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1 Introduction

Recent years have witnessed remarkable progress in obtaining the exact partition function

of supersymmetric field theories in various background geometries. When the geometry

is S1 × Md−1 the partition function admits a standard Hilbert space interpretation as a

supertrace over the states of the theory on Md−1. In other geometries, such as on a sphere

Sd, the physical interpretation of the partition function must be sought.

In [1] it has been shown that the partition function of 4d N = 2 superconformal field

theories (SCFTs) on S4 computes the exact Kähler potential K on the space of exactly

marginal couplings, also referred to as the conformal manifold. This result was proven

both by using supersymmetric localization [2] and by conformal dimension regularization

on S4, and extends the proof in [3] that the S2 partition function of 2d N = (2, 2) SCFTs

computes the exact Kähler potential on the conformal manifold, as conjectured by [4] based

on the exact formulae in [5, 6] (see also [3, 7]). In detail, [1] demonstrated that

ZS4 = eK/12 . (1.1)

These identifications provide a physical and geometrical interpretation of the sphere par-

tition function of 4d N = 2 and 2d N = (2, 2) SCFTs. These results also provide a

computational pathway for obtaining the exact metric in the conformal manifold, which

are interesting new observables in these theories, acted on by dualities (see e.g. recent

work [8, 9]).

Here we present an elementary proof of the formula (1.1) using supersymmetry Ward

identities. This new proof does not require localization nor that the 4d N = 2 SCFT

admits a Lagrangian description. By virtue of the relation (1.1) identifying the S4 parti-

tion function with the Kähler potential K on the conformal manifold, it follows that the

partition function is subject to the Kähler ambiguity transformations

K(τ, τ̄) → K(τ, τ̄) + F(τ) + F̄(τ̄) , (1.2)
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where F is an arbitrary holomorphic function and τ are holomorphic coordinates on the

conformal manifold. This ambiguity implies that the partition function is a section over

the space of exactly marginal couplings.

We also give the microscopic realization of the Kähler ambiguity (1.2) by constructing

the local supergravity counterterm in 4d N = 2 off-shell supergravity that when evaluated

on the supersymmetric S4 background yields (1.2). This is the 4d counterpart of the Kähler

ambiguity counterterm for 2d N = (2, 2) SCFTs constructed in [1].

The plan is as follows. In section 2 we use supersymmetry Ward identities to show

that the S4 partition function of 4d N = 2 SCFTs computes the Kähler potential in the

conformal manifold. In section 3 we identify the off-shell 4d N = 2 Poincaré supergravity

theory in which the S4 is a supersymmetric background. In section 4 we construct the

supergravity invariant in the relevant Poincaré supergravity theory that once evaluated on

S4 provides a first principles realization of the Kähler transformation (1.2).

2 Kähler potential from S
4 partition function

An exactly marginal operator in a four dimensional N = 2 SCFT is a scalar operator of

dimension four which is a superconformal descendant of a scalar chiral primary operator of

U(1)R charge w = 2. An N = 2 SCFT can be deformed while preserving superconformal

invariance by1

1

π2

∫
d4x

∑

I

(
τIOI + τ̄ĪŌĪ

)
. (2.1)

The exactly marginal couplings τI are holomorphic coordinates in the space of exactly

marginal deformations, known as the conformal manifold. The canonical metric in the

conformal manifold gIJ̄ is the Zamolodchikov metric

〈OI(x)ŌJ̄(0)〉 =
gIJ̄
x8

, (2.2)

which in four dimensional N = 2 SCFTs is Kähler, that is

gIJ̄ =
∂

∂τI

∂

∂τ̄J̄
K(τ, τ̄) ≡ ∂I∂J̄K(τ, τ̄) . (2.3)

An N = 2 SCFT can be canonically placed on S4 by the stereographic projection. The

N = 2 superconformal transformations on S4 are parametrized by chiral conformal Killing

spinors ǫi and ǫi of opposite chirality transforming as doublets of the SU(2)R R-symmetry,

which obey2

∇mǫ
i = γmη

i ∇mǫi = γmηi , (2.4)

so that ηi = 1
4∇/ǫi and ηi = 1

4∇/ǫi.
An exactly marginal operator in an N = 2 SCFT can be represented as the top

component of a four dimensional N = 2 chiral multiplet of R-charge w = 2, whose bottom

component realizes the parent chiral primary operator. The holomorphic coordinates on

