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1 Introduction

Recent years have witnessed remarkable progress in obtaining the exact partition function
of supersymmetric field theories in various background geometries. When the geometry
is S1 x My_; the partition function admits a standard Hilbert space interpretation as a
supertrace over the states of the theory on My_1. In other geometries, such as on a sphere
S? the physical interpretation of the partition function must be sought.

In [1] it has been shown that the partition function of 4d A" = 2 superconformal field
theories (SCFTs) on S* computes the exact Kihler potential K on the space of exactly
marginal couplings, also referred to as the conformal manifold. This result was proven
both by using supersymmetric localization [2] and by conformal dimension regularization
on S* and extends the proof in [3] that the S? partition function of 2d N = (2,2) SCFTs
computes the exact Kéhler potential on the conformal manifold, as conjectured by [4] based
on the exact formulae in [5, 6] (see also [3, 7]). In detail, [1] demonstrated that

Zga = 512 (1.1)

These identifications provide a physical and geometrical interpretation of the sphere par-
tition function of 4d N' = 2 and 2d N' = (2,2) SCFTs. These results also provide a
computational pathway for obtaining the exact metric in the conformal manifold, which
are interesting new observables in these theories, acted on by dualities (see e.g. recent
work [8, 9]).

Here we present an elementary proof of the formula (1.1) using supersymmetry Ward
identities. This new proof does not require localization nor that the 4d N' = 2 SCFT
admits a Lagrangian description. By virtue of the relation (1.1) identifying the S* parti-
tion function with the Kéhler potential K on the conformal manifold, it follows that the
partition function is subject to the Kéhler ambiguity transformations

K(r,7) = K(7,7) + F(1) + F(7), (1.2)



where F is an arbitrary holomorphic function and 7 are holomorphic coordinates on the
conformal manifold. This ambiguity implies that the partition function is a section over
the space of exactly marginal couplings.

We also give the microscopic realization of the Kéahler ambiguity (1.2) by constructing
the local supergravity counterterm in 4d N’ = 2 off-shell supergravity that when evaluated
on the supersymmetric S* background yields (1.2). This is the 4d counterpart of the Kihler
ambiguity counterterm for 2d N' = (2,2) SCFTs constructed in [1].

The plan is as follows. In section 2 we use supersymmetry Ward identities to show
that the S partition function of 4d N' = 2 SCFTs computes the Kihler potential in the
conformal manifold. In section 3 we identify the off-shell 4d N' = 2 Poincaré supergravity
theory in which the S* is a supersymmetric background. In section 4 we construct the
supergravity invariant in the relevant Poincaré supergravity theory that once evaluated on
S* provides a first principles realization of the Kihler transformation (1.2).

2 Kabhler potential from S* partition function

An exactly marginal operator in a four dimensional N'= 2 SCFT is a scalar operator of
dimension four which is a superconformal descendant of a scalar chiral primary operator of
U(1)g charge w = 2. An N =2 SCFT can be deformed while preserving superconformal

invariance by!
1 o
) d*z Z(T]O[JrTI—OI‘) . (2.1)
I
The exactly marginal couplings 7; are holomorphic coordinates in the space of exactly
marginal deformations, known as the conformal manifold. The canonical metric in the

conformal manifold g¢;; is the Zamolodchikov metric
A 9
(01(2)0,(0)) = =% (2:2)

which in four dimensional N = 2 SCFTs is Kahler, that is

0 0

An N = 2 SCFT can be canonically placed on S* by the stereographic projection. The
N = 2 superconformal transformations on S* are parametrized by chiral conformal Killing
spinors €' and ¢; of opposite chirality transforming as doublets of the SU(2) g R-symmetry,
which obey?
vmfi = 'Ymni V€ = YmMi s (2.4)
so that n' = %Vﬁi and 7; = %VQ’-
An exactly marginal operator in an N' = 2 SCFT can be represented as the top
component of a four dimensional N' = 2 chiral multiplet of R-charge w = 2, whose bottom
component realizes the parent chiral primary operator. The holomorphic coordinates on

!We use the same conventions as in [1].
2I'* denotes tangent space gamma matrices while 7™ = e?'I'* denotes curved space ones.



the conformal manifold can be promoted to supersymmetric background chiral superfields
with vanishing R-charge w = 0. The N = 2 superconformal transformations of a chiral
multiplet with R-charge w on S* are given by [10] (we use [11]):3

