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Kaiso (ZBTB33) subcellular partitioning functionally
links LC3A/B, the tumor microenvironment, and
breast cancer survival
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The use of digital pathology for the histomorphologic profiling of pathological specimens is

expanding the precision and specificity of quantitative tissue analysis at an unprecedented

scale; thus, enabling the discovery of new and functionally relevant histological features of

both predictive and prognostic significance. In this study, we apply quantitative automated

image processing and computational methods to profile the subcellular distribution of the

multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially

diverse breast cancer cohort from a designated health disparities region in the United States.

Multiplex multivariate analysis of the association of Kaiso’s subcellular distribution with other

breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and

the autophagy-related proteins, LC3A/B, that are associated with features of the tumor

immune microenvironment, survival, and race. These findings identify effective modalities of

Kaiso biomarker assessment and uncover unanticipated insights into Kaiso’s role in breast

cancer progression.
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L
ast year in the United States there were over 260,000 new
cases of invasive breast cancer and, by the year’s end, over
40,000 women diagnosed with breast cancer died from their

disease1. Breast cancer is a very heterogeneous disease with var-
ious subtypes of diagnostic and prognostic significance that differ
in distribution by both age and race2. A major tool in the diag-
nosis, management, and prevention of breast cancer is the iden-
tification and characterization of biomarkers that will predict
survival, and guide treatment decisions with higher precision3.
Traditional visual assessment of histopathological images in
combination with antibody-based biomarker profiling has been
the standard of practice. However, the recent application of
algorithms for digital image analysis to augment image char-
acterization and quantitative assessment has broadened the uti-
lity, application, and accuracy of antibody-based characterization,
thus providing new insight into the functional roles of specific
protein biomarkers, and spawning a new age of diagnostic,
prognostic, and therapeutic innovation4–7. Here we apply mul-
tiple algorithms for digital image analysis to perform an antibody-
based assessment of patient breast cancer tissues that quantita-
tively profiles the subcellular distribution of Kaiso (ZBTB33), a
functional protein biomarker previously shown to be elevated in
cancers of the breast, prostate, pancreas, and colon8–10.

Kaiso was originally identified as a transcription factor and
member of the BTB/POZ (Broad complex, Tramtrak, Bric à Brac/
Poxvirus zinc finger) subfamily of zinc finger proteins8,10. It
contains a bimodal DNA-binding domain that recognizes both
sequence-specific consensus sites and methylated CpG nucleo-
tides through 3 C-terminal DNA-binding Kruppel-like CH2 zinc
fingers8,10. In its nuclear capacity, it has been shown to drive
transcriptional programs that increase breast cancer growth and
metastasis8,10. Subsequent studies revealed that it binds to a
variety of sequence motifs throughout the nucleus, the majority of
which are unmethylated and located at loci with open chroma-
tin8,11. Because of its role in transcriptional regulation, Kaiso has
been predominantly investigated as a nuclear protein and mul-
tiple studies have shown that its nuclear accumulation is dyna-
mically regulated by association with p120 (CTNND1)12, a
catenin family member that regulates membrane-bound E-cad-
herin cell adhesion assemblies8. Although several studies have
noted that the cytoplasmic localization of Kaiso is a common
feature in human tissues and tumors9, the major emphasis placed
on Kaiso, as a prognostic biomarker, has focused on its nuclear
accumulation. In fact, the nuclear accumulation of Kaiso has been
shown, in multiple studies, to be a predominant feature of more
aggressive forms of breast cancer, including triple-negative breast
cancer13,14. Moreover, in some studies, nuclear Kaiso was shown
to be more predictive of poor survival in women of African
heritage diagnosed with TNBC14,15. Nonetheless, there have been
multiple reported observations of cytoplasmic or “non-nuclear”
accumulation of Kaiso, implying potential functional roles for
Kaiso outside of the nucleus9,16,17. These include interaction with
centrosomes, assembly with RhoH and p120 at actin-containing
cell protrusions, and regulation of Kaiso subcellular distribution
by the EGF-19,18,19.

In this study, we leverage the analytic precision of automated
image analysis algorithms to quantitatively profile the
compartment-specific (nuclear versus cytoplasmic) distribution
of Kaiso in a racially diverse cohort of breast cancer patients
residing in a health disparities region of rural East North Car-
olina. These findings reveal that both nuclear and cytoplasmic
Kaiso are associated with breast cancer outcome and each are
independent predictors of overall breast cancer survival. Fur-
thermore, compartment-specific profiling of Kaiso with multiple
prognostic breast cancer biomarkers reveal new functional cor-
relations that link the specific subcellular distribution of Kaiso

with (1) the autophagy-related factor LC3A/B; (2) cellular phe-
notypes within the tumor immune microenvironment; and (3)
overall breast cancer survival.