1We use the same conventions as in [1].
2Γa denotes tangent space gamma matrices while γm = ema Γa denotes curved space ones.
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the conformal manifold can be promoted to supersymmetric background chiral superfields

with vanishing R-charge w = 0. The N = 2 superconformal transformations of a chiral

multiplet with R-charge w on S4 are given by [10] (we use [11]):3

δA =
1

2
ǫiΨi

δΨi = ∇/(Aǫi) +
1

2
Bijǫ

j +
1

4
ΓabF−

abεijǫ
j + (2w − 4)Aηi

δBij = ǫ(i∇/Ψj) − ǫkΛ(iεj)k + 2(1− w)η(iΨj)

δF−
ab =

1

4
εijǫi∇/ΓabΨj +

1

4
ǫiΓabΛi −

1

2
(1 + w)εijηiΓabΨj

δΛi = −1

4
Γab∇/ (F−

abǫi)−
1

2
∇/Bijε

jkǫk +
1

2
Cεijǫ

j − (1 + w)Bijε
jkηk +

1

2
(3− w)ΓabF−

abηi

δC = −∇m(εijǫiγ
mΛj) + (2w − 4)εijηiΛj , (2.5)

where in Euclidean signature F−
ab is a self-dual rank-two tensor. Indeed, for w = 2, the

integrated top component is superconformal invariant and we have the identification

CI = OI for w = 2 . (2.6)

For w = 0, an arbitrary covariantly constant background value for the bottom component

of the chiral multiplet4 is superconformal invariant, and serves as the spurion field for the

holomorphic coordinates on the conformal manifold

AI = τI for w = 0 . (2.7)

We denote by AI the chiral multiplets to which the coordinates in the conformal manifold

have been promoted.

Consider now the SCFT partition function on S4 as a function of the exactly marginal

couplings ZS4(τ, τ̄). The second derivative

∂I∂J̄ logZS4 =
1

π4

〈∫

S4

d4x
√
g CI(x)

∫

S4

d4y
√
g C̄J̄(y)

〉
(2.8)

is the integrated connected two-point function of exactly marginal operators. This correla-

tor is ultraviolet divergent, divergences arising when the operators collide. These ultraviolet

divergences can be regularized by introducing a massive deformation. Regulating diver-

gences in a supersymmetric manner leads us to consider the OSp(2|4) massive subalgebra

of the N = 2 superconformal algebra on S4, which is the supersymmetry algebra of an

arbitrary massive four dimensional N = 2 theory on S4.

The OSp(2|4) massive subalgebra on S4 is generated by supercharges that anticommute

to the SO(5) isometries of S4 and an SO(2)R ⊂ SU(2)R R-symmetry. Conformal generators

and U(1)R are projected out. The OSp(2|4) transformations are generated by Killing

spinors which obey

∇mχ
j =

i

2r
γmχ

j , (2.9)

3Throughout a barred spinor is λ̄ = λT C, where C is the charge conjugation matrix.
4All other components in multiplet must vanish.
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where

χj = ǫj + τ jk1 ǫk (2.10)

so that5

ǫi = χi
L ǫi = τ1ijχ

j
R (2.11)

and τ jkp = (iσ3,−1,−iσ1) = (τpjk)
∗, where σp are the Pauli matrices. In stereographic

coordinates, where ds2 = 1
(

1+ x2

4r2

)

2dxmdx
m, we have

χj =
1√

1 + x2

4r2

(
1 +

i

2r
xmΓm

)
χj
0 . (2.12)

The constant spinors χj
0 parametrize the transformations of the eight supercharges in

OSp(2|4). If these parameters are chiral

PLχ
j
0 = 0 , (2.13)

the corresponding spinors generate an OSp(2|2) subalgebra OSp(2|4). The chiral compo-

nents of these spinors χj
L and χj

R

χj
L = PLχ

j =
i/2r√
1 + x2

4r2

xmΓmχj
0R χj

R = PRχ
j =

1√
1 + x2

4r2

χj
0R , (2.14)

vanish at the North and the South poles of the sphere respectively. If the parameters are

further constrained by

χi
0 = τ ij1 εjkΓ1Γ2χ

k
0 , (2.15)

the corresponding spinors generate a further SU(1|1) subalgebra

Q2 = J +R (2.16)

of OSp(2|2) ⊂ OSp(2|4), where J = J12 + J34 is a self-dual rotation on S4 and R is the

SO(2)R ⊂ SU(2)R R-symmetry.

