
Kadcast: A Structured Approach to Broadcast
in Blockchain Networks

Elias Rohrer
elias.rohrer@tu-berlin.de

Technical University of Berlin
Berlin, Germany

Florian Tschorsch
florian.tschorsch@tu-berlin.de
Technical University of Berlin

Berlin, Germany

ABSTRACT

In order to propagate transactions and blocks, today’s blockchain

systems rely on unstructured peer-to-peer overlay networks. In

such networks, broadcast is known to be an inefficient operation

in terms of message complexity and overhead. In addition to the

impact on the system performance, inefficient or delayed block

propagation may have severe consequences regarding security and

fairness of the consensus layer. Therefore, we introduce Kadcast,

a novel peer-to-peer protocol for block propagation in blockchain

networks. Kadcast utilizes the well-known structured overlay topol-

ogy of Kademlia to realize an efficient broadcast operation with

tunable overhead. As our protocol is based on UDP, we incorporate

forward error correction (FEC) to increase reliability while still

maintaining its lightweight protocol architecture. To this end, we

build a probabilistic model to analyze Kadcast’s resilience to packet

losses as well as random and adversarial node failures. Moreover, we

evaluate Kadcast’s block delivery performance, broadcast reliability,

efficiency, and security based on advanced network simulations,

which confirm the merits of the Kadcast protocol.

1 INTRODUCTION

Bitcoin [42] fundamentally challenged the role of banks by enabling

decentralized money transfer on the Internet. It builds upon a peer-

to-peer network to implement an electronic cash system, where

nodes can interact directly without intermediaries. Following its

genesis in 2008, a high number of blockchain networks emerged.

In these systems, nodes may issue transactions by broadcasting

them in the overlay network. Validator nodes collect and verify

transactions and periodically consolidate them into blocks, which

are appended to a replicated, immutable ledger—the blockchain.

Blocks are broadcast in the network as well, which gives every

node the capability to verify correctness locally. That is, nodes run

a distributed agreement protocol to enable state replication.

Broadcast is accordingly the most commonly used network op-

eration in blockchain networks. However, current implementations

are typically based on unstructured overlay networks, which is

not necessarily favorable for this kind of operation: while being

relatively robust, broadcast in unstructured overlays suffers from

high message overhead, as duplicates are introduced to the system.

To reduce the load, many networks spread block messages only by

gossiping to a subset of neighbors, which in turn might introduce

additional propagation delays.

To date, the scalability of blockchain protocols is a huge concern,

and the inefficiency of the utilized network protocols is a limiting

factor for innovations striving for higher transaction rates, such as

increased limits for block sizes, block rates, or changes that depart

even further from the Nakamoto consensus [12, 20, 49]. Further-

more, it has been shown that the block propagation delay has severe

effects on the consistency of blockchain networks, leading to higher

rates of stale blocks and blockchain forks [27]. As this opens oppor-

tunities for fraud [15, 50], alleviating the network-layer deficiencies

is not only a matter of performance, but also a pressing issue of

fairness and security. While it has been shown that unsolicited block

propagation has the largest impact on the stale block rate [27], it

leads to flooding the network with block data, which the network

architectures currently deployed in the blockchain landscape can-

not handle. The emergence of third-party relay networks [25, 35]

emphasize the need for an improved propagation mechanism. We

however consider them orthogonal to our work, because they do

not address the inherent shortcomings of blockchain networks.

In this paper, we present Kadcast, a new broadcast overlay for

blockchain networks, based on the Kademlia [40] architecture. Kad-

cast allows for a more efficient broadcast operation with tunable

redundancy and overhead. To this end, we exploit the structured

overlay topology to delegate broadcast responsibilities for subtrees

with decreasing height. By combining redundant execution of our

algorithm with forward error correction (FEC), we achieve a high

degree of reliability and resilience in the face of packet loss, as

well as random and adversarial node failures. Kadcast is design-

compatible with many open and decentralized blockchain systems.

Our evaluation shows that Kadcast distributes blocks on average

30% faster than the currently deployed blockchain protocols in

a Bitcoin-like scenario, and even faster under an Ethereum-like

parametrization with smaller block intervals and block sizes. Kad-

cast increases the efficiency of block propagation, making room to

introduce additional features such as unsolicited block push. The

simulations indicate that Kadcast achieves similar, often better, se-

curity results in terms of the stale block rate, in particular for the

Ethereum-like case.

Our key contributions can be summarized as follows: (1) We

design an efficient broadcast protocol for blockchain networks,

which exploits Kademlia’s structured architecture. (2) We introduce

parallelization and FEC to improve the reliability and resilience

of our algorithm in a completely adjustable and predictable way.

(3) We discuss attack vectors, provide mitigation strategies against

Sybil and Eclipse attacks, and analyze the network’s resilience to

adversarial nodes obstructing block delivery. (4) We conducted a

comprehensive simulation study and evaluated the performance,

reliability, efficiency, and security of Kadcast in comparison to

“VanillaCast”, a paradigmatic blockchain protocol, which general-

izes the currently prevalent networking layer of blockchains. To

this end, we developed a new simulation framework for blockchain

networks, bns, which focuses on networking aspects, and which

we make accessible to the research community.

The remainder of this paper is structured as follows. First, we

describe primitives of information dissemination currently found

in the blockchain landscape and introduce the VanillaCoin mod-

el in Section 2. In Section 3, we introduce Kadcast, including its

overlay construction, block propagation algorithm, and adjustable

reliability factors. Subsequently, we analyze Kadcast’s security and

discuss various threats and mitigation strategies in Section 4. We

present our simulation model and evaluation results in Section 5.

In Section 6, we discuss related work and emphasize the novelty of

our approach, before we conclude the paper in Section 7.

2 BLOCKCHAIN NETWORKS

In this section, we portray the workings of blockchain systems in

a generalized form. To this end, we first introduce a straw man

blockchain design and then discuss the information dissemination

method most prevalent in current blockchain networks.

2.1 VanillaCoin: A Paradigmatic Blockchain

For the sake of clarity, we introduce a prototypical blockchain

protocol, VanillaCoin, that mirrors the quintessential operations

of current blockchain systems. This allows us to describe how

blockchain networks generally function, while abstracting from

the particularities of specific implementations.

The central purpose of VanillaCoin is to keep track of the current

state of accounts, which are bound to cryptographic key pairs.

Entities that are in possession of this key material function as

account owners and are able to issue publicly verifiable transactions,

i.e., transitions in the account state. Note that this is independent

of the nature of the managed state: it can solely consist of a simple

(financial) account balance, as for example in Bitcoin, or hold more

complex data, as in Ethereum. Moreover, we do not specify how the

account owners come to possession of the required key materials,

as the VanillaCoin model aims to capture open blockchain networks

as well as networks with restricted access, i.e., so-called private

blockchains. That is, the owners might be able to simply create new

accounts by generating a new key pair, or they would have to be

approved by some sort of registry or public key infrastructure.

Transactions, issued by account owners, are broadcast in the

network of VanillaCoin nodes, whereby they also reach validator

nodes. Elected validators (a.k.a., “round leaders”) collect and verify

new transactions, decide on an authoritative transition ordering,

and finally batch them into blocks, effectively issuing a new global

state transition and initializing a new round.1 Again, depending on

the system specifications, leaders may be elected due to some kind

of byzantine fault tolerant consensus mechanism, e.g., Nakamoto-

style Proof-of-Work [42], Proof-of-Stake [33], or PBFT [7]. After

their issuance, blocks are broadcast to all nodes in the blockchain

network, which append them to the local state of their ledger. The

nodes are able to independently verify the validity of incoming

state transition based on the VanillaCoin consensus rules and the

previous blockchain state. Such protocols have been proven to be

1In [20], Eyal et al. observe that the two described operations of leader election and
transaction serialization do not necessarily have to be fulfilled by the same entity.
However, as they often are, we assume this is the case for our VanillaCoin model.

Required

Superflous

Figure 1: Example broadcast in an unstructured overlay.

consistent in the partial synchronous network model [26, 33, 34, 45],

i.e., under the assumption that blocks are delivered to all nodes in

a timely fashion (with regard to an upper bound).

The resulting VanillaCoin blocks are of a certain block size and

are issued at a rate roughly following a certain block interval. These

parameters are especially interesting from a networking perspec-

tive, since they not only determine the transaction throughput of

the system, but also the bandwidth limit the networking layer has

to be able to handle, which is known to be a bottleneck in scaling

blockchain systems [12].

To summarize, the VanillaCoin protocol combines the concept of

distributed state machine replication with a consensus mechanism

to implement a byzantine fault tolerant agreement protocol.

2.2 Information Dissemination in Blockchain
Networks

As we have seen, VanillaCoin mimics the typical blockchain op-

erations, and as these systems, VanillaCoin heavily relies on the

networking layer for transaction and block propagation. In partic-

ular, it requires an efficient broadcast operation, since most data

items are typically transferred to all participants in the network.

In the following, we give a blueprint of VanillaCoin’s networking

layer, VanillaCast, which again abstracts from the specifics of each

individual blockchain system. However, more detailed information

on the Bitcoin [42] and Ethereum [18] networking layers can be

found in Appendix A and Appendix B, respectively.

When joining the VanillaCast network, nodes retrieve the ad-

dresses of a number of other participants by the means of an ade-

quate bootstrapping mechanism. Then, it establishes TCP connec-

tions to a random subset of nodes R ⊂ N , which are henceforth its

neighbors in the peer-to-peer network. This networking paradigm

is known as an unstructured overlay network. As nodes are only

able to communicate to the rest of the network via the neighbors,

messages are passed hop-by-hop in a store-and-forward manner.