I
2

5‘1&' = V(AEZ) + 1Bijej + 1

4PabFa_bEij6j + (2w — 4) An;

0Bij = ¢, YV — e Aye )k +2(1 — w7 ¥y,
1 . 1
5Fa_b 15 Ezvrab‘l’ + 46 FabA (1 +w)€ nZFab\If
1
oA = _ZrabV(Fa_bEi) - VBZ]EJ € + Cswe — (1 4+ w)Bije 4 = (3 w)DPF
oC = —Vm(€ij€i’ym/\j) (2w — 4)8 niAj , (2'5)

where in Euclidean signature F; is a self-dual rank-two tensor. Indeed, for w = 2, the
integrated top component is superconformal invariant and we have the identification

Cr=0yg forw=2. (2.6)

For w = 0, an arbitrary covariantly constant background value for the bottom component
of the chiral multiplet? is superconformal invariant, and serves as the spurion field for the
holomorphic coordinates on the conformal manifold

Ar =y for w=20. (2.7)

We denote by Aj the chiral multiplets to which the coordinates in the conformal manifold
have been promoted.

Consider now the SCFT partition function on S* as a function of the exactly marginal
couplings Zg4(7,7). The second derivative

oostonZse = ([ dovici) [ dn/acin) (2.5)

is the integrated connected two-point function of exactly marginal operators. This correla-
tor is ultraviolet divergent, divergences arising when the operators collide. These ultraviolet
divergences can be regularized by introducing a massive deformation. Regulating diver-
gences in a supersymmetric manner leads us to consider the OSp(2[4) massive subalgebra
of the N' = 2 superconformal algebra on S4, which is the supersymmetry algebra of an
arbitrary massive four dimensional A" = 2 theory on S.

The OSp(2[4) massive subalgebra on S* is generated by supercharges that anticommute
to the SO(5) isometries of S* and an SO(2)g C SU(2) g R-symmetry. Conformal generators
and U(1)r are projected out. The OSp(2[4) transformations are generated by Killing
spinors which obey

it i 9
VX! = g -9mx” (2.9)

3Throughout a barred spinor is A = ATC, where C is the charge conjugation matrix.
4All other components in multiplet must vanish.



where
X o=+, (2.10)
so that?
€=X0 & =TijXg (2.11)
and T,Z’“ = (io3,—1,—io1) = (ijk)*, where o0, are the Pauli matrices. In stereographic

ﬁdwmdmm, we have
(1+23)
1

X = —— <1 + ;me’m> X (2.12)
1+ & "

coordinates, where ds? =

The constant spinors X% parametrize the transformations of the eight supercharges in
OSp(2[4). If these parameters are chiral

Pixh =0, (2.13)

the corresponding spinors generate an OSp(2|2) subalgebra OSp(2|4). The chiral compo-
nents of these spinors x7 and x%

. , i/2r , : . 1 :
X1, =Pux) = ————=aml"Xop  Xgr=PrX' = ——Xor>
1+ J1+

vanish at the North and the South poles of the sphere respectively. If the parameters are

(2.14)

further constrained by
Xo = 1 el Taxg (2.15)

the corresponding spinors generate a further SU(1|1) subalgebra
Q*=J+R (2.16)

of OSp(2|2) € OSp(2[4), where J = Ji3 + J34 is a self-dual rotation on S* and R is the
SO(2)g C SU(2)r R-symmetry.

Our strategy is to first prove that the integrated top component of the chiral multiplet
in (2.8) can be written as an SU(1|1) C OSp(2[4) supersymmetry transformation § every-
where except at the North pole of §*, where the corresponding Killing spinor vanishes.
The proof is completed by showing that the correlator of the integrated top component C'
with an arbitrary operator O invariant under the SU(1|1) supersymmetry transformation
0 reduces to the correlator of the bottom component A at the North pole with O. In detail

</S4 d'z/g C(x) O> = 32722 (A(N) O) . (2.17)

°P;, and Pg are the spinor chirality projectors: P? = P, P2 = Pr and P, + Pr = 1. The Killing
spinors obey Pre' = ¢' and Pre; = ¢;.