Our strategy is to first prove that the integrated top component of the chiral multiplet

in (2.8) can be written as an SU(1|1) ⊂ OSp(2|4) supersymmetry transformation δ every-

where except at the North pole of S4, where the corresponding Killing spinor vanishes.

The proof is completed by showing that the correlator of the integrated top component C

with an arbitrary operator O invariant under the SU(1|1) supersymmetry transformation

δ reduces to the correlator of the bottom component A at the North pole with O. In detail

〈∫

S4

d4x
√
g C(x)O

〉
= 32π2r2 〈A(N)O〉 . (2.17)

5PL and PR are the spinor chirality projectors: P 2

L = PL, P
2

R = PR and PL + PR = 1. The Killing

spinors obey PLǫ
i = ǫi and PRǫi = ǫi.
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The supersymmetry transformation of the fermions in a chiral multiplet with R-charge

w = 2 can be written as (2.5)6

δΨi = τ1ij /∇(Aχj
R) +

1

2
~B · ~τijχj

L +
1

4
ΓabF−

abεijχ
j
L (2.18a)

δΛi =− 1

4
Γab /∇F−

abτ1ijχ
j
R − i

4r
ΓabF−

abτ1ijχ
j
L +

1

2
Cεijχ

j
L

− 1

2
/∇ ~B · ~τijτ jk1 εklχ

l
R − 3i

2r
~B · ~τijτ jk1 εklχ

l
L (2.18b)

Using the SU(1|1) supersymmetry transformation δ obtained by imposing the con-

straints (2.13) and (2.15) on the Killing spinors, we get after multiplying (2.18a) by

τ2ijτ
jk
1 χi

L
†
and (2.18b) by τ2ijε

jkχi
L
†
that

B1 =− δ

(
χi
L
†
Ψk

‖χL‖2

)
τ2ijτ

jk
1 +

χi
L
†

‖χL‖2
/∇(Aχj

R)τ2ij −
1

4

χi
L
†
Γabχj

L

‖χL‖2
τ3ijF

−
ab (2.19a)

C =− δ

(
χi
L
†
Λk

‖χL‖2

)
τ2ijε

jk − 1

2

χi
L
†
γmχj

R

‖χL‖2
τ2ij∇mB1 +

3i

r
B1

+
1

4

χi
L
†
Γabγmχj

R

‖χL‖2
τ3ij∇mF

−
ab +

i

4r

χi
L
†
Γabχj

L

‖χL‖2
τ3ijF

−
ab (2.19b)

where we have used that for the SU(1|1) Killing spinors ‖χL‖2 := ‖χ1
L‖2 = ‖χ2

L‖2, where
‖λ‖2 = λ†λ. The terms proportional to F−

ab and ∇µF
−
ab in (2.18a) (2.18b) also vanish. Their

coefficients are anti-self-dual in the tangent space indices since

χi
L
†
Γabγ(r)χj

L/R = χi
L
†
Γ∗Γ

abγ(r)χj
L/R = −1

2
εabcdχ

i
L
†
Γcdγ(r)χj

L/R , (2.20)

where γ(r) is the product of r distinct gamma matrices. Since F−
ab is self-dual in Eu-

clidean signature, all the terms involving F−
ab vanish. We can eliminate B1 from (2.19b) by

using (2.19a), which yields

C = − 1

2

χi
L
†

‖χL‖2
/∇
([

χk
L
†

‖χL‖2
/∇(Aχl

R)

]
χj
R

)
τ2ijτ2kl +

i

r

χi
L
†

‖χL‖2
/∇(Aχj

R)τ2ij

+ δ
(
Ξ(Λi,Ψi, χ

i)
)
, (2.21)

where, for brevity, we have defined

Ξ(Λi,Ψi, χ
i) := −χ

i
L
†
Λk

‖χL‖2
τ2ijε

jk +
1

2

χi
L
†
γmχj

R

‖χL‖2
∇m

(
χk
L
†
Ψt

‖χL‖2

)
τ2ijτ2klτ

lt
1 − 3i

r

χi
L
†
Ψk

‖χL‖2
τ2ijτ

jk
1 .

(2.22)

We now show that the sum of the terms in (2.21) involving A are a total derivative.