In particular, upon arrival of new transactions and blocks, each

VanillaCoin node first stores them in local memory, verifies their

validity based on its current blockchain state, and then forwards

them to adjacent nodes in the network.

To ensure timely message delivery via the shortest path, the

messages are forwarded to all neighbors, which then follow the

same protocol. However, while this propagation method indeed

covers the shortest path, it actually covers all paths in the network.

As Figure 1 illustrates, this introduces a large amount of superflous

2

messages to the network. Therefore, this kind of broadcast oper-

ation exhibits a high message complexity (O(N · R)), which has

been shown to have severe consequences on network scalability in

the past [8]. Therefore, VanillaCast tries to reduce the net accruing

traffic by introducing a request-response scheme in which every

node first advertises larger data items to neighbor nodes, whose

transmission then may subsequently be requested. However, this

again adds at least one round-trip time (RTT) per hop to the mes-

sage propagation delay. In the case of blockchain networks, such

delayed block propagation however has been shown to be unfavor-

able compared to unsolicited block propagation [27]. However, as

unsolicited block relay would lead to blindly flooding the network,

it is currently not considered option for blockchain systems based

on unstructured overlay networks, such as VanillaCoin.

3 THE KADCAST PROTOCOL

In contrast to the prevalence of VanillaCoin-like approaches to

networking in blockchain systems, we believe that a thorough

exploration of the design space is necessary to facilitate higher

networking performance. In particular the unpredictable nature of

information dissemination in unstructured peer-to-peer networks

is an issue when it comes to find new solutions that are tailored

to the problem at hand. We therefore in the following introduce

Kadcast, a new structured approach to information propagation in

blockchain networks, whose tunable characteristics create a more

predictable environment for optimized block transmission.

While Kadcast can be used for other broadcast operations, such

as transaction propagation, such an applicationmay have additional

requirements, e.g., privacy-wise. It is however considered out-of-

scope of this initial discussion. In the following, we therefore mainly

focus on block propagation. Kadcast is based on Kademlia [40], a

DHT design that is typically used for efficient lookup procedures.

Kadcast, however, makes use of Kademlia’s overlay structure to

enable an efficient broadcast. In the following, we describe the

overlay construction and the broadcast algorithm as the two main

building blocks of our approach. Moreover, we introduce means to

improve the performance, reliability, and resilience of Kadcast.

3.1 Overlay Construction

Kademlia is an UDP-based peer-to-peer protocol in which nodes

form a structured overlay network. Nodes in the network are ad-

dressed by unique L-bit binary node identifiers, in the following

denoted as ID, which are generated upon joining the network.

The ID determines a node’s position in a binary routing tree that

builds the foundation of Kademlia’s structured peer-to-peer overlay.

An example of such a tree for a 4-bit address space is shown in the

upper part of Figure 2. Please note that this tree is never actually

constructed and serves as a mental model only. Peers, however, still

use their local state to traverse the network structure efficiently,

yielding a message complexity of O(logN). Therefore, nodes main-

tain routing state and organize known nodes in so-called k-buckets,

storing triplets (ip_addr, port, ID). Each bucket is a list of the k

least recently seen nodes that have a certain distance, in relation

to the node identifier ID. The factor k is a system-wide parameter

which determines the routing state and the lookup complexity.

1

1

1

1 0

0

1 0

0

1

1 0

0

1 0

0

1

1

1 0

0

1 0

0

1

1 0

0

1 0

h = 0 h = 1 h = 2 h = 3

B0 B1

h = 0

B2

h = 0

h = 0h = 1

B3

h = 0 h = 1

h = 0

h = 0

h = 0h = 1h = 2

Figure 2: Example broadcast initiated by node 1111 (β = 1).

Colors indicate node distances in the spanning tree, relative

to the initiator.

Characteristically, Kademlia’s notion of distance is based on the

non-euclidean XOR-metric, calculated by applying the ⊕-operation
on two node identifiers and interpreting the result as an integer

number, i.e.,

d(x,y) = (x ⊕ y)10.

This means, that for node identifiers of length L, a node ID0 holds

buckets Bi , i = 0 . . . L − 1, whereby bucket Bi holds the node

information of k nodes with IDj so that 2i ≤ d(ID0, IDj) < 2i+1. It

follows that the node space covered by each bucket is exponential

with i . This can be illustrated by that fact that, since the XOR-metric

is unidirectional, the bucket B0 only holds one specific node of

distance one, while BL−1 covers a possible node space of 2L−1 nodes.
The buckets can be thought of holding up to k nodes belonging

to a series of subtrees with identifiers whose binary prefixes do

not match the nodes’ prefix, i.e., also not containing the node itself.

For example, given the fully populated tree shown in Figure 2, the

4 buckets of node ID0 = 1111 would hold nodes from the ranges

1110, 110*, 10**, and 0***, respectively. If a node wants to add a

new entry to a given bucket that already holds k entries, it employs

a least recently used (LRU) drop policy. Before dropping an entry

from the list, the peer will send a PING message (see Figure 3) to

see whether the respective node is still reachable. Only if the node

is not reachable anymore, it will be dropped. This way, the protocol

favors older, more stable nodes over fresh ones. It thereby also

circumvents an eviction bias towards fresh, potentially malicious

peers, which hardens the network against security issues, such as

the eclipse attacks described in [28].

When a node first joins the network, it has to know the address

of at least one bootstrapping node. It therefore sends PINGmessages

to known nodes to check whether they are actually online. Addi-

tionally, PING transmits the sending node’s routing information to

the recipient, thereby distributing its existence in the network. In

fact, similar patterns can be found throughout the protocol, where

3

T
Y
P
E

PING:

SENDER_ID ID_NONCE

T
Y
P
E

PONG:

SENDER_ID ID_NONCE

T
Y
P
E

FIND_NODE:

SENDER_ID TARGET_ID

T
Y
P
E

NODES:

SENDER_ID COUNT NODE_TUPLES

T
Y
P
E

CHUNK:

SENDER_ID BLOCK_ID CHUNK_ID BCAST_HEIGHT CHUNK_DATA

T
Y
P
E

REQUEST_BLOCK:

SENDER_ID BLOCK_ID

0 1 33 37 0 1 33 37

0 1 33 65 0 1 33 35

0 1 33 65 69 71

0 1 33 65

Figure 3: Kadcast message types.

every seenmessage updates not only the sender’s but also the recipi-

ent’s buckets. This soft-state approach makes for a very lightweight

overlay membership management.

After the initial bootstrapping step, each Kadcast node begins

discovering the network to update its routing information, which

it repeats periodically throughout its lifetime. Initially, the joining

node looks up its own ID, which returns a set of nodes closely

positioned to its own network location. Moreover, each node peri-

odically refreshes every bucket it has not seen some activity from

in the last hour: for each such bucket, it picks a random ID with

appropriate distance and performs a look up to populate its buckets

with fresh routing information.

The lookup procedure allows a node to retrieve a set of k nodes

closest to a specific ID in the address space. The procedure of finding

the k closest nodes is carried out by iteratively narrowing down

the search space and issuing FIND_NODE messages (see Figure 3) to

nodes which are closer to the ID. To this end, (1) the node looks up

the α closest nodes regarding the XOR-metric in its own buckets. (2)

It queries these α nodes for the ID by sending FIND_NODEmessages.

(3) The queried nodes respond with a set of k nodes they believe to

be closest to ID. (4) Based on the acquired information, the node

builds a new set of closest nodes and iteratively repeats steps (1)-(3),

until an iteration does not yield any nodes closer than the already

known ones anymore.

Like the bucket size k , α is a globally known parameter deter-

mining the redundancy (and hence also the overhead) of the lookup

procedure. At the same time, these parameters influence the lookup

latency, as the parallel nature of the lookup procedure optimizes the

needed delay. Typical parameter values are k ∈ [20, 100] and α = 3.

As the Kadcast protocol is not used to store and retrieve values, it

does not incorporate other message types found in Kademlia.

3.2 Block Propagation

As described before, most blockchain networks rely on TCP-based

transport protocols for block propagation, which ensure the reliable

transmission of arbitrarily large data. In contrast, the Kadcast proto-

col is UDP-based. While this allows for a lightweight protocol with

reduced message complexity, it also entails that it has to handle

Algorithm 1 Redundant broadcasting algorithm.

Require: broadcast height h,

chunk data c ,

set of known chunks C ,

redundancy factor β

if c ∈ C then abort

C ← C ∪ {c}
for i = 0→ h − 1 do

R ← randomly_select (β,Bi)

for all r ∈ R do

send_chunk(r ,d, i)
end for

end for

block data serialization and reliable transmission on the applica-

tion layer. Therefore, when the propagation of a block is initiated,

Kadcast first segments its data in packet-sized chunks that are then

distributed in the network via corresponding messages (see Fig-

ure 3) and according to the broadcast procedure (cf. Algorithm 1),

which is a modified version of the algorithm in [13].

Kademlia’s bucket logic partitions the identifier space in subtrees

whose sizes depend on their distance to the current node. The

Kadcast protocol makes use of this fact to generate a spanning

tree that allows for an efficient broadcast operation: the algorithm

delegates broadcast responsibilities for subtrees with decreasing

heighth to other nodes, which recursively repeat the process within

their delegated area. Therefore, when a miner initiates the block

broadcast, it is responsible for the entire tree with height h = L.