Results
The subcellular distribution of Kaiso is differentially correlated
with breast cancer subtype and overall survival from breast
cancer. The protein expression of Kaiso was spatially profiled by
automated analysis4,6 of immunohistochemically stained tissue
microarrays (TMAs) (Fig. 1), containing 555 tumors from a
cohort of racially diverse breast cancer patients (see Supple-
mentary Fig. 1) residing in a designated health disparities
catchment area of East North Carolina (median follow-up 8.5
years)6. By this analysis, staining intensity in the nucleus or
cytoplasm of each cell in the annotated tumor regions is assigned
one of four scores: from negative staining (0) to weak staining
(+1), moderate staining (2+) or strong staining (3+). The per-
cent of cells in the annotated regions demonstrating one of the 4
different intensities are then aggregated to derive an H-score (H-
score= 3 × [%3+] + 2 × [%2+] + 1 [%1+]), thus generating a
continuous score from 0 to 3004,6. The subcellular distribution of
the staining intensity differs across many of the tumors, revealing
various patterns of enrichment in the nucleus, cytoplasm, or both.
(Fig. 1a). Notably, the cell segmentation algorithm-based quan-
titative profiling4,6 of Kaiso subcellular distribution reveals dis-
tinct differences in the cytoplasmic versus nuclear Kaiso patterns
of distribution when examined in rank order (Fig. 1b, left). This
Kaiso-specific difference in subcellular distributions is contrasted
by the significant similarity in the nuclear and cytoplasmic dis-
tribution of a typical nuclear antigen that shuttles between the
cytoplasm and nucleus like the androgen receptor (AR) (Fig. 1b,
right), as well as the lower correlation between nuclear and
cytoplasmic Kaiso, compared to AR (Supplementary Fig. 2).
These stark differences suggest that the mechanisms governing
the nuclear versus cytoplasmic localization of Kaiso are far more
dynamic and complex than the androgen receptor whose inten-
sity distribution in the nucleus reflects a more passive ligand-
mediated nuclear-to-cytoplasmic distribution.

Unlike nuclear Kaiso, the levels of cytoplasmic Kaiso in this
cohort were significantly different based on hormone receptor
(ER) status and breast cancer subtype, where the cytoplasmic
levels of Kaiso were distinctly higher in the subtypes of breast
cancer known to be more aggressive, including triple-negative
breast cancer (TNBC), human epidermal growth factor receptor 2
positive (HER2+), and Luminal B (LumB) (Fig. 1c). Although the
levels of nuclear Kaiso have been previously reported to be higher
in patients of African heritage15,20, we did not detect such
differences in the current cohort although a minor trend for
preferential distribution of high levels of cytoplasmic Kaiso in
patients of African, compared to European descent, was observed
(Fig. 1d). Interestingly, although the mRNA levels of Kaiso are
highly predictive of poor breast cancer survival, as demonstrated
in publicly available data sets (Fig. 1e); a direct comparison of
available RNA-seq expression data, within a subset of this cohort
(N= 134), demonstrates very little correlation between Kaiso
mRNA and either nuclear Kaiso, cytoplasmic Kaiso, or their
combined total (Fig. 1f).

Nuclear Kaiso, cytoplasmic Kaiso, and their combined score,
defined as total Kaiso, are highly correlated with poor breast
cancer survival (Fig. 2a–c). However, cytoplasmic Kaiso appears
to be significantly more predictive with a hazard ratio (HR) of
16.29 (confidence interval (CI): 7.6–34.8; p-value 5.3E−13) for
cytoplasmic Kaiso compared to HR: 2.83 (CI: 2.02–3.9; p-value
6.1E−11) for nuclear Kaiso, and HR: 7.86 (CI: 5.0–12.22; p-value
1.7E−18) for total Kaiso (Fig. 2a). These differences are also in
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good agreement with a non-digitally assisted expert pathologist’s
assessment (Supplementary Fig. 4). In the multivariate setting,
both nuclear and cytoplasmic Kaiso are independent predictors of
overall breast cancer survival (Table 1). Finally, both nuclear and
cytoplasmic Kaiso can stratify patients with lymph node-positive
(high risk of recurrence) (Fig. 2b) or lymph node-negative breast
cancer (low risk of recurrence) (Fig. 2c) into high versus low
survival groups. However, in each case, although both nuclear
Kaiso and cytoplasmic Kaiso are independent predictors of
survival, cytoplasmic Kaiso is consistently more predictive of poor
overall survival compared to nuclear Kaiso (Fig. 2a–c). Interest-
ingly, total Kaiso appears to be the best predictor of overall
survival in high risk (lymph node-positive) patients, with a
hazard ratio of HR: 24.59 compared to HR: 19.58 (cytoplasmic
Kaiso) or HR: 2.64 (nuclear Kaiso) (Fig. 2b).

Cytoplasmic Kaiso reveals a high correlation with TNBC and
the autophagy-related protein LC3A/B. The high correlation
between cytoplasmic Kaiso expression and more aggressive sub-
types of breast cancer (Fig. 1c) implies that similar comparisons,
between cytoplasmic Kaiso and other biomarkers that stratify
aggressive forms of cancer, will provide deeper insights into the
role of cytoplasmic Kaiso in poor breast cancer survival. To
accomplish this goal, quantitative profiles comparing the relative

enrichment of biomarkers recently implicated to be strongly
associated with breast cancer progression21–29, were analyzed
together by robust unsupervised hierarchical clustering (Fig. 3a).
Biomarkers investigated included, estrogen-receptor ER30, the ER
pioneer proteins FOXA131–33 and GATA334–36, HER2 mem-
brane expression37,38, the protein-membrane adhesion molecule
and tumor suppressor E-cadherin39–41, epithelial growth factor
receptor EGFR37,38, and the autophagy-related factor LC3A/B
(MAP1L3A and MAP1L3B), an autophagy-related biomarker
recently implicated to be strongly associated with breast cancer
progression21–29. A heatmap of clinical and pathological features
of patients including survival, tumor subtype, and ER status is
provided underneath for a direct comparison of biomarker
expression with patient characteristics. Notably, patient clustering
by these biomarkers in combination with cytoplasmic Kaiso
expression identifies multiple breast cancer groups (A1-C2) with
distinct survival differences (Fig. 3b and Supplementary Fig. 5).