For any OSp(2|2) supersymmetry parameter χj and any scalar quantity X we have

that7

χj
L

†

‖χj
L‖2

∇/
(
Xχj

R

)
= ∇m

(
χj
L

†
γmχj

R

‖χj
L‖2

X

)
+

4irX

x2
. (2.23)

6 ~B = (B1, B2, B3) such that Bij = ~B · ~τij =
∑

p
Bpτpij .

7By using that ∇mχ
†
L = − i

2r
χ
†
Rγm.
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Using this, the top component C of a chiral multiplet with w = 2 can be written locally

as the sum of an SU(1|1) supersymmetry transformation δ and total derivatives

C = δ
(
Ξ(Λi,Ψi, χ

i)
)
− 1

2
∇m

(
χi
L
†
γmχj

R

‖χL‖2
∇n

[
χk
L
†
γnχl

R

‖χL‖2
A

])
τ2ijτ2kl

+ 8ir∇m

(
χi
L
†
γmχj

RA

‖χL‖2x2

)
τ2ij +

i

r
∇m

(
χi
L
†
γmχj

R

‖χL‖2
A

)
τ2ij . (2.24)

This formula fails at the North pole, where ‖χ1
L‖ = ‖χ2

L‖ = 0 and Ξ diverges. Therefore the

integrated top component is non-trivial in correlation functions, as it is not supersymmetry-

exact globally, but the entire contribution localizes to the North pole, just as in the analysis

of 2d N = (2, 2) SCFTs in [1].8

Let us consider the integrated correlator with an operator O obeying δO = 0

〈∫

S4

d4x
√
g C(x)O

〉
= lim

R→0

[〈∫

S4\B4

R

d4x
√
g C(x)O

〉
+

〈∫

B4

R

d4x
√
g C(x)O

〉]
. (2.25)

We have divided S4 into two-regions: a four-dimensional ball B4
R of radius R around the

North pole and its complement S4\B4
R. In the R→ 0 limit the ball contribution vanishes9

and we are left with

lim
R→0

〈∫

S4\B4

R

d4x
√
g C(x)O

〉
. (2.26)

Using (2.24), which is valid in S4\B4
R, and δΦ = 0, we can replace C by the last three

terms in (2.24), which inside (2.26) can be written as an integral over the three-sphere S3
R

of radius R at the boundary of S4\B4
R. For any OSp(2|2) Killing spinor χj (2.14), we have

that in the R→ 0 limit

χi
L(R) ∼ O(R), χi

R(R) ∼ O(1) ⇒ χi
L
†
γµχi

R

‖χL‖2
∼ O

(
1

R

)
. (2.27)

Therefore, a simple scaling argument shows that the last term in (2.24) cannot compensate

for the R3 measure factor coming from S3
R and gives a vanishing contribution in the R→ 0

limit. Therefore, we have shown that in the presence of δ-closed operators
∫

S4

d4x
√
g C(x) = lim

R→0

∫

S4\B4

R

d4x
√
g C(x)

=− 1

2
lim
R→0

∫

S4\B4

R

d4x ∂m

(
χi
L
†
γmχj

R

‖χL‖2
∂n

[
χk
L
†
γnχl

R

‖χL‖2
A(x)

√
g

])
τ2ijτ2kl

+ 8ir lim
R→0

∫

S4\B4

R

d4x ∂m

(
χi
L
†
γmχj

R

‖χL‖2x2
A(x)

√
g

)
τ2ij . (2.28)

8We note that had we assumed that the partition function can be regulated while preserving full N = 2

superconformal invariance, we would have concluded that the partition function is independent of the

moduli, as the top component C is globally superconformal-exact.
9The R4 measure factor suppresses the ball contribution in the R → 0 limit.
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In the limit R → 0 we can replace the bottom component A(x) by its value at the North

pole A(N), as higher order terms in the expansion in R vanish in the limit, and using

Stoke’s theorem ∫

S4

d4x
√
g C(x) = lim

R→0

∫

S3

R

V · η̂ , (2.29)

where

V m := −1

2

χi
L
†
γmχj

R

‖χL‖2
∂n

(
χk
L
†
γnχl

R

‖χL‖2
√
g

)
A(N)τ2ijτ2kl + 8ir

χi
L
†
γmχj

R

‖χL‖2x2
A(N)

√
gτ2ij , (2.30)

and η̂ is the unit vector towards the North pole of S4 along the radial direction.10 Going

to spherical coordinates, where R is the radial coordinate, we find that

V · η̂ =
512A(N)r6(R2 − 2r2)