The miner picks a random peer from each bucket and delegates

broadcast responsibilities by sending CHUNK messages, which carry

the data and her routing information. It assigns a new height h,

which effectively determines the receiver’s broadcast responsibility.

When a node receives a CHUNK, it repeats the process in a store-and-

forward manner: it buffers the data, picks a random node from its

buckets up to (but not including) height h, and forwards the CHUNK

with a smaller value for h accordingly.

This means, with every step, another set of nodes is designated

to be responsible for chunk delivery in their respective subtrees. A

simple example for L = 4 can be seen in Figure 2: node ID0 = 1111

initiates a broadcast in the network, and sends four CHUNKmessages

with heightsh = 0 . . . 3 to one random node picked from each of the

respective buckets Bi , i = 0 . . . 3. The receiving nodes repeat this

procedure, again issuing messages to nodes from bucket numbers

less then their assigned height. Hence, the broadcast operation is

performed on decreasing subtree sizes, and therefore guaranteed to

terminate in O(logn) steps. Upon receipt of all chunks required to

rebuild a block, the node follows Bitcoin’s typical block verification

procedure before continuing the broadcast operation.

3.3 Reliability of Block Delivery

If we assume constant transmission times, honest network partici-

pants, and no packet loss in the underlying network, the propaga-

tion method just discussed would result in an optimal broadcast

tree. In this scenario, every node receives the block exactly once and

4

hence no duplicate messages would be induced by this broadcast-

ing operation. Unfortunately, we cannot make these assumptions

and have to consider packet losses, adversarial failures, as well as

random failures during transmission.

In the example of Figure 2, if a chunk on its way to node 0000

is corrupted or this node refuses to forward a chunk, the whole

bucket B3, i.e., the right half of the tree, would not receive the

block. That is, in the worst case, a single transmission failure could

result in a network coverage of fifty percent only. Therefore, our

the broadcast algorithm is improved and secured by two different

approaches, which both introduce redundancy.

3.3.1 Improving Broadcast Reliability and Performance. First, in-

stead of having a single delegate per bucket, we select β delegates.

This severely increases the probability that at least one out of the

multiple selected nodes is honest and reachable. It therefore pro-

tects the broadcasting operation against random and adversarial

node failures on the propagation path. Moreover, this parallelized

broadcasting method improves the propagation performance in

terms of latency: nodes with the best connection receive the trans-

mitted chunk first and will proceed to propagate the chunks in the

bucket. As this repeats on every hop, and Kadcast nodes ignore

duplicate chunks, only the fastest routes are used for block delivery.

Secondly, since the internet protocol (IP) only promises best-

effort datagram delivery, Kadcast has to consider transmission fail-

ures due to corrupted and/or dropped packets on every hop of the

propagation. To increase the reliability of its data transport, Kad-

cast therefore employs a forward error correction scheme based

on RaptorQ [38] codes. The adoption of this scheme allows Kad-

cast nodes to recover transmitted block data after the reception of

any s source symbols out of n encoding symbols, which are trans-

mitted via CHUNK messages. As this results in more transmitted

data overall, an overhead of n − s additionally transmitted sym-

bols per block transmission is introduced. The FEC overhead factor

can be adjusted through the parameter f = n−s
s . Utilizing FEC

gives the receiver the ability to correct errors without the need

for retransmissions, which lead to additional delay. We therefore

optimize our protocol in terms of latency and accept an additional

overhead. However, in order to allow nodes to recover from the

rare case that block delivery fails entirely, and to enable the initial

bootstrapping of the blockchain, the Kadcast protocol incorporates

a simple REQUEST_BLOCK message (cf. Figure 3) that allows nodes

to query others for specific blocks, and is answered by the corre-

sponding CHUNK messages.

In the following, we analyze and discuss our methods for im-

proved broadcast reliability.

3.3.2 Analysis of Parallelized Broadcast. Kadcast implements broad-

cast redundancy by parallelizing the algorithm. To this end, we

introduce the system parameter β , which describes how many dis-

tinct delegates per bucket should be selected (and thus how many

nodes per bucket should receive a copy of the block). This improved

algorithm can be seen in Algorithm 1. Please note that for β = 1,

Algorithm 1 describes the “optimal” broadcast from Section 3.2.

Along the lines of [13], wemodel the block propagation reliability

as the expected node coverage of the broadcast operation, which

is based on the average probability of transmission failures. Thus,

given the failure probability ϵ and β = 1, a single broadcast chunk

β = 1 β = 1, FEC β = 3 β = 3, FEC

0.00

0.25

0.50

0.75

1.00

0.000 0.001 0.002 0.003 0.004 0.005

C
o
v
er
ag
e

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15

C
o
v
er
ag
e

Packet Loss

Figure 4: Broadcast reliability (block size of 1MB, L = 160,

and FEC overhead factor f = 0.15.

would reach its next hop with probability p = 1 − ϵ . The expected
number of nodes receiving this chunk can therefore be expressed

byM = (1 + p)L , assuming a balanced distribution tree of height L,

which is highly plausible due to the uniform random distribution

of node identifiers. It follows that the ratio of covered nodes is

m =
M

2L
=

(

1 + p

2

) L

.

Note however that this expression models the transmission of a sin-

gle chunk without redundancy only. In order to express the coverage

of a redundant block broadcast, we need to extent this model.

Therefore, we model the parallel execution of our algorithm as

the probability that at least one of the redundantly sent chunks is

successfully delivered, i.e.,pβ = 1−ϵβ . Moreover, letX be a random

variable expressing the number of received chunks. The probability

that we receive all s chunks of a block is thus pb = P(X = s) = ps ,
which induces a block failure probability of ϵb = 1−pb . Accordingly,
the probability to deliver a block with redundancy β is given by

pb ,β = 1−ϵβ
b
. These observations yield an expected block coverage

ratio of

mb ,β =

(

1 + pb ,β

2

) L

.

In the upper part of Figure 4, we analyze the expected broadcast

coverage for different packet loss rates and β ∈ {1, 3}. We assumed

a block size of 1MB and identifier length L = 160. We observe that

even the smallest packet loss makes the probability of delivering

a block drop immediately, rendering the chance of covering the

identifier space virtually impossible (see Figure 4). While a redun-

dancy factor β = 3 has a positive impact on the block propagation,

it is not sufficient to guarantee the reliable transmission of entire

blocks over a lossy channel. However, the parallelized broadcast

is necessary to compensate adversarial and random node failures,

and to improve the propagation performance, as discussed before.

5

3.3.3 Analysis of FEC-based Block Delivery. Using the RaptorQ

forward error correction, a Kadcast node has to successfully receive

s or more arbitrary symbols out of the n transmitted in order to

recover a full block, an event which can be modeled by a binomial

distribution, i.e.,

pb ,f = P(X ≥ s) = 1 − P(X < s) = 1 −
s−1
∑

i=0

p.

Figure 4 clearly shows the improved propagation reliability offered

by introducing forward error correction with 20% redundancy (f =

0.15): the approach keeps the coverage ratio at 100% until around a

packet loss rate of 9%. This is quite a number for Internet standards

and is even enough to cover the large packet loss rates exhibited by

connections towards mainland China.2 However, this can still be

improved by combining the approach with redundancy, i.e., β > 1.

In this case, the success probability is pb ,β ,f = 1 − (1 − pb ,f)β ,
which is shown for β = 3 in Figure 4 as well. The combination of

FEC and parallelization ensures full network coverage, even if on

average 12% packets are lost during transmission.

The analysis results highlight that FEC is a favorable way to

ensure reliable transmission of data over an unreliable network

infrastructure: it allows to significantly increase the reliability of

the broadcast while introducing a relatively small linear overhead.

In contrast, the overhead introduced with increasing the replica-

tion factor β introduces a larger increase in messaging complexity.

However, broadcast redundancy is still required in cases where the

weak point is not just an unreliable network link, but a malicious

node obstructing block delivery.

4 KADCAST SECURITY

As discussed earlier, fast and fair block propagation may be consid-

ered security-critical for the consensus layer of blockchain-based

systems. However, the peer-to-peer network and the block prop-

agation mechanism can also be attack vectors of system security.

In the following, we discuss the security properties of the Kadcast

network itself and its broadcast mechanism.

4.1 Threat Model and Mitigation Strategies

The Kadcast design is based on the time-tested and well-studied

structured network design of Kademlia [40]. Numerous previous

entries study Kademlia’s security properties, its behavior when

attacked by a range of adversaries, and designs improving on its

security [10, 55]. In the following, we discuss the most prevalent ad-

versarial threats to the security of peer-to-peer networks in general

and Kadcast in particular.

4.1.1 Sybil a�acks. The notion of a Sybil attack [16] describes

the possibility of a single adversary to embody a large number of

network entities by forging additional identities. By doing so, the

adversary aims to out-number the honest nodes participating in

a distributed system, effectively increasing the share of malicious

nodes f in the system.Moreover, a Sybil attack is especially enticing

when the forged identities can be used to trick the system and enable

unwanted behavior. In systems based on the Kademlia overlay, Sybil

2Kaiser et al. describe that, induced by the Chinese “Great Firewall”, connections
exhibit 6.9% packet loss, which leads to artificially delayed block propagation of
Chinese Bitcoin miners [31].

attacks may be used to generate a lot of identities that can fill up

a victim’s buckets [36, 53]. The ability to run this kind of attack is

often a prerequisite to be able to run an Eclipse attack (see next

section) on Kademlia-based systems.

