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JOHN B. GATEWOOD AND PAMELA M. MACE 

Appendix B 
Subroutine: Setting Binomial Skill Arrays 

1640 CLS: LOCATE 4,6: PRINT 'SETTING BINOMIAL DISTRIBUTIONS": 
LOCATE 6.10: PRINT'FOR SKILL LEVELS.. ." 

1650 LOCATE 10,3: PRINT "High Skill -binomial (n-8, p-0.60)" 

1660' LOCATE 12,3: PRINTuAver Skill -binomial (n-8, p-0.50)" 

1670 LOCATE 14,3: PRINT -Low Skill - binomial (n-8, p-0.40)" 

1680 LOCATE 20,3: PRINT'THIS TAKES ABOUT 2 1/3 MINUTES" 

1690 HS-LEFTS (TIMES.2) : MS-MIDS (TIMES,4.2) : TSS-MlDS (TIMES.7.1): 
SEEDS=HS+MS+TSS 

1700 SEED-VAL (SEEDS) : RANDOMIZE SEED 

17 10 FOR SK-1 TO 3: FOR I- I TO 9: READ B(SK,I): NEXT. NEXT: RESTORE 

1720 FORDl=-1 TO N1: FORD2=1 TO N2: Q-RND 

1730 FOR SK- I TO 3:FOR 1-1 TO 9 

1740 IFQ <=B(SK,I)THEN IFQ > B(SK.1-I) THEN R(SK, D l ,  D2)=I: 1-9 

1750 NEXT I: NEXT SK: NEXTDZ: NEXT Dl 

1760 CLS: RETURN 

1770 REM ---- Cumulative Percentages for Three Binomial Distributions --- 
1780 DATA0.0168,0.1064,0.3154,0.5940,0.8262,0.9501.0.9914,0.9993, 1 

1790 DATA 0.0039,0.0352,0.1446,0.3633,0.6367,0.8554,0.9648,0.9961, 1 

1800 DATA 0.0007,0.0086,0.0499,0.1738,0.4060,0.6846,0.8936,0.9832, 1 

Appendix B. (Continued) 
Subroutine: Catching Fish 

REM ------- subsubroutine --catching schools threshold ------- 
REM ------- SK - skill level, TH - threshold, X - sets made, C = catch in a given 
set, SUM - seasonal catch, DAY - daily catch, R(SK, Dl ,  D2) = skill multiplier 
for a given school, F(D 1, D2) - size of a particular fish school. 

X-X+l: C- (R(SK. Dl,  D2)/10) 'F(D1, D2): IF C > I00 THEN C=100 

PENALTY-INT (0.5 + ((1.628 + 0.01048 17' (C - 39.877))* 2.5)) : D2=D2 + 
PENALTY: SUM - SUM +C: DAY = DAY+C: IF DAY > = 200 THEN D2 - 
N2: DAY = DAY - (DAY-200): SUM = SUM - (DAY - 200) 

RETURN 

REM ----Main Subroutine: Catching Fish -------- 
FORSK- lTO3:FORTH-lOTO70STEP 10:SUM-0:X-0 

FOR D l  - 1 TO N1: DAY - 0: FOR D2 - 1 TO N2: IF F(DI, D2) > - TH OR 
DZ - N2 THEN GOSUB 640 

NEXT D2: NEXT Dl 

NEXT TH: NEXT SK 

RETURN 
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ABSTRACT: In this paper we discuss a new algebraic approach for analyzing kin termi- 
nology structure and describe a computer-based system being created to assist researchers 
in implementing the algebraic approach. A key aspect of our algebraic analysis is a shift 
away from a genealogical orientation to one of viewing a kinship terminology as a 
structured, culturally defined conceptual system. The basic idea is that a kinship termi- 
nology can be viewed as a structure consisting of a set of symbols (kin terms) inter- 
connected through a binary product (of kin terms) subject to certain structure defining 
equations. 

Because algebraic modeling uses a language unfamiliar to many anthropologists, we a r e  
developing a computer program, KAES, based on (1) the expertise marshaled by a 
mathematical anthropologist when deriving algebraic solutions, and (2) the knowledge used 
by a cultural anthropologist for relating kin terms as part of a logical system. The program 
KAES will provide the user with the capacity to creatively work with abstract algebras as a 
means both to model the logic of, and to compare, kinship terminology structures. 

Examples of models produced through the KAES program are discussed, along with 
their theoretical implications. 

KEY WORDS: kinship, algebraic analysis, computer modeling, cognitive anthropology, 
artificial intelligence 

INTRODUCTION 

In this paper we describe an algebraic approach to the analysis of kinship 
terminology structures and a computer software program called Kinship 
Algebra Expert System, or KAES (Read and Behrens, n.d.), which will 
guide the user in such an analysis. Though this statement is an accurate 
summary of what the paper is about, neither the term algebra - at least 
not in the sense Malinowski used it in his oft repeated denigration of 
symbolic notation schemes for kinship terms - nor the reference t o  
computer software readily conveys what is involved. The word algebra, f o r  
most readers, is likely to conjure up manipulations of equations involving 
the unknown quantity, x, not the logic of structures, while the t e r m  
software most likely brings up images of various application programs - 
wordprocessing, spreadsheets, and so on, or perhaps computer based 
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statistical procedures - not abstract symbol manipulation. But the logic of 
structures and the means for symbol manipulation are the tw' key 
concevts involved here. 

 hat kinship terminologies have an internal logic and thus reflect a 
deeper structure than the surface level of kin terms and relatives to whom 
terms may be properly applied has been repeatedly noted from early on 
by kinship theorists (e.g. Morgan 1871; Tax 1937; Radcliffe-Brown 1950; 
Kroeber 1952), and it is towards elucidation of this logic that the algebraic 
modeling is aimed. The modeling is grounded in the concepts of modem 
algebra - concepts aimed at exposition of the properties of structures that 
result from rules defining how symbols may be manipulated and combined 
together. The goal of the algebraic analysis, then, is to capture and express 
the logic of terminology structures through constructing algebraic struc- 
tures isomorphic to kinship terminology structures. The means is through 
symbolic representation and manipulation according to certain rules. Here 
is where software becomes important. The software serves as a means 
both to carry out abstract, symbolic reasoning and to present the struc- 
tures defined thereby in the more familiar idiom of a graph - be it that 
of a kinship terminology as the target structure for the analysis, or the 
algebraic model produced by the analysis. 

Modeling kinship terminology structures with abstract algebras is a 
powerful means for elucidating the properties giving kinship terminologies 
their structural form as we illustrate with analyses of the American, 
Shipibo, and Trobriand terminologies using KAES. The end goal, though, 
is not merely to produce algebraic representations of kinship terminology 
structures. The latter, we suggest, allows one to make the comparative 
study of kinship terminologies more effective and provides a basis for 
building a general theory of kin terminology structures as a kind of 
cognitive construct. 

PART 1. THE DOMAIN OF KINSHIP ANALYSIS 

Previous analyses of kinship terminologies have used different analytical 
domains and, therefore, different definitions of what one treats as "data." 
Standard approaches have sought structuring principles for kinship termi- 
nologies in a model based on procreation formed through examining how 
kin terms group kin types arranged in a genealogical grid, making kin 
types the basic data. Some authors, however, have viewed kin terms as 
part of a conceptual structure definable without necessary reference to 
other structures, and have found it advantageous to disentangle termino- 
logical data from genealogical data (Leaf 1971; Read 1976, 1984; Read 
and Behrens 1990) and to consider kin terms as constituting an internally 
structured system separate from reference to a genealogical space. While 
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both the genealogical and the terminological approaches have spawned 
formal methods aimed at elucidating and expressing the structure of 
kinship terminologies, different concepts, and hence different properties to  
be expressed in a formal representation, are involved. Before discussing 
the KAES program and our algebraic modeling of a kinship terminology 
structure, we need to clarify what constitutes these differences. 

I GENEALOGICAL APPROACHES 

For some anthropologists the study of kinship has been inseparable from 
genealogy, with information on the classes of kin types to which kin terms 
are applicable serving as the basis for analysis of terminological structure 
(e.g., Scheffler and Lounsbury 1971). Genealogies have also been seen as 
fundamental for eliciting kin terms by asking informants for the terms that 
would be applied to members of hidher genealogy (RAI 1971). And 
classifications of terminologies, such as Murdock's (1949) system using 
cousin terms and Liu's (1986) more recent system using an algebraic 
structure known as a quotient monoid, are based on the groupings 
imposed upon kin types by kin terms. 

Correspondingly, most analytical methods aimed at elucidation of 
terminological structure, such as componential analysis (e.g., Goodenough 
1956; Wallace and Atkins 1960; Romney and D'Andrade 1964), rewrite 
rules (e.g., Lounsbury 1964a, 1964b, 1965; Scheffler and Lounsbury 

i 197 1) and representation schemes (e.g., Atkins 1974) consider properties 
I I that emanate from the structure imposed on a genealogical space when kin 
j 
1 

terms are given kin type definitions such as Grandmother is mother's 
mother or father's mother. Most algebraic modeling (e.g., Boyd 1969, 
Boyd etal. 1972; Lehman and Witz 1976, 1979; Liu 1986; Lucich 1987) 

! and computer based implementations (e.g., Kronenfeld 1976; Ottenheim 
1989) have accepted the genealogical foundation as the appropriate basis 
for formal modeling, even if only to serve as a k i d  of etic grid. Scheffler 
and Lounsbury (1972: 69-70), however, have rejected the etic grid 
viewpoint and have made the stronger claim that genealogy is conceptually 
primary and analpcally necessary. Others (Leaf 1971; Schneider 197 2, 
1984, 1986; Read 1984, 1986) have disputed the basis for this strong 
claim that kinship terms are essentially a system for classifying genea- 
logical relationships by arguing, in effect, that merely because it is possible 
to map kin terms onto kin types does not make a terminology primarily a 

I 
system for classification of kin types. These authors have, in varying ways, 
suggested that a kin terminology involves a conceptual framework more 
extensive than that entailed by genealogy and, even though genealogical 
relations may serve as a model, a framework that has properties tran- 
scending those of genealogy. Schneider (1972, 1984, 1986) has extended 
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this argument to a strong counterclaim in which it is disputed that "kinship 
as genealogy" even exists and if it exists, it must be demonstrated on a 
case by case basis. 