Of particular interest is the clustering of cytoplasmic Kaiso
with the autophagy marker LC3A/B (Fig. 3a), which, in
combination with the other biomarkers, stratifies TNBC patients
into 3 different survival subgroups (B1, B2, and B3). The LC3A/B
family of proteins has a major role in a variety of autophagy-
related phagocytic and secretory processes including autophagy,
phagocytosis, conventional secretion of cytokines, extracellular

Fig. 1 Profiles of the subcellular distribution of Kaiso (ZBTB33) show that nuclear and cytoplasmic Kaiso are differentially correlated with breast

cancer subtype and hormone status. a Representative subcellular patterns of Kaiso expression in breast cancer tissues detected by anti -Kaiso

immunohistochemical staining. Shown is a range of high (upper panels) versus low (bottom panel) nuclear and cytoplasmic protein expression.

b Comparison of the distribution of digitally determined H-scores for nuclear versus cytoplasmic Kaiso enrichment. The difference in distribution is shown

in contrast to the similarities in the distribution of nuclear versus cytoplasmic androgen receptor (AR). c Cytoplasmic Kaiso is differentially enriched in ER−

breast cancers compared to nuclear Kaiso and is significantly enriched in the more aggressive breast cancer subtypes, LumB, HER2+, and TNBC. d Nuclear

and cytoplasmic levels of Kaiso (H-score) do not show significant differences (t-test) based on race (also see Supplementary Fig. 1). e Kaiso (ZBTB33)

mRNA abundance (median) is predictive of poor overall breast cancer survival as demonstrated in two independent publicly available breast cancer

cohorts88. f Comparison of nuclear and cytoplasmic levels of Kaiso in breast cancer patients to levels detected by RNA-seq in (N= 131) patients

demonstrates that Kaiso (ZBTB33) mRNA levels do not correlate with either nuclear or cytoplasmic levels of Kaiso. LumA Luminal A, LumB Luminal B,

HER2+ human epidermal growth factor receptor 2 positive, TNBC triple-negative BC, ER estrogen-receptor status, NHW non-Hispanic White, NHB non-

Hispanic White.
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Fig. 2 Both nuclear Kaiso and cytoplasmic Kaiso are predictive of poor breast cancer survival. a Analysis of the association between subcellular Kaiso

distribution and survival demonstrates that high cytoplasmic Kaiso is much more predictive of poor survival compared to nuclear Kaiso. Nuclear,

cytoplasmic, and total Kaiso H-scores predict survival in both b high risk (lymph node-positive) and c low risk (lymph node-negative) breast cancer

patients, where total Kaiso score is most predictive of survival in both low and high-risk breast cancer patients. (HR could not be calculated for cytoplasmic

Kaiso in low-risk patients because no deaths were recorded in that risk group). NHW non-Hispanic white; NHB non-Hispanic black. Optimized cut-offs

were determined by the method of maximally selected rank statistics (Supplementary Fig. 3 and Supplementary Table 2).

Table 1 Univariate and multivariate analysis of the hazard ratio for overall survival associated with patient demographics,

subtype, nuclear Kaiso, cytoplasmic Kaiso, and cytoplasmic LC3A/B expression in patient breast cancer samples.

Univariate analysis HR (95% CI for HR) p-value Multivariate analysis HR (95% CI for HR) p-value

AGE 1.02 (1.01–1.03) 2.00E−03 AGE 1.02 (1.00–1.05) 5.28E−02

RACE (Black) 1.18 (0.89–1.56) 2.60E−01 RACE (Black) 0.85 (0.58–1.26) 4.25E−01

Menopause status 0.76 (0.55–1.12) 1.20E−01 Menopause status 0.89 (0.47–1.70) 7.23E−01

BMI 0.10 (0.98–1.00) 8.10E−01 BMI 0.98 (0.96–1.00) 1.00E−01

ER status 1.76 (1.32–2.35) 1.30E−04 ER status 1.01 (0.49–2.10) 9.89E−01

Nuclear Kaiso 1.01 (1.01–1.02) 2.00E−09 Nuclear Kaiso 1.01 (1.01–1.02) 2.29E−06

Cytoplasmic Kaiso 1.01 (1.02–1.01) 3.96E−10 Cytoplasmic Kaiso 1.01 (1.01–1.01) 2.98E−07

LC3AB 1.00 (1.00–1.01) 5.90E−05 LC3AB 1.00 (1.0–1.00) 6.06E−01

Node (positive) 2.30 (1.69–3.13) 1.30E−07 Node (positive) 2.64 (1.79–3.89) 8.78E−07