In the case of Kadcast, if an adversary can forge arbitrary IDs,

she may easily be able to position herself close to a target, thereby

increasing the likelihood of receiving lookups and broadcasts from

this target. This may enable the adversary to simply refuse block

delivery and thereby obstruct the block propagation, which we

discuss further in Section 4.2. Hence, we observe that the ability to

create valid node identifiers at arbitrary positions in the network is

detrimental to the security of the system.

The Kadcast protocol employs a number of countermeasures

in order to increase its resilience to Sybil attacks. For one, the

node identifiers are generated by hashing the IP addresses of the

nodes, i.e., ID = H (addr), which ensures a one-to-one mapping

between identifier and network node. This property is validated

by other Kadcast nodes by exchanging PING and PONG messages,

i.e., they only accept new identifiers if the node is reachable via the

respective address. Note, that this procedure also raises the bar for

IP spoofing attacks immensely. Moreover, by using a cryptographic

hash function, the proposed generation method ensures that the

identifier space is covered randomly but uniformly, making it hard

for an adversary to generate identifiers at a specific distance from

a target node.

Additionally, the Kadcast protocol can easily be extended to

incorportate cryptographic puzzles as Sybil protection, similar to [3,

6, 58]. Along the lines of proof-of-work mining, Kadcast follows a

simple scheme: a joining node has to find a nonce, so that the hash

of concatenation of its identifier and nonce adheres to a certain

difficulty level. This is, the binary value of the hash has to be less

than the chosen difficulty target, i.e., H (ID | | ID_NONCE) < tdif f ,

where tdif f is a global parameter of the system. Every node that

receives a new node identifier validates this property before it

inserts the new node to its buckets. It can run the validation quickly,

while the node generation can take quite some time, depending

on the chosen parameter tdif f . Thereby, the inclusion of this hash

puzzle scheme seriously impairs the ability of adversary to quickly

generate a large number of node identifiers. Moreover, additional

effective countermeasures encompass stricter bucket policies which

enforce a certain degree of diversity from an AS-level and/or subnet

perspective [2, 24].

4.1.2 Eclipse a�acks. All peer-to-peer networks rely on some kind

of routing scheme that allow nodes to decide where to forward data

or which nodes to query for a specific data item. However, these

routing decisions are made on the basis of an underlying data struc-

ture, the routing table. Eclipse attacks describe a family of attacks

on peer-to-peer networks in which the adversary manipulates the

routing tables of its targets to contain only nodes controlled by the

adversary. Once she isolated her target from the rest of the network,

the adversary is in full control of the data streams coming from and

to the target node. This may be used by the adversary to completely

block data delivery, selectively obstruct data transmission, or even

foist spurious data.

In blockchain networks, Eclipse attacks are a serious threat, since

they could be used to monopolize the connections of a target node

6

and then further exploit the protocol. They have been shown to

enable double-spending and selfing-mining attacks [28, 39]. In the

past, Eclipse attacks on the Kademlia protocol have been studied

in literature [36, 37, 53]. These studies show that, if an adversary

would come to control a large number of node identifiers, she may

try to flood all buckets of a target node with addresses of nodes

in her control. This technique could be used to isolate Kadcast

nodes from the rest of the network. The Kadcast protocol however

includes strong Sybil protection to mitigate this possibility. More-

over, Kadcast follows a bucket eviction policy, which favors older,

more stable nodes over newly acquired node addresses. This policy

impedes the adversaries capability of supplying all nodes known

to the victim. In conclusion, by safeguarding the node identifiers

through the means of IP binding and cryptographic puzzles, as well

as applying rigorous bucket policies, Kadcast follows best practices

for Sybil and Eclipse protection [39].

4.1.3 Denial-of-Service a�acks. Broadcast protocols aim to distrib-

ute information to all nodes in the network. This inherent asym-

metry immediately raises the question on whether they allow an

adversary to flood the network with arbitrary data, i.e., how sus-

ceptible they are to denial-of-service (DoS) attacks. In order to

avoid these kind of attacks, blockchains like Bitcoin employ a store-

and-forward propagation policy: each block a node receives is first

stored and validated (i.e., check the proof of work), before it is

announced to neighbors. This way, an adversary trying to flood

the network with fake block data would have to solve a proof-of-

work hash puzzle for each of the forged blocks, making it a very

unattractive attack vector. The Kadcast protocol adapts this DoS

protection: every node first validates received blocks before they

are forwarded in the broadcast tree.

Additionally, previous work [56] highlighted that node operators

have become targets of DDoS in the past. In the worst case, this

results to a node failure, which possibly impairs the broadcast

operation, as we discuss further in the following sections.

4.2 Obstruction of Block Delivery

Kadcast relies on the responsiveness and compliance of delegate

nodes. An adversary however may have an interest to obstruct

the block delivery. To this end, she could position herself on the

distribution path during the broadcast operation, and refuse to

comply when chosen as delegate. In the following, we will elaborate

and analyze this general attack vector.

First, an adversary may try to prevent a specific node from pub-

lishing a new block. In order to intercept outgoing blocks generated

by a target node, an adversary needs to fill every bucket of the

target with malicious nodes. We assume that an adversary is able

to spawn M out of N nodes, but cannot cheat the placement mech-

anism, i.e., has to hash node identifiers like everyone else, resulting

in a uniform coverage of the identifier space. In fact, this is a very

conservative assumption, since we neglect the previously discussed

bucket filling and eviction policies that would heavily skew this

towards stable and honest nodes. Moreover, for the sake of censor-

ing outgoing blocks, all buckets are equally attractive targets, since

the covered space does not only determine the amount of affected

nodes, but in equal manner the probability to be selected by the

target’s broadcast operation. For example, as the bucket size in a

network of N nodes can be estimated to be

bs ,i =

⌊

2i

2L
· N

⌋

,

a successful attack on the transmission to bucket BL−1 may lead to

only a coverage of N /2 nodes. However, the required number of

nodes in this bucket space is also proportionally harder to acquire

for the adversary. Due to Kadcast’s parallel route selection, it be-

comes highly unlikely that all β nodes per bucket are picked from

the adversary’s pool. In particular, when the adversary can acquire

control of M nodes, we can assume that the same share, ϵ = M/N ,

describes the situation in every bucket and hence determines the

failure probability of a single broadcast operation. Accordingly,

this would result in a parallelized broadcast failure probability of

pϵ = (M/N)β , which exponentially decreases with the redundancy

factor β , as we discussed and analyzed in Section 3.3.1.

The more interesting case is an adversary trying to interfere

with the block delivery to a specific node. As discussed before, a

true Eclipse attack is unfeasible in the Kadcast network, since it

strictly applies best practices and enforces a uniform coverage of

the identifier space. However, in the following we analyze security

of block delivery when faced with an adversary that is able to spawn

a certain amount of network nodes, i.e., attempting a Sybil attack.

In order to calculate the probability of successful block delivery

in face of such an attacker, we model the broadcast operation as

a simple Markov chain, which is depicted in Figure 5. The block

propagation starts in an arbitrary distance i from the target. For

instance, if the origin would fall in bucket B2, the model only needs

to consider the operations in height two or smaller. The broadcast

operation succeeds, when the block is delivered to the target node,

and only honest nodes were visited during path traversal.

The initial state in the Markov model is si , and without loss of

generality we can assume it to start at sL−1, the state representing
broadcast in the largest bucket. From state i , the Kadcast algorithm

can delegate the targeted node directly and transition to the success

state sd with probability

pd ,i = 1 −
(

bs ,i − 1
bs ,i

) β

.

Alternatively, the algorithm chooses some other node in the bucket

with probability pd ,i . The chosen node may be either honest or ma-

licious. If it is honest (again, probability ph = 1−pϵ = 1−(M/N)β),
the broadcast operation continues and the model transitions to

state si−1. If it is malicious, it would obstruct the block delivery,

and hence the model transitions to the fail state sf with probability

ph = 1 − ph . Once in the success or fail state, the fate of the broad-

cast operation is decided, hence the Markov model reaches a steady

state after a maximum of L − 1 state transitions.
We implemented theMarkov chain model utilizing the R package

markovchain [51], and simulated the success probability of block

propagation for different shares of malicious nodes ϵ and redun-

dancy factors β . As these simulations assume the source to be in the

bucket of highest distance (L− 1), they yield worst-case estimations

for the steady-state success probability. The results are shown in

Table 1; even for adversaries that control 10 % of network nodes,

Kadcast delivers block with more than 99 % probability. Moreover,

by adjusting the redundancy factor, Kadcast is able to deliver blocks

7

Table 1: Markov Simulation Results

Parameters Results

N M ϵ β pϵ pd

11000 1000 0.1 3 0.00075 0.993

12000 2000 0.2 3 0.0046 0.957

13000 3000 0.3 3 0.0122 0.888

11000 1000 0.3 5 0.00065 0.994

15000 5000 0.5 5 0.0041 0.963

sd

sL−2sL−1

sf

. . . s0

1.0

1.0

p d

pd · ph

p
d · p

h

p
d

pd · ph

p
d
·p

h

pd · ph

1
.0

Figure 5: Markov chain model.

with more than 96% probability in a highly adversarial environment

where 50 % of nodes are controlled by the adversary.

4.3 Security Implications of Network-Layer
Properties

One of the central ideas of blockchain-based systems is that valid

blocks extend the blockchain and eventually lead to a global con-

sensus, as long as the majority of peers are honest and follow the

protocol [42]. However, this is based on the assumption that peers

receive new blocks soon after their creation. In this regard, re-

cent analytical works [26, 34, 45] focussing on the consensus layer

proved that the consistency guarantees of blockchain protocols

only hold when blocks are delivered in a timely fashion.