The supersymmetry transformation of the fermions in a chiral multiplet with R-charge
w = 2 can be written as (2.5)°

A 1= _
00; = 1155V (AxR) + 3B X, +

FabF bEUXL (2.18a)
0N = — *FabWF leZ]XR ZF bF lez]XL + ng]XL
_,WB_%.A]IC l _37B.”.A.7k: 218b
2 TijTi €LIXR o TijT1 5leL (2.18b)

Using the SU(1|1) supersymmetry transformation 6 obtained by imposing the con-

straints (2.13) and (2.15) on the Killing spinors, we get after multiplying (2.18a) by
TziijkxiT and (2.18b) by 7—2ij5jkxiLT that

T it sz ab
B x5 W i XL j I

||XLH2 Tngf (2.19a)
XA | XZLTVmXR 3i
C=-9¢ Tl — =22 L 8. . V,,B1 + — B
Ixcl? ) 2 fxcl? V" r
i Trab m i Trab. J
X7 T v xp I XL _
77'3 Vo F — = == P 2.19b
1 ||><L||2 RN TR o T (2.150)

where we have used that for the SU(1|1) Killing spinors ||x.|* := |[x]||* = [[x%||?, where

2
[AI> = ATA. The terms proportional to F;; and V, £, in (2.18a) (2.18b) also vanish. Their
coeflicients are anti-self-dual in the tangent space indices since

X5 TYX = X5 Tl Xy = =52 et T g (2:20)
where (") is the product of r distinct gamma matrices. Since F o is self-dual in Eu-

clidean signature, all the terms involving F, vanish. We can eliminate B; from (2.19b) by
using (2.19a), which yields

it kT

L XL XL l
C= - v V(Axg)

2 xclP ([ux xR

. i XiLT .
J .. _ A J ..
Xr | T2i5 T2kl + , HXLH2 W( XR)TQZ]

(2.21)
where, for brevity, we have defined
i T it.om kT
- : Xz Ak x5 x5 Xz Vi w 3iXY "y, it
E(A; ¥4, ") = — i€’ + 5 T2 T2kIT T2
v el 9% T2 el Ixzl? ) R g 2T

(2.22)
We now show that the sum of the terms in (2.21) involving A are a total derivative.
For any OSp(2|2) supersymmetry parameter x/ and any scalar quantity X we have
that”

AN ,
X1, XL V"' XR dirX
H JH?V( k) = Vm( ’ X) !

. 2.23)
J 2 (

Iz lI? *

65 — (B1, B2, B3) such that B;; = B. Tiz = 3, BpTpij
"By using that VmXTL

= — 3 Xkvm-



Using this, the top component C' of a chiral multiplet with w = 2 can be written locally
as the sum of an SU(1|1) supersymmetry transformation § and total derivatives

T kT n
1 XZL 'YmXR XL, Y XR
C=6(=2(A;,¥;,xX")) — =V \Y% A | ToiiTok
(B8 #5x) = 5 ’“( el T 4| )
T m . ZT m
. X7 Y xRA i X X
+ 8irV,, (ﬁXZ’P-TPé ) Toij + ;Vm ( L‘X'YLHQRA> Toij - (2.24)

This formula fails at the North pole, where ||x} || = |[x%| = 0 and = diverges. Therefore the
integrated top component is non-trivial in correlation functions, as it is not supersymmetry-
exact globally, but the entire contribution localizes to the North pole, just as in the analysis
of 2d N' = (2,2) SCFTs in [1].8

Let us consider the integrated correlator with an operator O obeying 60 = 0

< S4d4x\/§C($)(9>:11%i£n)0 [</S4\B4 diz\/gC(x) > </ d*z,/7C(z) >

We have divided S* into two-regions: a four-dimensional ball le% of radius R around the
North pole and its complement 5’4\le%. In the R — 0 limit the ball contribution vanishes®

11111 d xr X . 2.2

Using (2.24), which is valid in S*\B%, and §® = 0, we can replace C by the last three
terms in (2.24), which inside (2.26) can be written as an integral over the three-sphere S%
of radius R at the boundary of S*\ B%. For any OSp(2(2) Killing spinor x? (2.14), we have
that in the R — 0 limit

. (2.25)

it

i - i - XL VMX%N 1
XL(R) ~ O(R), () ~ 01) = X~ 0 (L) 227

Therefore, a simple scaling argument shows that the last term in (2.24) cannot compensate
for the R? measure factor coming from S% and gives a vanishing contribution in the R — 0
limit. Therefore, we have shown that in the presence of d-closed operators

/54 d*r\/gC(z) = lim d*z/gC(z)

R—0 S1\B%

1 ETIp Xe Y™ P X, A(2)/3
=— - lim T T2 T2kl
2 R—0 J g\ g1 U el T Ixe P v
T.m

L. XzL Y XR

+ 8¢r lim d*z 8, | 2L 2B A(2) /g | Toi - 2.28

R=0 Jsigs ( el )\f> N 229

8We note that had we assumed that the partition function can be regulated while preserving full N = 2
superconformal invariance, we would have concluded that the partition function is independent of the
moduli, as the top component C' is globally superconformal-exact.

