalgebras of type II in this list are osp (2m|2n)

with m ≥ 2, D (2, 1; a), F (4), their affinizations, q (m)
(2)

, or Q± (k, l, m); they
all have a graph Γ with a 3-cycle of isotropic vertices. Therefore if g has type
II, the rank of Q′ is n (the same as the rank of Q0). Thus [Q0 : Q′] is finite. If
g is of type I the rank of Q′ is n− 1 (again the same as the Q0). Hence again
[Q0 : Q′] is finite. The lemma is proven.

Lemma 8.2. Let g (A) be a regular quasisimple Kac–Moody superalgebra.
Then at least one of the conditions below is true:

(a) A does not have zeros on the diagonal;
(b) g (A) is finite-dimensional;
(c) There exists a finite set S ⊂ h∗ and δ ∈ ∆ such that ∆ ⊂ Zδ + S;
(d) g (A) is isomorphic to Q± (k, l, m).

Proof. Suppose (a) and (b) do not hold. Then, by Theorem 7.1 and Theo-

rem 7.3, g (A) is (twisted) affine, S (1, 2; b), q (n)
(2)

, or Q± (k, l, m). In the first
three cases (c) holds, as follows from the description of roots in Section 6.

Theorem 8.3. Let Π and Π ′ be two bases of a quasisimple regular Kac–
Moody superalgebra g. Then Π ′ or −Π ′ can be obtained from Π by even and
odd reflections.

Proof. We already proved the statement for finite-dimensional g in Corol-
lary 4.5. In fact, its proof implies that in general, it suffices to prove that
either ∆+ (Π) ∩ ∆− (Π ′) or ∆+ (Π) ∩ ∆+ (Π ′) is finite.

Assume first that g satisfies (c) from Lemma 8.2. Choose h, h′ ∈ h such that
α (h) = 1 for any α ∈ Π , and β (h′) = 1 for any β ∈ Π ′. Then γ (h) , γ (h′) 6=
0 for any root γ ∈ ∆, in particular, δ (h) , δ (h′) 6= 0. Suppose δ (h) > 0
and δ (h′) > 0. We claim that ∆+ (Π) ∩ ∆− (Π ′) is finite. Indeed, let C be
the maximum of {|s (h) |, |s (h′) | | s ∈ S}. Let α ∈ ∆+ (Π) ∩ ∆− (Π ′). Since
α = mδ + s for some s ∈ S, the conditions α (h) > 0, α (h′) < 0 imply
|m| ≤ C. Thus there are only finitely many α in ∆+ (Π)∩∆− (Π ′). If δ (h) > 0,
δ (h′) < 0, then ∆+ (Π) ∩ ∆− (Π ′) is finite by similar argument.

Now let g satisfy (a) or (d). Then the matrix B is indecomposable, and
the conditions of Lemma 3.10 hold (in the first case B is obtained from A by
dividing all odd rows by 2 and multiplying all odd columns by 2, in the second
case it follows from the direct computation done in Section 6). Moreover,
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Lemma 3.10 implies that D+
Π =

⋂
w∈W w (C+ (B)). It was shown in [2], Lemma

5.8, that the set of rays spanned by positive imaginary roots of g (B) is dense
in D+

Π in any metric topology. We choose this metric so that the roots of Π ′

form an orthonormal basis in Q.
First, we claim that for any base Π ′, either D+

Π , or −D+
Π is contained in

C+ (Π ′). Indeed, if this is not true, there exists h ∈ h such that α (h) ≥ 1 for
all α ∈ Π ′ and γ (h) = 0 for some γ ∈ D+

Π . Since the set of rays spanned by
positive imaginary roots of g (B) is dense in D+

Π , one can choose a sequence

βi of positive imaginary roots of g (B) such that βi

|βi|
approaches γ

|γ| . But each

βi is a root of g, hence βi =
∑

α∈Π′ miαα where all miα are non-negative (or

non-positive). Therefore βi(h)
|βi|

≥ 1, or βi(h)
|βi|

≤ −1, and we obtain contradiction

with the assumption γ (h) = 0.
Without loss of generality, one may assume that D+

Π ⊂ C+ (Π ′) (if ne-
cessary one can use −Π ′ instead of Π ′). Let us prove that in this case
∆+ (Π)∩∆− (Π ′) is finite. Assume the opposite. Then one can find an infinite
sequence of roots α1, . . . , αn, · · · ∈ ∆+ (Π) ∩ ∆− (Π ′). Let γ be a limit point
of the sequence αi

|αi|
. By Lemma 4.4, after any chain of reflections r1 . . . rk in-

finitely many of αi remain in ∆+ (r1 . . . rk (Π)). Hence γ ∈ D+
Π . On the other

hand, γ ∈ −C+ (Π ′). Contradiction.

Remark 8.4. Theorem 8.3 implies Theorem 4.14.

9 Description of g (B) and g
′ in examples

Let us recall (see [1]) that if s is a simple classical Lie superalgebra with a
non-degenerate even invariant symmetric form, then s

0
is either semi-simple,

or reductive with one-dimensional center. Every such s is contragredient.
Now let us consider the case of (twisted) affine superalgebras.

Theorem 9.1. Let s be a simple classical Lie superalgebra with non-degenerate
even invariant symmetric form (·, ·), g = s(1), [s0̄, s0̄] = s1 ⊕ · · · ⊕ sk be the
sum of simple ideals s1, . . . , sk, q : g′ → g (B)/c be as defined in Lemma 3.7.
Then

(a) g (B) = s
(1)
1 ⊕ · · · ⊕ s

(1)
k ;

(b) dim c = k − 1, Ker q = 0;
(c) If s0 is semisimple, then g0̄ = g′ ⊕ CD. If s0̄ has one-dimensional

center Cc, then g0̄ = (g′ + i)⊕CD and g′ ∩ i = CK, where i is the subalgebra
generated by c ⊗ tk. In particular, ∆0 (g) = ∆ (g (B)).

(d) Let K1, . . . , Kk denote the canonical central elements of s
(1)
1 , . . . , s

(1)
k ,

(·, ·)i denote the Killing form on si and (x, y) = bi (x, y)i for x, y ∈ si, then

c =
{

a1K1 + · · ·+ akKk |
∑

aibi = 0
}

. (8)

(e) ∆0 (g) = ∆ (g′) = ∆ (g (B)), and imaginary roots are roots of the form
mδ, where m ∈ Z r {0}.
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Proof. (a) follows from the fact that even roots of g are the same as the roots

of s
(1)
1 ⊕ · · ·⊕ s

(1)
k . This fact can be also used to prove (c). Indeed, (g0̄)α = g′α

for any even root α of the form α◦ + mα with α◦ ∈ ∆0 (s), and

(g0̄)mδ = hs ⊗ tm, g′mδ = h[s,s] ⊗ tm,

where hs, h[s,s] are Cartan subalgebras of s and [s, s] respectively. If s0̄ is
semisimple, then hs = h[s,s] and g′mδ = (g0̄)mδ . If s0̄ is not semisimple, then

(g0̄)mδ = g′mδ ⊕ C (c ⊗ tm) ,

and hence g0̄ = g′ + i.
Next we will prove (d). Pick up elements x1⊗t, . . . , xk⊗t, y1⊗t−1, . . . , yk⊗

t−1 such that xi, yi belong to the Cartan subalgebra of si, (xi, yi) = 1. Let K̄i

be the images of Ki under the natural projection g (B) → g (B)/c. Then

q (K) = q
([

xi ⊗ t, yi ⊗ t−1
])

= (xi, yi)i K̄i =
1

bi
K̄i.

Thus, c is generated by 1
bi

Ki −
1
bj

Kj , that implies (d).

To prove (b) note that dim c = k − 1 by (d) and Ker q = 0 since g (B) is
symmetizable (see Remark 4.7); this implies ∆ (g′) = ∆ (g (B)).

Roots of i coincide with roots of h⊗ tZ; this implies ∆0 (g) = ∆ (g′). Since
Weyl groups of g (B) and g coincide, even real roots of g coincide with real
roots of g (B). Thus the required description of real even roots follows from
the theory of affine Lie algebras, see [2]. The absence of odd imaginary roots
is not used in this paper; note only that it follows easily from the fact that
the Weyl group of g (B) acts transitively on the subset of isotropic and on the
subset of non-isotropic odd roots in the set ∆◦

1 + Zδ of odd roots of g. The
latter fact can be checked case by case (see [11] for details); therefore all odd
roots are real.

Remark 9.2. Observe that if g = s(1), then k = 1 only for s = sl (1|n),
osp (1|2n) or osp (2|2n).

Example 9.3. Let s = D (2, 1; a). Then

s0̄
∼= sl (2) ⊕ sl (2) ⊕ sl (2) , g (B) ∼= sl (2)

(1)
⊕ sl (2)

(1)
⊕ sl (2)

(1)
,

and c is spanned by K2 − aK1 and (1 + a)K1 + K3, where K1, K2 and K3

are the standard central elements of the components in g (B) isomorphic to

sl (2)
(1)

. In this case g0̄ = g′ ⊕ CD.

Corollary 9.4. In notations of Theorem 9.1 let k = 2. Then c is spanned by
K1 + uK2 for some positive rational u.

Proof. Follows from the fact that b1, b2 are rational and have different signs.
The latter fact can be found in [1].
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Below we list g (B) for all twisted affine superalgebras.

g g (B)

sl (1|2n)
(2)

, n ≥ 2 sl (2n)
(2)

sl (2|2n)
(2)

, n ≥ 2 sl (2)
(1)

⊕ sl (2n)
(2)

(p) sl (m|2n)(2) , m ≥ 3, n ≥ 2 sl (m)(2) ⊕ sl (2n)(2)

sl (2m + 1|2)
(2)

, m ≥ 1 sl (2m + 1)
(2)

⊕ sl (2)
(1)

sl (1|2n + 1)
(4)

, n ≥ 1 sl (2n + 1)
(2)

(p) sl (2m + 1|2n + 1)
(4)

, n ≥ m ≥ 1 sl (2m + 1)
(2)

⊕ sl (2n + 1)
(2)

osp (2|2n)
(2)

, n ≥ 1 sp (2n)
(1)

osp (4|2n)
(2)

, n ≥ 1 sl (2)
(1)

⊕ sp (2n)
(1)

osp (2m|2n)
(2)

, m ≥ 3, n ≥ 1 o (2m)
(2)

⊕ sp (2n)
(1)

Remark 9.5. From this table one can see that g (B) is either (twisted) affine
Lie algebra, or a direct sum of two (twisted) affine Lie algebras. In the former
case c = 0, and in the latter case c is one dimensional, and generated by
K1 + uK2; here by K1 and K2 we denote the canonical central elements of
(twisted) affine superalgebras which appear as direct summands of g (B), and
u is an appropriate positive rational number.