In an early study, Decker andWattenhofer highlighted the impor-

tance of the block propagation delay for the security of the Bitcoin

system [15]. They showed that block propagation in Bitcoin’s un-

structured overlay network follows a long-tailed distribution in

which 5% of the peers wait more than 40 seconds for new blocks.

The authors could show that the delay increases the probability of

blockchain forks.

Eyal and Sirer discovered the feasibility of selfish mining attacks

on the Bitcoin protocol [21]. They show that a malicious miner

could gain an advantage by withholding mined blocks. The main

idea is to let other miners “waste” their computational power on

an old block, while the selfish miner (secretly) mines a new block.

When other miners find and propagate a block solution, the selfish

miner quickly broadcasts its secret block and therefore still has a

chance to “win the race” for the longest chain. The success of this

attack, however, heavily depends on the attacker’s mining power

and the network share it can reach with its secret block before any

concurrent block. Thus, reducing the propagation delay would also

reduce the attack surface for selfish mining attacks, as the time

window selfish miners have to react becomes smaller.

Recently, the impact of block propagation on Bitcoin’s resilience

towards selfish mining and double spending [32] attacks was fur-

ther investigated by Gervais et al. [27]. The authors show that the

occurrence of stale blocks, i.e., blocks that do not get included in the

final longest chain and therefore do not contribute to its security,

can have severe negative consequences for the performance and the

security of proof-of-work-based blockchain systems. Their results

suggest that the stale block rate is influenced by the propagation

delay, and that it heavily depends on the employed propagation

algorithm.

We therefore conclude that a central goal of any block distribu-

tion algorithm should be to efficiently make use of the available

resources and to minimize the propagation delay as it has a positive

effect on the security and fairness of blockchain-based systems.

5 EVALUATION

In this section, we evaluate the block distribution performance,

broadcast reliability and efficiency, as well as the security impact

of the Kadcast protocol on an empirical basis. For this, we gathered

data from a comprehensive network simulation study, which are

discussed in the following.

5.1 Simulation Model

Our network simulation study is based on a new simulator for

blockchain networks, which we now introduce.

5.1.1 bns - Blockchain Network Simulator. In order to capture the

networking aspects of blockchain networks in general and to evalu-

ate the characteristics of the Kadcast design in particular, we imple-

mented bns, a new blockchain network simulation whose architec-

ture is able to incorporate interchangeable networking modules and

network topology models. The simulation is based on ns-3 [48], an

advanced event-discrete network simulator, which allows to model

the networking protocols to a high degree of detail and enables

time-independent simulations. In the simulation framework, we

developed a prototype application implementing a rudimentary

blockchain node logic, which runs on network nodes that are con-

nected according to one of the network topology models. Moreover,

the application is able utilize one of the implemented networking

stacks, i.e., the UDP-based Kadcast networking protocol, as well as

an instantiation of the TCP-based VanillaCast networking stack for

comparison. The bns simulator allows to easily setup and analyze

large-scale network simulations for a large set of adaptable parame-

ters for the consensus layer, such as block sizes, block intervals, and

simulation time, as well as networking layer parameters, such as

network size, network topology, number of miners, unsolicited or

header-based block relay, etc. We make the simulator source code

publicly available to the research community.3

3The source code can be retrieved from https://gitlab.tubit.tu-berlin.de/rohrer/
bns-public.

8

https://gitlab.tubit.tu-berlin.de/rohrer/bns-public
https://gitlab.tubit.tu-berlin.de/rohrer/bns-public

Kadcast VanillaCast VanillaCast Unsolicited 1 2 4

F(
x
)

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000

Propagation Delay (ms)

10 min., 1 MB, Hub-and-Spoke

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Propagation Delay (ms)

15 sec., 0.025 MB, Hub-and-Spoke

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

Propagation Delay (ms)

10 min., 1, 2, 4 MB, Hub-and-Spoke

Kadcast VanillaCast VanillaCast Unsolicited

St
al
e
R
at
e

0.00

0.03

0.05

0.08

0.10

1 2 3 4 5 VC VC Uns.

β

10 min., 1 MB, Hub-and-Spoke

0.01

0.02

0.03

1 2 3 VC

β

15 sec., 0.025 MB, Hub-and-Spoke

0.00

0.04

0.08

0.12

1 2 4

Block Size (MB)

10 min., 1, 2, 4 MB, Hub-and-Spoke

Figure 6: Block propagation delay and resulting stale rates for Bitcoin-like and Ethereum-like parametrizations, as well as for

simulation scenarios with higher block size limits.

5.1.2 Simulator Parametrization. The parameters that fuel our

blockchain simulation are mainly chosen in reference to the Bitcoin

network. For example, the simulator draws its block size distribu-

tion from uniform random sampling over Bitcoin’s daily average

block sizes of the last year. Moreover, the mining difficulty is con-

sidered a network-wide fixed parameter, set to Bitcoin’s current

value. Likewise, we simulate 16 mining nodes configured with a cer-

tain hash power, according to the currently deployed mining pools

found in the Bitcoin network [5]. Please note that these 16 mining

pools in sum contribute approximately the total hash power. Based

on the individual hash power, each miner samples the next mining

events from an exponential distribution function, which simulates

a Poisson process in accordance to the target block interval. As a

result, we get a realistic model of block generation in blockchain

networks and at the same time are able to simulate competing

mining nodes and their block propagation in the network.

While our evaluation is based on a number of different setups,

the results described are based on scenarios simulating the min-

ing process in networks with N = 500 nodes. Every scenario was

repeated 30 times for different seed values to ensure statistical sig-

nificance of the conducted measurements. During the three hour

simulation time, the 16 miners generated blocks and initiated broad-

cast operations employing one of the two networking stacks, i.e.,

VanillaCast or Kadcast. In the Kadcast case, if not stated otherwise,

the results are based on the parameters k = 100 and α = 3. In

order to evaluate the protocol behavior under different network

conditions, we furthermore implemented two network topology

models, which we now discuss in detail.

5.1.3 Hub-and-Spoke Topology Model. As a baseline for the proto-

col evaluation, we use a simple hub-and-spoke topology where all

nodes are connected to one central node representing “the Internet”.

Our assumption is that the Internet is not a bottleneck and there-

fore set the hub’s link capacities to 100Gbps and client bandwidth

to 50Mbps. Moreover, we sample link latencies from the publicly

available data set of measured end-to-end median latencies in the

Bitcoin network [43]. The hub-and-spoke model is a typical setup

for the assessment of peer-to-peer overlays, and while it captures

network effects, it does not rely on additional assumptions about

the underlying topology. This creates an idealized simulation sce-

nario that gives us the capability to assess the networking stacks

based on a neutral, common ground.

5.1.4 Geographic Topology Model. As a counterpart to the ideal-

ized the hub-and-spoke model, we created a more topology model

based on geographic clustering of nodes. Again, we aligned the

basic model with the Bitcoin network, as we retrieved the publically

available node list from the Bitnodes website [4], which yields a

node distribution for the seven interconnected geographic clusters:

North America, South America, Europe, Asia, Africa, China, and

Oceania. Simulated nodes are distributed accordingly and are con-

nected to their respective regional hubs. For each of the regions, we

parametrized link latency distributions with measurements from

9

the iPlane [29] dataset and upload and download bandwidth distri-

butions with broadband data from Speedtest.net [52]. In order to

consider the findings of [31], we furthermore modeled China as a

separate region and appointed a packet loss rate of 6.9 % to links in

the region. Note that since we do not consider hosted nodes with

server-grade connections, the geographic topology model captures

a heavily resource-restricted environment that enables simulations

in more complex network scenarios which foster a high degree of

network effects.

5.2 Protocol Evaluation

In order to show the benefits of the Kadcast protocol in different en-

vironments, we created simulation scenarios with parametrizations

mimicking Bitcoin (10 min. block interval and 1MB block size limit)

and Ethereum (15 sec. block interval, proportionally smaller block

size limit of 25 KB [19]). Moreover, in light of the debates on block

size limits in the Bitcoin community, we additionally analyzed the

block propagation for increased block size limits of 2MB and 4MB.

5.2.1 Block Propagation Delay. As a first study, we investigated

the performance of Kadcast compared to different instantiations

of VanillaCast. The upper half of Figure 6 shows the block propa-

gation delay to reach 90% of all nodes as cumulative distribution

function F (x): as expected, the block distribution time depends

on the block size limit, that is, larger blocks take longer to propa-

gate. The Kadcast protocol, however, delivers blocks significantly

faster compared to VanillaCast in all cases. For example, Kadcast

exhibits a mean propagation time of 2,500ms to deliver blocks with

a 1MB block size limit (Bitcoin-like scenario, left plot), 4,312ms

faster than VanillaCast, and even 5,242ms faster than unsolicited

VanillaCast block propagation, which interestingly experiences ad-

ditional queueing delay and other network effects stemming from

its increased overhead. Compared to both cases, request-response

and unsolicited VanillaCast, this amounts to 30 % faster block prop-

agation in the Bitcoin-like scenario. Furthermore, Kadcast’s per-

formance really excels in the case of smaller intervals and smaller

block sizes: in the Ethereum-like scenario (middle plot), Kadcast

is able to deliver blocks on average more than 90 % faster than the

VanillaCast baseline.

