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1. Introduction. Let (M, J, g) be a K\"ahlerian manifold of complex
dimension n with the almost complex structure J and the K\"ahlerian metric g.

The Bochner curvature tensor B of M is defined as follows:

B(X, Y)=R(X, Y)- \frac{1}{2n+4}[R^{1}X\Lambda Y+X\Lambda R^{1}Y+R^{1}JX\Lambda JY

+JX\Lambda R^{1}JY-2g(JX, R^{1}Y)J-2g(JX, Y)R^{1}\circ J]

+ \frac{traceR^{1}}{(2n+4)(2n+2)}[X\Lambda Y+JX\Lambda JY-2g(JX, Y)J]

for any tangent vectors X and Y, where R and R^{1} are the Riemannian
curvature tensor of M and a field of symmetric endomorphism which cor-
responds to the Ricci tensor R_{1} of M, that is, g(R^{1}X, Y)=R_{1}(X, Y), respec-
tively. X\Lambda Y denotes the endomorphism which maps Z upon g(Y, Z)X-
g(X, Z)Y.

The tensor B has the properties similar to those of Wey|l’s conformal
curvature tensor of a Riemannian manifold. For example, we can classify
the restricted homogeneous holonomy groups of K\"ahlerian manifolds with
vanishing B, which seems to \dot{\mathfrak{o}}e an analogy of Kurita’s theorem for the
holonomy groups of conformally flat Riemannian manifolds [3], [5].

On the other hand, K. Sekigawa and one of the authors of present
paper [4] classified conformally flat manifolds satisfying the condition

(^{*}) R(X, Y)\cdot R_{1}=0 for any tangent veciors X and Y,

where the endomorphism R(X, Y) operates on R_{1} as a derivation of the
tensor algebra at each point of M.

In this paper, we shall prove
THEOREM. Let (M, J, g) be a connected&\cdot\cdot hlerian manifold of complex

dimension n(n\geqq 2) with vanishing Bochner curvature tensor satisfying the
condition (^{*}), Then M is one of the following manifolds;

(I) A space of constant holomorphic sectional curvature.
(II) A locally product manifold of a space of constant holomorphic
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sectional curvature K(\neq 0) and a space of constant holomorphic
sectional curvature -K.

2. Preliminaries. Let (M, J, g) be a K\"ahlerian manifold with vanishing
B. Then its curvature tensor R is written as follows:

(2. 1) R(X, Y)= \frac{1}{2n+4}[R^{1}X\Lambda Y+X\Lambda R^{1}Y+R^{1}JX\Lambda JY

+JX\Lambda R^{1}JY-2g(JX, R^{1}Y)J-2g(JX, Y)R^{1}\circ J]

- \frac{traceR^{1}}{(2n+4)(2n+2)}[X\Lambda Y+JX\Lambda JY-2g(JX, Y)J]

The\acute{r}e are following relations among g, J and R^{1} :

J^{2}=-I , g(JX, Y)+g(X, JY)=0_{j}
R^{1_{\circ}}J=J\circ R^{1} , g(R^{1}X, Y)=g(X, R^{1}Y) .

Then, at a point x\in M , we can take an orthonormal basis \{e_{1} , \cdots , e_{n} ,
Je_{1} , \cdots , Je_{n}\} of tangent space T_{x}(M) such that

(2. 2) R^{1}e_{i}=\lambda_{i}e_{i} , R^{l}Je_{i}=\lambda_{i}Je_{i} for i=1, \cdots , n.
And we have

(2. 3)

’

R(e_{i}, Je_{i})= \sigma_{i}e_{i}\Lambda Je_{i}+\tau_{i}J-\frac{1}{n+2}R^{1}\circ J (i=1, \cdots, n)

R(e_{i}, e_{f})=\sigma_{if}(e_{i}\Lambda e_{f}+Je_{i}\Lambda Je_{f}) ,

-

R(e_{i}, Je_{f})=\sigma_{if}(e_{i}\Lambda Je_{f}-Je‘\Lambda e_{f}) (i,j=1, \cdots, n, i\neq j),

where we have put

\{

\sigma_{if}=\frac{1}{2(n+1)(n+2)}[(n+1)(\lambda_{i}+\lambda_{f})-\Lambda]’.