Analytically, the strong version of the genealogical claim; i.e., that 
analysis must necessarily proceed using the language of kin types (Scheffler 
and Lounsbury 1971: 69), is deficient since none of the methodologies 
based on genealogical spaces can account for the existence of different 
structures when a single, common underlying structure, the genealogical 
space, is asserted to be the common framework for all terminologies. A 
single space cannot account for different structures, hence those differ- 
ences must owe their origin to other, non-genealogical, concepts. When 
the methodologies aimed at explicating terminological structure in terms 
of genealogically defined properties are examined in detail it is evident 
that elucidation of structure is not fully achieved. Componential analysis, 
for example, only provides a parsimonious description of structure 
expressed using attributes based on a genealogical space, and rewrite rules 
presume a structure for the kernel meanings of kin terms without eluci- 
dating how that structure can be explicated. Elucidation of structure 
requires that the principals upon which structure is constructed be 
uncovered, and to do that we need to examine the way in which a kinship 
terminology forms a structure in its own right, not merely as a structure 
that can be mapped onto a genealogical space. Understanding the struc- 
ture of a terminology in terms of its internal logic will, we suggest, lead to 
a more secure, and more profound, basis for comparison of different 
terminologies and thereby add to our  understanding of the nature of 
culturally defined conceptual constructs. 

The analytical separation proposed here does not imply that there is no 
connection between a genealogical space structured according to "univer- 
sal regularities in the way people trace genealogical relationships and 
make genealogical claims" (Lehman and Witz 1974: 113, emphasis in the 
original) and kinship terminologies, for trivially kin terms are applied to 
persons for whom genealogical claims may be made. Rather, the distinc- 
tion being made is between, on the one hand, viewing kin terminology 
structure as a system for categorization of kin types, with the terms serving 
as semantic labels for those categories - a viewpoint that justifies placing 
emphasis on rules specifying how a category can be recovered from one of 
its members via rewrite rules - or, on the other hand, viewing kin 
terminology structure as a structured system in its own right, hence 
placing emphasis on the generation and construction of structure - the 
topic of this paper.' 

If analysis of terminology structure is to be separated from a genea- 
logical space as the reference point, then one must be able to represent kin 
terms analytically as a system of interrelated abstract symbols and then 
develop appropriate "machinery" for modeling the properties of that 
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system. The former has been addressed with a kin term map and the latter 
with the machinery of abstract algebras, in particular, semigroups, in t h e  
terminological approach. 

TERMINOLOGICAL APPROACH 

An alternative to assuming the "universality" of a genealogical grid as a 
native conceptual framework is to disentangle the genealogical and termi- 
nological domains and to analytically consider a kinship terminology as a 
(cultural) construct in its own right (e.g. Read 1976, 1984, 1986) whose 
reference in use may, but need not necessarily, entail genealogical relation- 
ships. Here, structure is sought not in the way a genealogical space is 
structured by kin terms, but through the internal logic giving a terminology 
its form; i.e. the relationships among kin terms taken as linguistic objects 
and determined by deeper structuring principles. 

One means for graphically representing the structure of a kinship 
terminology viewed as a cultural construct is with a kin term map (Leaf 
1971, 1974). A kin term map lists each kin term only once as a node, a n d  
connections are made between nodes to indicate linkages among the k in  
terms. Figure 1 shows a kin term map for the American Kinship Termi- 
nology (AKT).2 In this map the kin terms Mother and Father, for example, 
each label a single node and each is linked to another node with the label 

Fig. 1. Kin term map for the American Kinship Terminology. 
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Grandfather. The connections in this map are conceptual linkages, not 
genealogical ones. This contrasts with a genealogical chart where one 
would label two genealogical positions, the kin types, mother's father and 
father's father, with the kin term Grandfather, and the connections 
between kin terms represent genealogical linkages. 

An algebraic account for a terminology takes the kin terms as objects 
(nodes in the kin term map) and the kin term map as a structure to be 
generated. The means for generating a structure include a binary opera- 
tion that maps pairs of symbols to other symbols and certain structural 
equations that specify the properties of the binary operation. The binary 
operation is based on a kin term product defined as follows (Read 1984; 
see also Kronenfeld 1984): 

If ego (properly) calls alter, by the kin term K and alter, (properly) calls alter, by the 
kin term L, then the product of L and K (denoted L X K and read "L of a K") is a' 
kin term M, if any, that ego (properly) uses for alter,. 

For example, if K is the kin term, Father, and L is the kin term, Mother, 
then L X K = Mother of a Father -- Grandmother. That is, if ego calls 
alter, by the kin term, Father, and alter, calls alter, by the kin term, 
Mother, then ego (properly) calls alter, by the kin term, Grandmother. 
Note that this is not an assertion about genealogical positions, but refers 
only to kin term usage. 

With respect to the kin term product, some terms in a terminology, 
such as Father in the American kinship terminology (AKT), are "atoms" 
(indivisible) and others, such as Grandmother, or Mother of a Father, are 
"compound" (products of atoms). The kin term product may thus be 
viewed abstractly as a binary operation that acts on atoms to construct 
compounds. At the level of symbols, the binary operation combines atoms 
together (e.g., MOTHER, FATHER4) to form compounds, or "words" 
(e.g., MOTHER X FATHER) that, within the terminology, have linguistic 
labeling (e.g., Grandmother). These compounds constitute the symbol 
forms that can be generated from the set of atoms. 

A particular structure is described through identifying kin term equa- 
tions that can be used to produce the structure. These equations reduce 
certain words to other words or to atoms. The choice of equations is 
motivated by relations that are valid when the kin terms are given proper 
interpretation and applied to egos and alters. For example, if CHILD, 
PARENT, and SELF are atoms, and if, in ego's consanguineal space, ego 
(properly) refers to alter, as Child and alter, (properly) refers to alter, as 
Parent, then it follows that ego (properly) refers to alter, as Self since 
alter, is ego. This structural can be expressed using the atoms 
and the binary operator, X, in the following equation: 

PARENT X CHILD - SELF, 
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l or restated using kin terms, Parent of a Child equals Self.5 In the structure 

I formed through combination of symbols via the binary operation, X, 
whenever the product PARENT X CHILD appears, it is replaced by the 

1 atom, SELF, thus producing a structure in which the above equation 
becomes a structural property. (The importance of this equation for the  

1 structure of the AKT will be shown below in Part 3.) 
I 

The algebraic approach is inductive, in the sense of determining what 
1 equations should be used, but leads to structures logically derivable from 
1 postulated atoms and structural equations; i.e., it utilizes the axiomatic 
/ method. The choice of atoms and equations is either confirmed or dis- 

I confirmed by considering the structure they define. If that structure 
diverages from the target structure (displayed as the kin term map), then 

I 
different atoms and equations should be postulated and the derivation 

1 repeated until the algebraic structure converges on the target structure. 
The means for generating and comparing these structures is provided by 

1 the KAES program. 

I 

PART 2. THE KAES PROGRAM 

While the analysis of kinship terminologies represented as abstract 
algebras is both elegant and exact, the algebraic approach often requires a 
degree of mathematical background that is not common to most anthro- 
pologists. To eliminate this technical "bottleneck," we developed an A1 
based computer program that recreates the mathematical anthropologist's 
derivation of algebraic structures and generates graphical representations 
of the algebraic structures, thereby making them visually comprehensible. 

WHY AN EXPERT SYSTEM? 

Within the last two decades, "expert" or "knowledge based" systems that 
use computers for heuristic modeling have developed from artificial 
intelligence research (Duda and Shortliffe 1983; Weiss and Kulikowski 
1984; Charniak and McDermott 1985; Harmon and King 1985). Expert 
systems differ from conventional "number-crunching" programs in that 
they draw conclusions through logical or plausible inference, not through 
numerical calculation. Built into these software systems are the same kind 
of rules employed by human experts when they make decisions in their 
fields of expertise and so are designed to help one solve problems in a 
L'commonsense" manner. 

One problem domain where expert systems have been successfully 
applied is the inference of structure (Dietterich and Michalski 1983). For  
example, DENDRAL takes a set of spectrographic data and enumerates 
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all the possible molecular structures that can account for these data 
(Buchanan and Feigenbaum 1978) and R1 (sometimes called XCON) 
configures VAX computers, another form of structure, from a list of 

I 
components (McDermott 1982). The mathematical analysis of kinship I 

I 
terminology structures seems equally suitable for an "expert system" type 
treatment: The problem domain is well-specified and the solution space is 
small; reliable knowledge and data exist for many kinship terminologies; 

I 

they are relatively time invariant; formal analysis requires only a single line 
of reasoning at a time; and the algebraic approach provides strong I 

problem solving techniques together with a language which easily permits 
symbolic representation (cf. Stefik et al. 1982; Hayes-Roth et al. 1983). 