The improved propagation speed is also reflected by an overall

faster network coverage: while it takes VanillaCast in the Bitcoin

case 8,461ms to reach 90% of the network (and unsolicited even

9645ms), Kadcast is able to reach the same number of nodes more

than 50% faster, at 3,784ms. In the Ethereum case, Kadcast again

fares even better and covers 90 % of the network 90% faster than

the unstructured VanillaCast networking layer. For the larger block

sizes of 2MB and 4MB (right plot), Kadcast was also able to deliver

blocks more than 50% faster on average and in total.

The results highlight that Kadcast is able to immensely speedup

the block distribution in current blockchain systems, and that while

it scales for larger block sizes, it meets the requirements of networks

with quicker block intervals in particular.

5.2.2 Impact on Consensus Stability. The effect of the quicker block

propagation is reflected in the median stale rate, i.e., rate of blocks

that are mined, but do not become part of the final blockchain. As

f 0 0.05 0.1 0.15 None

0.00

5.00

10.00

15.00

20.00

1 2 3 4 5 VC VC Uns.

O
v
er
h
ea
d
R
at
io

10 min., 1 MB, Hub-and-Spoke

0.00

5.00

10.00

15.00

1 2 3 4 5 VC VC Uns.

O
v
er
h
ea
d
R
at
io

10 min., 1 MB, Geo

β

Figure 7: Overhead ratios for Hub-and-Spoke and geo-

graphic topologies, and parametrizations for f and β .

increased blockchain forks and wasted mining power weaken con-

sensus security, the stale rate is an indicator for how the networking

layer impacts security [27].

The boxplots in the lower half of Figure 6 show the stale rate in

dependence of different choices for the redundancy parameter β :

in the Bitcoin-like scenario Kadcast achieves a median stale rate

of zero, barring the occasional outliers. This is comparable to the

VanillaCast and unsolicited VanillaCast cases, which exhibit similar

behavior. However, in the case of a decreased block interval, the

ratio of propagation delay to block interval gets much larger, result-

ing in an overall increased stale rate. In this Ethereum-like scenario,

VanillaCast exhibits a median stale rate of 0.017, which Kadcast

is able to divide in half, achieving an overall median stale rate of

0.0085. Additionally, the influence of the performance increase for

higher β values is visible, leading even to a median stale rate of

0.0073 for β = 3. The simulations with larger block size limits in-

dicate that the additional stress on the network layer negatively

impacts consensus security: while VanillaCast and Kadcast can re-

tain a median stale rate of zero, the number of outliers increase in

both cases. While Kadcast still fares better in the 2MB case, Vanil-

laCast exhibits better stale rates in the 4MB scenarios, which suffer

from more network effects, as we discuss further in Section 5.4.

In summary, the improved block propagation of Kadcast leads to

a median stale rate that is comparable and often better than Vanil-

laCast. This indicates that the consensus security of blockchain

systems could benefit from employing the Kadcast protocol, espe-

cially networks with lower block intervals, such as Ethereum. More-

over, since blocks reach a larger share of the network much faster,

the adoption of Kadcast could help to mitigate time-dependent

adversarial mining strategies, such as selfish mining [21].

5.2.3 Broadcast Efficiency. In order to confirm the adjustability and

efficiency of the Kadcast protocol, we recorded the total amount of

traffic ttotal produced during our simulation time. Furthermore, we

accumulated the block sizes of all blocks generated during this time,

tblocks. As all blocks need to be transmitted to each node at least

10

ϵ

0

0.1

0.2

0.3

0.4

0.5

0.4

0.6

0.8

1.0

1 2 3 4 5 VC

C
o
v
er
ag
e

10 min., 1 MB, Hub-and-Spoke

0.0

0.2

0.4

0.6

1 2 3 4 5 VC

St
al
e
R
at
e

10 min., 1 MB, Hub-and-Spoke

β

Figure 8: Network coverage and stale rate, when a share ϵ of

adversarial nodes is introduced to the network.

once, the minimum amount of traffic for the broadcast operation

can be calculated as N · tblocks. Accordingly, we define the overhead
ratio as ro = (ttotal − N · tblocks)/(N · tblocks), which describes how

much additional traffic was generated during a simulation run,

including all signaling messages.

The upper part of Figure 7 shows the results in the Hub-and-

Spoke scenarios for different parametrizations of the redundancy

parameters β and f : we observe that Kadcast’s overhead increases

linearly with β and f . We also note that for β = 1, Kadcast’s

overhead ratio is below the relay-response based VanillaCast, and

that for β = 5 it is comparable to unsolicited VanillaCast. This

shows the adjustability of the Kadcast approach, which allows for

a fast, unsolicited block relay with controllable overhead.

5.3 Protocol Behavior under Attack

We moreover empirically evaluated how the Kadcast protocol fares

in the face of an adversary obstructing block delivery. For this,

we set up simulation scenarios in which a fraction ϵ of nodes

were marked as adversarial and henceforth would cease to forward

blocks. The upper part of Figure 8 shows the network coverage

in dependence of ϵ and β : while Kadcast of course reaches 100%

network coverage for ϵ = 0, its block propagation is severely hin-

dered when malicious nodes are introduced and no redundancy

exists (β = 1). However, the effect of the redundancy factor β is

also clearly visible, ensuring 99 % coverage for β = 3 when ϵ ≤ 0.3

and for β = 5, when the share of malicious nodes would be even

higher.

Interestingly, while VanillaCast’s network coverage is not im-

paired by the introduction of adversarial nodes, it does exhibit

degraded propagation performance due to the almost fragmented

network. In fact, the resulting stale rates of both protocols are very

similar, when confronted with such a powerful adversary (cf. lower

part of Figure 8). The results show that, with a reasonably chosen

set of parameters, Kadcast is resilient to a large amount of adver-

sarial nodes and compares to the currently deployed VanillaCast

networking layer.

5.4 Protocol Behavior in Complex and
Resource-Restricted Environments

Additionally, in order to evaluate the Kadcast protocol in more

complex networking environments, we reproduced the previously

introduced scenarios in the resource restricted geographic topology

model. Due to the lower bandwidths, larger latencies, packet losses,

and more complex structure of this model, much more network

effects come into play here. However, the results shown in Fig-

ure 9 follow the same tendencies as discussed before: in general,

Kadcast provides much faster block propagation than VanillaCast.

And again, it does especially well in the Ethereum-like networking

scenarios with smaller, higher frequency blocks.

Nevertheless, the results also show that Kadcast exhibits de-

graded performance when facing a congested networking environ-

ment. In the lower part of Figure 7, we can already see the first

signs of congestion: for β > 3, the overhead ratio stagnates, indi-

cating that packet losses occur. In Figure 9, the results for the 4MB

block size limit clearly show a significantly increased propagation

delay. Similar congestion effects can be seen for the unsolicited

VanillaCast, where high overhead even in the 1MB case forces the

network traffic to a standstill at times.

The degraded network performance is also reflected by higher

stale rates for networking protocols. However, as the effect is more

taxing on the protocols with unsolicited block propagation, it high-

lights the robustness of the request-response and TCP-based Vanil-

laCast in heavily congested networks. In particular, we therefore

hold the introduction of a suitable congestion control mechanism

to the Kadcast protocol as an important avenue of future research,

especially if blockchain networks such as Bitcoin would opt to

incorporate larger, more bandwidth hungry blocks. However, as

our simulation results show degraded performance for larger block

sizes and in congested networks for all networking stacks, the com-

munity should on the contrary think about reducing block sizes and

intervals. We deem this to be generally preferable from a network-

ing perspective, since it would lead to more uniform traffic patterns

and effectively would help reduce network effects during peak traf-

fic flows. Thereby, it also would alleviate network bottlenecks and

foster decentralization.

6 RELATED WORK

In recent years, a large body of work proposed improvements for

blockchain networks. Orthogonal to our approach, a number of con-

tributions deal with transaction privacy. For example, Venkatakr-

ishnan et al. and Fanti et al. propose protocol redesigns that im-

proves anonymity of transaction propagation in the Bitcoin net-

work [22, 57]. We, in contrast, are mainly concerned with block

propagation.

The Graphene protocol [44] proposes amore efficient block trans-

mission that augments the concept of compact blocks. Similarly, the

recently proposed Velocity protocol [9] uses FEC on top of the exist-

ing network architecture. While improving on some aspects, such

as the messaging overhead of the current block delivery method in

Bitcoin, these protocols do not fundamentally change the prevalent

block propagation model.

Third-party relay networks, such as the FIBRE network [25]

or bloXroute [35] are supposed to improve the block distribution.

11

Kadcast VanillaCast VanillaCast Unsolicited 1 2 4

F(
x
)

0.00

0.25

0.50

0.75

1.00

0 500000 1000000 1500000

Propagation Delay (ms)

10 min., 1 MB, Geo

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000

Propagation Delay (ms)

15 sec., 0.025 MB, Geo

0.00

0.25

0.50

0.75

1.00

0 500000 1000000 1500000 2000000

Propagation Delay (ms)

10 min., 1, 2, 4 MB, Geo

Kadcast VanillaCast VanillaCast Unsolicited

St
al
e
R
at
e

0.00

0.20

0.40

0.60

1 2 3 4 5 VC VC Uns.

β

10 min., 1 MB, Geo

0.00

0.20

0.40

0.60

1 2 3 VC

β

15 sec., 0.025 MB, Geo

0.00

0.20

0.40

0.60

0.80

1 2 4

Block Size (MB)

10 min., 1, 2, 4 MB, Geo

Figure 9: Block propagation delay and resulting stale rates for Bitcoin-like and Ethereum-like parametrizations, as well as for

simulation scenarios with higher block size limits in the geographic network topology model.

