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Abstract: A marked decrease in human cancers, including breast cancer, bone cancer, and cervical

cancer, has been linked to the consumption of vegetable and fruit, and the corresponding

chemoprotective effect has been associated with the presence of several active molecules, such

as kaempferol. Kaempferol is a major flavonoid aglycone found in many natural products, such

as beans, bee pollen, broccoli, cabbage, capers, cauliflower, chia seeds, chives, cumin, moringa

leaves, endive, fennel, and garlic. Kaempferol displays several pharmacological properties, among

them antimicrobial, anti-inflammatory, antioxidant, antitumor, cardioprotective, neuroprotective,

and antidiabetic activities, and is being applied in cancer chemotherapy. Specifically, kaempferol-rich

food has been linked to a decrease in the risk of developing some types of cancers, including skin,

liver, and colon. The mechanisms of action include apoptosis, cell cycle arrest at the G2/M phase,

downregulation of epithelial-mesenchymal transition (EMT)-related markers, and phosphoinositide

3-kinase/protein kinase B signaling pathways. In this sense, this article reviews data from experimental

studies that investigated the links between kaempferol and kaempferol-rich food intake and cancer

prevention. Even though growing evidence supports the use of kaempferol for cancer prevention,

Molecules 2019, 24, 2277; doi:10.3390/molecules24122277 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-6900-9797
https://orcid.org/0000-0002-7301-8151
https://orcid.org/0000-0003-3724-3527
https://orcid.org/0000-0003-1032-6250
https://orcid.org/0000-0002-1736-4404
https://orcid.org/0000-0002-5934-5201
http://www.mdpi.com/1420-3049/24/12/2277?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24122277
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 2277 2 of 16

further preclinical and clinical investigations using kaempferol or kaempferol-rich foods are of pivotal

importance before any public health recommendation or formulation using kaempferol.

Keywords: kaempferol; pharmacokinetics; pharmacodynamics; antioxidant; anticancer;

chemoprevention; apoptosis; cell cycle arrest; metastasis; reactive oxygen species

1. Introduction

Kaempferol represents one of the most encountered aglycone flavonoids in the form of glycoside.

It is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7, and 4′,

and it is a yellow compound [1]. Kaempferol is found in various plant parts, such as seeds, leaves, fruits,

flowers, and even vegetables [2–4]. Kaempferol and its glycosylated derivatives have been shown

to be cardioprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antimicrobial,

antitumor, and have anticancer activities [5].

Epidemiological studies showed that a high intake of kaempferol is associated with decreased

incidence of different types of cancer, among which cancer in organs like skin, liver, colon, ovary,

pancreas, stomach, and bladder [6,7]. In this context, kaempferol consumption and related application in

cancer therapy are gaining huge attention among the research community [6–8]. The cancer prevention

is mostly achieved by inhibiting the proliferation of cancer cells through increasing the apoptosis [9–11].

Indeed, kaempferol inhibits various cancer cells by triggering apoptosis, cell cycle arrest at G2/M phase,

downregulation of signaling pathways and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT),

expression of epithelial-mesenchymal transition (EMT)-related markers (N-cadherin, E-cadherin, Snail,

and Slug), and matrix metallopeptidase 2 (MMP-2), metastasis-related markers [12,13]. Kaempferol also

induces the activation of cysteine proteases involved in apoptosis initiation and execution, caspases-3,

-7, -9, and Poly (ADP-ribose) polymerase (PARP) [14], therefore preventing the accumulation of

reactive oxygen species (ROS) involved in cancer development [15]. The inhibition of angiogenesis

was also reported as well as the capacity of kaempferol to preserve normal cell viability [15]. In this

context, this review summarizes data on pharmacodynamics, chemopreventive and anticancer effects,

and mechanisms of action of kaempferol.

2. Metabolism and Pharmacokinetics of Kaempferol

Studies on the in vitro and in vivo pharmacokinetics of kaempferol commonly ingested as high

polarity glycosides revealed that this polyphenol is poorly absorbed compared to the aglycones with

intermediate polarity [16].