Subtype (LumA) Subtype (LumA)

LumB 1.29 (0.87–1.93) 2.06E−01 LumB 1.31 (0.77–2.21) 3.19E−01

HER2+ 1.54 (0.91–2.62) 1.10E−01 HER2+ 1.83 (0.76–4.43) 1.81E−01

TNBC 2.50 (1.77–3.53) 2.25E−07 TNBC 2.25 (1.0–5.08) 5.20E−02

Referent for Subtype is Luminal A subtype. Referent for menopause status is pre-menopause. Referent for Race is White. Referent for Node status is positive. Significant p-values (<0.05) are in bold.
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release of lysozymes, extracellular vesicle (EV) production,
unconventional protein secretion, and LC3-dependent EV
loading and secretion (LDELS)42–45. In each case, lipid
conjugated LC3 has a major role in the loading of different
cargoes, (organelles, protein, and nucleic acid) into membrane-
bound structures destined for secretion or degradation. Collec-
tively these processes are referred to as secretory autop-
hagy43,44,46. Furthermore, each of these processes has the
potential to influence tumor microenvironment47.

Remarkably, the clustering of low cytoplasmic Kaiso and low
LC3A/B, in the context of the other biomarkers, identifies a class
of TNBC patients that show favorable survival (compare B1 & B2,
to B3) (Fig. 3b). Thus, low levels of cytoplasmic Kaiso combined
with low levels of the autophagy-related factor LC3A/B, predict
favorable survival in breast cancer patients with TNBC,
implicating a significant role for this biomarker in tumor
progression and survival. Representative LC3A/B IHC staining
of patient tumors reveals a heterogeneous staining pattern in the

Fig. 3 Quantitative comparison of digitally scored functional and predictive biomarker abundance reveals associations between cytoplasmic Kaiso and

the autophagy-related antigen, LC3A/B, that correlate with subtype and survival. a Unsupervised hierarchical clustering of the nuclear, membrane and

cytoplasmic biomarker H-scores for each of (N= 555) patients is shown in correlation with patient clinicopathologic and demographic attributes (below).

b Kaplan–Meier survival analysis of specific antigen expression clusters (identified by color code) in a demonstrating associations between cytoplasmic

Kaiso, LC3A/B expression, and overall survival in TNBC. c Representative sample of LC3A/B immune-histochemical staining in breast cancer tissues.

Arrowhead indicates subcellular puncta noted in the cytoplasm of multiple sections. d Kaplan–Meier survival analysis shows that high LC3A/B cytoplasmic

staining is associated with poor overall breast cancer survival. e Like cytoplasmic Kaiso, LC3A/B staining is highly correlated with the more aggressive

breast cancer subtypes LumB, HER2, and TNBC with the strongest association with TNBC. f LC3A/B shows a trend of higher expression in NHB versus

NHW patients and is significantly more expressed in patients with ER- breast cancer. g Correlation between LC3A/B protein, nuclear Kaiso, cytoplasmic

Kaiso, and the RNA levels for LC3A/B, (MAPL1LC3A, MAPL1LC3B), and Kaiso (ZBTB33) showing the strongest correlation between LC3A/B and MAPL1L3B

RNA in addition to ZBTB33 RNA and MAPL1LC3B RNA. Spearman correlation is shown in red. p-value for Spearman correlation is shown in blue.
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cytoplasm with a mixture of diffuse and punctate cytoplasmic
staining typical of LC3A/B27,48 (Fig. 3c). Quantitative analysis of
the cytoplasmic staining shows that cytoplasmic LC3A/B is
predictive of survival (HR: 2.5, CI: 1.77–3.68; p-value 5.9e−07)
(Fig. 3d and Supplementary Fig. 3). Similar to cytoplasmic Kaiso,
LC3A/B is (1) preferentially expressed in more aggressive forms
of breast cancer including LumB, HER2, and TNBC (Fig. 3e); and
(2) preferentially elevated in ER- compared to ER+ tumors with a
trend toward higher expression in women of African compared to
European ancestry (Fig. 3f). Analysis of the correlation between
IHC-based protein expression and RNA expression (Fig. 3g and
Supplementary Data 1) reveals very little correlation between
Kaiso (ZBTB33) mRNA and Kaiso protein. However, there is a
modest correlation between MAP1LC3B mRNA and LC3A/B
with the highest correlation between ZBTB33, MAP1LC3B
mRNA, and LC3A/B protein (Fig. 3g). By univariate survival
analysis, LC3A/B expression is significantly predictive of poor
survival but loses all significance in the multivariate setting, where
only nuclear Kaiso, cytoplasmic Kaiso, and lymph node status are
significant independent predictors of outcome (Table 1). This
suggests that the survival predictive value of LC3A/B is closely
associated with Kaiso protein expression.

Kaiso is required for the functional activation of LC3A/B.
Given the close correlation between Kaiso and the LC3A/B
autophagy-related proteins, we sought to further establish this
relationship by employing a “bedside-to-bench” approach utiliz-
ing the human triple-negative breast cancer cell line, MDA-MB-
231 depleted of Kaiso by RNA interference (RNAi) (Fig. 4a and
Supplementary Fig. 6). The analysis of genes that are significantly
differentially expressed (p-values < 0.001) in WT versus Kaiso-
depleted cells reveals a large overlap (142 of 518) with a list of
autophagy-associated genes compiled from the MSigDbase and
the Autophagy Database49,50 (Fig. 4a) (also see Supplementary
Data 2). This overlap is supported further by GSEA revealing a
large and substantial enrichment in six (6) different autophagy-
related gene sets (Fig. 4b) (also see Supplementary Data 3).