9The R* measure factor suppresses the ball contribution in the R — 0 limit.



In the limit R — 0 we can replace the bottom component A(z) by its value at the North
pole A(N), as higher order terms in the expansion in R vanish in the limit, and using
Stoke’s theorem

/ d*z\/gC(x) = lim V., (2.29)
S4 R—0 S%
where
L (I ir's
VM= —5 [’/‘XLHQROH ﬁx HQR\@ A(N)TQijTle+8ZT HL H2 514( )\/§7'2ij, (2.30)

and 7 is the unit vector towards the North pole of S* along the radial direction.'® Going
to spherical coordinates, where R is the radial coordinate, we find that

512A(N)r®(R? — 2r?) ~ 2048A(N)r®  512A(N)r®(R? + 2r?)

Vo= TR a2y R3(RZ+4r2)3 ~  R3(R? +4r2)3

(2.31)

The integration in (2.29) is over S%, therefore

. BI2AN)S(R?2+ 2%, 4
/SS Vi = T 1 2] 21’ R3 (2.32)

and
. BI2A(N)rS(R*+2r%) 5 4 2 o
| 2 = 32A(N . 2.
Lim R (RZ 1 4r2)p m“R> = 32A(N)m*r (2.33)
This yields the desired formula
</ d4x\/§C’(a:)O> = 321%r% (A(N) O) . (2.34)
S4

The integrated top component C' of a chiral multiplet is equivalent to inserting the bottom
component A at the North pole. A very similar analysis yields

</S4 d'z\/gC(x) O> = 321212 (A(S) O) . (2.35)

The integrated top component C' of an anti-chiral multiplet is equivalent to inserting the
bottom component A at the South pole.

We can now use (2.34) and (2.35) to express the derivative of the partition function
in (2.8) as an unintegrated two-point function

0105log Zga = % </S4 d*z/g Cr(x) /54 d4y\/§CJ(y)> = (327“2)2 (Ar(N)A(S)). (2.36)

It follows from the first equation in (2.5) that the correlator (A;(N)A7(S)) is § invariant,
since SU(1|1) supersymmetry parameters ¢/ and e; vanish at the North pole and South
pole respectively, and therefore §A;(N) = §A;(S) = 0.

2@

Va2’

10The unit radial vector in cartesian coordinates is given by 7% = —



Using the supersymmetry Ward identity (A;(N)A7(S)) = g (C1(N)C3(S)) [1], that
(C1(N)C3(9)) = ﬁglj defines the Zamolodchikov metric g;7 and that the metric is
Kahler (2.3) we arrive at

1 1
0r0jlog Zgs = 12917 = Ea;ajK. (2.37)

Therefore, the four sphere partition function of a four dimensional A" = 2 SCFT computes
the Kéhler potential in the conformal manifold (1.1), and is subject to Kéahler transforma-
tion ambiguities (1.2), which do not affect the Zamolodchikov metric.

3 Off-shell N = 2 Poincaré supergravity for S$*

The partition function of a field theory in a curved geometry can be ambiguous. These
ambiguities are encoded in finite counterterms for the background fields that capture the
background geometry and the parameters of the theory. When the partition function of a
supersymmetric theory can be regulated in a diffeomorphism invariant and supersymmetric
manner, the counterterms are supergravity invariants constructed out of the supergravity
multiplet encoding the background geometry and the supersymmetry multiplets to which
the other parameters of the theory can be promoted, since all parameters in a supersym-
metric field theory can be promoted to background supermultiplets [12].

Constructing these supergravity invariants requires identifying first the supergravity
theory in which the curved geometry over which the partition function is computed is a
supersymmetric background. This can be analyzed in the framework of off-shell super-
gravity [13]. In this section we identify the four dimensional N' = 2 off-shell Poincaré
supergravity theory and the background fields in that supergravity multiplet that give rise
to the OSp(2|4)-invariant four-sphere background geometry.