Kaempferol lipophilicity allowed its absorption in the small intestine through passive and facilitated

diffusion or active transport [17]. Of note, intake of 14.97 mg kaempferol/day and 27 mg kaempferol from

tea resulted in a plasma concentration of 16.69 ng/mL and 15 ng/mL, respectively [18]. The absorbed

kaempferol undergoes metabolic transformation to yield the glucuronides and sulfoconjugates forms in

the liver [19] and small intestine by intestinal conjugation enzymes [17]. As well, kaempferol

and its glycosides are metabolized in the colon by the bacterial microflora that releases the

aglycones and broke aglycone C3 ring to form compounds such as 4-methylphenol, phloroglucinol,

and 4-hydroxyphenylacetic acid, that are either absorbed and can reach systemic circulation and

tissues or be excreted in feces and urine [20–27]. To overcome the low bioavailability of kaempferol,

its combination with quercetin increase its bioavailability, consequently improving its bio-efficacy.

In fact, studies prove that nanoformulations (e.g., nanoparticles, nanoemulsions, nanoencapsulation)

containing kaempferol will be extremely beneficial in improving their bioavailability and consequent

efficacy and selectivity for mutated cells, while their effect on normal cells will be limited [28]. Indeed,

kaempferol exerts protective effects in non-mutated cells, whereas it triggers apoptosis in those mutated

ones. These aspects are mostly linked to the remarkable antioxidant effects of kaempferol, namely acting
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directly in antioxidant enzymes, capable of efficiently inhibit ROS generation and lipid peroxidation,

and, finally, preventing the occurrence of cell damages, in a broad-spectrum activity [29].

3. Antioxidant Potential of Kaempferol

Kaempferol and its glycosides, as well as kaempferol-containing plants, portray antioxidant

potency both in culture and in animal models [26,27], and it has the capacity to decrease the production

of free radicals and other products like reactive oxygen species (ROS). ROS are aerobic metabolism

by-products that can induce malignant cell transformation. Thereafter, ROS production inhibition

can reverse malignant cancer cell phenotype [28–31]. Usually, superoxide anion is either converted

by superoxide dismutase into H2O2 that react with reduced metals (e.g., ferrous or cuprous ions),

to yield the highly reactive hydroxyl radical or form peroxynitrite by reacting with nitric oxide.

These two highly reactive species, hydroxyl radical and peroxynitrite, can cause lipids, proteins,

or DNA damages [32]. At submicromolar concentrations, kaempferol is not only a potent scavenger of

superoxide anion, hydroxyl radical, and peroxynitrite [32–34], but it also inhibits pro-oxidant enzymes,

such as xanthine oxidase [35], and activates antioxidant enzymes such as superoxide dismutase,

catalase, and heme oxygenase-1 (Figure 1) [36,37] and even prevents the generation of hydroxyl radical

by chelating cuprous or ferrous [38,39]. Also, and not least important to highlight, is that kaempferol

contains hydroxyl groups at C3, C5, and C4, an oxo group at C4, and a double bond at C2-C3 that

might explain its antioxidant activity [32].

Conclusively, kaempferol can control the cancer through its antioxidative/antinitrosative and

anti-inflammatory potential by restoring the cell redox hemostasis by inhibiting the NF-κB pathway

and to up-regulate the Nrf2 transcriptional pathway (Figure 1).
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Figure 1. Antioxidant mechanisms of action of kaempferol: The kaempferol reduces the ROS

metabolism, cleavage of anti-inflammatory membranes, and disrupts their molecular mechanism as

a mechanistic concern to tackle cancer-related expressions (KMF: Kaempferol; Nrf2: Nuclear factor

erythroid 2-related factor 2; Keap1: Kelch-like ECH-associated protein 1; RO: Reactive oxygen species).