A hallmark feature of autophagy-related processes is the
conjugation of LC3A/B to phosphatidylethanolamine (PE)
followed by its incorporation into intracellular membrane vesicles
within the endocytic vesicle system44,46,51. The lipid conjugation
and membrane incorporation of LC3 protein enable it to load
specific cargo into various endocytic trafficking vesicles including
autophagosomes and extracellular vesicles44–46. A commonly
used method to examine autophagocytic flux is to visualize the
incorporation of GFP-labeled LC3A/B into autophagocytic
membrane structures that appear as intracytoplasmic puncta
(Fig. 4c)52,53. As demonstrated in Fig. 4c, MDA-MB-231 cells
depleted of Kaiso show a significant absence (p < 0.0001) of
puncta both in the presence or absence of autophagosome
stabilization by the lysosome inhibitor chloroquine (CQ) (Fig. 4d).
LC3A/B maturation can be followed by immunoblot analysis
through the detection of changes in LC3A/B phosphatidyletha-
nolamine (PE) lipid conjugation by the demonstration of a
change in mobility, where the lipid conjugated LC3A/B (LC3ii)
migrates with faster mobility than the unconjugated form (LC3i)
(Fig. 4e). This difference in LC3 conjugation can be amplified by
the inhibition of LC3 lysosomal degradation by chloroquine (CQ)
(Fig. 4e, f). As shown in Fig. 4f, compared to the non-targeting
short hairpin, the addition of 3 different RNAi short hairpins
targeting Kaiso, results in a significant reduction of GFP-LC3
conjugation. Similar results are observed with the ER+ cell line
MCF-7 (Supplementary Fig. 7). Finally, Kaiso and LC3A/B
immunofluorescence show significant colocalization in both ER+

(MCF-7) and TNBC (MDA-MB-231) cell lines in both the

cytoplasm and nucleus (Fig. 4g, left and right, respectively), with
quantitative profiling in Fig. 4h (also see Supplementary Fig. 8).

Kaiso and LC3A/B show significant colocalization in patient
tumors. Consistent with the observations in breast cancer cell
lines, there is also significant cytoplasmic colocalization of Kaiso
and LC3A/B in patient tumors with substantial variation by
subtype (Fig. 5a, b) Thus, consistent with the co-enrichment of
cytoplasmic Kaiso with LC3A/B in patient samples (Fig. 3a) and
their colocalization in breast cancer cell lines (Fig. 4g), both
proteins also show a substantial colocalization in patient tumors
that varies by subtype (Fig. 5a, b).

Patients stratified by nuclear and cytoplasmic Kaiso are vari-
ably enriched in cellular stress and immune response pathways
and differentially predict the overall outcome based on genetic
ancestry. A comparison of the gene expression enrichment pat-
terns of patients stratified by nuclear versus cytoplasmic Kaiso
shows concordant (red) and discordant (blue) expression of genes
linked to cellular differentiation, metabolism, immune modulation,
and cell-microenvironment interactions (Fig. 6a, b). This observa-
tion is corroborated by GSEA profiles revealing opposing enrich-
ment for inflammatory response pathways in nuclear versus
cytoplasmic Kaiso (Fig. 6a, b, right) with notable negative enrich-
ment for allograft rejection pathways in patients over-expressing
cytoplasmic Kaiso (also see Supplementary Data 4 and 5).

As discussed earlier, nuclear Kaiso expression has been linked
previously to racial differences in breast cancer outcome where
nuclear Kaiso was found to be higher and more predictive of poor
outcome in women of African Heritage (non-Hispanic black
(NHB)) diagnosed with TNBC compared to their European (non-
Hispanic white (NHW)) counterparts8,14,15. Most notably this
distinction seemed to be greater depending on the degree of
African ancestry15. To profile the degree of racial admixture in
our study cohort, ancestral informative markers (AIMs) were
extracted from patient (N= 131) tumor RNA-seq data (>23% of
the study cohort)54,55. Each patient in this group was then
assigned a percent ancestry based on five genetic populations
(African, European, East Asian, South Asian, and Admixed
Native American) Fig. (6c). Among the 69 patients that self-
identified as NHB, all but 1 had >50% African ancestry. Of the 62
patients that self-identified as NHW, 3 patients showed greater
than 80% admixed Native American ancestry (Fig. 6c). Notably,
forest plot analysis of the Cox proportional-hazards model for
overall survival, optimized by Race, reveals that cytoplasmic Kaiso
is more predictive of survival in women of African ancestry
(Fig. 6d), consistent with prior indications of a differential
survival risk based on Kaiso and African genetic background8,14.
Moreover, even within admixed populations, and consistent with
previous reports, there is a greater survival risk associated with
nuclear Kaiso in patients of African ancestry diagnosed with
TNBC (Fig. 6g). However, neither LC3A/B nor Nuclear Kaiso
shows significant racial differences in survival hazard in the total
breast cancer cohort (Fig. 6e, f).