R3(R2 + 4r2)3
+

2048A(N)r8

R3(R2 + 4r2)3
=

512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
. (2.31)

The integration in (2.29) is over S3
R, therefore

∫

S3

R

V · η̂ =
512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
2π2R3 , (2.32)

and

lim
R→0

512A(N)r6(R2 + 2r2)

R3(R2 + 4r2)3
2π2R3 = 32A(N)π2r2 . (2.33)

This yields the desired formula

〈∫

S4

d4x
√
g C(x)O

〉
= 32π2r2 〈A(N)O〉 . (2.34)

The integrated top component C of a chiral multiplet is equivalent to inserting the bottom

component A at the North pole. A very similar analysis yields

〈∫

S4

d4x
√
g C̄(x)O

〉
= 32π2r2

〈
Ā(S)O

〉
. (2.35)

The integrated top component C̄ of an anti-chiral multiplet is equivalent to inserting the

bottom component Ā at the South pole.

We can now use (2.34) and (2.35) to express the derivative of the partition function

in (2.8) as an unintegrated two-point function

∂I∂J̄ logZS4 =
1

π4

〈∫

S4

d4x
√
g CI(x)

∫

S4

d4y
√
g C̄J̄(y)

〉
=
(
32r2

)2 〈
AI(N)ĀJ̄(S)

〉
. (2.36)

It follows from the first equation in (2.5) that the correlator
〈
AI(N)ĀJ̄(S)

〉
is δ invariant,

since SU(1|1) supersymmetry parameters ǫj and ǫj vanish at the North pole and South

pole respectively, and therefore δAI(N) = δĀJ̄(S) = 0.

10The unit radial vector in cartesian coordinates is given by η̂a = − xa

√
x2

.
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Using the supersymmetry Ward identity
〈
AI(N)ĀJ̄(S)

〉
= r4

48

〈
CI(N)C̄J̄(S)

〉
[1], that〈

CI(N)C̄J̄(S)
〉
= 1

(2r)8
gIJ̄ defines the Zamolodchikov metric gIJ̄ and that the metric is

Kähler (2.3) we arrive at

∂I∂J̄ logZS4 =
1

12
gIJ̄ =

1

12
∂I∂J̄K . (2.37)

Therefore, the four sphere partition function of a four dimensional N = 2 SCFT computes

the Kähler potential in the conformal manifold (1.1), and is subject to Kähler transforma-

tion ambiguities (1.2), which do not affect the Zamolodchikov metric.

3 Off-shell N = 2 Poincaré supergravity for S
4

The partition function of a field theory in a curved geometry can be ambiguous. These

ambiguities are encoded in finite counterterms for the background fields that capture the

background geometry and the parameters of the theory. When the partition function of a

supersymmetric theory can be regulated in a diffeomorphism invariant and supersymmetric

manner, the counterterms are supergravity invariants constructed out of the supergravity

multiplet encoding the background geometry and the supersymmetry multiplets to which

the other parameters of the theory can be promoted, since all parameters in a supersym-

metric field theory can be promoted to background supermultiplets [12].

Constructing these supergravity invariants requires identifying first the supergravity

theory in which the curved geometry over which the partition function is computed is a

supersymmetric background. This can be analyzed in the framework of off-shell super-

gravity [13]. In this section we identify the four dimensional N = 2 off-shell Poincaré

supergravity theory and the background fields in that supergravity multiplet that give rise

to the OSp(2|4)-invariant four-sphere background geometry.

A conceptual way of constructing off-shell Poincaré supergravity theories is to start

with off-shell conformal supergravity and partially gauge fix the conformal symmetries

down to Poincaré by adding compensating supermultiplets. Different choices of compen-

sating multiplets give rise to different off-shell Poincaré supergravity theories, with different

sets of auxiliary fields.11 The Poincaré supersymmetry transformations of the gauge fixed

theory are constructed by combining the Poincaré supersymmetry transformations in con-

formal supergravity with field dependent superconformal transformations that are needed

to preserve the gauge choice.12

Our starting point is four dimensional N = 2 conformal supergravity [15] (we refer

to [14] for more details). Off-shell N = 2 superconformal transformations are realized on

the Weyl multiplet, whose independent fields are

bosonic: eam, bm, V
j

m i , A
R
m, T

−
ab, D

fermionic: ψi
m, χ

i . (3.1)