4. Anticancer Properties of Kaempferol

4.1. Anti-Breast Cancer Activity

Breast cancer burden has been increasing over the years and it represents the most-encountered

cancer in women [40]. At micromolar concentrations, kaempferol effectively inhibits the growth of breast
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cancer cell lines (VM7Luc4E2, MDA- MB-231, MCF-7) [40–43]. Also, kaempferol markedly inhibits

the bisphenol A (BPA) (endocrine-disrupting chemicals) and triclosan (TCS)-induced anti-apoptotic

processes [44], causes cell arrest at the G2/M stage, and even induces apoptosis and DNA fragmentation

at the sub-G0 phase (Table 1). Kaempherol increases the levels of pro-apoptotic enzymes and proteins,

such as cleaved caspase-9, -7, -3, p21, p53, Bax, PARP, and p-ATM [45,46] and decreased the levels

of anti-apoptotic proteins Bcl2, polo-like kinase 1 (PLK-1), pAKT, phosphorylated insulin receptor

substrate 1 (pIRS-1), phosphorylated mitogen-activated protein kinase (pMEK)1/2, cyclin-dependent

kinase 1 (CDK1), cyclins A, B, D1, and E, and cathepsin D [10,40,41,45–49]. In triple-negative breast

cancer cells (TNBC), kaempferol decrease cell migration and invasion stages when compared to

non-TNBC cells (control) [42]. This is explained by the downregulation of RhoA and activation of Rac1

in TNBC cells, as well as through activation of human epidermal growth factor receptor-2 (HER2)-silence

SK-BR-3 and ER/PR-silence in non-TNBC cells [42], which suggests that the antiproliferative action

of kaempferol is triggered via the ER-dependent pathway that mediates cellular processes including

development, differentiation, and proliferation [50]. In addition, kaempferol significantly activates

mitogen-activated protein kinase (MAPK) cascades, which are key signaling pathways involved in

the regulation of normal cell proliferation, survival, and differentiation. Indeed, kaempferol activates

extracellular signal-regulated kinase (ERK), concomitantly with MEK1 and ELK1; while it reduces

EMT and metastasis. The MAPK signaling pathway, when activated, leads to the transcription

factor activator protein-1 (AP-1), cathepsin B and D, MMP-2 and -9 activation, that consequently

reduces cell adhesion, migration, and invasion [51–54]. Also, kaempferol also lowers the glucose

transporter 1 (GLUT1) mRNA levels and prevents the uptake of (3)H-deoxy-d-glucose ((3)H-DG)

and monocarboxylate transporter 1 (MCT1)-mediated lactate cellular leading to extracellular lactate

accumulation (Figure 2) [40].

 

Figure 2. Anticancer role of kaempferol: Mechanistically, it can induce anticancer effects mainly

through downregulation of the expressions of proteins involved in the cancer progression and

formation alongside apoptosis induction, cell cycle arrest, and decreasing the expression for

anti-inflammatory proteins.
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4.2. Anti-Brain Cancer Activity

Glioblastoma is one of the most invasive and aggressive brain tumors, with a very poor prognosis,

among other reasons, secondary to the development of resistance against current therapies [55]. It has been

reported that Kaempferol inhibited both growth and migration of glioma cells, even when kaempferol

was loaded to mucoadhesive nanoemulsion (KPF-MNE) or kaempferol-loaded nanoemulsion

(KPF-NE) [55–57]. This flavonoid also triggers ROS generation and apoptosis, through reduction

of the thioredoxin concentrations, superoxide dismutase activity, as well as to increase the levels

of pro-inflammatory cytokines (interleukin-6, 8, chemokines, monocyte chemo-attractant protein-1),

Bcl-2, cleaved caspase-3, -8, anti-apoptotic proteins survivin and XIAP, cleaved poly(ADP-ribose)

polymerase expression, depolarization of mitochondrial membrane potential, and rapid reduction in

phosphorylation of ERK and AKT [55,56,58].

4.3. Anti-Liver Cancer Activity

Hepatocellular carcinoma (HCC) is the most-encountered primary liver cancer among adults [59].