It is not difficult to see that g0̄ = g′ ⊕ CD for the twisted affinization of
osp (2m|2n), m ≥ 2, and of psl (n|n), n ≥ 3. If g is the twisted affinization of
sl (m|n) with m 6= n, or osp (2|2n), then g0̄ = (g′ + i)⊕CD, i∩ g′ = CK, here
i is generated by c⊗ t2k+1 for k ∈ Z if the order of the twisting automorphism
is 2, and by c ⊗ t4k+2 for k ∈ Z if the order of the twisting automorphism is
4 (as before, c denotes a central element of s0̄).

Strange twisted affine superalgebra q (n)
(2)

. g (B) ∼= sl (n)
(1)

, c coincides

with the center of sl (n)
(1)

, the homomorphism q : g′ → g (B)/c is injective,
and

g0̄ = g′ ⊕ CD ⊕ CK. (9)

Non-symmetrizable superalgebra S (1, 2; b), b /∈ Z. To describe g0̄, one has to
use the realization Sb = S (1, 2; b)/CK, here K denotes a central element of
S (1, 2; b). It is a straightforward calculation that

Sb = Ct
∂

∂t
⊕ [Sb,Sb] ,

and [Sb,Sb]0̄ is a semidirect sum of the subalgebra L spanned by tm ∂
∂t +

(m + b) tm−1E, and the ideal g′/CK spanned by tm
∑

i,j=1,2 cijξi
∂

∂ξj
with

c11 + c22 = 0. Note that L is isomorphic to the algebra of derivations of
C
[
t, t−1

]
, and g′/CK is isomorphic to the loop algebra sl (2) ⊗ C

[
t, t−1

]
.

Going to the central extension g = S (1, 2; b) of Sb, one obtains

g0̄ = L̂ + g′ ⊕ Ct
∂

∂t
, g′ ⊕ Ct

∂

∂t
∼= sl (2)

(1)
, L̂ ∩ g′ = CK,
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here L̂ is isomorphic to the Virasoro algebra.
The family Q± (l, m, n). Due to the lack of an explicit description, we

can say only few things about the roots and the structure of g and g (B) for
g = Q± (l, m, n). For example, we would like to find out what are multiplicities
of imaginary roots of these algebras, but we did not succeed yet.

Let α1, α2, α3 be the base with three isotropic roots, then there are three
linearly independent principal roots β1 = α2 +α3, β2 = α1+α3, β3 = α1+α2.
Since [Q : Q′] = 2 and [Q : Q0] = 2, one has Q0 = Q′. Note that the matrix
B 


2 −k −k
−l 2 −l
−m −m 2



 .

has a negative determinant (as easily follows from the condition k, l, m ≥ 1
and klm > 1). Therefore g (B) is a simple Kac–Moody Lie algebra of indefinite
type. In this case we do not know if q is injective.

10 Integrable modules and highest weight modules

Let g = g (A) be a regular Kac–Moody superalgebra with a standard base Π .
A g-module M is called a weight module if h acts semisimply on M , in other
words M has a weight decomposition

M =
⊕

µ∈h∗

Mµ, Mµ = {m ∈ M | hm = µ (h)m, ∀h ∈ h} ,

and dimMµ < ∞ for all µ ∈ h∗. The set

P (M) = {µ ∈ h∗ | Mµ 6= 0}

is called the set of weights of M . The formal character ch M of M is defined
by the formula

ch M =
∑

µ∈P(M)

dimMµ eµ.

A module M is integrable if M is a weight module, and Xβ and Yβ act
locally nilpotently on M for every principal root β of g. Note that if α is
isotropic, then X2

α = 0, hence Xα acts locally nilpotently on any module. If
β is a principal root, then expXβ exp (−Yβ) exp Xβ is a well defined linear
operator on an integrable module M . Thus the Weyl group W of g acts on
M , therefore ch M is W -invariant. This implies also that Xα and Yα act
locally nilpotently on M for any real root α. By definition of a Kac–Moody
superalgebra, its adjoint module is integrable.

Our next step is to define the category O of highest weight modules.
Define a Verma module M (λ) with the highest weight λ as the induced

module U (g) ⊗U(b) C (λ), where b = h ⊕ n+, C (λ) is a one-dimensional b-
module with generator v such that hv = λ (h) v, Xαv = 0 for all simple roots
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α. A vector v is called a highest vector of M (λ). Any quotient V of M (λ)
is an indecomposable module generated by the image of v under the natural
projection M (λ) → V .

The following lemma can be proven exactly as in the Lie algebra case.

Lemma 10.1. Let m (α) = dim gα.

(a) ch M (λ) = eλ

Q

α∈∆
+
1
(1+e−α)

m(α)

Q

α∈∆
+
0

(1−e−α)m(α) .

(b) M (λ) has a unique irreducible quotient which we denote by L (λ).

The category O is a full subcategory of the category of g-modules, whose
objects are weight modules M such that P (M) ⊂

⋃s
i=1 P (M (µi)) for some

finite set {µ1, . . . , µs} ∈ h∗.
In what follows we will often need to change the base Π to a base Σ by

odd reflections. So we will write n+
Σ, bΣ ,OΣ, MΣ (λ) and LΣ (λ) if we mean

the corresponding object for a non-standard base. If the subindex is omitted,
then Σ = Π .

Lemma 10.2. Let Σ′ is obtained from Σ by an odd reflection rα.
(a) MΣ′ (λ) and LΣ′ (λ) are objects of OΣ.
(b) If λ (hα) 6= 0, then MΣ′ (λ − α) ∼= MΣ (λ), and LΣ′ (λ − α) ∼= LΣ (λ).
(c) Let λ (hα) = 0, then LΣ′ (λ) ∼= LΣ (λ). If p = CYα ⊕ b, then the

b-module structure on C (λ) and C (λ − α) extends uniquely to a p-module
structure, and the following exact sequences hold

0 → U (g) ⊗U(p) C (λ − α) → MΣ (λ) → U (g) ⊗U(p) C (λ) → 0,

0 → U (g) ⊗U(p) C (λ) → MΣ′ (λ − α) → U (g) ⊗U(p) C (λ − α) → 0.

Proof. The first statement of the lemma follows from the identity

ch MΣ′ (λ − α) = ch MΣ (λ) ,

which is a straightforward consequence of Lemma 10.1 (a).
Now prove (b). Let v be a highest vector of MΣ (λ). Slightly abusing

notations, we denote the image of v in LΣ (λ) by v. A simple calculation
shows that Yαv is n+

Σ′-invariant. If λ (hα) 6= 0, then XαYαv is proportional to
v with a non-zero coefficient. Hence

MΣ (λ) ∼= U (g) ⊗U(bΣ′ ) (CYαv) ∼= MΣ′ (λ − α) , and LΣ′ (λ − α) ∼= LΣ (λ) .

To show (c), assume that λ (hα) = 0. Then Yαv generates a proper submo-
dule in MΣ (λ). Therefore Yαv = 0 in LΣ (λ), thus v is a highest vector with
respect to both Σ and Σ′. Hence LΣ′ (λ) ∼= LΣ (λ). Finally, note that the
submodule of MΣ (λ) generated by Yαv is isomorphic to U (g)⊗U(p) C (λ − α)
(indeed, choose a subalgebra m ⊂ n− of codimension one, such that g = m⊕p.
Then U (n−) = U (m)⊕U (m)Yα, hence U (g)Yαv = U (m)Yαv). That implies
the first exact sequence. The second follows by symmetry.
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Corollary 10.3. If Σ is obtained from Π by odd reflections, then OΣ = OΠ .

Remark 10.4. Corollary 10.3 guarantees that the category O does not change
if we change a base by odd reflection. In what follows we omit subindex in the
notation for category O.

A weight λ is called integrable if L (λ) is an integrable module. One can
use Lemma 10.2 to describe integrable weights: it implies that for any Σ
obtained from Π by odd reflections there is exactly one weight λΣ such that
LΠ (λ) ∼= LΣ (λΣ).

Theorem 10.5. Let g be a regular quasisimple Kac–Moody superalgebra. A
weight λ is integrable iff for any principal root β and any Σ obtained from Π
by odd reflections such that β ∈ Σ, the condition λΣ (hβ) ∈ Z≥0 holds. If it
holds for one Σ such that β ∈ Σ, then it holds for any Σ such that β ∈ Σ.

Proof. If λ is integrable, then Yβ acts locally nilpotently on LΣ (λΣ) ∼= L (λ);
in particular, sufficiently large power of Yβ annihilates a highest vector vΣ of
LΣ (λΣ). The standard sl (2)-calculation implies that λΣ (hβ) ∈ Z≥0.

On the other hand, if λΣ (hβ) ∈ Z≥0, then Y
λΣ(hβ)+1

β vΣ = 0. Since
LΣ (λ) = U (g) vΣ , and adYβ

is locally nilpotent on U (g), Yβ acts locally
nilpotently on LΣ (λ).

If the condition λΣ (hβ) ∈ Z≥0 holds for one Σ containing β, then Yβ is
locally nilpotent; hence the condition holds for any other Σ containing β.

Hence, in absence of odd reflections,

Corollary 10.6. Let g be a regular Kac–Moody superalgebra without isotropic
simple roots. Then λ is integrable iff λ (hα) ∈ Z≥0 for any even simple root
α, and λ (hα) ∈ 2Z≥0 for any odd simple root α.

Indeed, if α is odd, then hα/2 is hβ for β = 2α ∈ B.
Since B is finite (see Remark 4.8), Theorem 10.5 is an explicit test for

integrability. Using it, one can recover the description of integrable weights
given in [1] for finite-dimensional g (see appendix in [13]). Let us illustrate
the method with examples.