Cytoplasmic Kaiso levels and LC3A/B are associated with an
immune-suppressed tumor microenvironment in breast cancer
tissues. The immune tumor microenvironment has been found to
have a broad prognostic and predictive role in breast cancer56–61.
With respect to breast cancer racial health disparities, there is a
wide consensus supporting a deterministic role for race-based
genetic variation in the immune response in influencing racial
survival disparities in breast cancer62–67. Given the observed
influence of elevated levels of cytoplasmic and nuclear Kaiso on
immune regulatory pathways (Fig. 6a, b), and the extensive
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potential role for secretory autophagy in the immune
response43,44,46, we sought to define the linkage between LC3A/B,
the subcellular distribution of Kaiso, and immune properties of
the tumor microenvironment (Fig. 7). This analysis was con-
ducted through a nearest-neighbor analysis of TMA tissues co-
stained for pan-cytokeratin (tumor), CD8 (killer T-cells), CD68
(macrophages), and PD-L1 (immune checkpoint regulator)
(Fig. 7a, b). The x and y-coordinates (Fig. 7b) of the resultant
combinations of the tumor and immune phenotypes (Supple-
mentary Figs. 9 and 10) were then mapped and the frequency
distribution of distances between each cellular phenotype was
profiled (Fig. 7c). Notably, nearest-neighbor profiling showed
significant coordination between cytoplasmic Kaiso and LC3A/B,
and the proximity of PD-L1-positive CD8 cells near tumor
compared to insignificant association with nuclear Kaiso and
Race (Fig. 7c). Similarly, elevated levels of both cytoplasmic Kaiso
and LC3A/B were associated with increased proximity of PD-L1-

positive CD68 cells near tumor compared to insignificant asso-
ciation with nuclear Kaiso and Race (Fig. 7c). In a similar fashion
nearest-neighbor profiling of total CD8 cells in proximity to PD-
L1-positive tumor showed a significant association between ele-
vated cytoplasmic Kaiso, LC3A/B and Race compared to the
insignificant association with nuclear Kaiso (Fig. 7c). Finally,
proximity profiling of total CD68 cells near PD-L1-positive tumor
cells similarly shows a significant association with elevated cyto-
plasmic Kaiso and LC3A/B compared to nuclear Kaiso and Race
(Fig. 7c). Given the known immunosuppressive role of PD-L1
expression in both immune cells and tumor59–61,68,69, these
findings reveal a strong association between LC3A/B and cyto-
plasmic Kaiso expression and the potential for an immune-
suppressive tumor microenvironment. Notably, all associations
between Kaiso and LC3A/B are specific to PDL1-positive cells as
the trends described above are not significant when comparing
total CD8 nor CD68 cells (Supplementary Fig. 11).
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expressed genes with an autophagy-related gene list (also see Supplementary Fig. 6, and Supplementary Table 3) (p-value for the significance of the
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Discussion
In this work, we utilized a novel application of computational
digital analysis and a unique cohort of breast cancer patients to
define new relationships between biomarkers based on their dif-
ferential subcellular distribution to define strong prognostic
markers of breast cancer survival. This “bedside-to-bench”
approach not only reveals biomarkers correlated with overall
breast cancer survival and an immune-suppressed tumor micro-
environment but provides new functional and mechanistic
insights into the cellular processes linked to the biomarkers. The
functional linkage of cytoplasmic Kaiso to LC3A/B and the tumor
microenvironment uncovers a new area of investigation into the
role and mechanism of Kaiso in breast cancer progression. Kaiso
could have multiple roles in promoting tumor progression
through both modulations of transcription and autophagy-related
events including (1) autophagy-mediated degradation pathways;
and (2) secretory autophagy pathways dependent on LC3 con-
jugation. The precise mechanism of how Kaiso influences LC3
maturation will require further investigation. One possibility is
that it may act as a scaffold to facilitate enzymatic lipid con-
jugation of LC3 proteins in the cytoplasm. Such a possibility is
supported by the computational identification of a predicted LC3
interaction domain (LIR)70 in the C-terminal region of Kaiso
adjacent to the DNA-binding zinc fingers. The possible dual role
for Kaiso in autophagy and LC3-mediated secretion are not
necessarily mutually exclusive since recent studies indicate that
LDELS can occur independently of autophagy based on the
observation that gene deletions that impair autophagy initiation
do not block LDELS44. Other observations that will require fur-
ther investigation arise from the morphological studies of cell
lines and tumors. Notably, immunofluorescent staining for Kaiso
reveals staining on tubulin (Fig. 4g and Supplementary Fig. 8)
consistent with prior reports of the association of Kaiso with
centrosomes19. Other observations include the accumulation of
Kaiso at focal adhesion-like structures or assemblies reminiscent
of actin-containing cell protrusion sites18 in MCF-7 (Supple-
mentary Fig. 8). Such associations have not been previously
described, but suggest a linkage between autophagy-related

processes and the cycling of cell-matrix adhesion machinery71.
Another interesting finding is the detection of race-specific dif-
ferences in the tumor environment where there is a trend to a
more suppressed immune microenvironment in women of Afri-
can ancestry, particularly when considering CD8 cells near PD-
L1-positive tumor (Fig. 7c). The differential contribution of race
in the association of nuclear and cytoplasmic Kaiso with overall
breast cancer survival (Fig. 6d, g) may contribute in part to
this trend.