11For instance, old and new minimal four dimensional N = 1 Poincaré supergravity arises from N = 1

conformal supergravity by using a compensating chiral and tensor multiplet respectively.
12We refer to the [14] for more background material and references, in particular for 4d N = 2 super-

gravity.
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The fields eam, bm, V
j

m i , A
R
m, ψ

i
m are the gauge fields for translations, dilatations, SU(2)R,

U(1)R and Poincaré supersymmetry generators in the N = 2 superconformal algebra. The

Weyl multiplet is completed by the bosonic auxiliary fields T−
ab and D, and the fermionic

auxiliary field χi. In Euclidean signature T−
ab is a self-dual rank-two tensor. The embedding

of the OSp(2|4)-invariant S4 in conformal supergravity appeared in [16, 17].

Four dimensional N = 2 Poincaré supergravity [18] contains a graviphoton gauge

field Am. This field is furnished in the conformal approach by coupling an abelian vector

multiplet to the Weyl multiplet [19, 20]. An N = 2 vector multiplet, also known as

a restricted chiral multiplet, is an N = 2 chiral multiplet (2.5) with w = 1 subject to

constraints, and consists of

bosonic: X,Am, Yij

fermionic: Ωi (3.2)

a complex scalarX, a gauge field Am, a triplet of real auxiliary fields Yij = Yji and gauginos

Ωi. The vielbein eam and gravitino ψi
m of the Weyl multiplet and the gauge field Am in

the vector multiplet complete the on-shell content of four dimensional N = 2 Poincaré

supergravity multiplet.

The first step in constructing a Poincaré supergravity theory is to gauge fix special

conformal transformations. This can be accomplished by setting

bm = 0 . (3.3)

In order to preserve this gauge, supersymmetry transformations must be accompanied by

a compensating special conformal transformation, which acts nontrivially on bm. Fortu-

nately, all elementary fields in conformal supergravity and all fields in N = 2 matter

multiplets transform trivially under special conformal transformations, and therefore the

supersymmetry transformations of these fields are not modified by the gauge choice (3.3).

Dilatations and U(1)R are gauge fixed by setting [15]

X = µ , (3.4)

where µ is an arbitrary mass scale, while [15]

Ωi = 0 (3.5)

fixes the special conformal supersymmetry transformations. Under supersymmetry [14]

δX =
1

2
ǫiΩi (3.6)

δΩi = D/Xǫi +
1

4
ΓabFabεijǫ

j +
Yij
2
ǫj + 2Xηi , (3.7)

where δ ≡ δǫ + δη, and (ǫi, ǫi) and (ηi, ηi) parametrize the Poincaré and conformal super-

symmetry transformations. Fab is the superconformal covariant field strength (see equation

(20.77) in [14]) and

DµX = (∂µ − bµ − iAR
µ )X − 1

2
ψ
i
µΩi (3.8)
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is the superconformal covariant derivative acting on the scalar field X. In order to preserve

the gauge choice (3.4)(3.5), we must accompany the Poincaré supersymmetry transforma-

tions δǫ with a field dependent compensating conformal supersymmetry transformation δη
with parameter13

ηi =
i

2
A/Rǫi −

1

2µ

(
1

4
ΓabFabεij +

Yij
2

)
ǫj . (3.9)

Different Poincaré supergravity theories depend on the choice of a second multiplet

which gauge fixes the remaining SU(2)R symmetry. Three choices for this compensating

multiplet have been considered in the literature (see [21]): a non-linear multiplet, a hyper-

multiplet and a tensor multiplet. We now demonstrate that the OSp(2|4)-invariant S4 is a

supersymmetric background of the N = 2 Poincaré supergravity theory constructed with

a tensor multiplet (and not with the non-linear or hypermultiplet).