Example 10.7. Let g = D (2, 1; a); choose the base Π = {α1, α2, α3} such
that all simple roots are isotropic. All principle roots are β1 = α2 + α3,
β2 = α1 +α3 and β3 = α1 +α2. They are linearly independent. Therefore one
can parameterize λ by setting λ = (c1, c2, c3), where c1 = λ (hβ1), c2 = λ (hβ2)
and c3 = λ (hβ3). Using Remark 3.2 one gets

hβ1 =
h2 + ah3

a
, hβ2 = −

h1 + ah3

a + 1
, hβ3 = h1 + h2. (10)

Let Σk = rαk
(Π), k = 1, 2, 3. If λ (h1) 6= 0, then
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λΣ1 = λ − α1 = (c1 + 1, c2 − 1, c3 − 1) .

Hence c2, c3 ∈ Z>0. If λ (h2) 6= 0, then

λΣ2 = λ − α2 = (c1 − 1, c2 + 1, c3 − 1)

and hence c1 ∈ Z>0. We do not have to make the third odd reflection rα3

since Σ1 = {−α1, β2, β3} and Σ2 = {β1,−α2, β3} contain already all principal
roots. By symmetry, if λ (hi) , λ (hj) 6= 0 for some i 6= j, then c1, c2, c3 ∈ Z>0.
On the other hand if λ (hi) = λ (hj) = 0 for some i 6= j, then two odd
reflections do not change λ and hence c1, c2, c3 ∈ Z≥0. Thus, λ = (c1, c2, c3) is
integrable iff c1, c2, c3 ∈ Z≥0 and, in addition, one of the following conditions
hold

1. c1, c2, c3 > 0;
2. c1 = (a + 1) c2 + c3 = 0;
3. c2 = −ac1 + c3 = 0;
4. c3 = −ac1 + (a + 1) c2 = 0.

Note that for λ 6= 0 the conditions (2) − (4) imply a ∈ Q. Thus, there are
more integrable weights for rational a than for irrational a.

Now, do similar calculations for Q± (k, l, m), which also has a base with
all isotropic roots.

Example 10.8. Let g = Q± (m, k, l). Again Π = {α1, α2, α3}, the principal
roots are β1 = α2+α3, β2 = α1+α3 and β3 = α1+α2. Since the principal roots
are linearly independent, we again can use parameterization λ = (c1, c2, c3),
where c1 = λ (hβ1), c2 = λ (hβ2) and c3 = λ (hβ3). It is easy to check that

hβ3 =
h1

a
+ h2, hβ1 =

h2

b
+ h3, hβ2 =

h3

c
+ h1. (11)

We notice that, as in the previous example, integrability implies ci ∈ Z≥0 for
i = 1, 2, 3. Moreover, if at least for two hi, hj, λ (hi) and λ (hj) 6= 0, then
c1, c2, c3 ∈ Z>0. Assume that λ (h1) = λ (h2) = 0. Then by (11), c1 = λ (h3),
c2c = λ (h3). It was shown in [3] that a, b, c /∈ Q. Hence c1 = c2 = c3 = 0.
Similarly, λ (h1) = λ (h3) = 0 and λ (h3) = λ (h2) = 0 imply λ = 0. Thus, all
integrable weights are (c1, c2, c3) ∈ Z3

>0 and 0.

The following theorem was proven in [11] for untwisted affine superalge-
bras. Other cases were done in [3].

Theorem 10.9. Let g = q (n)
(2)

, (p) sl (m|n)
(1)

or (p) sl (m|n)
(2)

with m, n ≥

2, osp (m|2n)
(1)

or osp (m|2n)
(2)

with m ≥ 3, G
(1)
3 or F

(1)
4 ; then any integrable

module L (λ) is one-dimensional and trivial over [g, g].
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Proof. Let g = q (n)
(2)

. As follows from Section 9,

g′ ⊕ CD ∼= sl (n)
(1)

/c,

where c is the center of sl (n)
(1)

. Thus, λ is an integrable highest weight of

sl (n)
(1)

with zero central charge. A non-trivial integrable highest weight mo-
dule over an affine Lie algebra must have a positive central charge (see [2]).
Therefore λ (hβ) = 0 for all principal β. Recall from (9) that

h =
⊕

β∈B

Chβ ⊕ CK ⊕ CD, h ∩ [g, g] =
⊕

β∈B

Chβ ⊕ CK.

We claim next that λ (K) = 0.
Indeed, choose a base Π = {α1, . . . , αn} such that α1 is odd (automatically

isotropic), and αi is even for any i ≥ 2 (and therefore principal); the Dynkin
diagram is a loop, so α1 is connected with α2 and αn. Let Σ = rα1 (Π). A
direct calculation shows that the subspace of h spanned by hβ (for principal
β) has codimension 1 in the space spanned by hα, α ∈ ∆, and K and hα1 are
not in this subspace. (This does not contradict algebra being of type II, since
in absence of duality this does not relate to geometry of {hβ | β ∈ B} ⊂ h.) If
λ (K) 6= 0, then λ (hα1) 6= 0, therefore λΣ = λ−α1. Note that then λΣ (hαi

) 6=
0 for αi connected with α1 in ΓΠ . But λΣ (hβ) = 0 for any principal β.
Contradiction. Thus λ (h ∩ [g, g]) = 0, hence L (λ) is one-dimensional.

For other superalgebras in the list g (B) is a sum of two or three com-

ponents. If there are two components, i.e. g 6= D (2, 1; a)
(1)

, one can use
Corollary 9.4 or Remark 9.5, g′ ∼= [g (B) , g (B)]/c, where c is spanned by
K1 + uK2 for some positive u. Since L (λ) is integrable over g′, the g′-
submodule Lg′ (λ) ⊂ L (λ) generated by a highest vector is a highest weight
g′-integrable module. Therefore it is a g (B)-integrable module, and thus K1

and K2 have non-negative eigenvalues (see [2]). But K1 + uK2 acts by zero
on L (λ), therefore both K1 and K2 are zero. That implies λ (hβ) = 0 for any

principal β and, by the same argument as for q (n)
(2)

, λ (h ∩ [g, g]) = 0, and
L (λ) is one-dimensional.

In the case D (2, 1; a)
(1)

we have again g′ ∼= [g (B) , g (B)]/c. The submo-
dule Lg′ (λ) is the g (B)-module Lg(B) (µ); here µ is an integrable weight for
g (B) such that µ (c) = 0. The description of c in Example 9.3 implies

µ (K2) = aµ (K1) ; µ (K3) = − (1 + a)µ (K1) ; µ (Ki) ∈ Z≥0;

therefore µ (Ki) = 0. Apply representations theory of affine Lie algebras again;
hence Lg(B) (µ) is one-dimensional, and λ (hβ) = 0 for all principal β. Since
hβ generate h ∩ [g, g], as above, L (λ) is one-dimensional.

The above theorem, Theorem 7.1 and Theorem 7.3 imply the following
corollary.
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Corollary 10.10. Let g be an infinite-dimensional quasisimple regular Kac–
Moody superalgebra, and g has infinite-dimensional integrable highest weight

modules. Then g has no simple isotropic roots, or g is isomorphic to sl (1|n)
(1)

,

osp (2|2n)
(1)

, S (1, 2; b) or Q± (k, l, m).

We describe the set of integrable weights for sl (1|n)
(1)

, osp (2|2n)
(1)

,
S (1, 2; b) in Section 12 (Q± (m, k, l) is done in Example 10.8).

Remark 10.11. Theorem 10.9 shows that most affine superalgebras do not have
interesting integrable highest weight representation. [11] and [12] propose a
weaker condition of integrability by requiring integrability over one of the com-
ponents of g (B) and a finite-dimensional part of another component. These
papers contain a conjecture about character formulae of such representations;
these formulae have interesting applications in number theory and combina-
torics. Although we do not discuss here partially integrable modules, we will

prove the Kac–Wakimoto conjecture for sl (1|n)
(1)

and osp (2|2n)
(1)

in Theo-
rem 14.7 (in this case k = 1, hence their condition of integrability coincides
with our condition).

11 General properties of category O

Throughout this section g = g (A) is a regular quasisimple Kac–Moody su-
peralgebra with the standard base Π . Here we investigate properties of the
category O which we need to calculate characters, and which are valid in the
context of such g.

Let ρ = ρΠ be any element of h∗ satisfying the condition

ρ (hα) =
aαα

2

for all α ∈ Π ; the choice of ρ is unique unless A is degenerate. When Σ is
obtained from Π by odd reflections, define

ρΣ = ρ +
∑

β∈∆+(Π)∩∆−(Σ)

β.

Lemma 11.1. Let Σ be a base obtained from Π by odd reflections. Then
ρΣ (hα) = aαα

2 for any α ∈ Σ.

Proof. It is sufficient to check that if Σ′ = rβ (Σ) for some isotropic β ∈ Σ,

then ρΣ (hα) = α(hα)
2

for any α ∈ Σ implies ρΣ′

(
hrβ(α)

)
=

rβ(α)
“

hrβ(α)

”

2
. Note

that, by Lemma 4.4, ρΣ′ = ρΣ +α. The statement can be checked by a direct
calculation, which is not trivial only if rβ (α) = α + β. Then, by Remark 3.2,
hα+β = α (hβ)hα + β (hα)hβ, so

ρΣ′ (hα+β) =
α (hβ) α (hα)

2
+ α (hβ)β (hα) =

〈α + β, hα+β〉

2
.
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Remark 11.2. It is convenient to reformulate Lemma 10.2 in the following way.
Let Σ′ = rα (Σ) for an odd isotropic α ∈ Σ. If 〈λ + ρ, hα〉 6= 0, then

λΣ′ + ρΣ′ = λΣ + ρΣ . (12)

If 〈λ + ρ, hα〉 = 0, then

λΣ′ + ρΣ′ = λΣ + ρΣ + α. (13)

A weight λ ∈ h∗ is called typical if 〈λ + ρ, hα〉 6= 0 for any real isotropic
root α. (12) implies that if λ is typical, then λΣ+ρΣ is invariantwith respect to
odd reflections. Hence the notion of typicality can be defined for an irreducible
highest weight module L (λ) independently of a choice of a base, i.e., if λ is
typical, then λΣ is typical.