Kaempferol was revealed to significantly inhibit, in a dose-dependent manner, human hepatic

cancer cells proliferation (HepG2, SK-HEP-1, Huh7). In addition, diethylnitrosamine and

2-acetylaminofluorene-induced HCC from rats treated with kaempferol combined to luteolin inhibited

cell growth and induced cell death [60,61]. Indeed, kaempferol induces cell apoptosis and causes

cell cycle arrest at the G2/M phase, therefore preventing cell migration and invasion. Kaempferol is

also able to release cytochrome c via ROS generation triggering mitochondrial membrane potential

loss and mitochondrial swelling and increasing the level of cleaved caspase-3 [59–61]. Kaempferol

also decreases the expression level of miR-21, cytokine signaling 3 (SOCS3), signal transducer and

activator of transcription 3 (STAT3), CDK1, cyclin B, PI3K/AKT/mTOR and p-mTOR signaling pathway,

and hypoxia-inducible factor 1 (HIF-1) in human hepatic cancer cells and enhanced the expression of

Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), STAT1/2, endogenous interferon (IFN)-α-regulated

genes, phosphatase and tensin homologue (PTEN), microtubule-associated protein 1A/1B-light chain 3

(LC3-II), p44/42 MAPK, beclin 1, and autophagy-related gene (Atg) 5, 7, and 12 [60–63].

4.4. Anti-Colon Cancer Activity

Colorectal cancer is amongst the most frequently found cancers worldwide, with more than

1.8 million new cases per year [64]. Kaempferol was reported to possess cytotoxic effects on different

human colorectal cancer cells lines, including HCT116, HT-29, HCT-15, LS174-R colon, and SW480

cells [64–66].

Even though 5-Fluorouracil is subjected to therapeutic failure due to resistance development, it

is still the most recommended chemotherapeutic agent. Experimental studies combined kaempferol

with 5-Fluorouracil in LS174-R cells and reported interesting antiproliferative effects [64]. In addition,

kaempferol in combination with tumor necrosis factor ligand superfamily member (TRAIL) led to

apoptosis in colon cancer cells, through up-regulation of TRAIL receptors and death receptor 5 (DR5)

that improved the TRAIL activity [67]. Generally, kaempferol induces apoptosis and cell cycle arrest at

G2/M, and reduces both cell migration and invasion [64,66]. Kaempferol also blocked ROS production

and modulated the expression of MAPK, JAK/STAT3, PI3K/AKT, ATM, H2A histone family member

X (H2AX), phospho-p38, p21, p53, PARP, caspase-3, -7, -8, -9, Bcl-2, p53 upregulated modulator of

apoptosis (PUMA), the release of cytochrome c from mitochondria, connexin 43, ERK-1/2, and nuclear

factor kappa B (NF-κB). Also, kaempferol significantly reduced insulin-like growth factor (IGF)-II

secretion, and heregulin (HRG)-β, CDK2, CDK4, Cdc25C, Cdc2, cyclins B1, D1, E, A, and connexin

43 expressions. Finally, it also suppressed the phosphorylation of retinoblastoma protein and enhanced

the PARP cleavages [64–66,68–71].
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4.5. Anti-Prostate Cancer Activity

Prostate cancer is one of the leading causes of death among man and the need for more

effective treatments has driven further research [72]. Kaempferol-3-O-rhamnoside dose-dependently

inhibits prostate cancer cells proliferation [72], by upregulating the expression of caspase-8, -9, -3,

and poly (ADP-ribose) polymerase proteins [72,73]. Granulocyte-macrophage colony-stimulating

factor (GM-CSF) is known to activate the host immune system and to facilitate host immunosurveillance

by the dendritic cells (DC), thereby representing a promising strategy to thwart prostate cancer [73].

Kaempferol has been shown to induce GM-CSF release in PC-3 cells that, in turn, increase the

chemotaxis of DC through activation of phospholipase C (PLC), MEK1/2, and protein kinase C

(PKC) [73]. Obviously, the transcriptome of prostate cancers cells is also markedly affected by

kaempferol treatment as evidenced by the down-regulation of androgen receptor genes expression [74].