Consider the off-shell N = 2 Poincaré supergravity multiplet constructed by coupling

a vector multiplet and a tensor multiplet to the Weyl multiplet. An N = 2 tensor multi-

plet [21]

bosonic : Lij , G,Emn

fermionic : φi (3.10)

consists of a triplet of real scalars Lij = Lji, a tensor gauge field Emn, a complex scalar G

and a doublet of spinors φi. The SU(2)R symmetry can be gauge fixed by setting

Lij = τ1ijϕ , (3.11)

which breaks SU(2)R down to SO(2)R. The supersymmetry transformation [11]

δLij = ǫ(iφj) + εikεjlǫ
(kφl) (3.12)

implies that to preserve (3.11), we must accompany the Poincaré supersymmetry transfor-

mation δǫ with a compensating SU(2)R transformation δSU(2)R(Λ
k
j) with parameter14

Λk
j = −τkm1

(ǫmφj − εimεjlǫ
iφl)

ϕ
. (3.13)

In summary, this off-shell Poincaré supergravity multiplet constructed by gauge fixing

a Weyl, vector and tensor multiplet completes the on-shell multiplet eam, ψ
i
m, Am with

bosonic auxiliary fields and fermionic auxiliary fields χi, φi. The Poincaré supersymmetry

transformations in this N = 2 Poincaré supergravity theory are given by the following

combination of superconformal transformations

δǫ + δη + δSU(2)R(Λ
k
j) (3.14)

with η in (3.9) and Λk
j in (3.13).

13Since (3.5) preserves δX, no other compensating transformation in required.
14The parameter is determined only up to an SO(2)R transformation.
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In this N = 2 Poincaré supergravity theory the supersymmetric backgrounds where

the background values of all fermions vanish are solutions to the following equations

(δǫ + δη)ψ
i
m = 0 (δǫ + δη)χ

i = 0 (δǫ + δη)φ
i = 0 (3.15)

with η in (3.9), since Λk
j = 0 vanish on bosonic backgrounds. The explicit form of these

transformations are [19–21] (we use [11])

δψi
m =

(
∂m +

1

2
bm +

1

4
Γabωmab −

1

2
iAR

m

)
ǫi + V i

m jǫ
j − 1

16
ΓabT−

abε
ijγmǫj − γmη

i

δχi =
1

2
Dǫi +

1

6
Γab

[
−1

4
D/ T−

abε
ijǫj − R̂ab(U

i
j )ǫj + iR̂ab(T )ǫ

i +
1

2
T−
abε

ijηj

]

δφi =
1

2
/DLijǫj +

1

2
εijE/ ǫj −

1

2
Gǫi + 2Lijηj , (3.16)

with η in (3.9). D is superconformal covariant derivative and R̂ab(T ) and R̂ab(U
i

j ) are

covariant curvatures for U(1)R and SU(2)R.

The OSp(2|4)- supersymmetric S4 background is described by the following Killing

spinor equations (2.9)

∇mǫ
i =

i

2r
γmτ

ij
1 ǫj ∇mǫi =

i

2r
γmτ1ijǫ

j . (3.17)

From (3.16) we find that S4 is a supersymmetric background of this supergravity theory

with the following non-vanishing background fields turned on

eam = eam|S4 Y ij = −2iµ

r
τ ij1 Yij = −2iµ

r
τ1ij other = 0 . (3.18)

With these background fields turned on δψi
m realizes the S4 Killing spinor equations (3.17),

while δξi and δφi vanish identically.15 The algebra of supergravity transformations when

evaluated on the background (3.18) realizes the OSp(2|4) symmetry of S4.

4 The Kähler ambiguity supergravity counterterm

In this section we construct the N = 2 Poincaré supergravity invariant constructed out

of the supergravity multiplet and the w = 0 chiral multiplets AI (see below (2.7)) which

when evaluated on the OSp(2|4)-supersymmetric background (4.6) realizes the Kähler am-

biguity (1.2).

Our approach is to construct a superconformal invariant constructed out of the Weyl

multiplet, the compensating vector multiplet Φ, the compensating tensor multiplet and the

chiral multipletsAI , the supermultiplets to which the coordinates in the conformal manifold

τI have been promoted. This invariant, when evaluated on the Poincaré gauge fixing choice

15A similar analysis for the Poincaré supergravity theories constructed with a compensating non-linear

multiplet and hypermultiplet demonstrates that the background fields that yield the S4 Killing spinor

equations are incompatible with the vanishing of the supersymmetry variations of the fermions in these

multiplets. Therefore, S4 is not a supersymmetric background of these supergravity theories.
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described in the previous section yields an invariant in the associated N = 2 Poincaré

supergravity theory. We first recall some facts about the construction of superconformal

invariants.