If A is symmetrizable, then g admits an invariant symmetric non-degenerate
even form (·, ·); this form induces an isomorphism η : h → h∗ such that
η (hα) = 2α

(α,α) for every real even root α. If α is a real isotropic root, then

η (hα) is proportional to α. In this case the typicality condition can be re-
written as (λ + ρ, α) 6= 0 for any real isotropic root α. Note also that in this
case (12) and (13) imply that for any Σ′ obtained from Σ by odd reflections

(λΣ′ + ρΣ′ , λΣ′ + ρΣ′) = (λΣ + ρΣ , λΣ + ρΣ) . (14)

The following statement can be found in [11]; it is a straightforward genera-
lization of the corresponding statement for Lie algebras.

Lemma 11.3. Let g be a Kac–Moody superalgebra with an invariant non-
degenerate symmetric even form. For each α ∈ ∆+, let e1

α, . . . , esα
α be a basis

in gα, f1
α, . . . , fsα

α be the dual basis in g−α, u1, . . . , ur and u1, . . . , ur be dual
bases in h. The operator

Ω = 2η−1 (ρ) + 2
∑

α∈∆+

∑

j

fj
αej

α

is well-defined on any module from the category O and commutes with the
action of g. Ω acts on M (λ) as a scalar operator with eigenvalue (λ + 2ρ, λ).

For any base Σ introduce a partial order on h∗ by putting

µ ≤Σ λ iff λ − µ =
∑

α∈∆+(Σ)

mαα

for some mα ∈ Z≥0. For the standard base Π , we omit the subindex in ≤Π .
The next three statements below are straightforward generalizations of the

similar statements for Kac–Moody Lie algebras (which can be found in [2]).
The proofs are omitted.
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Lemma 11.4. Let g be an arbitrary Kac–Moody superalgebra, M ∈ O and
ν ∈ h∗. There exists a filtration

0 = F 0 (M) ⊂ F 1 (M) ⊂ F 2 (M) ⊂ · · · ⊂ F s (M) = M

and a subset of indices J such that F i+1 (M)/F i (M) = L (λi) for every
i ∈ J and for every µ ≥ ν, µ /∈

⋃
j /∈J P

(
F j (M)/F j−1 (M)

)
. For every

λ ≥ ν, define the multiplicity [M : L (λ)] as # {i | λi = λ}. The multiplicity
[M : L (λ)] depends neither on a choice of filtration, nor on ν ≤ λ. Hence
[M : L (λ)] is well defined for any λ.

Lemma 11.5. (a) [M (λ) : L (λ)] = 1;
(b) [M (λ) : L (µ)] > 0 implies λ ≥ µ;
(c) If g has an invariant form (·, ·), then [M (λ) : L (µ)] > 0 implies

(λ + ρ, λ + ρ) = (µ + ρ, µ + ρ).

Corollary 11.6. Let V 6= 0 be a quotient of M (λ). There is a unique way to
write the character of V as an (infinite) linear combination

ch V =
∑

µ≤λ

aµ ch M (µ) .

Furthermore, aλ = 1, and if T = {µ | aµ 6= 0}, then for any µ ∈ T there are
ν1, . . . , νk ∈ T such that

[M (λ) : L (ν1)] > 0, [M (ν1) : L (ν2)] > 0, . . . , [M (νk) : L (µ)] > 0.

If g has an invariant form (·, ·), then all µ ∈ T satisfy the additional condition
(λ + ρ, λ + ρ) = (µ + ρ, µ + ρ).

Lemma 11.7. Let Σ be obtained from Π by odd reflections. Then [M (λ) : L (µ)] =
[MΣ (λ + ρ− ρΣ) : L (µ)] for any µ.

Proof. Sufficient to check that [MΣ (λ) : L (µ)] = [MΣ′ (λ + ρΣ′ − ρΣ) : L (µ)]
for any µ if Σ′ = rα (Σ). In this case it follows directly from Lemma 10.2 (b)
and (c).

Corollary 11.8. Let V be a subquotient of M (λ). For any weight µ of V and
any Σ obtained from Π by odd reflections, µ + ρΣ ≤Σ λ + ρ.

Proof. If µ is a weight of M (λ), then µ is a weight of MΣ (λ + ρ− ρΣ)

Corollary 11.9. If [M (λ) : L (µ)] > 0, then µΣ + ρΣ ≤Σ λ + ρ for any Σ
obtained from Π by odd reflections.

Proof. If [M (λ) : L (µ)] > 0, then [MΣ (λ + ρ− ρΣ) : L (µ)] > 0. But L (µ) =
LΣ (µΣ). Hence µΣ is a weight of MΣ (λ + ρ− ρΣ). Now the statement follows
from the previous Corollary.
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12 Lie superalgebras sl (1|n)(1), osp (2|2n)(1) and
S (1, 2; b)

In this section g is sl (1|n)
(1)

, osp (2|2n)
(1)

, or S (1, 2; b) (b /∈ Z). The impor-
tance of these particular Lie superalgebras for our discussion is that that they
are the only finite growth regular quasisimple Kac–Moody superalgebras with
isotropic roots which have non-trivial integrable modules, and it is easy to
describe all bases obtained by odd reflections.

If g = sl (1|n)
(1)

or S (1, 2; b), a graph of any base is a cycle of length n+1
with exactly two isotropic roots (which are neighbors); here n = 2 for the
case of S (1, 2; b). If g = osp (2|2n), then we will see that all possible Dynkin
graphs are

◦ ⇒ ◦ − · · · − ◦ −⊗ −⊗ − ◦ − · · · − ◦ ⇐ ◦,
⊗

|
⊗

\
/◦ − · · · − ◦ ⇐ ◦.

Here we write ⊗ instead of gray nodes.
For some of our calculation we need an explicit description of roots of

g. One can choose linearly independent ε, ε1, . . . , εn, δ ∈ h∗ so that the even

roots of sl (1|n)
(1)

are εi − εj + mδ, m ∈ Z, i 6= j, and mδ, m ∈ Z r {0}; odd

roots of sl (1|n)(1) are ± (ε + εi) + mδ, m ∈ Z. If g = osp (2|2n)(1), then the
even roots of g are ±εi ± εj + mδ, ±2εi + mδ, m ∈ Z, and mδ, m ∈ Z r {0};
odd roots of g are ±ε±εi +mδ, m ∈ Z. Finally, the roots of S (2, 1; b) are the

same as the roots of sl (1|2)
(1)

, as it was explained in Section 6.

For the standard base in case of sl (1|n)(1) (or S (1, 2; b)) choose

Π = {ε1 − ε2, . . . , εn−1 − εn, εn + ε,−ε − ε1 + δ} ;

for osp (2|2n)(1) choose

Π = {−2ε1, ε1 − ε2, . . . , εn−1 − εn, εn + ε, εn − ε + δ} .

Since g is of type I, it has a grading g−1 ⊕ g0 ⊕ g1; it is

∆ (g1) = {ε + εi + mδ}, if g = sl (1|n)
(1)

or S (1, 2; b) ,

∆ (g1) = {ε ± εi + mδ}, if g = osp (2|2n)
(1)

,

and ∆ (g−1) = −∆ (g1). This grading induces a Z-grading on the root lattice

Q =
⊕

i∈Z

Qi. (15)

Set
Q+ =

⊕

i>0

Qi, Q− =
⊕

i<0

Qi. (16)
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This grading induces the decomposition

∆±
1 = ∆± (g1) ∪ ∆± (g−1) .

The standard base Π has exactly two isotropic roots, one in ∆+ (g1), and
one in ∆+ (g−1). The corresponding vertices in ΓΠ are connected, and each of
them is connected with one even vertex (the latter might be the same for both
isotropic vertices). These properties also hold for any base Σ; indeed, the set
of diagrams described in the beginning of the section is invariant w.r.t. any
odd reflection, and contains a diagram of Π . In particular, every base Σ has
two isotropic roots, moreover

|Σ ∩ ∆ (g−1) | = |Σ ∩ ∆ (g1) | = 1. (17)

Let
γ1 ∈ Σ ∩ ∆ (g−1) , α1 ∈ Σ ∩ ∆ (g1) .

The set B of principal roots coincides with the set of even simple roots of Σ
taken together with α1 + γ1; indeed, the latter set is preserved by both odd
reflections. In particular, B is linearly independent. Define an infinite sequence
{αk} ∈ ∆ (g1) by

α2 ∈ rα1 (Σ) ∩ ∆ (g1) , . . . , αk+1 ∈ rαk
. . . rα1 (Σ) ∩ ∆ (g1) , . . .

Similarly, define {γk} ∈ ∆ (g−1) by

γ2 ∈ rγ1 (Σ) ∩ ∆ (g−1) , . . . , γk+1 ∈ rγk
. . . rγ1 (Σ) ∩ ∆ (g−1) , . . .

Let N = n if g = sl (1|n)(1), N = 2n for g = osp (2|2n)(1). Using the explicit
description of roots, one can see that αk+N −αk = γk+N − γk = δ; moreover,

γk = −αN+1−k + δ if k ≤ N . If g = sl (1|n)
(1)

, and Σ = Π ,

α1 = εn + ε, α2 = εn−1 + ε, . . . , αn = ε1 + ε;

If g = osp (2|2n)
(1)

, Σ = Π , then

α1 = εn + ε, . . . , αn = ε1 + ε, αn+1 = −ε1 + ε, . . . , α2n = −εn + ε.

Unless stated otherwise αi and γi are for Σ = Π .
It follows from (17) that every base Σ which can be obtained from Π

by odd reflection is either rαk
. . . rα1 (Π), or rγk

. . . rγ1 (Π) for some k > 0.
Moreover, every odd root is real and isotropic, and

∆+ (g1) = {α1, . . . , αk, . . .} , ∆+ (g−1) = {γ1, . . . , γk, . . .} .

Imaginary even roots are (by Theorem 9.1) {mδ | m ∈ Z r {0}}.
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Lemma 12.1. Let α1 and γ1 be isotropic roots of Σ, and γ ∈ Qi ∩ C+ (Σ).
Then

γ = iα1 +
∑

β∈B

mββ, if i ≥ 0, γ = −iγ1 +
∑

β∈B

mββ, if i ≤ 0,

for some mβ ∈ Z≥0; the representation is unique.