A conceptual way of constructing off-shell Poincaré supergravity theories is to start
with off-shell conformal supergravity and partially gauge fix the conformal symmetries
down to Poincaré by adding compensating supermultiplets. Different choices of compen-
sating multiplets give rise to different off-shell Poincaré supergravity theories, with different
sets of auxiliary fields.!’? The Poincaré supersymmetry transformations of the gauge fixed
theory are constructed by combining the Poincaré supersymmetry transformations in con-
formal supergravity with field dependent superconformal transformations that are needed
to preserve the gauge choice.!?

Our starting point is four dimensional N/ = 2 conformal supergravity [15] (we refer
to [14] for more details). Off-shell N' = 2 superconformal transformations are realized on
the Weyl multiplet, whose independent fields are

bosonic: e;ﬁl,bm,Vmg,AfwT;b,D

fermionic: % x". (3.1)

"¥or instance, old and new minimal four dimensional A/ = 1 Poincaré supergravity arises from A = 1
conformal supergravity by using a compensating chiral and tensor multiplet respectively.
12We refer to the [14] for more background material and references, in particular for 4d AV = 2 super-

gravity.



The fields e, b, V., f AR i are the gauge fields for translations, dilatations, SU(2)g,
U(1)r and Poincaré supersymmetry generators in the A' = 2 superconformal algebra. The
Weyl multiplet is completed by the bosonic auxiliary fields 77, and D, and the fermionic
auxiliary field x*. In Euclidean signature T’ o is a self-dual rank-two tensor. The embedding
of the OSp(2|4)-invariant S* in conformal supergravity appeared in [16, 17].

Four dimensional N' = 2 Poincaré supergravity [18] contains a graviphoton gauge
field A,,. This field is furnished in the conformal approach by coupling an abelian vector
multiplet to the Weyl multiplet [19, 20]. An N = 2 vector multiplet, also known as
a restricted chiral multiplet, is an A/ = 2 chiral multiplet (2.5) with w = 1 subject to

constraints, and consists of

bosonic: X, A,,,Y;;
fermionic: € (3.2)

a complex scalar X, a gauge field A,,, a triplet of real auxiliary fields Y;; = Y}; and gauginos
;. The vielbein €2, and gravitino ¢, of the Weyl multiplet and the gauge field 4,, in
the vector multiplet complete the on-shell content of four dimensional N' = 2 Poincaré
supergravity multiplet.

The first step in constructing a Poincaré supergravity theory is to gauge fix special
conformal transformations. This can be accomplished by setting

by = 0. (3.3)

In order to preserve this gauge, supersymmetry transformations must be accompanied by

a compensating special conformal transformation, which acts nontrivially on b,,. Fortu-

nately, all elementary fields in conformal supergravity and all fields in N' = 2 matter

multiplets transform trivially under special conformal transformations, and therefore the

supersymmetry transformations of these fields are not modified by the gauge choice (3.3).
Dilatations and U(1)g are gauge fixed by setting [15]

X =u, (3.4)
where (1 is an arbitrary mass scale, while [15]
Q2;=0 (3.5)
fixes the special conformal supersymmetry transformations. Under supersymmetry [14]
60X = %EQ (3.6)
60 = PXe; + irabfabeijej + %ej +2Xn;, (3.7)

where § = & + d,, and (€', ¢;) and (1%, 7;) parametrize the Poincaré and conformal super-
symmetry transformations. Fy, is the superconformal covariant field strength (see equation

(20.77) in [14]) and

1—
DuX = (0 — by —iA)X — 598U (3.8)



is the superconformal covariant derivative acting on the scalar field X. In order to preserve
the gauge choice (3.4)(3.5), we must accompany the Poincaré supersymmetry transforma-
tions d. with a field dependent compensating conformal supersymmetry transformation 9,

with parameter!
1

)
N = §4R€z' - ﬂ

<iFabfab€ij + Y;) . (3.9)

Different Poincaré supergravity theories depend on the choice of a second multiplet
which gauge fixes the remaining SU(2)r symmetry. Three choices for this compensating
multiplet have been considered in the literature (see [21]): a non-linear multiplet, a hyper-
multiplet and a tensor multiplet. We now demonstrate that the OSp(2[4)-invariant S* is a
supersymmetric background of the A/ = 2 Poincaré supergravity theory constructed with
a tensor multiplet (and not with the non-linear or hypermultiplet).