SOFTWARE DESIGN CONSIDERATIONS 

A number of important choices were made while designing KAES. Some 
of these addressed problems of representing abstract algebras with 
appropriate computer language structures. Other decisions concerned 
performance issues and the need for software portability. 

I 

Data Representation 

The mathematical properties of kin term algebras and the inductive 
process whereby kin terminology structures are generated require a 
computer language that allows one to replicate this abstract process. 
Atoms in an algebra are symbols and these can be concatenated to build 
words which can be replaced with other words, and so on. Thus, this 
application requires a computer language that distinguishes symbols and 
lists of symbols as legitimate data types, not merely character strings that 
are manipulated in a character by character fashion. 

Furthermore, because the correct algebraic structure for a terminology 
is not known in advance, one needs to search through potential solutions 
until a structure isomorphic with the kin term map is discovered. The 
search must be exhaustive and requires that one describe both the 
problem and a "sufficient" search, often recursively. 

PROLOG was the computer language selected for writing the algebra 
constructor in KAES. PROLOG's symbol and list processing capabilities 
are well developed and has built-in search algorithms. This language has 
already been applied by others for developing computer based mathe- 
matical reasoning (e.g. Bundy 1982). 

One advantage of PROLOG for KAES is its manipulation of data types 
in a kinship algebra (such as symbols, words, word lists, and so on) 
without having to convert these to another form (such as character 
strings). For example, the following PROLOG representations were given 
to parts of an algebraic structure: 
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Algebraic Form PROLOG Form 

Generator Set: 
G = {FATHER, BROTHER) generators ([FA], [BR]) 

Equation: 
FATHER x BROTHER = FATHER equation (FA, BRI, FA]). 

This example, whose content will be used when developing the structure 
of the Trobriand terminology in Part III, compares an algebraic repre- 
sentation to another form based on the idiom of PROLOG. Here, the 
algebraic facts (left column) have been represented in PROLOG as facts 
in predicate form (right column); i.e., as ordered n-tuples of objects 
included in the relations named generators and equation, respectively. The  
symbols FA and BR are shortened versions of FATHER and BROTHER, 
respectively, introduced for convenience and the square brackets delineate 
a list of symbols (see Clocksin and Mellish 1984; Bratko 1986; Sterling 
and Shapiro 1986 for extensive discussions of PROLOG and its syntax). 

PROLOG also lends itself neatly to translation of rules and recursive 
definitions, both of which are common in algebraic systems and form a 
fundamental search condition in PROLOG. For example, the algebraic 
concept, word, is defined recursively: each atom is a word, and if w' and 
w" are already defined words, then w = w' w" is also a word. A PROLOG 
program segment corresponding to this recursive definition of words, and 
in the context of the AKT, would be: 

(1) atom([PARENTJ). atom ([CHILD]). atom ([SELF]). 

(2) word(X) IF atom ([XI). 

(3) word(W) IF word(U) AND w o r d 0  AND product (U, V, W). 

The first line declares that the symbols PARENT, CHILD, and SELF a r e  
atoms. The second line declares that a symbol, X, is a word if the symbol 
is an atom. The third line states that if U and V are words, then the word 
W, which is the product of U and V, is also considered to be a word. 
The predicate product has its own, separate PROLOG definition and 
declaration (not shown) that asserts W will be the list formed from the lists 
U and V through concatenation. By backtracking through a search tree, 
PROLOG would use the above rules to find all solutions satisfying this 
definition, namely: PARENT, CHILD, SELF, PARENT X PARENT, 
PARENT X CHILD, PARENT X SELF, CHILD X PARENT, and s o  
forth. 

User Interface 

Perhaps the most important consideration in the design of KAES was t o  
make the symbolic manipulations used in the algebraic analysis "trans- 
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parent" to users. To accomplish this, we used graphical representations of 
algebraic structures to make their comprehension and comparison easier. 

This required a procedural language that offered fast, high-resolution 
bit-mapped graphics, windowing capabilities, and, preferably, mouse 
tracking. Turbo Pascal (Borland 1988) was selected for its modularity, 
execution speed, and widespread use. Moreover, a library of object- 
oriented graphical procedures and functions called "MetaWindows" (Meta- 
Graphics 1986) is available that provides all of the above mentioned 
features as an extension of Pascal. MetaWindows also queries a computer's 
hardware configuration at run-time and loads all of the necessary device 
drivers required for color graphics output and mouse tracking. 

Performance and Portability 

At the time we began the programming, some of the then available 
symbolic languages were only interpreted, rather than compiled, and so 
executed relatively slowly. We wanted an implementation of PROLOG 
that offered a compiler and comparatively fast execution speeds as well as 
an easy to use editor. For these reasons, we decided to develop the KAES 
algebra constructor using Turbo PROLOG (Borland 1986). 

An important motivation for developing KAES has been to make the 
expertise required for algebraic analyses of kinship terminologies available 
to a wider community of anthropologists. Therefore, another major 
concern during the development of KAES has been software portability. 
We decided to host our system on IBM DOS type machines because of 
their widespread use. Also, by taking advantage of MetaWindow's capa- 
bility to query hardware configurations at run-time and by compiling 
KAES's Turbo PROLOG and Turbo Pascal modules into executable files, 
it is possible to distribute our system among the greatest number of users 
without the cost of royalties for run-time libraries and special device 
drivers. 

SYSTEM ARCHITECTURE 

Because of the two languages implemented in KAES, the program has a 
"split personality." This section details the design and specific tasks 
performed in each language environment, as shown in Figure 2. 

Prolog Environment 

PROLOG has been used to build the algebra constructor and to manage 
"facts" in a data base of kinship terminologies. Within this environment, 
the KAES program is separable into .an inference engine assisted by an 
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I 
I 
I 

Fig. 2. Architecture of the Kinship Algebra Expert System (KAES) software. 

Turbo 

algebra constructor and a knowledge base designed in accordance with 
most expert system architectures. 

Our algebra constructor exploits the built-in backtracking of PROLOG 
whereby a variable in a PROLOG clause is identified as a goal, then 
ancestral clauses (containing variables identified as subgoals) are evaluated 
to establish values that satisfy the goal. By using this inference strategy, 
KAES is able to examine a search tree in depth until it either finds all 
solutions that satisfy a goal or determines that no solution exists. The 
PROLOG instructions that manage all symbolic manipulation, e.g. word 
matching, word replacement, and construction of word lists, are built into 
KAES and augment the inference engine. Information input by the user i s  
automatically implemented in the form of PROLOG clauses used to 
construct an algebra for the targeted kinship terminology, consistent with 
existing facts in its data base. 

Two kinds of expertise are encoded in the knowledge base: (1) rules 
that control the order in which problem-solving tasks are conducted, such 
as when new structural equations are entered or isomorphic copies of an 
algebra (see below) are generated, and (2) rules that guide a user in the 
choice of atoms, equations and the like. The latter kind of rules sometimes 
queries the user for information they already know about a terminology, 
e.g., Does the terminology have a term, such as Self in the AKT, that acts 
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like an identity element? At other times KAES suggests equations needed 
to maintain certain properties in the algebra, e.g., Should the reciprocal 
position for an already entered kin term also be given symbolic represen- 
tation? Once the user responds to these prompts, the information is 
passed on to the algebra constructor. 

PROLOG is also used to perform bookkeeping tasks. As an algebra is 
derived for a kinship terminology, a formal account is written to a disk 
file. The algebraic data base for a kinship terminology is used to retrieve 
formal (mathematical) descriptions of terminologies, to graph terminolo- ~ 
gies, and to compare the graphs for different terminologies. 

Pascal Environment 

Pascal procedures are used for screen management and to supervise all 
u s e r - K ~ S  dialogue. We have built a user interface that manipulates 
objects such as pop-up menus, graphics windows, and text windows. Once 
an object is declared, it is possible to manipulate it as a program unit o r  to 
create new forms of the object merely by supplying the object with values 
for the arguments needed in its definition. For example, by defining a pop- 
up menu t o  be a distinct class of objects, it is possible to  easily generate a 
new form of pop-up menu which differs only in the text drawn to it, its 
number of selections, o r  its location on the screen. These software tools 
have enabled us to develop generic graphics procedures that can be 
rapidly drawn with either local o r  virtual coordinate systems, making 
possible graphics rotation, rescaling, and zoom-in/zoom-out effects. 

A user may interact with KAES by "clicking" a mouse to  select from a 
menu, to accept one of KAES's suggestions, or to input text from the 
keyboard. Text is parsed to extract the information needed for drawing 
graphical representations of algebraic structures stored in the Turbo 
PROLOG database described above. 

File Interface 

For KAES to execute all of its tasks, it is necessary for the Turbo 
PROLOG and Turbo Pascal modules to communicate with one another. 
This is accomplished through a file interface. The information produced in 
Turbo Pascal is written to a virtual disk file (for speed of access) where it 
can be read as input to Turbo PROLOG modules, and vice-versa. 

With these aspects of the KAES program in mind, we may turn to 
analysis of kinship terminology structure using KAES. 

PART 3. ALGEBRAIC ANALYSIS WITH KAES 

As we have noted, the target structure to be produced through the 
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algebraic analysis is the kin term map for the terminology. The kin te rm 
map empirically illustrates the form of the structure linking kin terms 
together, but does not inform us about the internal organization of tha t  
structure. For  this we turn to algebraic modeling. 

T o  be answered with the algebraic analysis of a terminology are the  
questions: Can this target structure be generated from a more limited set 
of information?; and if so, What is this set of information? By answering 
these questions for a variety of terminologies a more comprehensive 
picture of the nature of kin terminology structures will be obtained. 