Proof. Uniqueness is obvious. Express γ as a linear combination of simple
roots

γ = n1γ1 + n2α1 +
∑

β∈B∩Σ

mββ.

Note that i = n2 − n1. If i ≥ 0, one can write it as γ = iα1 + n1 (γ1 + α1) +∑
β∈B∩Σ mββ. If i < 0, one can write it as γ = −iγ1 + n2 (γ1 + α1) +∑
β∈B∩Σ mββ.
Since γ1 + α1 ∈ B, this finishes the proof.

Lemma 12.2. Let k ≥ 0. Then

Q+ ∩
⋂

s≥k

C+ (rαs
. . . rα1 (Π)) = ∅, Q− ∩

⋂

s≥k

C+ (rγs
. . . rγ1 (Π)) = ∅.

Proof. Let γ ∈ Q+ ∩
⋂

s≥k C+ (rαs
. . . rα1 (Π)). By Lemma 12.1 (applied to

Σ = rαs
. . . rα1 (Π))

γ = iαs +
∑

β∈B

ms
ββ,

for every s ≥ k. Let βs = αs+1 − αs; note that βs ∈ B. Then

ms+1
β = ms

β if β 6= βs, ms+1
β = ms

β − i if β = βs.

Since ms
β ≥ 0 for all β ∈ B and all s ≥ k, i ≤ 0. Contradiction.

The proof of the second statement is similar.

Lemma 12.3. Let [M (λ) : L (µ)] > 0. Then there exists a base Σ obtained
from Π by odd reflections, and numbers mβ ∈ Z≥0 such that

λ + ρ − µΣ − ρΣ =
∑

β∈B

mββ.

Proof. Let γΣ = λ + ρ − µΣ − ρΣ. By Corollary 11.9, 0 ≤Σ γΣ for any Σ
obtained from Π by odd reflections. Let Σ′ = rα (Σ) for some odd α ∈ Σ.
Then by (12) and (13)

γΣ = γΣ′ if 〈µΣ + ρΣ, hα〉 6= 0, γΣ = γΣ′ − α if 〈µΣ + ρΣ , hα〉 = 0.
(18)

Suppose that γΣ1 ∈ Q+ for some Σ1, and γΣ2 ∈ Q− for some Σ2. Since Σ1

and Σ2 are connected by odd reflections, and every odd root α is in Q±1, there
exists Σ such that γΣ ∈ Q0. In this case the statement is true by Lemma 12.1.
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Now assume that γΣ ∈ Q+ for all Σ. Then one can find i > 0 and k > 0
such that γrαs ...rα1(Π) ∈ Qi for all s ≥ k. Hence, by (18),

γrαs ...rα1 (Π) = γrα
s′

...rα1 (Π) = γ

for all s, s′ > k. Thus γ ∈ Q+∩
⋂

s≥k C+ (rαs
. . . rα1 (Π)), which is impossible

by Lemma 12.2. Similarly, the case when γΣ ∈ Q− for all Σ is impossible.

Lemma 12.4. Let λ ∈ h∗. LΣ (λ) is integrable iff 〈λ + ρΣ, hβ〉 ∈ Z>0 for any
β ∈ B ∩ Σ, and one of the following two conditions holds:

1. 〈λ + ρΣ , hα1+γ1 〉 ∈ Z>0,
2. 〈λ + ρΣ , hα1〉 = 〈λ + ρΣ , hγ1〉 = 0.

Proof. There is only one β ∈ BrΠ . To check the conditions of Theorem 10.5
make an odd reflection rα1 . The details are left to the reader.

Remark 12.5. Call µ ∈ h∗ regular if 〈µ, hβ〉 6= 0 for any even real root β. As
follows from the lemma above, if LΣ (λ) is integrable, then λ + ρΣ is regular
iff the first condition holds.

Lemma 12.6. Let LΣ (λ) be integrable, λ+ρΣ be not regular, and λ (hβ) 6= 0
at least for one β ∈ B. Then one can find a base Σ′ obtained from Σ by odd
reflections such that LΣ′ (λ) ∼= LΣ (λ), and λ + ρΣ′ is regular. Moreover, one
can choose this base Σ′ equal to rγk

. . . rγ1 (Σ), and find w ∈ W such that

λ+ρΣ′ = λ+ρΣ+γ1+· · ·+γk = w (λ + ρ − kα1) , (−1)
w

= (−1)
k
, w (α1) = −γk.

The choice of k is unique.

Proof. If λ + ρΣ is not regular, then 〈λ + ρΣ , hα1〉 = 〈λ + ρΣ , hγ1〉 = 0. Let
Σk = rγk

. . . rγ1 (Σ). We claim that LΣk
(λ) is not isomorphic to LΣ (λ) at

least for one k. Indeed, otherwise (λ, γi) = 0 for all i, but that would imply
〈λ, hβ〉 = 0 for all β ∈ B. Choose the last k such that LΣk

(λ) and LΣ (λ) are
isomorphic. Then

λ + ρΣk
= λ + ρΣ + γ1 + · · ·+ γk,

〈
λ + ρΣk

, hγk+1

〉
6= 0.

By Remark 12.5 applied to Σ = Σk, λ + ρΣk
must be regular. Next consider

even roots

β1 = α1 + γ1, β2 = γ2 − γ1, . . . , βk = γk − γk−1.

Note that for any i < k, βi+1 ∈ B r Σi, and that
〈
λ + ρΣ + γ1 + · · ·+ γi, hβi+1

〉
= 0.

Furthermore, rβi+1 (γi+1) = γi (recall γ0 = −α1). Therefore

λ + ρΣ + γ1 + · · ·+ γk = rβk
(λ + ρΣ + γ1 + · · ·+ γk−1 + γk−1) = rβk

(λ + ρΣ + γ1 + · · ·+ 2γk−1) =

rβk−1rβk
(λ + ρΣ + γ1 + · · ·+ 3γk−2) = · · · = rβ1 . . . rβk

(λ + ρΣ + kγ0) .
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Remark 12.7. Recall that g′ ⊕CD is isomorphic to g (B) which is sl (n)
(1)

for

g = sl (1|n)(1), sl (2)(1) for g = S (1, 2; b), and sp (2n)(1) for g = osp (2|2n)(1).
Principal roots B form a base of g′. Let

C = {µ ∈ h∗ | µ (hβ) ∈ Z≥0, β ∈ B} .

It follows from Lemma 12.4, that if LΣ (λ) is integrable, then λ ∈ C. We need
two following facts about affine Weyl group action, see [2]. If λ ∈ C, then
w (λ) = λ −

∑
β∈B mββ for some mβ ∈ Z≥0. If µ (hβ) ∈ Z for all β ∈ B and

µ (K) > 0, then Wµ intersects C in exactly one point.

Consider the ring R of all formal expressions
∑

µ∈P cµeµ for all P satisfying
the condition

there is a finite set L ⊂ h∗ such that P ⊂ L −
∑

α∈Π

Z≥0α. (19)

It is not difficult to check that indeed such R is a commutative ring without
zero divisors. Let R′ be a subring satisfying the additional condition that (19)
holds for w (P ) for any w ∈ W . Then R′ enjoys the natural action of W ; this
action preserves multiplication and addition. For an arbitrary µ ∈ h∗ and Σ
obtained from Π by odd reflections, define

UΣ (µ) =
e−ρΣ

∏
α∈∆+

1 (Σ) (1 + e−α)
m(α)

∏
α∈∆+

0 (Σ) (1 − e−α)
m(α)

∑

w∈W

(−1)
w

ew(µ).

It is an immediate calculation that for any Σ′ obtained from Σ by odd reflec-
tions and for any w ∈ W

UΣ (µ) = UΣ′ (µ) , UΣ (w (µ)) = (−1)
w

UΣ (µ) . (20)

Hence one can drop the index Σ in UΣ (µ).
Assume now that µ ∈ C. Then w (µ) ≤ µ and hence UΣ (µ) ∈ R. It easily

follows from Lemma 10.1 (a) that

U (µ) =
∑

w∈W

(−1)
w

ch M (w (µ) − ρ) . (21)

If eν appears in chM (κ) with non-zero coefficient, then ν ≤ κ. Therefore, if
eν appears in U (µ) with non-zero coefficient, then ν ≤ w (µ) − ρ ≤ µ − ρ.

Lemma 12.8. If µ is regular and integrable, then U (µ) ∈ R′. Moreover,
w (U (µ)) = U (µ) for any w ∈ W .

Proof. Let ρ0 ∈ h∗ be such that ρ0 (hβ) =
aββ

2
for all β ∈ B, and let ρ1 = ρ0−ρ.

Introduce the expressions
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D0 = eρ0

∏

α∈∆+
0

(
1 − e−α

)m(α)
, D1 = eρ1

∏

α∈∆+
1

(
1 + e−α

)m(α)
.

Then

U (µ) =
D1

D0

∑

w∈W

(−1)
w

ew(µ).

Note that ∆ (g′) = ∆0, and the multiplicity of kδ in g′ is m (kδ) − 1 (see
Theorem 9.1 (c), the case of s with one-dimensional center)

D0 = D′
0

∞∏

n=1

(
1 − e−nδ

)
,

where D′
0 the corresponding expression for the Lie subalgebra g′ + h. The

expression

S (µ) =

∑
w∈W (−1)

w
ew(µ)

D
′

0

gives a character of the simple integrable module over Kac–Moody Lie algebra
g′+h with highest weight µ−ρ0 (see [2]). (Note that regularity and integrabi-
lity of µ implies µ− ρ0 ∈ C.) Therefore S (µ) is W -invariant, and S (µ) ∈ R′.
On the other hand,

∏∞
n=1 1/

(
1 − e−nδ

)
is W -invariant, since Wδ = δ. The-

refore, it is sufficient to show that D1 is W -invariant. One has to check that
rβ (D1) = D1 for all β ∈ B; assume first that β ∈ Π ; then ρ1 (hβ) = 0,
so rβ (ρ1) = ρ1; moreover, by Lemma 4.4, rβ permutes roots of ∆+

1 . Hence
rβ (D1) = D1. If β /∈ Π , then

β = γ1+α1, ρ (hβ) = 0, ρ1 (hβ) = 1, rβ (ρ1) = ρ1−β = ρ1−α1−γ1.