Consider the off-shell N' = 2 Poincaré supergravity multiplet constructed by coupling
a vector multiplet and a tensor multiplet to the Weyl multiplet. An N = 2 tensor multi-
plet [21]

bosonic : L;;j, G, Emp
fermionic : ¢’ (3.10)

consists of a triplet of real scalars L;; = Lj;, a tensor gauge field E,,,, a complex scalar G
and a doublet of spinors ¢'. The SU(2)z symmetry can be gauge fixed by setting

Lij = 5, (3.11)
which breaks SU(2)r down to SO(2)g. The supersymmetry transformation [11]
dLij = €05 + €z‘k5jl€(k¢l) (3.12)

implies that to preserve (3.11), we must accompany the Poincaré supersymmetry transfor-
mation J. with a compensating SU(2)g transformation dgy(g) R(Akj) with parameter!®

Ab = (Em & — eimEjie ')
A 0 '

(3.13)

In summary, this off-shell Poincaré supergravity multiplet constructed by gauge fixing
a Weyl, vector and tensor multiplet completes the on-shell multiplet €%, % A, with
bosonic auxiliary fields and fermionic auxiliary fields x*, ¢*. The Poincaré supersymmetry
transformations in this N' = 2 Poincaré supergravity theory are given by the following
combination of superconformal transformations

Se + 6y + Osu(2) 5 (AF;) (3.14)

with 7 in (3.9) and A in (3.13).

13Since (3.5) preserves §X, no other compensating transformation in required.
YThe parameter is determined only up to an SO(2)x transformation.

,10,



In this A/ = 2 Poincaré supergravity theory the supersymmetric backgrounds where
the background values of all fermions vanish are solutions to the following equations

(6 +0) 0, =0 (S +6,)x =0 (6c +0y) ' =0 (3.15)

with 7 in (3.9), since Akj = 0 vanish on bosonic backgrounds. The explicit form of these
transformations are [19-21] (we use [11])

; 1 1 1 » o 1 iy A
oy, = <8m + bm + EF“bwmab - 21}451) €+ V' e — —FabT_bf-:”'ymEj —Ymn'

9 16 @
Svi=ipei v irar | Lpp—iic R iV 4 iR (T)e 1+ STel
X —5 € +6 _Zp ab € — ab( 7 )6 +1 ab( )E +§ ab® "M
1 - 1 .. 1. -
56 = SPLie; + 22 — SGél + 2L, (316)

with 7 in (3.9). D is superconformal covariant derivative and Rgy(T) and }A%ab(Uji) are
covariant curvatures for U(1)g and SU(2)g.
The OSp(2[4)- supersymmetric S* background is described by the following Killing
spinor equations (2.9)
Ve = i"ymTije- Ve = i'ymﬁi-ej. (3.17)
2r L 2r J
From (3.16) we find that S* is a supersymmetric background of this supergravity theory
with the following non-vanishing background fields turned on
a _ _a ij 2ip ij _ 2ip _
er = ey |g1 YV = T Yij = —, T other =0. (3.18)
With these background fields turned on §1?, realizes the S* Killing spinor equations (3.17),
while §¢% and §¢* vanish identically.'® The algebra of supergravity transformations when
evaluated on the background (3.18) realizes the OSp(2|4) symmetry of S%.

4 The Kahler ambiguity supergravity counterterm

In this section we construct the N’ = 2 Poincaré supergravity invariant constructed out
of the supergravity multiplet and the w = 0 chiral multiplets A; (see below (2.7)) which
when evaluated on the OSp(2]4)-supersymmetric background (4.6) realizes the Kéhler am-
biguity (1.2).

Our approach is to construct a superconformal invariant constructed out of the Weyl
multiplet, the compensating vector multiplet ®, the compensating tensor multiplet and the
chiral multiplets Ay, the supermultiplets to which the coordinates in the conformal manifold
77 have been promoted. This invariant, when evaluated on the Poincaré gauge fixing choice

15 A similar analysis for the Poincaré supergravity theories constructed with a compensating non-linear
multiplet and hypermultiplet demonstrates that the background fields that yield the S* Killing spinor
equations are incompatible with the vanishing of the supersymmetry variations of the fermions in these
multiplets. Therefore, S* is not a supersymmetric background of these supergravity theories.