Our discussion in this section will be organized around these steps a n d  
the results they produce as illustrated by the KAES program screen 
output. When clarification is needed, details of the algebraic manipulations 
performed by the computer will be given. 

Three kinship terminology models will be constructed. The first model, 
for the American terminology (as described in Read 1984), was initially 
developed as an exercise in algebraic modeling and has sewed as a guide 
for the development of the KAES program. A second model, for t h e  
Trobriand terminology (as described in Lounsbury 1965), has been  
developed both as an exercise in algebraic modeling and through t h e  
KAES program. The third, for the Shipibo terminology (as described 
in Behrens 1984), has been developed primarily through the K A E S  
program. 

Underlying the operation of the KAES program is a theory of h o w  
kinship structures can be generated. The KAES programs signals the user 
about properties that need to be introduced for the construction to be 
consistent with that theory. As a consequence, the KAES program is m o r e  
than a collection of tools that aid in algebraic modeling of kinship 
terminology structures. It is also an exposition and test of an underlying 
theory. Only part of that theory will be illustrated here, namely the role of 
reciprocity in the production of kinship terminology structures. As will be 
seen below, reciprocity - ego has a kin term for alter and alter has  a 
reciprocal kin term for ego - is fundamental to constructing an algebraic 
model for what we call the core structure of a terminology. We n o w  
illustrate the modeling produced through the KAES program for the c o r e  
structure of the American Kinship terminology. 

MODEL I: AMERICAN KINSHIP TERMINOLOGY 

Simplification and Core Structure 

The core structure is derived from the kin term map and is a simpler 
structure from which the complete, complex, terminological structure can 
be produced (see Read 1984 for an example that relates the core structure 
to the kin term map for the AKT). The AKT kin term map (see Figure 1) 
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was simplifiedh by (1) separation of the consanguineal from the affinal 
structure and (2) replacement of kin term positions with sex markings to 
ones without sex marking (Read 1984). Both operations can be performed 
by KAES. The resulting structure - the core structure - is shown in 
Figure 3 and is the initial, target structure for the algebraic modeling of 
the AKT. That is to say, with the help of KAES we want to find an algebra 
whose graph is structurally isomorphic with Figure 3. 1 
Identity Element and Generator 1 
The analytical part of the KAES program begins by requesting specifica- 
tion of what kin term, if any, should be an identity element under the kin 
term product, what term(s) serves as a generator(s) and what, if any, will 
be the initial structural equations. The user need only identrfy the minimal 
set of information necessary for the construction to begin. 

For the AKT, it suffices to take the term Self as an identity element and 
the term, Parent, as a generating element. No structural equations are 
introduced at this point, except those produced automatically by the 
program in order to define an element as an identity element. These 
equations are (stated in terms of PARENT and SELF): 

(1) PARENT X SELF = SELF X PARENT 

= PARENT 

Grandparent 

Fig. 3. Core structure for the AKT, derived from the kin term map given in Figure 1. 
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and 

(2) SELF X SELF = SELF. 

We now introduce, for the purposes of this exposition, a notational 
convention and simplification for helping keep clear the fact that 'structure, 
from the algebraic viewpoint, is a consequence of logical relations amongst 
objects independent of labeling. Henceforth we will use single capital 
letters, rather than the capitalized form of the kin term, for labeling 
objects (i.e. terms) in an algebra. Within the KAES program, though, t h e  
user may introduce whatever symbols are convenient for representation of 
kin terms. With this notational convention, we can restate the generators 
and equations identified above by specifying 

to be the generating set, where I is an identity element, and the equations 
defining Z as an identity element are the following equations: 

and 

(Henceforth, we will usually write XY in lieu of X X Y and leave the  
operation "X" implicit.) The algebra7 G generateds by G as produced b y  
the KAES program is shown graphically in Figure 4. 

While the structure captures the sense of backward extension expressed 
by the ancestral terms Parent, Grandparent, GreatGrandparent, etc., 
through the algebraic words P, PP, PPP, etc., a key part of what distin- 
guishes kin terminologies as a structural form is missing. The missing part 
is the pairing that may be made with reciprocal terms: Parent with Child, 
"Sibling" with "Sibling" (self-receiprocal), and so on. 

Reciprocal Terms 

Though one could include a list of terms and their reciprocals as native 
knowledge to be incorporated in the construction process, we want to 
penetrate deeper into the structure and explore the role of properties such 
as reciprocity as a principle for the production of structure. To do so, a 
structural criterion is needed for knowing when for one term, call i t  
Term,, another term, Term,, is the reciprocal of the first. We begin b y  
specifying what is meant by reciprocal terms: 

Reciprocal terms: If ego has a kin term, Term,, for alter and if alter has a kin term, 
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I 

Fig. 4. Algebraic structure constructed from the generating set for the AKT. Here, and in 
the other figures, the numbers indicate the number of times the atomic element is 
"multiplied" together. Thus the node marked with a "1" correponds to the atom P, the 

node marked with a "2" corresponds to the compound P X P, and so on. 

Term,, for ego, hence making the following diagram valid, then Term, and Term, are 
reciprocal terms: 

Term, 
____L 

ego . alter 

Term, 

Now by definition of the kin term product, the product Term, X Term, 
satisfies the diagram: 

Term, 

Term, X Term, 

In this diagram ego # alter,, for if ego = alter, then Term, X Term, 
would be the identity element, I. But it cannot be the identity element for 
if it were then the structure would be too restricted; i.e., the AKT structure 
would have the equation PARENT x CHILD = SELF = CHILD X 
PARENT and this would imply that the terminology structure consists 
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only of lineal terms. Nonetheless, this gives us a clue as to the structural 
condition that Term, and Term, should satisfy if they are to behave in t h e  
algebra like reciprocal terms. 

Were it the case that TERM, X TERM, = TERM, X TERM, = SELF, 
then TERM, would be an inverse element for TERM, under tbe product 
" X " .  We can relax the criterion of an inverse slightly and use in place of a n  
inverse element the notion of a semigroup inverse for defining reciprocals. 
In a semigroup

y 
S, y is a semigroup inverse of x if, and only if, 

(5) xyx = x 

and 

As shown in Read (1984), the semigroup inverse captures the sense of 
reciprocals for the AKT. However, the criterion is a bit too strong f o r  
other terminologies and a slightly weaker condition is needed for t h e  
Trobriand terminology (see below). The algebraic concept of an idem- 
potent element seems to provide the needed, weaker, structural property. 

By definition, an element x in a semigroup is an idempotent element if, 
and only if: 

Observe that sibling terms satisfy the idempotent property under kin term 
products; e.g., BROTHER X BROTHER = BROTHER. 

If y is a semigroup inverse element for x, note that the product xy is an 
idempotent element, for (xy) (xy) = x(yxy) = xy. Hence if x has a 
semigroup inverse y, then xy is an idempotent element, but the converse 
need not be true. A product xy may be an idempotent element but y not a 
semigroup inverse of x. An example of such a case will be seen below with 
the Trobriand terminology. 

We use the idea of an idempotent to algebraically define reciprocals I" :  

Definition: If x, y E G ,  a minimal generating set ' I  for a semigroup, S, 
then y (alternatively, x) will be called a reciprocal term for x (alterna- 
tively, y) if both xy and yx are idempotent elements. 

Reciprocals Viewed as Forming a Reciprocal Structure 

Next, ,we use reciprocity to define what will be called a reciprocal 
structure. If one considers the terms Parent and Child in the AKT, t h e  
same initial structural form would be produced regardless of whether o n e  
used PARENT as the single generating element, or used CHILD in this 
role. Further, Parent and Child are reciprocal kin terms. These t w o  
observations suggest that the core structure (see Figure 3) can be decom- 
posed into a "product" of a structure and an isomorphic structure a n d  
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further, these isomorphic structures are linked through the respective 
generating elements also being reciprocals to each other in this larger 
structure. (A second situation where a similar construction of a larger 
structure from isomorphic structures arises will be seen below in the way 
sex marked terms are introduced into the model for the structure of the 
Trobriand and Shipibo terminologies). More precisely, a semigroup S with 
isomorphic subsemigroups G and H (with, say, i: G + H the isomor- 
phism) having minimal generating sets G and H, respectively, satisfying: 
(1) G and H are not both subsemigroups of any proper subsemigroup of 
S and (2) each generator G in G satisfies the reciprocal property in 
conjunction with the generator H = i(G) E H and conversely, will be 
said to have a reciprocal structure. In other words, S may be constructed 
from the sets G and H, though possibly including additional equations 
(condition (I)), and every element in G has a corresponding reciprocal in 
H and vice-versa (condition (2)). 

The method for introducing a reciprocal structure into the algebraic 
construction using the structural definition of reciprocals given above is as 
follows. First, given the set A = {A,}, i E I (I a finite index set) of 
generators for the semigroup A, construct an isomorphic semigroupI2, B, 
with generating set B = {B,}, i E I, where for at least one i E I, B, # 
A,. Second, construct P, the free product (see Clifford and Preston 
1967B: 140-41) of the semigroups A and B. The semigroup free product 
P will be denoted by P = A 63 B and consists of terms of the form X,X, 
. . . X,, where X i  E A or Xi E B. Third, the semigroup P will be reduced 
by certain equations, with an equation introduced for each element Ai as 
needed so as to define the element Bi (the element corresponding to Ai 
under the isomorphism) as the reciprocal of the element A,. The equation 
will define B, as a semigroup inverse for A, if possible, otherwise it will 
define the products A,Bi and BiAi as idempotent elements. The semi- 
group B will be called the reciprocal semigroupfor the semigroup A. 