Furthermore, since β = α1 + γ1 ,

rβ (α1) = −γ1, rβ (γ1) = −α1,

therefore rβrγ1 = r−α1rβ by (5), which implies that rβ permutes the roots of
∆+

1 r {α1, γ1}. Hence

rβ

(
eρ1
(
1 + e−α1

) (
1 + e−γ1

))
= eρ1−α1−γ1 (1 + eα1) (1 + eγ1 ) = eρ1

(
1 + e−α1

) (
1 + e−γ1

)
,

rβ

∏

α∈∆+
1 r{α1,γ1}

(
1 + e−α

)m(α)
=

∏

α∈∆+
1 r{α1,γ1}

(
1 + e−α

)m(α)
.

That finishes the proof.

Remark 12.9. It is useful to note that D1 is not only W -invariant, but also
independent of a choice of Σ. In other words,

D1 = eρ0−ρΣ

∏

α∈∆+
1 (Σ)

(
1 + e−α

)

for any Σ obtained from Π by odd reflections.



40 Vera Serganova

13 Lie superalgebras sl (1|n)(1), osp (2|2n)(1)

From now on we assume that g is sl (1|n)
(1)

or osp (2|2n)
(1)

.

Lemma 13.1. There exists an invariant symmetric even form on g such that
the corresponding form on Q × Q is semi-positive, takes integer values, and
(α, α) > 0 for any even real root α.

Proof. Just use the form in (7). The positivity conditions follow from those
on sl (1|n) and osp (2|2n).

Remark 13.2. One can normalize an invariant form on g so that the corres-
ponding form on h∗ satisfies the relations

(ε, ε) = −1, (εi, εj) = δij , (ε, εi) = (ε, δ) = (εi, δ) = 0.

One can see that (δ, Q) = 0. On the other hand, (λ, δ) = λ (K) for any

λ ∈ h∗. In the case of sl (1|n)(1), all real even roots have the same length.

If g = osp (2|2n)
(1)

with n ≥ 2, then (β, β) = 2 for a short real even root,
and (β, β) = 4 for a long real even root. Since η (hβ) = 2β

(β,β)
, given an inte-

grable weight λ, we have (λ + ρ, β) ∈ Z for any real even short root β, and
(λ + ρ, β) ∈ 2Z for any real even long root β. Moreover, (ρ, δ) = N − 1 for

sl (1|n)
(1)

, (ρ, δ) = N for osp (2|2n)
(1)

.

For a convenience of the reader, let us recall the properties of weights we
use in what follows (we reformulate them here using the invariant form). λ is
regular if (λ, β) 6= 0 for any even real β; λ is typical if (λ + ρ, β) 6= 0 for any
real isotropic β; λ is integrable if L (λ) is an integrable module.

Lemma 13.3. Let µ ∈ h∗ be regular and (µ, δ) 6= 0. Then there is at most
one α ∈ ∆+

1 such that (µ, α) = 0.

Proof. Let α, γ ∈ ∆+
1 and α 6= γ. By a direct inspection of the list of roots, one

can check that either α+γ, or α−γ is an even root β. So if (µ, α) = (µ, γ) = 0,
then (µ, β) = 0. Contradiction, since every β is either real or mδ.

Lemma 13.4. Let Π be now an arbitrary base, ν ∈ h∗ be such that ν (hβ) ∈
Z≥0 for all β ∈ B, Σ be obtained from Π by odd reflections. Then 〈νΣ + ρΣ, hβ〉 ∈
Z≥0 for any β ∈ B ∩ Π, and 〈νΣ + ρΣ , hβ〉 ∈ Z≥−1 for β ∈ B r Π.

Proof. First, observe that Yβ is locally nilpotent on L (ν) for any β ∈ B ∩ Π .
Since LΣ (νΣ) ∼= LΠ (ν), then 〈νΣ, hβ〉 ∈ Z≥0 for any β ∈ B ∩ Π . Note also
that ρΣ (hβ) = 1 if β ∈ B∩Σ, and ρΣ (hβ) = 0 if β ∈ Br Σ. Hence it suffices
to consider the case β = α1 + γ1 ∈ B r Π .

Let α0 = −γ1 , Π0 = Π , Πk = rαk
. . . rα1 (Π). We will prove the statement

for Σ = Πk (for Σ = rγk
. . . rγ1 (Π) the proof is similar). Let λk = νΠk

+ρΠk
,

λk
i =

(
λk, αi

)
. Let k be such that λk−1 (hβ) ≥ 0, λk (hβ) < 0; let s > k be

the minimal such that αs+1 − αs = αk+1 − αk (it exists since αt+1 − αt is
N -periodic). Note that β = α1 − α0.
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Lemma 13.5. One has λk
k = 0, αk+1 − αk = β, λk = λk+1, λk (hβ) =

λk+1 (hβ) = · · · = λs−1 (hβ) = −1.

Proof. By inspection of the formulae for roots, and by (12) and (13),

αi (hβ) = −1 if β = αi+1 − αi, αi (hβ) = 1 if β = αi − αi−1, αi (hβ) = 0 otherwise;

λt = λt−1 if λt−1
t 6= 0, λt = λt−1 + αt if λt−1

t = 0.

Therefore, λk
k = 0; αk+1−αk = β, since αk (hβ) < 0 (by λk (hβ) < λk−1 (hβ));

this implies λk
k+1 < 0, thus λk+1 = λk. Moreover, λk (hβ) = λk+1 (hβ) = · · · =

λs−1 (hβ) = −1, because αt (hβ) = 0, k + 2 ≤ t < s, and αk (hβ) = −1.

Since αi+N = αi + δ, one has λk
i+N = λk

i + M , here M = (ν + ρ, δ).
Moreover, (ν, δ) ≥ 0 (since δ is a positive root of g (B)), thus M ≥ (ρ, δ);

therefore M ≥ N − 1 if g = sl (1|n)(1), M ≥ N if g = osp (2|2n)(1).

Lemma 13.6. One has λk
s − λk

k ≥ s− k− 2+ (β, β)/2. For k +2 ≤ i ≤ s− 1,
one has (αi, αs) = −1.

Proof. We prove it case-by-case. Let g = sl (1|n)
(1)

; hence N = n. In this case
αi+1 − αi = αj+1 − αj iff i ≡ j mod N . Therefore, s = k + N . It is enough
to note that (αi, αj) = −1 if i 6≡ j mod N , λk

s − λk
k = M ≥ s − k − 1, and

(β, β) = 2.

Let g = osp (2|2n)
(1)

; hence N = 2n. Then αi+1 −αi = αj+1 −αj iff i ≡ j
mod N or i + j ≡ 2p mod N ; here p is the smallest 0 ≤ p < n such that
αp+1 − αp is a long root. Moreover, (αi, αj) = −1 if i 6≡ j, i + j 6≡ 2p + 1
mod N .

If p = 0, then (β, β) = 4, n | k, s = k + N , and M ≥ s − k imply what is
needed.

Now assume p > 0; then

k ≡ 0 mod N, s ≡ 2p mod N, or k ≡ 2p mod N, s ≡ 0 mod N.

Since (β, β) = 2, what remains to prove is λk
s − λk

k ≥ s − k − 1. Note that
for t between k and s, the only long root among αt+1 − αt is one with t =

r
def
= (k + s)/2. We already know that λk

k+1 − λk
k = − (β, β)/2 = −1, and

λk
t+1 − λk

t ≥ 1 for t 6≡ k, s mod N . Note that λk
r+1 − λk

r ≥ 2; indeed, β′ =
αr+1 −αr is a long root, β′ 6= β, thus ρΠr

(hβ′ ) = 1, and (ρΠr
, β′) = 2. Hence

λk
s − λk

k ≥ s − k − 1 indeed.

Since λs = λk +αi1 + · · ·+αij
for some k +1 < i1 < i2 < · · · < ij ≤ s, and

(αs, αs) = 0, at most s−k−2 terms αit
can contribute to

(
λs − λk, αs

)
; hence

λs
s−λk

s ≥ − (s − k − 2). Therefore λs
s =

(
λs

s − λk
s

)
+
(
λk

s − λk
k

)
≥ (β, β)/2 > 0.

Either λs−1 = λs, or λs−1 = λs − αs; since (αs, αs) = 0, one can conclude
λs−1

s > 0. Therefore λs = λs−1, hence λs (hβ) = −1.

Lemma 13.7. If λs
s ≥ 1 + (β, β)/2, then λt = λs for any t > s.
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Proof. By induction in t, it is enough to show that λs
t ≥ 1 for any t > s. Since

λk
i+N = λk

i + M > λk
i , it is enough to consider t < s + N . Since λt (hβ′) ≥ 0

for β′ 6= β, one has λt
j+1 − λt

j ≥ 0 unless αj+1 − αj = αk+1 − αk; as shown
at the beginning of the proof, the inequalities are strict for t = k, s. Hence,
λs

j may decrease only after j such that αj+1 − αj = β, and the decrease is
(β, β)/2.

By inspection, unless g = osp (2|2n)(1) and β is a short root, there are at
most one such value of j per an interval of length N . Otherwise, there are two
such values, they are not adjacent, and the decrease in each such value is by
(β, β)/2 = 1. Now strict increase at other values implies λs

t ≥ 1.

Therefore, if λs
s ≥ 1 + (β, β)/2, then 〈λt, hβ〉 = −1 for any t ≥ k. On the

other hand, if λs
s = (β, β)/2, then λs

s+1 = λs
s+(λs, β) = (1 + λs (hβ)) (β, β)/2 =

0; hence λs+1 = λs + αs+1. Since αs+1 (hβ) = 1, this implies λs+1 (hβ) = 0.
In any case, this implies that if λt (hβ) < 0 for t0 ≤ t ≤ t1, then λt (hβ) = −1
(indeed, taking t0 the minimal possible with the given t1, we may assume
t0 = k).

This finishes the proof of Lemma 13.4.

Lemma 13.8. Let λ, µ ∈ h∗, λ (hβ) > 0, µ (hβ) ≥ 0 for any β ∈ B, and
λ − µ =

∑
β∈B mββ for some mβ ∈ Z≥0. If (λ, λ) = (µ, µ), then λ = µ.

