Kählerian manifolds with vanishing Bochner curvature tensor satisfying $R(X, Y) \cdot R_{1}=0$

By Hitoshi Takagi and Yoshiyuki Watanabe

1. Introduction. Let (M, J, g) be a Kählerian manifold of complex dimension n with the almost complex structure J and the Kählerian metric g.

The Bochner curvature tensor B of M is defined as follows:

$$
\begin{aligned}
B(X, Y)= & R(X, Y)-\frac{1}{2 n+4}\left[R^{1} X \wedge Y+X \wedge R^{1} Y+R^{1} J X \wedge J Y\right. \\
& \left.+J X \wedge R^{1} J Y-2 g\left(J X, R^{1} Y\right) J-2 g(J X, Y) R^{1} \circ J\right] \\
& +\frac{\text { trace } R^{1}}{(2 n+4)(2 n+2)}[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J]
\end{aligned}
$$

for any tangent vectors X and Y, where R and R^{1} are the Riemannian curvature tensor of M and a field of symmetric endomorphism which corresponds to the Ricci tensor R_{1} of M, that is, $g\left(R^{1} \mathrm{X}, Y\right)=R_{1}(X, Y)$, respectively. $\quad X \wedge Y$ denotes the endomorphism which maps Z upon $g(Y, Z) X-$ $g(X, Z) Y$.

The tensor B has the properties similar to those of Weyl's conformal curvature tensor of a Riemannian manifold. For example, we can classify the restricted homogeneous holonomy groups of Kählerian manifolds with vanishing B, which seems to be an analogy of Kurita's theorem for the holonomy groups of conformally flat Riemannian manifolds [3], [5].

On the other hand, K. Sekigawa and one of the authors of present paper [4] classified conformally flat manifolds satisfying the condition

$$
\begin{equation*}
R(X, Y) \cdot R_{1}=0 \quad \text { for any tangent vectors } X \text { and } Y \tag{*}
\end{equation*}
$$

where the endomorphism $R(X, Y)$ operates on R_{1} as a derivation of the tensor algebra at each point of M.

In this paper, we shall prove
Theorem. Let (M, J, g) be a connected Kählerian manifold of complex dimension $n(n \geqq 2)$ with vanishing Bochner curvature tensor satisfying the condition ${ }^{*}$), Then M is one of the following manifolds;
(I) A space of constant holomorphic sectional curvature.
(II) A locally product manifold of a space of constant holomorphic
sectional curvature $K(\neq 0)$ and a space of constant holomorphic sectional curvature $-K$.
2. Preliminaries. Let (M, J, g) be a Kählerian manifold with vanishing B. Then its curvature tensor R is written as follows:

$$
\begin{align*}
R(X, Y)= & \frac{1}{2 n+4}\left[R^{1} X \wedge Y+X \wedge R^{1} Y+R^{1} J X \wedge J Y\right. \tag{2.1}\\
& \left.+J X \wedge R^{1} J Y-2 g\left(J X, R^{1} Y\right) J-2 g(J X, Y) R^{1} \circ J\right] \\
& -\frac{\text { trace } R^{1}}{(2 n+4)(2 n+2)}[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J]
\end{align*}
$$

There are following relations among g, J and R^{1} :

$$
\begin{array}{ll}
J^{2}=-I, & g(J X, Y)+g(X, J Y)=0 \\
R^{1} \circ J=J \circ R^{1}, & g\left(R^{1} X, Y\right)=g\left(X, R^{1} Y\right)
\end{array}
$$

Then, at a point $x \in M$, we can take an orthonormal basis $\left\{e_{1}, \cdots, e_{n}\right.$, $\left.J e_{1}, \cdots, J e_{n}\right\}$ of tangent space $T_{x}(M)$ such that

$$
\begin{equation*}
R^{1} e_{i}=\lambda_{i} e_{i}, \quad R^{1} J e_{i}=\lambda_{i} J e_{i} \quad \text { for } \quad i=1, \cdots, n \tag{2.2}
\end{equation*}
$$

And we have

$$
\left\{\begin{array}{l}
R\left(e_{i}, J e_{i}\right)=\sigma_{i} e_{i} \wedge J e_{i}+\tau_{i} J-\frac{1}{n+2} R^{1} \circ J \quad(i=1, \cdots, n) \tag{2.3}\\
R\left(e_{i}, e_{j}\right)=\sigma_{i j}\left(e_{i} \wedge e_{j}+J e_{i} \wedge J e_{j}\right), \\
R\left(e_{i}, J e_{j}\right)=\sigma_{i j}\left(e_{i} \wedge J e_{j}-J e_{i} \wedge e_{j}\right) \quad(i, j=1, \cdots, n, i \neq j),
\end{array}\right.
$$

where we have put

$$
\left\{\begin{aligned}
\sigma_{i j} & =\frac{1}{2(n+1)(n+2)}\left[(n+1)\left(\lambda_{i}+\lambda_{j}\right)-\Lambda\right] \\
\sigma_{i} & =\frac{1}{(n+1)(n+2)}\left[2(n+1) \lambda_{i}-\Lambda\right] \\
\tau_{i} & =\frac{1}{(n+1)(n+2)}\left[\Lambda-(n+1) \lambda_{i}\right] \\
\Lambda & =\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}
\end{aligned}\right.
$$

3. Proof of theorem. At a point $x \in M$, we take an orthnormal basis $\left\{e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}\right\}$ of $T_{x}(M)$ satisfying (2.2). Now by the equation (*), (2.3) and

$$
\left(R(X, Y) \cdot R_{1}\right)(Z, W)=-R_{1}(R(X, Y) Z, W)-R_{1}(Z, R(X, Y) W)
$$

we have

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) \sigma_{i j}=0 \quad \text { for } \quad i \neq j . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. At each point of M, R^{1} has at most two distinct characteristic roots, which cannot have the same sign.