Consider an abstract chiral multiplet (2.5) with w = 2, which we denote by Â, coupled

to the Weyl multiplet (3.1). The following superconformal invariant can be constructed

from such a chiral multiplet [15]

I[Â] =

∫
d4x

√
g

[
Ĉ(x)− 1

4
Â
(
T+
ab

)2
+ fermions

]
, (4.1)

where Ĉ and Â denote the top and bottom components of the multiplet Â. The coupling

of the chiral multiplet to the Weyl multiplet is responsible for the appearance of the terms

after Ĉ in (4.1). The product of two chiral multiplets with R-charge w1 and w2 yields

another chiral multiplet of R-charge w1 +w2. Therefore, superconformal invariants can be

constructed from products of chiral multiplets with total R-charge w = 2.

Consider now the compensating vector multiplet that appears in the construction of

N = 2 Poincaré supergravity, which we denote by Φ. It is important to note that an N = 2

vector multiplet is a chiral multiplet with w = 1 subject to reducibility constraints [22],

which express the last two components of the chiral multiplet in terms of the previous ones.

It is also known as a restricted chiral multiplet. The components of a chiral multiplet (2.5)

are given in terms of the fields in the abelian vector multiplet (3.2) by

A|Φ = X

Ψi|Φ = Ωi

Bij |Φ = Yij

F−
ab

∣∣
Φ
= F−

ab

Λi|Φ = − εij /DΩj

C|Φ = − 2DaD
aX̄ − 1

2
F+
abT

ab+ − 3χ̄iΩ
i (4.2)

where Fab is the superconformal covariant field strength. Expressing a vector multiplet as

a w = 1 chiral multiplet provides a way of constructing a superconformal invariant out of

Φ using (4.1).

We now write down the supergravity counterterm responsible for the Kähler ambigu-

ity (1.2). It is the superconformal invariant (4.1) constructed from the w = 2 composite

chiral multiplet

Φ2F(AI) , (4.3)

where F is an arbitrary holomorphic function of the w = 0 chiral multiplets AI describing

the coordinates in the conformal manifold.16 The associated N = 2 Poincaré supergravity

16Another natural guess for the Kähler counterterm can be constructed from the w = 2 chiral multiplet

W abWabF(AI), where Wab is a chiral multiplet that encodes the covariant Weyl multiplet (3.1). However,

upon evaluating these terms on the background (4.6) they all vanish, as these terms involve the Weyl tensor,

which vanishes on S4. Supergravity couplings involving W 2 have been considered in the literature [23]. For

other higher derivative invariants in N = 2 supergravity see e.g. [24–28].
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invariant is

I[Φ2F(AI)] (4.4)

with

A|Φ = X = µ . (4.5)

We now want to evaluate the N = 2 Poincaré supergravity invariant (4.4) on the

OSp(2|4)-invariant background field configuration

Weyl: eam = eam|S4

vector: A|Φ = X = µ , Bij |Φ = −2iµ

r
τ1ij , C|Φ =

4µ

r2

chiral: A|F(AI)
= F(τI) , (4.6)

where we have used (3.18)(4.2) and (4.5).

The product of two chiral multiplets with bosonic components (A,Bij , F
−
ab, C) and

(a, bij , f
−
ab, c) yields a new chiral multiplet with bosonic components (setting all fermions

to zero, as they vanish on the OSp(2|4)-invariant background (4.6))

(
Aa,Abij + aBij , Af

−
ab + aF−

ab, Ac+ aC − 1

2
εikεjlBijbkl + F−

abf
−ab

)
. (4.7)

Therefore, on the supersymmetric background (4.6)

A|Φ2 =µ2

Bij |Φ2 =− 4iµ2

r
τ1ij

C|Φ2 =
12µ2

r2
(4.8)

and finally

C|Φ2F(AI)
=

12µ2

r2
F(τI) . (4.9)

Using that µ is a fiducial scale introduced in gauge fixing to Poincaré supergravity, so that

we can write µ = a/r, we have find that the invariant (4.4) evaluates to

I[Φ2F(AI)] =

∫
d4x

√
g C|Φ2F(AI)

= 32π2a2F(τI) . (4.10)

Therefore, the marginal supergravity counterterm

1

384π2a2
(
I[Φ2F(AI)] + I[Φ̄2F̄(ĀĪ)]

)
(4.11)

is responsible for the Kähler ambiguity (1.2) in the four sphere partition function of four

dimensional N = 2 SCFTs

ZS4 ≃ ZS4e
1

12
(F(τ)+F̄(τ̄)) . (4.12)

This provides a microscopic realization of Kähler ambiguities in these SCFTs.
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