Now let us apply this procedure to the semigroup, G, produced by G = 

{P, I} for the AKT. Let 

and let H be the semigroup generated by H. Now H has the same 
structure as G, except for use of the label "C" in place of the label "P". 
We define an isomorphism i: G + H as follows: 

and 

Next form P = G Q H, the free product of G and H. A typical term in 
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P is a product of the form X,X, . . . X,, where X, E {P, C}. Note that 
since i(I) = I, I is an identity element for P. 

In order that P and C should be reciprocals, introduce the equation 
1 

With this equation, C is a semigroup inverse of P since PCP = IP = P 
and CPC = CI = C. The equation can be rewritten in kin term form as 

I Parent X Child = Self, which has diagram: 

Parent 
alter, * alter, 

child 1 /& = Parent x Child 

In the consanguineal space this diagram has the interpretation that 
alter, is ego, hence the equation is consistent with a genealogical inter- 
pretation. Note, however, that the genealogical interpretation only makes 
the equation plausible and is not validation for its use in the algebraic 
structure for the AKT. Validation comes through examining the structure 
produced when this equation is introduced into the algebra and comparing 
it with the core kin term structure shown in Figure 3. 

The equation PC = I is used13 to replace certain symbol strings in the 
free product P = G Q H by simpler ones. For example, an expression o f  
the form . . . P C .  . . is replaced by . . . I . . . and I is then eliminated since 
it is an identity element (with all of these operations canied out in the 
PROLOG part of the program through symbol matching and replace- 
ment). The KAES program determines that when all such simplifications 
are carried out the resulting algebra has the structure given in Figure 5. 

Comparison of the Algebraic Structure with the Kin Term Map 

Visual comparison of Figures 3 and 5 shows clearly that the two struc- 
tures are isomorphic. Hence the core structure of the AKT can b e  
algebraically characterized by: 

(1 2) Generating set: { P, I}, I an identity element 

(1 3) Reciprocal set: { C, I] 

and 

(14) Reciprocal sthctural equation: PC = I. 

The corresponding algebraic structure (Figure 5 for the AKT) isomorphic 
to the core structure will be called the core algebra for the terminology. 
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Fig. 5. Algebraic structure (core algebra) formed from the generating set, the reciprocal 
set, and the structural equation for the AKT. Compare to the structure given in Figure 3.  

MODEL 2: SHIPIBO TERMINOLOGY 

For the Shipibo terminology we will demonstrate that its core algebra can 
be obtained from the core algebra for the AKT merely by introducing a 
few more structural equations. This contrasts with an initial impression 
that the Shipibo terminology differs radically from the AKT. The Shipibo 
terminology is usually classified as Hawaiian in ego's generation and 
Sudanese in the 1st generation (see references in Behrens 1984) - not an 
entirely satisfactory classification. Nonetheless, it is clearly not linked to 
the AKT by the criteria used in Murdock's classification scheme. How- 
ever, as we now show, the Shipibo core structure can be algebraically 
modeled using the same primitives as for the AKT, hence it would appear 
that it ought to be linked with the Eskimo terminological type even though 
it does not exhibit the distinctive attributes of Murdock's Eskimo type. 
The anomaly suggests that Murdock's archetypical classification scheme 
may be defective in ways not previously mentioned in the literature. 

Simplijication and Core Structure 
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I versus female speakers followed by (2) separation of affinal from con- 

i sanguineal terms. The core structure so determined is given in Figure 6B. 

Selection of Generators and Structural Equations I 

I We begin the construction with the structure given in Figure 5. Although 
I we will use the same symbols, P, C and I, for the generating elements of 

the algebra, these will be given a different interpretation as kin terms. W e  1 will interpret P to be Papa ("Father"), C to be Bake (.Son1') and I to b e  
Ea "(Male) Self." In other words, we are keeping fixed the structural form, 
but changing the meaning of the symbols P and C. Now let us introduce 

I three equations: 

I (1 5 )  CCPP = CP, 

(1 6 )  PPPP = PPP, 

and 

(1 7 )  CPPP = PP. 

In kin term form, the first equation asserts that "Son" X "Son" x "Father" 
X "Father" = "Son" X "Father", which may be roughly glossed as "Male 
Cousin" = "Brother" (Huetsa). The second equation may be glossed a s  
"Great Great Grandparent = Great Grandparent" (Papaisi shoko) and the  
third equation, "Son of Great Grandparent" = "Grandparent" (Papaisi). 

Reciprocal Structure 

In order to preserve the reciprocal structure, the equation obtained b y  
replacing the product or term on each side of an equation by its reciprocal 
must also be an equation. For the equation, PC = I ,  both PC and I a re  
self-reciprocal, hence the reciprocal equation is the same as this equation. 
Similarly, the product CCPP is self-reciprocal since (CCPP) X (CCPP) = 

CCP(PC)CPP - CCP(I)CPP = CC(I)PP = CCPP. It may be similarly 
shown that CP is self-reciprocal. Hence the reciprocal equation for CCPP 
= CP is just the same equation. But for Equation (16), the reciprocal of 
PPPP is CCCC and the reciprocal of PPP is CCC. For Equation (17), the 
reciprocal of CPPP is PCCC and the reciprocal of PP is CC. (These 
assertions may be verified by showing that PCCC is the semigroup inverse 
of CPPP, and that CC, CCC, CCCC are the semigroup inverses of PP, 
PPP, PPPP, respectively .) Hence we add the equations, 

(1 8 )  CCCC = CCC 

and 
Simplification of the Shipibo terminology, whose kin term map is given in 
Figure 6A, is through ( 1 )  separation of kin terms into those used by male ( 1  9 )  PCCC = CC, 
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with kin term interpretation, "Great Great Grandchild" = "Great Grand- 
chid" (Baba) and "Father" of "Great Grandchild" = "Grandchild" (Baba), 
respectively. 

From the viewpoint of the KAES program, the user is prompted when 
an equation is introduced and its reciprocal equation is not yet part of the 
construction. The user has the option of accepting or rejecting the prompt. 
Thus when the user introduces equations (15)-(17) the KAES program 
automatically verifies if the reciprocal equations have yet been included in 
the construction and if not, equations (18) and (19) are displayed (using 
the symbols the user has introduced for kin terms) and the user is asked if 
these equations should be included. 

Fig. 6a. 
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1 Comparison Between thedlgebraic Structure and the Kin Term Map 

We add these equations to the algebraic specification and the KAES 
program determines the new algebra, M, and its graphical form displayed 
in Figure 7 .  Visual comparison with the core structure given Figure 6 B  
shows that the two structures are isomorphic. Hence the core structure for 
the Shipibo terminology has the following algebraic specification: 

I (20) Generating set: { P, I), I an identity element 
1 

(21) Reciprocal set: { C, I) 

Fig. 6b 

Fig. 6a-b. (A) Kin term map for the consanguineal terms of the Shipibo terminology from 
the viewpoint of a male speaker. (33) Core structure for the male terms of the Shipibo 

terminoIogy derived from the kin term map given in Figure 6A. 
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Fig. 7. Algebraic structure (core algebra) formed from the structure given in Figure 5 by 
addition of equations (15)-(17), along with their reciprocal forms (equations (18) and 

(19)). Compare with the structure given in Figure 6B. 

(22) Reciprocal structural equation: PC=Z 

(23) Structural form equations: CCPP = CP 

(24) PPPP = PPP 

(25) CPPP = PP 

(24') Reciprocal structural form equation: CCCC = CCC 

(25') PCCC = CC. 

We have given the algebraic terms interpretation as male marked kin 
terms. The female marked kin terms, and hence the distinction between 
terms used by male speaker versus terms used by female speaker in the 
Shipibo terminology, arises through a construction process whose details 
will only be outlined here. 

Free Products Again - Sex Marking of Kin Terms 

Essentially the same procedure is used to introduce sex marking as for the 
reciprocal structure. An isomorphic copy, F, of the algebra M, displayed 
in Figure 7 is created and interpreted as the female marked terms. Let 
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[ p ,  c, e }  be the generating set for the isomorphic algebra, F, with 
isomorphism, i :  M + F, given by: i (P )  = p ,  i ( C )  = c and i(Z) = e.14 

Because i :  Z + e and Z # e, the structure, M 63 F, will have two 
positions where an alter can be "located," depending on the sex assigned 
to alter. Hence the distinction between male speaker and female speaker 
arises out of the logic for the generation of structure. 

MODEL 3: TROBRIAND TERMINOLOGY 

Simpfification and Core Structure 

A different simplification is used for the Trobriand terminology (kin term 
map given in Figure 8A). Here, (1) the circular nature of the terminology 
as indicated by the same kin term being used for alters two generations u p  
or down from ego is "broken" by replacing the term Tabu by Tabu, and 
Tabu,. Then, (2) like the Shipibo, terms are separated into those used b y  
male spakers for alters of the same sex, versus terms used by females f o r  
alters of the same sex. Lastly, (3) consanguineal and affinal relations a r e  
separated. The core structure is given in Figure 8B. 

Setection of Generators and Structuraf Equations 

With the Trobriand terminology we will demonstrate yet another way i n  
which structural forms arise. This time a different generating set will b e  
used". For the Trobriand terminology we take as atoms the kin terms 
"Father" (Tama) and "Older Brother" (Tuwa), and we will include two 
structural equations as part of the initial algebra. 