Proof. If there exists an integer $r(1 \leqq r<n)$ such that $\lambda_{1}=\cdots=\lambda_{r}=\lambda_{\text {, }}$ $\lambda_{r+1} \neq \lambda, \cdots, \lambda_{n} \neq \lambda$, then (3.1) implies

$$
\begin{gathered}
(n+1)\left(\lambda+\lambda_{r+1}\right)-\Lambda=0 \\
\ldots \cdots \\
(n+1)\left(\lambda+\lambda_{n}\right)-\Lambda=0 .
\end{gathered}
$$

Hence $\lambda_{r+1}=\cdots=\lambda_{n}=\mu$. Again (3.1) implies $(n+1-r) \lambda+(r+1) \mu=0$, from which we have $\lambda \mu<0$.

If M is Einstein, then the condition $\left(^{*}\right)$ is automatically satisfied and, by (2.1), it is easily seen that M is a space of constant holomorphic sectional curvature.

Henceforth, we assume that M is not Einstein. Then, by lemma 3.1, there exists a point $x_{0} \in M$ and an integer $r(1 \leqq r<n)$ such that, changing the indices of $\lambda_{1}, \cdots, \lambda_{n}$ suitablly, they satisfy

$$
\left\{\begin{array}{l}
\lambda_{1}=\cdots=\lambda_{r}=\lambda>0, \quad \lambda_{r+1}=\cdots=\lambda_{n}=\mu<0, \tag{3.2}\\
(n-r+1) \lambda=-(r+1) \mu
\end{array}\right.
$$

at x_{0}. Next, we take a point x in a neighborhood of x_{0}. By lemma 3.1 and the continuity of characteristic roots of R^{1}, when x is sufficiently near x_{0}, we may conclude that, with the same r, (3.2) is satisfied at x. Let W be the set of points $x \in M$ such that R^{1} have two distinct characteristic roots at x, which is an open set. By W_{0} we denote the connected component of W containing x_{0}. Then r is constant on W_{0}, and $\lambda(x)$ and $\mu(x)$ are differentiable functions. Then, we have the following two distributions:

$$
\begin{aligned}
& T_{1}(x)=\left\{X \in T_{x}(M): R^{1} X=\lambda(x) X\right\} \\
& T_{2}(x)=\left\{X^{\prime} \in T_{x}(M): R^{1} X^{\prime}=\mu(x) X^{\prime}\right\}
\end{aligned}
$$

which are differentiable, J-invariant, mutually orthogonal and complementally. Let $X, Y \in T_{1}$ and $X^{\prime}, Y^{\prime} \in T_{2}$, we have

$$
\left\{\begin{array}{l}
R(X, Y)=K\left[X \wedge Y+J X \wedge J Y-2 g(J X, Y) J_{1}\right] \\
R\left(X^{\prime}, Y^{\prime}\right)=-K\left[X^{\prime} \wedge Y^{\prime}+J X^{\prime} \wedge J Y^{\prime}-2 g\left(J X^{\prime}, Y^{\prime}\right) J_{2}\right] \\
R\left(X, X^{\prime}\right)=0
\end{array}\right.
$$

by (2.1) and (3.2), where

$$
K=\frac{1}{2(n+1)(n+2)}[(2 n+2-r) \lambda-(n-r) \mu] \neq 0
$$

and J_{1} and J_{2} are defined by $J_{1} X=J X, J_{1} X^{\prime}=0$ and $J_{2} X=0, J_{2} X^{\prime}=J X^{\prime}$, respectively. Then, by [5], T_{1} and T_{2} are parallel, K is constant and $W_{0}=M$. That is, M is a locally product manifold of a r-dimensional space of constant holomorphic sectional curvature $4 K$ and an $(n-r)$-dimensional space of constant holomorphic sectional curvature $-4 K$.

Remark. For a Kählerian manifold with vanishing B, the condition $\left(^{*}\right)$ is equivalent to $R(X, Y) \cdot R=0$.

College of General Education, Faculty of Science,
Tôhoku University and Toyama University Sendai, Japan Toyam, Japan

References

[1] S. Bochner: Curvature and Betti numbers II. Ann. of Math., 50 (1949) 77-93.
[2] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vols. I, II, Intersci. Publ., 1963, 1969.
[3] M. Kurita: On the holonomy group of conformally flat Riemannian manifold, Nagoya Math. J., 9 (1955) 161-171.
[4] K. Sekigawa and H. Takagi: On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 23 (1971), 1-11.
[5] H. Takagi and Y. Watanabe: On the holonomy groups of Kahlerian manifolbs with vanishing Bochner curvature tensor, to appear.
(Received March 17, 1973)
(Revised May 22, 1973)