In rats, orally administered kaempferol showed no significant toxicity and significantly increased

survival, in addition to reducing the growth of PCa xenografts in athymic nude mice [74].

4.6. Anti-Pancreatic Cancer Activity

Pancreatic cancer is amongst the most common cancer-related causes of deaths worldwide with

the nastiest prognosis [75]. Kaempferol dose-dependently inhibits the growth of pancreatic cancer

cells, SNU-213, Panic-1, and Miapaca-2, through inducing apoptosis [75] and effectively inhibiting

cell migration, ERK1/2, epidermal growth factor receptor (EGFR)-related Src, and AKT pathways [76].

Kaempferol also improves the suppressive activity of regulatory T cells (Tregs) by increasing the FOXP3

expression level [77,78].

4.7. Anti-Blood Cancer Activity

Acute promyelocytic leukemia is a life-threatening blood cancer, characterized by a defect in

cell growth and apoptotic pathways [79]. Kaempferol (12.5–100µM) dose-dependently decreased

cell viability in human leukemia cells, HL-60 and NB4 [79,80]. Kaempferol also promoted apoptosis,

cell cycle arrest at the G2-M phase, and DNA damages [79–84], and down-regulated the expression

of AKT, ABCB1, BCL2, and ABCC1 genes, protein expression associated with DNA repair system,

as well as DNA-dependent serine/threonine protein kinase (DNA-PK), phosphate-ataxia-telangiectasia

and Rad3-related (p-ATR), phosphate-ataxia-telangiectasia mutated (p-ATM), 14-3-3 proteins sigma

(14-3-3σ), p53, MDC1, O(6)-methylguanine-DNA methyltransferase (MGMT), while up-regulating

caspase-3, -8, p-p53, p-H2AX, and cytochrome c expression [79–82,85,86]. In a rat model of leukemia,

kaempferol reduced the release of beta-hexosaminidase as a marker of degranulation in basophilic

leukemia (RBL-2H3) cells [87], and increased the accumulation of mediators and the secretory granule

development in human leukemic mast cells (HMC-1) [88].

4.8. Anti-Lung Cancer Activity

Lung cancer, such as non-small-cell lung cancer, displays a poor prognosis and is currently

contributing to increasing the number of cancer-related deaths worldwide [89]. Kaempferol

concentration dependently prevented the growth of lung adenocarcinoma A549 cells [90–93], decreased

colony formation, and triggered apoptosis [94]. Kaempferol also markedly prevented cell migration,

recovered the loss of E-cadherin, and suppressed EMT [89]. Kaempferol still downregulated the

expression of claudin-2, AKT/PI3K phosphorylation, ERK pathways, Bcl-2, Bcl-xL, MEK1/2, MMP2,

tissue inhibitor of metalloproteinases 2 (TIMP2), MAPK and up-regulated the expression of Bax,

Fas, cleaved-caspase-3,-7,-8,-9, AIF (caspase-independent), and miR-340 transcription, involved in

the apoptosis pathway [90–95]. In a lung metastasis model, kaempferol was also able to reduce the

volume of subcutaneous xenograft and the number of metastasis compared to the control group [94].

In addition, it showed a significant effect in killing cancer cells by radiation in a BALB/c nude mouse

xenograft model of A-549 cells [96].
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4.9. Anti-Kidney Cancer Activity

Renal cell carcinoma (RCC) represents the most prevalent primary kidney cancer [97]. Kaempferol

significantly inhibits cell growth and triggers apoptosis in RCC (786-O and 769-P cells) [98,99].

Kaempferol exerts its anticancer activity through preventing cell migration and invasion, inhibiting

MMP-2 protein, downregulating AKT phosphorylation, and increasing the focal adhesion kinase

(FAK) activity [97]). It also up-regulates cyclin B1 expression, PARP cleavages, and p21 expression and

promotes activation of the EGFR/p38 signaling pathway [98,99].