The general findings presented in this study, including the
discovery of the prognostic significance of Kaiso subcellular
partitioning and its linkage to immune-suppressive features of the
tumor microenvironment, highlight its potential as a predictive
biomarker to guide future treatment decisions, particularly in the
use of immune checkpoint inhibitors. These results provide
support for future applications in prospective studies where
profiles of nuclear and cytoplasmic Kaiso are evaluated in clinical
trials as both a predictive and prognostic breast cancer bio-
marker72. Furthermore, because the predictive value of nuclear
and cytoplasmic Kaiso varies across racial groups, these findings
further emphasize the need for the inclusion of diverse racial and
ethnic groups in clinical trials.

Methods
Study population, tissue microarray construction, and analysis. Following IRB
approval from East Carolina University and the National Institutes of Health
intramural research program, de-identified formalin-fixed and paraffin-embedded
(FFPE) tissue samples and de-identified clinical information abstracted from the
medical records were requisitioned and initially procured for 733 breast cancer
patients who underwent surgery for Stage 0 to Stage IV breast cancer between 2001
and 2010 at Pitt County Memorial Hospital (now Vidant Medical Center),
Greenville, NC. Race, ethnicity, or “ancestry” was self-reported at the initial visit
and captured in the medical record. Survival was recorded retrospectively from the
medical records and the cancer registry. All patient samples and data obtained were
de-identified and approved by the East Carolina University Institutional Review
Board as a human subject exempt project, for which no informed consent is
needed. The study was conducted in accordance with the Declaration of Helsinki.
Race and/or ethnicity was self-reported at the initial visit and captured in the
medical record. Survival was recorded retrospectively from the medical records and
the cancer registry. The median follow-up is 8.5 years. 588 patient tumor blocks
from this cohort were found suitable for use in the construction of a tissue
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microarray. Replicate tissue microarrays were constructed using 1 mm cores per
previously described methods73,74, with a representation inclusive of 555 patients.
Detailed methods for IHC, scoring, and the assignment of clinical variables are
provided in the Supplementary Methods.

Patient tumor RNA-seq analysis. RNA-seq analysis was performed on RNA
extracted from FFPE tissue blocks (Total N= 126; EA N= 61; AA N= 65,
Other= 1)6. Following a review of H&E stained slides, areas for tumors with >80%
nuclei were circled, and 2.5 × 2–3 mm tissue cores were extracted from the cor-
responding regions of FFPE tissue blocks. Cores were shipped to the Beijing

Genomics Institute (BGI) (Beijing, China) where RNA was extracted and
sequenced (60M paired-end reads per sample) as previously described75,76.
Detailed methods are provided in the data supplement.

Immunofluorescence. Cells were grown on 22-mm-glass coverslips in 6-well
plates to ~80% confluency before exposure to appropriate drugs or vehicular
controls. After washing with PBS, cells were fixed with 4% formaldehyde in PBS at
room temperature (RT) for 10 min. Cells were permeabilized with 0.1% Triton X-
100 for 10 min, then incubated with blocking medium (PBS, 0.1% Tween-20, 10%
normal goat serum) for 30 min in a humidified chamber at RT. Blocked samples
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were then stained with mouse anti-Kaiso (Abcam, ab12723; 1:1000) and rabbit
anti-LC3A/B (Abcam, ab128025; 1:1000) in antibody diluent (PBS, 0.1% Tween-20,
1% BSA) for 1 h at RT in a humidified chamber. Anti-LC3A/B antibody recognizes
both LC3A and LC3B proteins. After appropriate PBS washing, cells were stained
with anti-mouse Alexa Fluor 488 (Invitrogen, A-11001; 1:2000) and anti-rabbit
Alexa Fluor 594 (Invitrogen, A-11002; 1:1000) secondary antibodies in a humidity
chamber in the dark for 1 h at RT. Coverslips were washed and then mounted on
slides using ProLong Gold antifade reagent (Molecular Probes, P36934). MDA-

MB-231 and MCF-7 used in this study were obtained from ATCC and identify was
validated by STRS profiling. All cells were tested and found to be free of myco-
bacterial contamination.

Colocalization analysis. Z-stack images for each channel were captured at ×100
magnification with Immersol 518F (Zeiss) oil immersion using a Zeiss Axiovert
200M fluorescent microscope running AxioVision software. Slices with the clearest
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Fig. 7 Elevated cytoplasmic Kaiso, LC3A/B, and race are associated with an immune-suppressive tumor microenvironment. a Representative multi-

spectral quantitative immunofluorescence (mQIF) of the tumor microenvironment of a breast cancer TMA core, stained for pan-cytokeratin (Cy7, cyan);

PDL-1 (Cy5, red); CD8 (FITC, green); CD68 (TRITC, carmine). b Coordinate map for nearest-neighbor analysis of tumor and stromal immunophenotypes.

c Nearest-neighbor analysis showing the frequency distribution of immune cell proximities to tumor-associated with expression quartiles (Q1–Q4) of

cytoplasmic Kaiso, LC3A/B, nuclear Kaiso, and race (white versus black).
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resolution were selected for further analysis. The background was removed by
subtracting the mean gray value for each channel in an area containing no cells.
Colocalization analysis was performed using the ImageJ plug-in, “JaCoP”,
according to the developer’s instructions. Negative controls were achieved by
rotating one channel at least 90° and re-running the analysis. Positive controls were
achieved by running colocalization analysis on two of the same channels. All
graphs are plotted as the mean Pearson’s coefficient of at least three independent
experiments with error bars representing the standard error. Each MCF-7 image
contains ~15–20 cells, and MDA-MB-231 images contain ~5–10 cells per image.