Let G = {F, B} be the generating set input to KAES to begin the  
algebraic construction. (Here we use B as a mnemonic for "Older 
Brother." Later we will use b as a mnemonic for "Younger Brother"). W e  
introduce the following equations to establish the structural relationships 
between F and B so that the structural property of these terms (i.e., a 
"Father" of a "Older Brother" is a "Father" and an "Older Brother" of a n  
"Older Brother" is an "Older Brother") becomes part of the algebra: 

and 

These may be glossed as "Father" of "Brother" = "Father" and "Older 
Brother" of "Older Brother" = "Older Brother." The KAES program 
builds the algebra, G, with these generators and equations, and represents 
this algebra by the graph given in Figure 9. 
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Reciprocal Structure I 
The same construction procedure is used by KAES to produce the 
reciprocal structure. Let the reciprocal generating set, H, be given by: 

(28) H = { S , b }  

with isomorphism i ( F )  = S and i(B) = b. To complete the isomorphism, 1 
the following two equations must also be introduced16: 

(29) S b = S  1 
and 

I 

Fig. 8a. 
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The first equation has gloss, "Son" (Latu) of "Younger Brother" (Bwada) 
= "Son" and the second has gloss, "Younger Brother" of "Younger 
Brother" = "Younger Brother." Note the appearance in the structure, via 
equation (29), of the relationship that is usually attributed to the classifica- 
tory property: Brother of Father = Father. No "classificatory property" 
has been introduced in the structure as a separate concept, a d  in the  
construction the relationship Sb = S only involves the notion of atoms 
and reciprocity as applied to the Trobriand terminology. It is not included 
as instance of a classificatory property (merging of lineal and colineals 

Fig. 8b. 

Fig. 8a-b. (A) Kin term map for the terms of the Trobriand terminology from t h e  
viewpoint of a male speaker. (B) Core structure for the male consanguineal terms of t h e  

Trobriand terminology, derived from the kin term map given in Figure 8A. 
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t e r  i d e n t i r v  -l-*cn 

I Tams x TUY : Tu. 
I Trua x Tuur = Tuua 

Fig. 9. Algebraic structure constructed from the generating set and the initial structural 
equations for the Trobriand terminology. 

when viewed from the perspective of a genealogical space), but is struc- 
turally necessary for the reciprocal structure to be part of the terminology 
structure. The classificatory property, since it derives from production of 
the reciprocal structure, implies that the classificatory property need not 
be attributed to factors reflecting social factors exogenous to kin termi- 
nology structure such as group marriage, as originally suggested by 
Morgan (1871), but can be accounted for simply by reference to the 
internal logic of the Trobriand terminology. 

Let H be the algebra isomorphic to the algebra G. We continue the 
construction using KAES by forming the free product P = G 8 H of the 
isomorphic algebras G and H. In order to define the terms B and b as 
reciprocal terms in P, the program prompts the user with the following 
equation as a suggestion: 

If this equation is accepted, the program informs the user of the property 
given in the following theorem: 

Theorem: For the semigroup P, the equation Bb = bB implies the 
equation (Bb) (Bb) = Bb. 

Proof: (Bb) (Bb) = B(bB)b = B(Bb)b = (BB) (bb) = Bb. 
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This establishes that Bb is an idempotent element, much like a "sibling" 
term, so can be glossed as "Brother." Note that the theorem proves Bb is 
an idempotent element, but b is not a semigroup inverse for B since BbB 
= BBb = Bb # B. 

Next we introduce an equation to make F and S recipro~al terms, 
namely 

l 
and its isomorphic version, 

(32') SF= Bb. 

Since Bb is an idempotent element, FS is also an idempotent element. A t  
this stage in the construction S is not a semigroup inverse since FSF = 
BbF and the latter term has no further reduction. When additional 

I 

I equations are introduced below, S will become a semigroup inverse for F, 
and conversely. 

Before constructing the reduced algebra defined by introducing Equa- l tions (32) and (32'), another property, namely structural epuivalmce, is 
I 

prompted by the program. (Two nodes in a structure are structurally 
equivalent if the two nodes are connected to other nodes in an equivalent 
manner; for example, structurally equivent pairs of nodes are the nodes 
Mother and Father in Figure 1, or the nodes Bwada and Tuwa in Figure 
8b.) Under the interpretation of B and b as the kin terms "Older Brother" 
and "Younger Brother", it seems plausible that they should satisfy an 
analogy condition for structural equivalence: 

(33) "Father" : "Older Brother" :: "Father" : "Younger Brother." 

The program suggests that the equation, 

should be introduced and its reciprocal, the equation 

should also be entered. 
There is still another set of equations that are required for the structure 

to be a reciprocal structure. Equation 26, FB = F, and Equation 31, Fb = 

F, have as reciprocal equations, 

and 

respectively, which may be glossed as: "Younger Brother" of "Son" = 

"Son" and "Older Brother" of "Son" = "Son." While these properties a re  
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consistent with a genealogical interpretation, we emphasize that these 
equations have not been introduced into the construction merely to satisfy 
a genealogical interpretation but in order to ensure that the structure is 
logically consistent with the reciprocal structural property. Validation of 
these equations depends on structural isomorphism between the algebra 
generated by them and the core structure given in Figure 8B, not their 
genealogical interpretation. 

Yet one more pair of equations needs to be introduced for the same 
reason. Equation 29, Sb = S, and equation 34', SB = S, have as 
reciprocal equations, 

and 1 

respectively. Hence these two equations, which give the Trobriand termi- 
nology its classificatoty form in conjunction with Equations (29) and ( 3 9 ,  
are necessary for the reciprocal structure of reciprocity to be preserved. 
For these equations the genealogical interpretation is not true, yet they are 
necessary for the reciprocal structure property! In other words terminolo- 
gies have an internally produced structural form whose features result 
from a particular choice of atoms, such as "Father" and "Older Brother" 
for the Trobriand terminology versus Parent and Child for the AKT, and 
general kinship properties such as reciprocity and the reciprocal structure. 

We now determine the reduced algebra produced by these equations 
through the KAES program. The result is given in Figure 10. 

Comparison of the Algebraic Structure with the Kin Term Map 

Lastly, we introduce two equations used to limit the vertical extension of 
the Trobriand terminology. These equations are FFF = FF and recipro- 
cally, SSS = SS. The structure produced by these equations is determined 
by the KAES program to have the graph shown in Figure 11. The 
isomorphism with Figure 8B may be seen by inspection. 

We may characterize the Trobriand terminology as follows: 

(38) Generating set: {F,  B ]  

(39) Structural equations: FB = F 

(38') Reciprocal set: {S ,  b ]  

(39') Reciprocal structural equations: Sb = S 

A L G E B R A I C  ANALYSIS  O F  KINSHIP  T E R M I N O L O G I E S  3 8 3  

. . .  .......... . . .  . . . . .  . . .  . . . . . . . .  . . . . . . .  . . .  .... . . . . . . . . . . . .  . .  - 
. . . . .  . . .  Brrda Tura . . . . . . . .  . . .  . .  - 

. . .  . . . . . . .  . . .  .:: . . . . . . .  . . .  . . . . . . . . .  . . .  .:.:. ........................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  . . ............................... ._.::_ 
.:.:.,.,.C,. . . .  2 .r.,z.~.",W, CWa,,U" ,A, ....................................... . . . . . . . . . . . . . . .  ........ (( ....>...,. .................... 

................................................................. . . . .  ...................................... ........................ _( . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  -...: 


Fig. 10. Algebraic structure constructed from the generating set, the reciprocal set and t h e  
equations used to define the corresponding terms between the generating set and t h e  
reciprocal set as reciprocal terms. The negative signs here and in Figure 11 have n o  
algebraic significance. They are used to indicate relative age; e.g., Bwada (for which t h e  
numbers 1 and 2 are marked with a negative sign) is "Younger Son" and Tama is "Older 

Brother." 

Fig. 11. Algebraic structure (core algebra) derived from the structure displayed in Figure 
10 by limiting vertical depth. Compare with the structure displayed in Figure 8B. 
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(41) Reciprocal equations: Bb = bB 

(42) FS = Bb 

(43) Structural equivalence equations: Fb = F 

(44) S B = S  

(42') Reciprocal structural equations: S F  = bB 

(45) b S = S  

(45') BS = S 

(46) bF=  F 

(46') BF= F 

(47) Vertical restriction equations: FFF = FF 

(47') SSS = SS. 
From equations (32), (34'), and (36') it follows that S is now a semi- 

group inverse of F since FSF = BbF = F and SFS = SBb = S. 
While the generating set {F, B} does not contain an identity element, 

the term Bb is almost an identity element in the algebra that has been 
constructed: 

(48) (Bb) (Bb) = Bb, 

(49) (Bb)F = F = F(Bb), 

and 

(50) (Bb)S = S = S(Bb). 

However, (Bb)B = B(Bb) = Bb # B. 
If we consider the subsemigroup determined by {F, S, Bb}, it is evident 

from the above equations that Bb is an identity element for this sub- 
semigroup. We use this property to motivate the claim that the structural 
position where a (male) person will be "located" in the structure (when a 
mapping is made from the abstract structure onto concrete indivduals) is 
Bb, with its gloss as "Brother." Then, from the viewpoint of a male ego, all 
male siblings are located at either the "Older Brother" or the "Younger 
Brother" position; i.e., the term "Brother" would not be, and is not 
(Lounsbury 1975), used by male egos for male siblings since they are at 
positions distinct from Bb, each with its own kin term; i.e., "Older 
Brother" and "Younger Brother." 