Proof. We use the fact that all principal roots have positive square (see Re-
mark 13.2).

(λ, λ) − (µ, µ) = (λ + µ, λ − µ) =



λ + µ,
∑

β∈B

mββ



 = 0.

But (λ + µ, β) = (β,β)
2 〈λ + µ, hβ〉 is positive. Hence all mβ = 0.

14 On affine character formulae

Let g be a regular Kac–Moody superalgebra with a fixed base Π and Cartan
matrix A; let λ be an integrable weight. For a symmetrizable matrix A without
zeros on diagonal, the character is described by the famous Weyl character
formula

ch L (λ) = U (λ + ρ) , (22)

which was proven by Kac, see [10]. The proof is a straightforward generali-
zation of his proof in Lie algebra case (see, for example, [2]); it is based on
existence of the Casimir element corresponding to the invariant form.

If g is a finite-dimensional Kac–Moody superalgebra, (22) holds for a typi-
cal weight. It was also proven by Kac [6], but the proof is more complicated.
One has to use either Shapovalov form, or a complete description of the center
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of the universal enveloping algebra U (g). The reason why a simpler proof from
[2] does not work is existence of real roots of non-positive square of length.

In this section we provide a generalization of these results to some infinite-
dimensional algebras, as well as to the case of atypical weights: we calculate

the characters of all simple integrable highest weight modules over sl (1|2n)(1),

and over osp (2|2n)
(1)

. We use the invariant form, odd reflections and the fact

that the defect of sl (1|2n)
(1)

and osp (2|2n)
(1)

is 1. Recall that the defect is
the maximal number of linearly independent pairwise orthogonal real isotropic
roots; defect is 1 iff for any real isotropic α and γ one of α ± γ is a root
(compare 13.3). Our proof is an adaptation of the Bernstein–Leites proof of
character formula for sl (1|n), see [14]. Since in our case the defect is 1, our
formulae are easier than those for general finite-dimensional superalgebras
(see [4, 15]).

In what follows we assume g = sl (1|n)
(1)

or osp (2|2n)
(1)

, and we use the
same notations as in the previous section.

Let LΣ (λ) be an integrable simple g-module, and λ + ρΣ be regular. Let
v be a highest vector of MΣ (λ). For any principal root β put k (λ, β) =

〈λ + ρΣ , hβ〉. For β ∈ Σ, define vβ = Y
k(λ,β)

β v. If β /∈ Σ, i.e., β = α1 + γ1 for
isotropic α1, γ1 ∈ Σ, then, by regularity of λ+ρΣ , one can choose α ∈ {α1, γ1}

such that (λ, α) = (λ + ρΣ , α) 6= 0; define vβ as Y
k(λ,β)

β Yαv. Let VΣ (λ) be the
quotient of MΣ (λ) by the submodule generated by vβ , β ∈ B.

Lemma 14.1. Let LΣ (λ) be an integrable simple g-module, and λ + ρΣ be
regular. Then VΣ (λ) is an integrable g-module, and λ−α1, λ−γ1 ∈ P (VΣ (λ)).

Proof. Let v̄ be the image of v under the natural projection MΣ (λ) → VΣ (λ).

Then Y
k(λ,β)
β v̄ = 0 for any β ∈ Σ ∩ B. Since v̄ generates VΣ (λ), Yβ is locally

nilpotent on VΣ (λ) for any β ∈ Σ ∩B. If β ∈ BrΣ, we have Y
k(λ,β)
β Yαv̄ = 0.

But XαYαv̄ = λ (hα) v̄, therefore Yαv̄ generates VΣ (λ), and Yβ is also locally
nilpotent if β ∈ B r Σ. Thus, VΣ (λ) is integrable.

Denote by µβ the weight of vβ. To show that λ − α1, λ − γ1 ∈ P (VΣ (λ))
it is sufficient to check that λ − α1, λ − γ1 are not weights of a submodule
generated by vβ for each β ∈ B. If β ∈ Σ, then vβ is n+

Σ-invariant, so U (g) vβ =
U
(
n−

Σ

)
vβ, and obviously the inequalities λ−α1 ≤Σ µβ , λ− γ1 ≤Σ µβ do not

hold. Therefore λ − α1, λ − γ1 /∈ P
(
U
(
n−

Σ

)
vβ

)
. If β ∈ B r Σ, consider Σ′ =

rα (Σ) and note that vβ is n+
Σ′-invariant. In this case U (g) vβ = U

(
n−

Σ′

)
vβ .

Assume without loss of generality that α = α1. Then the inequality λ−α1 ≤Σ′

µβ never holds, and λ − γ1 ≤Σ′ µβ holds only if k (λ, β) = 1. But then
µβ = λ − α1 − β = λ − 2α1 − γ1 , and λ − γ1 = µβ + 2α1 /∈ P

(
U
(
n−

Σ′

)
vβ

)

since −α1 ∈ Σ′ is isotropic. Therefore λ − α1, λ − γ1 /∈ P
(
U
(
n−

Σ′

)
vβ

)
.

One can immediately see that VΣ (λ) is the maximal integrable quotient
of MΣ (λ). The following lemma can be proven exactly as Lemma 10.2 (b).
Therefore we omit the proof.
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Lemma 14.2. If λ + ρ is regular, Σ is obtained from Π by odd reflections,
and λΣ + ρΣ = λ + ρ, then VΣ (λΣ) ∼= VΠ (λ).

Recall that λΣ + ρΣ = λ+ ρ holds when λΣ is obtained from λ by a chain
of “typical” reflections.

Lemma 14.3. Let LΣ (λ) be integrable, λ+ρΣ be regular. If λ is typical, then
VΣ (λ) = LΣ (λ). If (λ + ρΣ , α) = 0 for a simple isotropic root α ∈ Σ, then
there is a short exact sequence of g-modules

0 → LΣ (λ − α) → VΣ (λ) → LΣ (λ) → 0.

Proof. Let [VΣ (λ) : LΣ (µ)] > 0. Since VΣ (λ) is integrable, LΣ (µ) is in-
tegrable. Hence µ is an integrable weight. By Lemma 12.3, λ + ρΣ =
µ′ + ρΣ′ +

∑
β∈B mββ for some mβ ∈ Z≥0, some Σ′ obtained from Σ by

odd reflections, and µ′ such that LΣ (µ) ∼= LΣ′ (µ′). Since

(µ′ + ρΣ′ , µ′ + ρΣ′) = (µ + ρΣ , µ + ρΣ) = (λ + ρΣ , λ + ρΣ) ,

Lemma 13.8 and regularity of λ + ρΣ imply λ + ρΣ = µ′ + ρΣ′ .
Without loss of generality, one may assume that Σ′ = rαk

. . . rα1 (Σ). Then

µ′ + ρΣ′ = µ + ρΣ + αi1 + αi2 + · · ·+ αir
, (23)

for some 1 ≤ i1 < · · · < ir ≤ k such
(
µ + ρΣ + αi1 + · · ·+ αij

, αij+1

)
= 0 for

all j < r. In particular, r = 0 or (λ + ρΣ , αir
) = 0. If λ is typical, the latter

case is impossible; hence µ = λ, therefore VΣ (λ) = LΣ (λ).
Assume that λ is atypical. Since λ + ρΣ is regular, by Lemma 13.3, there

is only one α such that (λ + ρΣ , α) = 0; hence r = 0, or α = αir
. Since α ∈ Σ,

and Σ contains only two isotropic simple roots α1 and γ1, either α = α1 or
α = γ1. Therefore, either λ = µ, or α = αir

= α1 and λ = µ + α.
Thus [VΣ (λ) : LΣ (µ)] > 0 implies µ ∈ {λ, λ − α}. It remains to show

that [VΣ (λ) : LΣ (λ − α)] = 1. Since the multiplicity of λ − α in MΣ (λ) is
1, [VΣ (λ) : LΣ (λ − α)] ≤ 1. On the other hand, notice that Yαv̄ ∈ VΣ (λ) is
not zero (by Lemma 14.1) and generates a submodule with the highest weight
λ − α (see the proof of Lemma 10.2). Hence [VΣ (λ) : LΣ (λ − α)] = 1.

The next step is to check that (22) holds if we replace LΣ (λ) by VΣ (λ).

Theorem 14.4. Let λ be integrable, λ + ρΣ be regular. Then

ch VΣ (λ) = U (λ + ρΣ) .

Proof. First, we note that, by regularity, there is only one α ∈ ∆+
1 such that

(λ + ρΣ , α) = 0. Without loss of generality, one may assume that α ∈ Σ
(if necessary, one can change Σ to Σ′ by “typical” odd reflections so that
VΣ′ (λ + ρΣ′ − ρΣ) ∼= VΣ (λ), α ∈ Σ′, as in Lemma 14.2).

By Corollary 11.6,
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ch VΣ (λ) =
∑

κ∈T

aκ ch MΣ (κ) , aκ 6= 0.

Since VΣ (λ) is integrable, chVΣ (λ) is W -invariant. Therefore

ch VΣ (λ)−U (λ + ρΣ) =
∑

ν∈F

bνeν =
∑

κ∈T

aκ ch MΣ (κ)−
∑

w∈W

(−1)
w

ch MΣ (w (λ + ρΣ) − ρΣ)

is W -invariant. We assume that bν 6= 0 for any ν ∈ F . Assume that
the Theorem does not hold. Then F is non-empty. Not that F is a W -
invariant set. Pick up a maximal ν ∈ F . First, maximality of ν implies that
ν ∈ T ∪ (W (λ + ρΣ) − ρΣ). Furthermore, rβ (ν) ≥ ν for any β ∈ B such
that ν (hβ) < 0; hence ν (hβ) ∈ Z≥0. In particular, ν 6= w (λ + ρΣ) − ρΣ ,
because w (λ + ρΣ)−ρΣ ∈ C only when w = 1 and, obviously, λ /∈ F (see Re-
mark 12.7). Recall that by Corollary 11.6, there exist ν1, . . . , νk ∈ T , νk 6= ν ,
such that

[MΣ (λ) : LΣ (ν1)] > 0, [MΣ (ν1) : LΣ (ν2)] > 0, . . . [MΣ (νk) : LΣ (ν)] > 0.