4.10. Anti-Bladder Cancer Activity

Bladder cancer is becoming the most common type of cancer of the urinary tract [100]. Kaempferol can

strongly and selectively inhibit bladder cancer cells by promoting cell cycle arrest and apoptosis [100–103].

Also, kaempferol acts by downregulating the PTEN/PI3K/AKT pathway, DNA methyltransferases

(DNMT3B), CDK4, CyclinD1, Mcl-1, Bid, and Bcl-xL, and upregulating p53, p38, p21, p-ATM, p-BRCA1,

DNA methylation, and Bid and Bax expression [100,102,103]. These in vitro findings were further

validated by experiments in subcutaneous xenografted mouse models. Kaempferol significantly

suppressed tumor growth as well as cancer metastasis and invasion in xenografted mice with regards to

the untreated control compared to the control group mice, and caused downregulation of growth-related

markers and c-Met/p38 signaling pathway, yet upregulated apoptosis markers [101].

4.11. Anti-Oral Cancer Activity

Oral squamous cell carcinomas (OSCC) is the sixth most prevalent cancer worldwide [104].

In in vitro studies, kaempferol displayed antiproliferative effect on pharynx (FaDu) and oral cavity

carcinoma (PCI-13) [105], human esophageal squamous carcinoma (Eca-109), and human tongue

squamous carcinoma (SCC4, SCC-1483, SCC-25, SCC-QLL1) cells, prevented clone formation and cell

migration and invasion, and induced substantial apoptosis [104,106–108]. Kaempferol also caused cell

cycle arrest at G0/G1 phase and downregulated Bcl-2, MMP-2, c-Jun, and hexokinase-2 expression.

Kaempferol also increased glucose uptake, EGFR activation, ERK1/2 phosphorylation, and upregulated

Bax, cleaved caspase-3, -9, and PARP [104,106–108]. Finally, the anticancer potency of kaempferol was

further confirmed in a mice xenograft model, revealing the ability to significantly prevent the growth

of tumor size coupled with a marked decrease in hexokinase-2 expression and EGFR activity in tumor

tissues [107].

4.12. Anti-Bone Cancer Activity

Kaempferol dose-dependently inhibits the growth of human osteosarcoma cells U-2 OS, 143B,

and HOB cells and the migration of human U-2 osteosarcoma (OS) cells with poor toxicity on

hFOB cells, a human fetal osteoblast progenitor [109,110]. Kaempferol acts by downregulating the

AP-1 DNA binding activity, MMP-2, -9, and urokinase plasminogen activator (uPA) that, in turn,

reduces phosphorylated p38, ERK, and JNK [110]. In BALB/c(nu/nu) mice inoculated with human

osteosarcoma cells (U-2 OS), kaempferol significantly decreased the number of viable cells and reduced

the tumor size [109]. The in vivo anti-bone cancer effects of kaempferol have also been demonstrated

in BALB/c(nu/nu) mice inoculated with U-2 OS cells [109].

4.13. Anti-Cervical Cancer Activity

Kaempferol was found to selectively prevent the growth of human cervical cancers cells, such as

HeLa, multidrug-resistant human cervical carcinoma, KB-V1, and SiHa cells with regards to the normal

cells and HFF cells [111–114]. Kaempferol also caused cell cycle arrest at the G2/M phase and apoptosis,

correlated with downregulation of PI3K/AKT and human telomerase reverse transcriptase (hTERT)

pathways, Pgp, Rh123 efflux, cyclin B1, NF-κB nuclear translocation, CDK1, Bcl-2, and upregulation of

p53 with mitochondrial membrane potential disruption [111–115].
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4.14. Anti-Stomach Cancer Activity

Experimental studies on stomach cancer revealed the antiproliferative activity of kaempferol on

human gastric cancer cells (MKN28 and SGC7901) by promoting autophagy, cell cycle arrest at G2/M

phase, and cell death [116,117]. The induced autophagic cell death was linked to the upregulation

of Bax, cleaved caspase-3, -9, cleaved PARP, IRE1-JNK-CHOP signaling, and downregulation of p62,

cyclin B1, Cdc25C, Bcl-2, CDK1, p-AKT, cyclooxygenase 2 (COX-2), and p-ERK expression [116,117].