Female terms are introduced in a manner analogous to the construction 
procedure used in the Shipibo terminology; namely through using the 
isomorphic generating set {M, D, Z, z). Details are not given here, other 
than to note that the products (Bb) (Zz) and (Zz) (Bb) will be distinct 

products. From the perspective of the position Zz, the product (Bb) (Zz)  
would have gloss "Brother." Similarly, the product (Zz) (Bb) would have 
gloss "Sister" from the perspective of the position Bb. And this is precisely 
the distinction the Trobriand make with sibling terms when siblings a r e  
cross-sex (Lounsbury 1975). 

IMPLICATIONS AND CONCLUSION 

The results given here, though based on only three studies, suggest quite 
strongly that (1) kin terminologies are structured through the logic of kin 
term products and general properties such as reciprocity and (2) kin term 
structures form a distinct class of structures based on what has been called 
the reciprocal structural property. The implications are numerous and  
only a few will be highlighted here. First, and perhaps most important, it 
follows that terminologies can be analytically taken as an abstract, 
symbolic system of relationships which, though possibly motivated by 
external phenomena, transcends these and becomes structured through its 
own internal logic. Second, it opens the possibility for comparing kinship 
terminology structures at a deeper level than has heretofore been possible; 
that is, at the level of production of structure. This approach stands in 
contraposition to previous ones that compare the relationship of kin terms 
to kin types only after kin terms are mapped onto a genealogical grid. 

We may illustrate the latter claim through a comparison of descriptive 
versus classificatory kinship terminologies. Morgan's (1871) interest in 
elucidating the underlying principles that distinguished his two major 
classes of terminologies foundered on his failure to find a structural 
property inherent to the logic of terminology structure from which t h e  
distinction could be derived and fell back on an eventually discredited 
explanation based on a presumed event such as group marriage. In 
contrast, the algebraic modeling has uncovered a way in which t h e  
classificatory principle may arise without reference to factors exogenous to 
the logic of kin terminology structure. The construction suggests that t h e  
distinction between descriptive and classificatory terminologies is struc- 
tural in origin and owes its proximal genesis to matters such as (1) choice 
of atoms, (2) equations that define the relations among these atoms and 
(3) an architecture for the development of a reciprocal structure from a 
simpler one. 

Another implication relates to transformation of structures. T h e  
assumption has often been made that transformations provide an underly- 
ing commonality which transcends particular instances, hence a common- 
ality which derives from deeper processes than the history of experiences 
of a particular society. Despite the central role that has been given to such 
transformations by many authors, it has generally remained more a dogma 
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guiding studies than an established tenet. The models developed here, 
however, make explicit the manner in which one structure can be a 
transformation of another; e.g., the Shipibo core algebra has been demon- 
strated to be a transformation of the core algebra for the AKT. However, 
the Trobriand case equally illustrates that we are not just dealing with 
transformations of one structure into another, but with a class of struc- 
tures wherein commonality stems from the principals upon which they are 
based. 

A more extensive cross-cultural comparison is needed to lay a more 
secure groundwork for a general theory of kin term structures. Part of 
such a theory has been given here through representation of reciprocity as 
an algebraic property and through production of an initial structure which 
satisfies a property based on reciprocity. Other structural features not 
discussed here become necessary as the construction process continues. 
For example, computation of the reciprocal of a kin term product be- 
comes more complicated when terms with sex markings are part of the 
semigroup. Thus the reciprocal of Father, in the AKT might be Son or 
Daughter, depending on the sex of the speaker. This suggests the need for 
structurally specific definitions for computing the reciprocal of kin terms 
and their products. 

There is also the relationship between terminology structure as an 
abstract system and implementation of terminologies as concrete systems. 
If one takes the terminology structure as an abstract, created system, it is 
also necessary to model the interconnection between a terminology and 
the structure of other systems, be they strictly genealogical or more 
extensive. From this vantage point it is not particularly useful to argue 
whether o r  not terminologies are an overlay on a more fundamental 
genealogial grid, for by framing the argument in that fashion one has 
already created a distortion. Rather, we suggest that it will be more 
informative to recognize that we are not dealing with one kinship 
structure, but with many kinship structures. From this perspective the 
problem is to delineate these different structures, together with their 
interconnection and interaction, as empirically resolvable problems. 

Finally, we make a few comments about the implications of this work 
for the study of conceptual structures in general and their relationship to  
the learning of structures as systems of knowledge. Conceptual structures 
of this kind serve to create a universe within which external events are 
interpreted and through interpretation, become the basis for action (Read 
and Behrens 1989). By making structural forms explicit, it becomes 
possible to determine whether or not there are relatively few structural 
forms at the deep level of structure production. What may turn out to be 
critical is the means by which complex structures are built up out of a 
relatively limited range of atoms and equations. If so, it becomes clearer 
how there can be both a "superorganic," yet have cultural information be 
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individually learned and reside imperfectly in each individual. If we refer 
back to kin terminology structures, the existence of an internal logic which 
constrains their production also implies that the learning process need not 
be perfect. This is because "errors" made by one person will be "recog- 
nized" by others who "understand" that these errors violate the logic of 
the structure. To use an example from arithmetic, products are not a list of 
independent facts subject to possible modification, but facts resulting f rom 
the structural implications of the concept of multiplication whether or not 
each individual correctly learns the multiplication table. Errors are recog- 
nized and corrected without appeal to any authority other than the logic of 
the system. It would appear that kinship terminology structures, and by 
implication, conceptual structures in general, may have this same kind of 
built in correction mechanism. Perfect, equally shared knowledge about 
terminologies is not necessary. Errors which contradict the logic of the  
terminology are self correcting in the same manner that imperfect knowl- 
edge of the multiplication table is self correcting. Such self correction 
could give culture stability despite imperfect learning and, through stability, 
make culture a phenomenon which transcends individual experience. 
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NOTES 

' It needs 10 be emphasized that two relatable systems are involved: (1) a genealogical 
space, G, produced and structured through a system of genealogical reckoning (see  
Lehman and Witz 1974; Liu 1986) and (2) a kin terminology structure, T, of kin terms 
viewed as a structured set of abstract symbols. These two systems are linkable through t h e  
fact that persons for whom genealogical claims are made are also persons for whom kin  
terms may sometimes be used. In ethnographic reports, the linkage has been simplified 
through providing "definitions" of kin terms as sets of kin types (though these become 
awkward with classificatory systems). Correspondingly, the more common analytical 
approach has been to recreate these "definitions" through a series of rewrite rules t ha t  
operate on a reduced set of kin types. In other words, the approach has been to examine 
the structure of terminologies indirectly through the structure imposed on the genealogical 
space, G, when the symbols making up the terminology are given interpretation in t h e  
language of kin types. 

Once it is recognized that a space, T, of kin terms exists separate from, and is n o t  
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structured by, mapping kin terms onto the space G, then analysis can focus on the 
structure of 7 directly. This does not obviate interest in understanding the structure 
imposed on G by mapping the terminology structure onto a genealogical space. Ultimately, 
the two kinds of analysis - analysis aimed at elucidating the structure of 7 directly and 
analysis aimed at elucidating that structure through the structure imposed on G - will 
reach closure with each other as Lehman (1984, personal communication) has suggested. 

This and all other figures except Figure 2 are 'screen dumps" from the KAES program. 
' In Read (1984) the definition of a kin term product uses the phrase, "the kin term." 
However, at the surface level of kin terms viewed as labels to be applied to concrete egos 
and alters, the definition of a kin term product need not lead to a unique kin term. For 
example, if ego is a male, alter, is male parent of ego and alter, is ego, then ego calls alter, 
Father, alter, calls alter, Son and ego calls alter, Self, which would make Son of Father = 

Self, whereas if alter? is a male child of alter, other than ego then ego calls alter, Brother 
and now Son of Father - Brother. This indeterminism is considered here to result from the 
interpretation and application of a deeper structure to the more surface level of concrete 
egos and alters. In other words, we distinguish between the properties of a conceptual 
structure viewed at an abstract level (which is essentially static) versus the application of a 
conceptual structure to a genealogy (which is essentially dynamic) where additional 
properties may arise or be introduced in order to accommodate disjunctions that can occur 
when a static structure is mapped onto a dynamic system. Read's earlier definition has 
been corrected here by substituting the phrase "a kin term" instead of "the kin term" with 
its implication of uniqueness. 
.' Three levels of notation are used here. First, an expression such as father without 
capitals refers to a genealogical position. Second, when capitalized as in Father, the 
reference is to a kin term used by native speakers. Finally, when written all in capitals, such 
as FATHER, the expression is being considered as an abstract symbol; for example, as a 
symbol in an algebra. The connection between the symbol FATHER and the kin term 
Father is with respect to context - kin terms viewed as symbols, or kin terms as used by 
natives; the distinction between Father and father is of a different order and reflects the 
difference between terminological and genealogical systems. 

Observe that kin term products are written in the order L X K, where K is the term 
used by ego for alter, and L is the kin term used by alter, for alter,, whereas for a kin type 
product, the product is written in the reverse order. This corresponds to the difference in 
the verbal gloss used here for kin term products as opposed to kin type products. For 
example, the kin term product Mother X Father is glossed as, 'Mother of a Father," or  
Grandmother, whereas the kin type product fin (for the kin types f = father and m = 

mother) is glossed as "father's mother"; i.e., a kin type product for which the kin term 
Grandmother is applicable. The kin term product, Mother X Father, thus represents the 
kin term applicable to the kin type productsfin (and to the kin type product, mm, as well). 