While the emergence of these proposals clearly show the urgency

of the problem, we deem them orthogonal to the goal of improving

the peer-to-peer networks of blockchain systems themselves. First

results however suggest [27] that a separate relay network has a

negligible effect over switching to a faster, i.e., unsolicited block

propagation scheme. Moreover, since such networks require central

and manual coordination, they do not meet the blockchain design

goals of decentralization.

A number of projects provide simulation frameworks for the

Bitcoin network. The Shadow simulator, for example, was extended

to incorporate the Bitcoin Core logic [30, 41]. Shadow focuses on

simulating accurate application behavior by executing the appli-

cation’s actual source code. The simulation developed by Gervais

et al., on the other hand, abstracts from the actual Bitcoin imple-

mentation and models its network behavior based on simplifying

assumptions [27]. For example, the authors assume a network mod-

el that is congruent to the overlay’s TCP connections, which does

not capture network effects. Moreover, both simulators were not

developed with interchangeable networking stacks in mind.

Beyond cryptocurrencies, contributions focusing on the broad-

cast in structured peer-to-peer networks are also relevant for our

work. El-Ansary et al. [17] realize a perfect broadcasting operation

based on the overlay structure of the Chord [54] peer-to-peer dis-

tributed hash table. Furthermore, a number of entries are concerned

with the broadcasting operation in Kademlia [40]-based overlay

networks [13, 46, 47]. Of these contributions, we highlight the work

by Czirkos and Hosszú [13], as parts of Kadcast are based on the

proposed scheme. However, to the best of our knowledge, we are

first to adopt and evaluate a broadcasting algorithm based on a

structured peer-to-peer network in the setting of a real-world ap-

plication with respective additional requirements, e.g., in terms of

security.

7 CONCLUSION

In this work, we presented Kadcast, a new protocol for fast, efficient,

and secure block propagation for the Bitcoin network. While this

initial entry focused on improving the block distribution, other

operations could immensely benefit from Kadcast’s superior perfor-

mance and low overhead. Finally, we hope to initiate a discussion

about alternative transport protocols in the blockchain space.

REFERENCES
[1] 2002. IPTPS ’02: Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (2002-03).
[2] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:

Routing Attacks on Cryptocurrencies. 375–392.
[3] Ingmar Baumgart and Sebastian Mies. 2007. S/Kademlia: A practicable approach

towards secure key-based routing. In ICPADS ’07: Proceedings of the 13th Interna-
tional Conference on Parallel and Distributed Systems (2007-12). 1–8.

[4] bitnodes. 2019. Homepage. Retrieved May 21, 2019 from https://bitnodes.earn.
com

[5] blockchain.info. 2018. Hashrate Distribution. Retrieved May 6, 2018 from
https://blockchain.info/pools?timespan=4days

[6] Nikita Borisov. 2006. Computational Puzzles as Sybil Defenses. In P2P ’06: Pro-
ceedings of the 6th IEEE International Conference on Peer-to-Peer Computing (2006).

12

https://bitnodes.earn.com
https://bitnodes.earn.com
https://blockchain.info/pools?timespan=4days

171–176.
[7] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

OSDI ’99: Proceedings of the 3rd USENIX Symposium on Operating Systems Design
and Implementation (1999-02). 173–186.

[8] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
2003. Making gnutella-like p2p systems scalable. In SIGCOMM ’03: Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (2003-08). 407–418.

[9] Nakul Chawla, HansWalter Behrens, Darren Tapp, Dragan Boscovic, and K Selçuk
Candan. 2019. Velocity: Scalability Improvements in Block Propagation Through
Rateless Erasure Coding. In ICBC ’19: Proceedings of the 1st International Confer-
ence on Blockchain and Cryptocurrency (2019-05).

[10] Thibault Cholez, Isabelle Chrisment, and Olivier Festor. 2009. Evaluation of
Sybil Attacks Protection Schemes in KAD. In AIMS ’09: Proceedings of the 3rd
International Conference on Autonomous Infrastructure, Management and Security
(2009). 70–82.

[11] Matt Corallo. 2016. BIP 152: Compact Block Relay. https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki

[12] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,
and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains - (A Position
Paper). In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin Research (2016-
02). 106–125.

[13] Zoltán Czirkos and Gábor Hosszú. 2013. Solution for the broadcasting in the
Kademlia peer-to-peer overlay. 57, 8 (2013), 1853–1862.

[14] Suhas Daftuar. 2015. BIP 130: sendheaders message. https://github.com/bitcoin/
bips/blob/master/bip-0130.mediawiki

[15] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the
bitcoin network. In P2P ’13: Proceedings of the 13th IEEE International Conference
on Peer-to-Peer Computing (2013-09). 1–10.

[16] John R. Douceur. 2002. The Sybil Attack, See [1], 251–260.
[17] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. 2003. Effi-

cient Broadcast in Structured P2P Networks. In IPTPS ’03: Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (2003). 304–314.

[18] Ethereum Project. 2014. A next-generation smart contract and decentralized
application platform. https://github.com/ethereum/wiki/wiki/White-Paper

[19] Etherscan.io. 2019. Ethereum Block Size History. Retrieved May 24, 2019 from
https://etherscan.io/chart/blocksize

[20] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI ’16: Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (2016-03).
45–59.

[21] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is
vulnerable. In FC ’14: Proceedings of the 18th International Conference on Financial
Cryptography and Data Security (2014-03). 436–454.

[22] Giulia C. Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley Denby,
Shruti Bhargava, Andrew Miller, and Pramod Viswanath. 2018. Dandelion++:
Lightweight Cryptocurrency Networking with Formal Anonymity Guarantees.
2, 2 (2018), 29:1–29:35.

[23] Giulia C. Fanti and Pramod Viswanath. 2017. Deanonymization in the Bitcoin P2P
Network. In NIPS ’17: Proceedings of 30th Annual Conference on Neural Information
Processing Systems (2017-12).

[24] Sebastian Feld, Mirco Schönfeld, and Martin Werner. 2014. Analyzing the De-
ployment of Bitcoin’s P2P Network under an AS-level Perspective. In ANT ’14:
Proceedings of the 5th International Conference on Ambient Systems, Networks and
Technologies (2014-06). 1121–1126.

[25] Fast Internet Bitcoin Relay Engine (FIBRE). 2017. Homepage. Retrieved August
1, 2017 from http://bitcoinfibre.org

[26] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-
bone Protocol: Analysis and Applications. In EUROCRYPT ’15: Proceedings of the
34th International Conference on the Theory and Applications of Cryptographic
Techniques (2015-04). 281–310.

[27] Arthur Gervais, Ghassan Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof of
Work Blockchains. In CCS ’16: Proceedings of the 23nd ACM SIGSAC Conference
on Computer and Communications Security (2016-10).

[28] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse
Attacks on Bitcoin’s Peer-to-Peer Network. In USENIX Security ’15: Proceedings
of the 24th USENIX Security Symposium (2015-08). 129–144.

[29] iPlane. 2019. An Information Plane for Distributed Services. web.eecs.umich.
edu/~harshavm/iplane/.

[30] Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In NDSS ’12: Proceedings of the Network
and Distributed System Security Symposium (2012).

[31] Ben Kaiser, Mireya Jurado, and Alex Ledger. 2018. The Looming Threat of China:
An Analysis of Chinese Influence on Bitcoin. abs/1810.02466 (2018).

[32] Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012. Double-spending
Fast Payments in Bitcoin. In CCS ’12: Proceedings of the 19th ACM Conference on

Computer and Communications Security (2012-10). 906–917.
[33] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. InCRYPTO ’17:
Proceedings of the 37th Conference on Advances in Cryptology (2017-08). 357–388.

[34] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. 2018. A Better Method to
Analyze Blockchain Consistency. In CCS ’18: Proceedings of the 25nd ACM SIGSAC
Conference on Computer and Communications Security (2018-10). 729–744.

[35] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. 2018.
bloXroute: A Scalable Trustless Blockchain Distribution NetworkWHITEPAPER.

[36] Michael Kohnen, Mike Leske, and Erwin P. Rathgeb. 2009. Conducting and
Optimizing Eclipse Attacks in the Kad Peer-to-Peer Network. In NETWORK-
ING ’09: Proceedings of the 8th International IFIP-TC 6 Networking Conference
(2009). 104–116.

[37] Thomas Locher, David Mysicka, Stefan Schmid, and Roger Wattenhofer. 2010.
Poisoning the Kad Network. In ICDCN ’10: Proceedings of the 11th International
Conference on Distributed Computing and Networking (2010). 195–206.

[38] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder. 2011. Rap-
torQ Forward Error Correction Scheme for Object Delivery. RFC 6330 (Proposed
Standard). , 69 pages. https://www.rfc-editor.org/rfc/rfc6330.txt

[39] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-Resource Eclipse
Attacks on Ethereum’s Peer-to-Peer Network. 2018 (2018), 236.

[40] Petar Maymounkov and David Mazières. 2002. Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric, See [1], 53–65.

[41] Andrew Miller and Rob Jansen. 2015. Shadow-Bitcoin: Scalable Simulation via
Direct Execution of Multi-Threaded Applications. In CSET ’15: Proceedings of the
8th Workshop on Cyber Security Experimentation and Test (2015-08).