4.15. Anti-Ovarian Cancer Activity

Experiments using human ovarian cancer cell lines (A2780/CP70, A2780/wt, SKOV-3, OVCAR-3)

showed that kaempferol could inhibit tumor growth, proliferation, and angiogenesis by decreasing

vascular endothelial growth factor (VEGF) expression [118]. Kaempferol also induces apoptosis

and cell cycle arrest at G2/M phase via upregulation of Chk2/Cdc25C/Cdc2, DR5, DR4, JNK, CHOP,

p38, p21, ERK1/2 proteins, caspase-3, -7, -8, Bad, Bax, and p53 proteins, with downregulation of

hypoxia-inducible factor 1α (HIF-1α), a regulator of VEGF expression [118–123].

Table 1. Studies of anticancer activities of kaempferol in vitro.

Cancer Types Mechanisms of Action Cancer Cells Lines Origin of Cells References

Bladder

Downregulation: phosphorylated AKT
(p-AKT), Cyclin D1, CDK4, Bid, Mcl-1 and
Bcl-xL in human cells; DNMT3B expression
in mouse cells
Upregulation: p38, p53, p21, p-BRCA1,
p-ATM, Bid, Bax expression in human cells;
DNA methylation in mouse cells

SV-HUC-1 (human),
T24 and 5637
(mouse)

Human, Mouse [100,124]

Blood

Downregulation: p-ATM,
phosphate-ataxia-telangiectasia, AKT, BCL2,
ABCB1, and ABCC1 expression
Upregulation: CASP3 and BAX/BCL-2
expression, subG1 population, Rad3-related
(p-ATR), 14-3-3 proteins sigma (14-3-3σ),
DNA-dependent serine, MDC1 protein, p53
and p-H2AX expression

HL-60, NB4 Human [79,80]

Bone

Downregulation: migration, MMP-2, MMP-9,
and uPA expression, ERK, p38, and JNK
phosphorylation and DNA binding activity
of AP-1, endoplasmic reticulum stress and
mitochondrial signaling pathways

U-2 OS, HOB, 143B Human [109,110]

Brain

Apoptosis Downregulation: phosphorylation
of ERK, AKT, anti-apoptotic proteins XIAP
and survivin expression, depolarization of
mitochondrial membrane potential
Upregulation: caspase-3 activity

C6, A172 Rats, Human [55,57]

Breast

Downregulation: Bcl2, E2, EMT-markers
(N-cadherin, E-cadherin, Slug, and Snail),
cathepsin D, cyclin D1, cyclin E, pAkt,
pMEK1/2, pIRS-1, RhoA and Rac1 activation
of ER/PR-silence and HER2-silence SK-BR-3
Upregulation: p21, bax γH2AX, cleaved
caspase-3&-9, and p-ATM
Suppression of migration and invasion
Apoptosis, cell cycle arrest at G2/M and DNA
damage, reduced cell migration and
invasion ability

Triple-negative BC
(TNBC) cell
MDA-MB-231,
MCF-7

Human [10,41,42,47,51,60]

Cervical

Downregulation: PI3K/AKT and
hTERT pathways
Upregulation: mitochondrial membrane
potential disruption, intracellular free
calcium elevation Apoptosis

HeLa, SiHa Human [111,112,114]
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Table 1. Cont.