\sigma_{i}=\frac{1}{(n+1)(n+2)}[2(n+1)\lambda_{i}-\Lambda]’\backslash

\tau_{i}=\frac{1}{(n+1)(n+2)}[\Lambda-(n+1)\lambda_{i}] ,

\Lambda=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}c

3. Proof of theorem. At a point x\in M, we take an orthnormal basis
\{e_{1},\cdots ,e_{n}, Je_{1},\cdots ,Je_{n}\} of T_{x}(M) satisfying (2. 2). Now by the equation (^{*}),
(2. 3) and

(R(X, Y)\cdot R_{1})(Z, W)=-R_{1}(R(X, Y)Z, W)-R_{1}(Z, R(X, Y)W) ,
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we have

(3. 1) (\lambda_{i}-\lambda_{f})\sigma_{if}=0 for i\neq j .
LEMMA 3. 1. At each point of M, R^{1} has at most two distinct charac-

teristic roots, which cannot have the same sign.
PROOF. If there exists an integer r(1\leqq r<n) such that \lambda_{1}=\cdots=\lambda_{r}=\lambda,

\lambda_{r+1}\neq\lambda, \cdots , \lambda_{n}\neq\lambda, then (3. 1) implies

(n+1)(\lambda+\lambda_{r+1})-\Lambda=0

(n+1)(\lambda+\lambda_{n})-\Lambda=0t

Hence \lambda_{r+1}=\cdots=\lambda_{n}=\mu . Again (3. 1) implies (n+1-r)\lambda+(r+1)\mu=0, from
which we have \lambda\mu<0 .

If M is Einstein, then the condition (^{*}) is automatically satisfied and,
by (2. 1), it is easily seen that M is a space of constant holomorphic sectional
curvature.

Henceforth, we assume that M is not Einstein. Then, by lemma 3. 1,
there exists a point x_{0}\in M and an integer r(1\leqq r<n) such that, changing
the indices of \lambda_{1} , \cdots , \lambda_{n} suitablly, they satisfy

(3. 2) \{

\lambda_{1}=\cdots=\lambda_{r}=\lambda>0 , \lambda_{r+1}=\cdots=\lambda_{n}=\mu<0 ,

(n-r+1)\lambda=-(r+1)\mu

at x_{0} . Next, we take a point x in a neighborhood of x_{0} . By lemma 3. 1
and the continuity of characteristic roots of R^{1} , when x is sufficiently near
x_{0} , we may conclude that, with the same r, (3. 2) is satisfied at x. Let W
be the set of points x\in M such that R^{1} have two distinct characteristic roots
at x, which is an open set. By W_{0} we denote the connected component of
W containing x_{0} . Then r is constant on W_{0} , and \lambda(x) and \mu(x) are differ-
entiable functions. Then, we have the following two distributions:

T_{1}(x)=\{X\in T_{x}(M):R^{1}X=\lambda(x)X\} ,

T_{2}(x)=\{X’\in T_{x}(M):R^{1}X’=\mu(x)X’\} ,

which are differentiable, J-invariant, mutually orthogonal and complementally.
Let X, Y\in T_{1} and X’, Y’\in T_{2} , we have

\{

R(X, Y)=K[X\Lambda Y+JX\Lambda JY-2g(JX, Y)J_{1}] ,

R(X’, Y’)=-K[X’\wedge Y’+JX’\Lambda JY’-2g(JX’, Y’)J_{2}]\eta,

R(X, X’)=0
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by (2. 1) and (3. 2), where

K= \frac{1}{2(n+1)(n+2)}[(2n+2-r)\lambda-(n-r)\mu]\neq 0

and J_{1} and J_{2} are defined by J_{1}X=JX, J_{1}X’=0 and J_{2}X=0 , J_{2}X’=JX’ ,
respectively. Then, by [5], T_{1} and T_{2} are parallel, K is constant and

W_{0}=M. That is, M is a locally product manifold of a r-dimensional space
of constant holomorphic sectional curvature 4K and an (n-r)-dimensional
space of constant holomorphic sectional curvature -4K.

REMARK. For a K\"ahlerian manifold with vanishing B, the condition
(^{*}) is equivalent to R(X, Y)\cdot R=0 .
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