From a purely structural viewpoint, writing the terms of a binary product (for the same 
domain) from right to left or left to right is by convention and historical precedent and 
does not, by itself, lead to different structural properties. The difference in the order of 
terms in a product and the two kinds of glosses that the order of the product mirrors are 
used here only to help keep clear when the product is that of kin types and refers to a 
genealogical space, and when the product is that of kin terms and refers to a kin term 
structure. 

The simplification of the kin term map is the most inductive part of the analysis and has 
been guided by the assumption that the kin term map is constructable from simpler 
structures. Simplification has been based on global properties such as separation of affinal 
from consanguineal terms, or grouping together kin terms in structurally equivalent 
positions, or an underlying symmetry based on male marked versus female marked terms, 
etc. The same general idea of collapsing a larger, more complex structure into a simpler 
one has also been used by Liu (1986: 40-42) in his descriptive analysis of terminologies 
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based on genealogical spaces. The criterion for favoring one possible simplification over 
another has primarily been Occam's Razor; e.g., separating male marked from female 
marked terms in the AKT does not lead to a simpler structure that can be accounted f o r  by 
a few, general properties in contrast to what occurs when the simplification given in Figure 
3 is used. 
' Roughly, an algebra consists of a set of symbols and a set of operationi that may  be 
performed on the symbols to produce other symbol combinations. The set of symbols . 
includes all the distinct symbol combinations that can be produced using the operation(s) 
of the algebra, taking into account any structural equations that identify which symbol 
combinations can be replaced by other symbols or simpler symbol combinations. 

A familiar structure which has the form of an algebra is provided by the counting 
numbers, 0, 1, 2, 3, . . . (the set of symbols) with the operation of addition (a binary 
operation) and equations such as i + 0 = 0 + i - i (0 is the additive identity element), i + 
j - j + i (addition is commutative) and i + ti + k) = (i + j) + k (addition is associative), 
where i, j and k are arbitrary counting numbers. The binary operation and these equations 
allow one, for example. to form the expression ( 2  + 0) + 0 (a symbol combination) a n d  to 
replace it by the symbol, 2. 

The algebra G generated from the set G with binary operation x is constructed by the 
KAES program as follows (see Clifford and Preston 1961a: 40-45 for a more formal 
discussion of the construction procedure upon which the KAES program is based). First, 
the free algebra (technically, a free semigroup) of all symbol combinations, or words, that 
can be formed using the symbols in G and the binary operation X is constructed. Second. 
symbol combinations that are equivalent in the sense that any one combination can be 
reduced (or expanded) to another combination by use of the equations are identified and 
placed into a single class. Lastly. each class is identified by the simplest symbol or symbol 
combination in the class. The algebra G then has as its objects these symbol classes. F o r  
convenience, the objects of G may be considered to be just the symbol used to identify the 
class to which that symbol belongs. Thus, for the set G - {P,  C, I ) ,  where I is an identity 
element for the binary operation X, the distinct symbol combinations P, C, I, PP (= P x 
P), PC, CP, CC, PPC . . . may be formed. Under the equation PC = I the symbol 
combinations in {I, PC, PPCC, PPPCCC, . . . )  are all equivalent and this class may be 
identified by its simplest member, namely the symbol I. In the algebra G, one of the objects 
would be the class {I, PC, PPCC, PPPCCC, . . .). but for convenience it may be replaced 
by its simplest representative, namely the symbol I. In the algebra G, the class corre- 
sponding to PC and the class corresponding to I are the same, so PC = I is a valid 
equation in G. 

A semigroup is the name given to a structure with a single binary operation, X, which is 
associative. For example, the (binary) operation of addition over the nonzero counting 
numbers 1 ,  2, . . . is associative, so the nonzero counting numbers along with the operation 
+ is an example of a semigroup which lacks the necessary notion of an identity element 
and an inverse for each element that characterizes a group. 

I "  Roughly, a reciprocal term "undoes" what a term does in that if a term maps one node  
in the structure to another node, the reciprocal term should map the second node back to 
the first. With genealogical claims, a reciprocal claim can be formed by tracing a claim 
backwards. This can be done through two steps (at least for claims that do not include sex): 
(1) the terms in the genealogical claim are written in the reverse order and (2) each k i n  
type in the genealogical claim is replaced by its reciprocal kin type. For example, t h e  
genealogical claim "ego's parent's parent's chi ld  has reciprocal claim formed by first 
reversing the claim to get "ego's child's parent's parent" and then replacing child by parent 
and parent by child to arrive at "ego's parent's child's child." The equivalent property f o r  
products of kin terms would be to reverse the order of the product and then to replace t h e  
terms in the product by their reciprocal terms. The latter step is where the difficulty arises 
that is addressed by the algebraic definition of a reciprocal term, for what are t h e  
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reciprocals of the kin term atoms from which compound kin terms are constructed? While 
these reciprocals could be introduced as additional native knowledge, the aim in the 
formalism is to reduce the production of kin term structure to its minimal assumptions. 
Hence we need to determine if there is a structural property that is satisfied, in general, by 
reciprocals of kin terms; more specifically, by reciprocals of kin terms which are atoms so 
that they can be algebraically introduced. 

What is needed, then, is an algebraic property of a structure that captures the sense of 
'undoing" what a term does. For structures such as groups (a semigroup with an identity 
element and an inverse for each element), the inverse "undoes" what an element does in 
the following sense. In a group, C, with identity element i, if x is an element in C and x-' 
is its inverse (so that x- 'x - i), and if y and z are elements with xy - z, then y - iy = 

x-'xy - x- 'z ,  so that if x "acts on" y to map it to z, then taking the product with the 
inverse of x maps z back to y. For a semigroup (which need not have an identity element) 
a semigroup inverse is the analog of an inverse in a group. Though Read (1984) showed 
that semigroup inverses express the structural property that a reciprocal term should 
satisfy for the AKT, analysis of the Trobriand terminology has led to the conclusion that a 
semigroup inverse is, in some cases, too strong a property. 

The semigroup inverse has been weakened here, as expressed in the definition, via a 
property satisfied by a semigroup inverse, but where the reverse need not be true. When a 

i 
product K X L of two kin terms, K and L, is an idempotent, then the term represented by 
the product K X L will be self-reciprocal, which is 'close" to the idea of an identity. For 
example, Son of Mother = Brother and Brother is self-reciprocal, Brother of Son is Son, 
etc. Whether this definition (or any definition, for that matter) is satisfactory for all 
terminology structures will need empirical test. 

A set G of elements in a semigroup S is said to be a generaling set for S if no proper 
subsemigroup of S contains the set G. The generating set G for the semigroup S is a 
minimalgenemlingset for S if no proper subset of G generates S. 
l 2  That is, there is a mapping, call it i, from the set A = ( A , }  of generators for the 
semigroup A onto the set of generators, B - {B,} of generators for the semigroup B, say i: 
A,  - B,, such that all equations which are valid for the semigroup A are also valid for the 
semigroup B under this mapping i that replaces symbols from the generating set for A by 
symbols from the generating set for B. 

It should be noted that in this example the choice of the equation used to produce a 
homomorphic image (the result of reducing the free product via Equation (1 1)) of the free 
product algebra is motivated by the earlier observation that this is an equation that defines 
P and C to be reciprocal terms. Figure 5 illustrates that Equation (11) is precisely the 
equation needed to make the core structure for the AKT isomorphic to the graph of a 
certain semigroup. This pattern of linkage among the core structure, equations used to 
define terms as reciprocals, and construction of a semigroup with structure isomorphic 
to that of the core structure will be seen below with the Shipibo and Trobriand termi- 
nology and suggests that reciprocity is a fundamental structuring concept for kinship 
terminologies. 
l 4  In order to show how one structure is derived from another, we have used the symbols 
from the model for the AKT. While the symbol P suggests the term Parent, it does not 
have the same heuristic value for the Shipibo terminology. We could, for heuristic 
purposes, relabel the elements and have i: (F, S, E) - {M, D, el, where F, S a n d  E will be 
interpreted as the male marked terms "Father", "Son" and "Male Self" and M, D and e 
interpreted as the female marked terms "Mother", "Daughter" and "Female Self" in the 
Shipibo terminology. 
I s  This choice of generators was arrived at after numerous false starts that failed to 
produce an algebraic structure isomorphic with the core structure for the Trobriand 
terminology. Any choice of generators entails certain equations that must be introduced in 
order that the symbols in the algebra exhibit the structural properties of the kin terms they 
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symbolize (e.g., the symbols F and B and Equations (26) and (27)), hence entail a structure 
corresponding to that choice of generators. The empirical test is whether or  not the 
construction based on a given choice of generators leads to an algebraic structure 
isomorphic to the kin terminology core structure. 
l6 Though Equation (29) appears, superficially, to be like a Merging Rule as would be 
used in a rewrite rule analysis, it differs in two significant ways. First, it is, a statement 
about a relationship between kin terms, not kin types, and specifies that the kin term 
product of the kin terms Latu and Bwada is the kin term Latu, not what kin types can  be 
replaced by other kin types. Second, unlike a merging rule which is introducted on a n  ad 
hoe basis in order to account for the pattern of kin types classified together when kin 
terms are mapped onto a genealogical space, Equation (29) is introduced via the same  
principle invoked for the production of a reciprocal structure for the AKT; i.e., the 
structure determined by the reciprocals of the generating kin terms should be isomorphic 
with the structure determined by the generating kin terms (the structure given in Figure 4 
for the AKT and in Figure 9 for the Trobriand terminology). Equation (29) is the equation 
that results when the isomorphism is applied to Equation (26) and is necessary for this 
isomorphism of structures to be valid. 
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