Cancer Types Mechanisms of Action Cancer Cells Lines Origin of Cells References

Colon

Downregulation: CDK2, CDK4, cyclins D1,
cyclin B1, cyclin E, cyclin A, Cdc25C, Cdc2,
IGF-I&-II secretion, heregulin (HRG)-β
expression and HRG-β-induced
phosphorylation of the AKT, ERK-1/2, IGF-IR,
and ErbB3
Upregulation: caspase-3,-8,-9, p21, p53,
phospho-p38 MAPK and enhanced the PARP
cleavages, JAK/STAT3, MAPK, PI3K/AKT,
and NF-κB expression
Blocked ROS generation, cell cycle arrest at
G1 and G2/M arrest, and cell migration

LS174, HCT15,
HCT116, SW480,
HT-29

Human [64–66,125]

Kidney
Downregulation: MMP-2, AKT
phosphorylation and FAK

786-O Human [97]

Liver

Downregulation: mitochondrial membrane
potential, mitochondrial swelling, SOCS3,
STAT3, miR-21, PI3K/AKT/mTOR signaling
pathway Upregulation: PTEN, caspase-3,
JAK1, Tyk2, STAT1/2, endogenous
IFN-α-regulated genes expression

Hepatoma HepG2 Rat, Human [59,60,63]

Lung

Downregulation: AKT/PI3K and ERK
pathways, TIMP2, and MMP2
phosphorylation, Bcl-2, cyclin D1,
claudin-2 expression
Inhibited STAT3 factor binding
Upregulation: PTEN, Bax, miR-340, Fas,
cleaved-caspases 3, 8, and 9,
and cleaved-PARP
Apoptosis, cell cycle arrest at G2/M, prevent
migration and invasion

A549, HCCC9810,
QBC939

Human, mice [90,92,94,96]

Oral
Suppress migration and invasion
Downregulation: MMP-2, TIMP-2 mRNA,
c-Jun activity, ERK1/2 phosphorylation

SCC4 Human [104]

Ovarian

Upregulation: DR4, DR5, p53, p38, ERK1/2,
CHOP, JNK, death
receptors/FADD/Caspase-8 pathway
Downregulation: anti-apoptotic proteins

A2780/CP70,
OVCAR-3, SKOV-3

Human [119–121]

Pancreatic

Downregulation: EGFR-related AKT, Src,
and ERK1/2, pathways
Upregulation: suppressive function of
regulatory T cells (Tregs), FOXP3 expression
Block cell migration

Miapaca-2, Panc-1,
SNU-213, Treg cells

Human, Rats [76,77]

Prostate

Downregulation: androgen receptor
expression
Upregulation: caspase-8, -9, -3 and poly
(ADP-ribose) polymerase proteins cleavage

C4-2, LNCaP Mice, Human [72,74]

Stomach

Induce significant apoptosis and cell cycle
arrest at G2/M
Downregulation: COX-2, Bcl-2 p-ERK,
p-AKT expression
Upregulation: Bax, cleaved caspase-3 and -9

MKN28 and
SGC7901

Human [116]

5. Conclusions

Cancer accounts among the most overbearing human health problems, relying on chemoprevention

approaches as a way to diminish both incidence and mortality. The scrutiny of kaempferol extraordinary

list of cancer-fighting properties highlights its full potential. These studies are promising, especially

because kaempferol selectively inhibits cancerous cells without affecting healthy ones. In vitro

studies unveiled the broad spectrum of kaempferol anticancer targets, including apoptosis, metastasis,

inflammation, and angiogenesis. Therefore, cancer cells that often adapt to VEGF inhibition, following

treatment with kaempferol, may not escape other detrimental actions induced by this natural flavonoid.

Even though kaempferol is questionable as a cancer treatment, it seems to constitute an interesting
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option when it comes to safety. However, data on the long-term effect of kaempferol intake are scarce.

Though kaempferol poor bioavailability represents a significant obstacle, the use of kaempferol-based

nanoparticles has brought more hope on cancer chemoprevention strategies. Moreover, most of the

research conducted on kaempferol anticancer potency was in vitro, making it difficult to draw a final

conclusion on its usefulness. In vivo studies and clinical trials using an exact dose of kaempferol are

scarce so far, thus stressing the need for more in-depth experiments varying the dose of kaempferol

alone as well as using it with other flavonoids. These data will be of utmost interest to apprehend on

kaempferol efficacy in the context of cancer.
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