We claim that νk = w (λ + ρΣ) − ρΣ for some w ∈ W . Indeed, ν < νk,
therefore νk /∈ F ; since νk ∈ T and ch VΣ (λ) − U (λ + ρΣ) does not contain
the term MΣ (νk) with non-zero coefficient,

νk + ρΣ = w (λ + ρΣ) = λ + ρΣ −
∑

β∈B

m′′
ββ,

for some m′′
β ∈ Z≥0 (see Remark 12.7). On the other hand, by Lemma 12.3,

ν ′ + ρΣ′ = νk + ρΣ −
∑

β∈B

m′
ββ

for some base Σ′ obtained from Σ by odd reflections, ν ′ such that LΣ′ (ν ′) ∼=
LΣ (ν) and some m′

β ∈ Z≥0. As a result

ν ′ + ρΣ′ = λ + ρΣ −
∑

β∈B

mββ, mβ ∈ Z≥0.

By Lemma 13.4, 〈ν ′ + ρΣ′ , hβ〉 ≥ 0 for all β ∈ B ∩Σ and 〈ν ′ + ρΣ′ , hβ〉 ≥ −1
for β ∈ BrΣ. Since λ+ρΣ is regular and λ is integrable, (λ + ρΣ + ν ′ + ρΣ′ , β) >
0 for all β ∈ B∩Σ, and (λ + ρΣ + ν ′ + ρΣ′ , β) ≥ 0 for β ∈ BrΣ. The condition

(λ + ρΣ , λ + ρΣ) = (ν ′ + ρΣ′ , ν ′ + ρΣ′) implies
(
λ + ρΣ + ν ′ + ρΣ′ ,

∑
β∈B mββ

)
=

0.
If (λ + ρΣ + ν ′ + ρΣ′ , β) > 0 for β ∈ B r Σ, then ν ′ + ρΣ′ = λ + ρΣ .

Then, as in the proof of Lemma 14.3, one can show that ν = λ − α, but we
already proved that the weight λ − α has multiplicity one in VΣ (λ), as well
as in U (λ + ρΣ). Hence ν 6= λ − α.
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Therefore, (λ + ρΣ + ν ′ + ρΣ′ , β) = 0 for β ∈ B r Σ; thus mβ′ = 0 for
β′ ∈ B ∩ Σ, and 〈λ + ρΣ, hβ〉 = 1, 〈ν ′ + ρΣ′ , hβ〉 = −1 (hence mβ = 1) for
β ∈ B r Σ. Therefore, ν ′ + ρΣ′ = rβ (λ + ρΣ) = λ + ρΣ − β. Without loss of
generality, assume that Σ′ = rαk

. . . rα1 (Σ). Then

rβ (λ + ρΣ) = ν ′ + ρΣ′ = ν + ρΣ + αi1 + · · ·+ αir
.

Assume r 6= 0; then (rβ (λ + ρΣ) , αir
) = 0. By our assumption in the

beginning of the proof, there are only two possibilities: (λ + ρΣ , α1) = 0
or (λ + ρΣ , γ1) = 0. The first case is impossible, because then we have
rβ (α1) = −γ1 , (rβ (λ + ρΣ) , γ1) = 0, and by regularity of rβ (λ + ρΣ),
αir

= γ1. In the second case, we have αir
= α1 and

ν = λ − β − α1.

Since (ρΣ , β) = 0,

ν (hβ) = λ (hβ) − β (hβ) − α1 (hβ) = 1 − 2 − 2 (α1, β)/(β, β) = −2,

and that contradicts the condition rβ (ν) ≤ ν .

Corollary 14.5. For any typical integrable λ the character of L (λ) is given
by (22).

Corollary 14.6. Let LΣ (λ) be integrable, and λ+ρΣ be regular. Assume that
(λ + ρΣ , α) = 0 for some isotropic α ∈ Σ. Then

ch LΣ (λ) + ch LΣ (λ − α) = U (λ + ρΣ) .

Theorem 14.7. Let λ be an atypical integrable weight, Π be such that λ + ρ
is regular, and there exists an isotropic α ∈ Π such that (λ + ρ, α) = 0. Then

ch L (λ) =

∑
w∈W (−1)

w
w
(
eλ+ρ D1

1+e−α

)

D0
(24)

Proof. Without loss of generality, assume that α = α1 = −γ0. We start
with constructing a sequence (λi, Σi, k (i)), where Σi = rγk(i)

. . . rγ1Π , λi is a

weight such that
(
λi + ρΣi

, γk(i)

)
= 0, and λi + ρΣi

is regular. This sequence
is defined uniquely by the following rule:

1. (λ0, Σ0, k (0)) = (λ, Π, 0);
2. λi+1 = λi + γk(i);
3. Σi+1 = Σi, k (i + 1) = k (i) if λi+1 + ρΣi

is regular;
4. if λi+1+ρΣi

is not regular, set, using Lemma 12.6, Σi+1 = rγk(i+1)
. . . rγk(i)+1

(Σi)
such that LΣi

(λi+1) ∼= LΣi+1 (λi+1), and λi+1 + ρΣi+1 is regular.
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These rules ensure that
(
λi + ρΣi

, γk(i)

)
= 0 and λi + ρΣi

is regular.
Now define

χi = ch LΣi
(λi) , ϕi =

1

D0

∑

w∈W

(−1)
w

w

(
eλi+ρΣi

D1

1 + eγk(i)

)
.

(The quotients are taken in R′; obviously, they make sense.) The series
converges by the same reasons as for the series for U . We want to show that
χi = ϕi; they are both elements of R.

Our next step is to prove the identity

ϕi + ϕi+1 = U (λi + ρΣi
) .

If Σi+1 = Σi, then the identity is straightforward. Otherwise, by Lemma 12.6
(with Σ = Σi, Σ′ = Σi+1, λ = λi+1, k = s− 1)

λi+1 + ρΣi+1 = g
(
λi+1 + ρΣi

+ (s− 1) γk(i)

)
= g

(
λi + ρΣi

+ sγk(i)

)
,

where s is the positive integer such that λi +ρΣi
+ tγk(i) is not regular for any

1 ≤ t < s; and g ∈ W is such that γk(i+1) = g
(
γk(i)

)
and (−1)

g
= (−1)

s+1
.

Thus, we obtain

ϕi + ϕi+1 =
1

D0

∑

w∈W

(−1)
w

w

(
eλi+ρΣi

D1

1 + eγk(i)
+ eg(λi+ρΣi

+sγk(i)) D1

1 + eg(γk(i))

)

=

∑
w∈W (−1)

w
w
(
eλi+ρΣi + (−1)

s+1
eλi+ρΣi

+sγk(i) D1

1+e
γk(i)

)

D0

=
D1

D0

∑

w∈W

(−1)
w

w

(
s−1∑

t=0

eλi+ρΣi
+tγk(i)

)
=

s−1∑

t=0

U
(
λi + ρΣi

+ tγk(i)

)
.

However, λi+ρΣi
+tγk(i) is not regular for all 1 ≤ t < s. Hence U

(
λi + ρΣi

+ tγk(i)

)
=

0, t > 0; we obtain the desired identity.
Now recall that by Corollary 14.6 the similar identity holds for χi:

χi + χi+1 = U (λi + ρΣi
) .

Therefore we can conclude that there exists Φ ∈ R such that

χi = ϕi + (−1)
i
Φ.

We want to show now that Φ = 0. It suffices to prove that for every ν ∈ h∗

the monomial eν appears with non-zero coefficient only in finitely many ϕi

and in finitely many χi. We claim that if eν appears in χi (or ϕi) with non-
zero coefficient, then ν ≤Σi

λi. For χi it follows from the fact that ν must
be a weight of LΣi

(λi). To check this in case of ϕi, note that every term
which appears in ϕi appears in the expression for U (λi + ρΣi

), so the same
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argument as for U works. Recall the Z-grading on Q defined in (15), (16). The
condition ν ≤Σi

λi can be rewritten in the form (see Lemma 12.1 for Π = Σi)

λi − ν = −miγk(i) +
∑

β∈B

mi
ββ, if λi − ν ∈ Q+,

λi − ν = miγk(i)+1 +
∑

β∈B

mi
ββ, if λi − ν ∈ Q−,

here mi, mi
β ∈ Z≥0. Note that if λi ∈ Qj, then λi+1 ∈ Qj−1. Hence for

sufficiently large i only the second case is possible. Then

λi+1 − ν = miγk(i)+1 + γk(i) +
∑

β∈B

mi
ββ.

Now rewrite it in a suitable form

λi+1−ν = (mi + 1)γk(i+1)+1+
∑

β∈B

mi
ββ+mi

(
γk(i)+1 − γk(i+1)+1

)
+
(
γk(i) − γk(i+1)+1

)
.

However, γk(i)+1 − γk(i+1)+1 is either zero or a negative real root, γk(i) −
γk(i+1)+1 is always a negative even root. Thus

∑

β∈B

mi+1
β ≤

∑

β∈B

mi
β − 1.

Hence, for sufficiently large i,
∑

β∈B mi
β becomes negative, therefore ν ≤Σi

λi

does not hold. Theorem is proven.

Remark 14.8. Under conditions of Theorem 14.7, it is not hard to show that
the complex

· · · → VΣi+1 (λi+1) → VΣi
(λi) → · · · → VΣ0 (λ0) → 0

with arrows defined by Corollary 14.6 is a resolution of L (λ).

Kac and Wakimoto call a representation with highest weight satisfying the
condition of Theorem 14.7 tame. Character formula (24) coincides with Kac–

Wakimoto conjectural formula in [12] in case g = sl (1|n)
(1)

or osp (2|2n)
(1)

.
On the other hand, using Lemma 12.6, one can construct a chain of odd re-
flections transforming any atypical integrable weight (except weights of one-
dimensional representations) to a weight satisfying the conditions of the last
theorem. Therefore, we found character formulae for all integrable simple hi-

ghest weight modules for sl (1|n)
(1)

and osp (2|2n)
(1)

. It seems possible that
using Shapovalov form calculated in [16] as a substitute for a missing invariant
symmetric form, one can obtain similar formulae for S (1, 2; b).
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