— 11 —



described in the previous section yields an invariant in the associated N' = 2 Poincaré
supergravity theory. We first recall some facts about the construction of superconformal
invariants.

Consider an abstract chiral multiplet (2.5) with w = 2, which we denote by fl, coupled
to the Weyl multiplet (3.1). The following superconformal invariant can be constructed
from such a chiral multiplet [15]

I[A] = /d4a?\/§ |:é(l’) - ifl (TJZ)Q + fermions| , (4.1)

where C' and A denote the top and bottom components of the multiplet A. The coupling
of the chiral multiplet to the Weyl multiplet is responsible for the appearance of the terms
after C' in (4.1). The product of two chiral multiplets with R-charge w; and wsy yields
another chiral multiplet of R-charge w; + wsy. Therefore, superconformal invariants can be
constructed from products of chiral multiplets with total R-charge w = 2.

Consider now the compensating vector multiplet that appears in the construction of
N = 2 Poincaré supergravity, which we denote by ®. It is important to note that an AN/ = 2
vector multiplet is a chiral multiplet with w = 1 subject to reducibility constraints [22],
which express the last two components of the chiral multiplet in terms of the previous ones.
It is also known as a restricted chiral multiplet. The components of a chiral multiplet (2.5)
are given in terms of the fields in the abelian vector multiplet (3.2) by

Alg = X

Uile =
Bijlg = Yij
Falo=Fa

Ailg = — e PSY

Clg = —2D,D*X — %]—'{;@T“b* — 3y (4.2)

where F,; is the superconformal covariant field strength. Expressing a vector multiplet as
a w = 1 chiral multiplet provides a way of constructing a superconformal invariant out of
® using (4.1).

We now write down the supergravity counterterm responsible for the Kahler ambigu-
ity (1.2). It is the superconformal invariant (4.1) constructed from the w = 2 composite
chiral multiplet

P F(Ap), (4.3)

where F is an arbitrary holomorphic function of the w = 0 chiral multiplets A; describing
the coordinates in the conformal manifold.'® The associated N = 2 Poincaré supergravity

16 Another natural guess for the Kihler counterterm can be constructed from the w = 2 chiral multiplet
WPW, F (Ar), where Wy, is a chiral multiplet that encodes the covariant Weyl multiplet (3.1). However,
upon evaluating these terms on the background (4.6) they all vanish, as these terms involve the Weyl tensor,
which vanishes on S*. Supergravity couplings involving W? have been considered in the literature [23]. For
other higher derivative invariants in A = 2 supergravity see e.g. [24-28].
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invariant is

I[®*F(Ap)] (4.4)
with

Alg =X =p. (4.5)

We now want to evaluate the AN/ = 2 Poincaré supergravity invariant (4.4) on the
OSp(2[4)-invariant background field configuration

Weyl: el = et g
2ip 4
vector: Alg =X =p, Bijle = —, g Cle = 2
chiral: Al gy =F(11), (4.6)

where we have used (3.18)(4.2) and (4.5).

The product of two chiral multiplets with bosonic components (A, B;j, F,;,C) and
(a,bij, ;. c) yields a new chiral multiplet with bosonic components (setting all fermions
to zero, as they vanish on the OSp(2]4)-invariant background (4.6))

1 ., .
(Aa, Ab;; + aB;j, Af,, + aF,, Ac+ aC — ielkaﬂBijbkl +F, f“b> . (4.7)

Therefore, on the supersymmetric background (4.6)

Al g2 = p?
4
Bijlgs = — — —T1ij
1242
Clo» =—5 (4.8)
T
and finally ,
12p
Clozra,) = — 3 F(m1). (4.9)

Using that p is a fiducial scale introduced in gauge fixing to Poincaré supergravity, so that
we can write ;1 = a/r, we have find that the invariant (4.4) evaluates to

I[®*F(Af)] = /d4a?\/§ Clozra, = 327202 F(1y). (4.10)

Therefore, the marginal supergravity counterterm

1

sz (PF(AD] + I F (Ap)]) (4.11)

is responsible for the Kéhler ambiguity (1.2) in the four sphere partition function of four
dimensional N = 2 SCFTs .
Zgt ~ Zgretz(FMHF@) | (4.12)

This provides a microscopic realization of Kéhler ambiguities in these SCFTs.
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