[42] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[43] Karlsruhe Institute of Technology DSN. 2018. Bitcoin Monitoring. Retrieved

April 26, 2018 from https://dsn.tm.kit.edu/bitcoin/
[44] A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and

Brian Neil Levine. 2017. Graphene: A New Protocol for Block Propagation
Using Set Reconciliation. In CBT ’17: Proceedings of the 1st International Workshop
on Cryptocurrencies and Blockchain Technology (2017-09). 420–428.

[45] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain
Protocol in Asynchronous Networks. In EUROCRYPT 17: Proceedings of the 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (2017). 643–673.

[46] Antonio Delgado Peris, José M. Hernández, and Eduardo Huedo. 2012. Evaluation
of the Broadcast Operation in Kademlia. In HPCC ’12: 14th IEEE International
Conference on High Performance Computing and Communication (2012). 756–763.

[47] Antonio Delgado Peris, José M. Hernández, and Eduardo Huedo. 2016. Evaluation
of alternatives for the broadcast operation in Kademlia under churn. 9, 2 (2016),
313–327.

[48] ns-3 Network Simulator. 2018. Homepage. Retrieved May 5, 2018 from https:
//www.nsnam.org

[49] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A Fast
and Scalable Cryptocurrency Protocol. 2016 (2016), 1159.

[50] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction
Processing in Bitcoin. In FC ’15: Proceedings of the 19th International Conference
on Financial Cryptography and Data Security (2015-01). 507–527.

[51] Giorgio Alfredo Spedicato. 2017. Discrete Time Markov Chains with R. The R
Journal 9, 2 (2017), 84–104.

[52] Speedtest.net. 2019. Global Index. https://www.speedtest.net/global-index.
[53] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. 2007. Exploiting KAD:

possible uses and misuses. 37, 5 (2007), 65–70.
[54] Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, and Hari

Balakrishnan. 2001. Chord: A scalable peer-to-peer lookup service for internet
applications. In SIGCOMM ’01: Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (2001).
149–160.

[55] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2011. A survey of
DHT security techniques. 43, 2 (2011), 8:1–8:49.

[56] Marie Vasek, Micah Thornton, and Tyler Moore. 2014. Empirical analysis of
denial-of-service attacks in the Bitcoin ecosystem. In BITCOIN ’14: Proceedings of
the 1st Workshop on Bitcoin Research (2014-03). 57–71.

[57] Shaileshh Bojja Venkatakrishnan, Giulia C. Fanti, and Pramod Viswanath. 2017.
Dandelion: Redesigning the Bitcoin Network for Anonymity. (2017).

[58] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. 2003. Karma:
A secure economic framework for peer-to-peer resource sharing. In P2PEcon ’03:
Proceedings of the 1st Workshop on Economics of Peer-to-Peer Systems (2003-06).

[59] Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. http://gavwood.com/Paper.pdf

13

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki
https://github.com/ethereum/wiki/wiki/White-Paper
https://etherscan.io/chart/blocksize
http://bitcoinfibre.org
web.eecs.umich.edu/~harshavm/iplane/
web.eecs.umich.edu/~harshavm/iplane/
https://www.rfc-editor.org/rfc/rfc6330.txt
https://dsn.tm.kit.edu/bitcoin/
https://www.nsnam.org
https://www.nsnam.org
https://www.speedtest.net/global-index
http://gavwood.com/Paper.pdf

A BITCOIN’S PEER-TO-PEER NETWORK

The backbone of Bitcoin is an unstructured peer-to-peer network:

every peer establishes 8 outgoing TCP connections to a random

set of neighbor peers. Some peers additionally accept incoming

connections (by default up to 117).4 Once a peer established a

TCP connection to another peer, it initiates a handshake and starts

exchanging address (ADDR) messages in order to advertise itself to

the network and to update its peer cache. Next, the joining peer

proceeds to fetch blocks missing from its current local state of the

blockchain.

When a peer issues new transactions, it announces them through

inventory (INV) messages that are periodically broadcast in the net-

work: every peer sends INV messages to each of its neighboring

peers in intervals corresponding to a Poisson process. At the time

of writing, the default average interval between messages is set

to be 5 seconds. This artificial delay was introduced to improve

the privacy properties of the system, as observing the origin of a

transaction allows to link it to the IP address of the sender and

thereby enables deanonymization attacks.5 Each peer receiving an

INV message checks if it knows the announced transactions and

retrieves missing data items by sending a corresponding GETDATA

request, which is answered by TX messages. After the peer verified

the received transactions, it continues the broadcast by adding them

to the queued inventory messages. Up until Bitcoin Core v0.12.0,

inventory messages were also the default way to announce new

blocks in the network. Peers receiving such messages would then

request block headers via GETHEADERS and block data via GETDATA

messages. These would be answered by HEADERS and BLOCK mes-

sages, respectively. Note that the delay just described does not

affect the inventory-based block propagation, since INV messages

containing blocks are sent right away.

With the update to protocol version 70012, a new default method

for block propagation was introduced [14]: after the initial hand-

shake, each peer signals its support for the new propagationmethod

by sending a SENDHEADERSmessage. From this point on, new blocks

are announced directly via the HEADERS message, which reduces

the messaging overhead and propagation delays. Note that when

more than one block has to be announced, Bitcoin Core falls back

to the old INVmethod. Additionally, the option for compact block re-

lay [11] allows a peer to request block announcements to be sent in

a more bandwidth efficient manner. In particular, it allows the peer

to only retrieve transaction data it is missing from an announced

block, which can severely reduce the bandwidth overhead of block

propagation, but is prone to induce an additional latency overhead.

B ETHEREUM’S PEER-TO-PEER NETWORK

The notion of smart contracts is no alien concept to Bitcoin: trans-

actions can do more than transferring funds from one address to

another. In fact, Bitcoin transactions hold bytecode, which is exe-

cuted by all peers validating the transaction. The code determines

4Note that we only consider full nodes, i.e., peers running the Bitcoin Core software
and holding a full copy of the blockchain.
5Note that this method of obscuring the origin of a transaction replaced the trickling
method and was introduced with Bitcoin Core version 0.12.0. However, as Fanti and
Viswanath highlight in [23], the new method does not improve much on the old: both
exhibit rather poor anonymity properties.

whether to commit a state transition, making the network one large

distributed state machine.

While this perception is sort of an afterthought in Bitcoin, the

Ethereum [18, 59] project is a blockchain-based platform specif-

ically dedicated to the distributed execution of Turing-complete

smart contracts. Even though the scope of Ethereum is different, the

blockchain design and the corresponding network protocols share

more than a few similarities with Bitcoin. Interestingly, Ethereum’s

peer management is based on Kademlia, which is used to populate

a peer lookup table. However, for block and transaction propaga-

tion Ethereum uses an unstructured TCP-based overlay network,

very similar to Bitcoin. Each peer maintains a limited number of

connections, currently MaxPeers = 25, of which ⌈MaxPeer/2⌉ = 13

are outbound connections.6 Just like in Bitcoin, the contract code

is first propagated in the form of a transaction broadcast: each peer

receiving a transaction directly forwards it to all neighbors who

do not already know about it. When smart contract transactions

reach a miner, they are validated (i.e., executed) and consolidated

to blocks. These are then again broadcast, whereby blocks are only

directly forwarded to subset of
√
n neighbors, and are otherwise

advertised via inventory messages. A peer receiving an advertise-

ment waits 500ms before further advertising the block. All peers

in the network accept the longest known chain of blocks7 as the

currently valid blockchain.

We observe that Ethereum is indeed built on a hybrid network-

ing stack that utilizes Kademlia primitives for peer discovery, but

still relies on an unstructured overlay for information propagation.

Even though most of the network operations resemble those of

Bitcoin, Ethereum makes use of unsolicited transaction and block

propagation, which is probably needed to allow for much tighter

block synchronization intervals demanded by Ethereum’s short

block time of approximately 15 s. This suggests on the one hand

that Ethereum may have worse privacy guarantees than Bitcoin,

which introduces an artificial transaction propagation delay to ob-

fuscate the distance of an observer to the source of the transaction.

On the other hand, unsolicited relaying increases the bandwidth

overhead of the broadcast procedure. While we did not recreate

every detail of the Ethereum network, the experiments with smaller

block intervals clearly suggest that the Ethereum peer-to-peer net-

work may especially benefit from Kadcast’s improved performance

and efficiency.

6There are a number of different implementations. Here, we consider geth, the most
prevalent Ethereum software.
7In contrast to claims in [59], Ethereum does not implement GHOST [50] as chain
selection policy, but still relies the longest-chain policy while rewarding miners of
stale blocks if they include appropriate uncle blocks [27].

14

	Abstract
	1 Introduction
	2 Blockchain Networks
	2.1 VanillaCoin: A Paradigmatic Blockchain
	2.2 Information Dissemination in Blockchain Networks

	3 The Kadcast Protocol
	3.1 Overlay Construction
	3.2 Block Propagation
	3.3 Reliability of Block Delivery

	4 Kadcast Security
	4.1 Threat Model and Mitigation Strategies
	4.2 Obstruction of Block Delivery
	4.3 Security Implications of Network-Layer Properties

	5 Evaluation
	5.1 Simulation Model
	5.2 Protocol Evaluation
	5.3 Protocol Behavior under Attack
	5.4 Protocol Behavior in Complex and Resource-Restricted Environments

	6 Related Work
	7 Conclusion
	References
	A Bitcoin's Peer-to-Peer Network
	B Ethereum's Peer-to-Peer Network