Multi-spectral fluorescent imaging and nearest-neighbor analysis. We used
the Ultivue UltiMapper I/O PD-L1 assay to collect the qmIF data. This kit uses the
following antigens: CD8, CD68, PD-L1, pan-cytokeratin (panCK), and DAPI
(DNA marker). The raw image data is collected at 20×. The fluorescent dye
intensities are normalized to 0–255. Image analysis was performed using a com-
mercial software package (HALO, Indica Labs) at full magnification. The TMA
spots were decomposed into individual analysis regions using the TMA module,
with an invalidation threshold of about 80–90% empty space. A coordinate system
was established for each spot with the origin being the bottom-left corner of the
square TMA boundary. A unit coordinate is equivalent to one pixel or 0.5 microns.
Watershed nuclear identification was performed on the DAPI channel with a
nuclear contrast threshold of 0.5, and nuclear segmentation aggressiveness of 92%.
Nuclei are required to be between 10 and 250 μm2 in size. A cytoplasmic region
was grown from the nuclear boundary up to a radius of 4.2 μm. Cells were required
to be <500 μm2. The average stain intensity within the cytoplasmic region was
measured, and the positive-dye status for the antigen was defined as follows: CD8
(15) CD68 (8), panCK (10), and PD-L1 (13). Overall, we observed low back-
grounds and strong signals. Phenotypes are defined using the coincidence/anti-
coincidence logic of the positive-dye status. The logical combination for the main
cell types are stromal (not panCK), T-cell (CD8), macrophage (CD68), and tumor
(panCK and not CD8 and not CD68). These four cell types have 3 sub-phenotypes,
inclusive and PD-L1+ (and PD-L1) or PD-L1- (and not PD-L1). The result of the
phenotyping analysis is a text file for each tissue sample consisting of entries listing
information about each cell location, including the manual phenotyping result and
raw staining intensities using the defined coordinate system. The cell-point location
was taken as the center of the rectangle which fully bounds the cell.

Statistics and reproducibility. The nearest-neighbor algorithm was implemented
as follows: for a given pair of phenotypes P1, P2, each composed of cells (detected
with thresholds on their staining intensities) with two coordinates, k in [1,2], we
compute, for a given cell Ci belonging to P1, the Euclidean distances to all cells
belonging to P2, excluding those whose distance is less than 0.05 microns to pre-
vent cell-overlap (Supplementary Figs. 9 and 10). We keep the minimum distance
value among those, which we call the nearest-neighbor distance, and repeat this
process for each cell in P1 to form a distribution of nearest-neighbor distances, di.
Measures of central tendencies for di were recorded as well as a histogram of
frequencies of di using a bin width of 2 pixels up to 120 pixels. A counting error
was assigned to each bin as being the square root of the number of entries. The
normalization was chosen to be the total number of cells in the sample core, such
that the integral of the histogram is equal to the density of the base phenotype
being considered.

Population statistics or the average histogram shape were obtained by
computing the mean value for each bin given a sub-population sample. The
counting error was propagated and summed in quadrature with the standard error
of the mean. The combined error is shown in the shaded band. To establish a test
of statistical significance between two different histograms, we first define a test
statistic as being the summed log-likelihood that each bin in the distribution has
the same mean between two sub-populations. The natural log of the p-value, or
“likelihood”, from a t-test between the individual bin values is taken. If the
hypothesis sub-population mean is larger, this likelihood is defined to be positive,
else it is negative. Schematically, large positive likelihoods represent significant
upward fluctuations while large negative likelihoods represent significant
downward fluctuations. These likelihoods are then summed across all bins. This
forms the observed (hypothesis) statistic. The summed log-likelihood was then
recomputed for 1k iterations using randomly assigned sub-populations, which have
the same number of patients as the test sub-population. This forms the null
distribution for the test statistic. The final p-value reported is the one-sided integral
of the resultant null distribution from the observed value (Supplementary Fig. 10).
This method overestimates the p-value since real differences in the sub-population
can be double-counted when building the null distribution. However, this method
treats bin-to-bin correlations correctly since it samples from real data.

Patient baseline characteristics and disease factors were summarized using
descriptive statistics. Categorical variables were compared using the two-sided
Pearson χ2 test. A comparison of IHC scoring was performed by a two-sided t-test
and plotted as previously described77. Univariate and multivariate Cox
proportional-hazards model was used to test the independent and combined
prognostic values of proteins of interest with/without the presence of selected
clinical variables. Spearman rank correlations were used to assess the relationship
between protein H-score and gene expression (RPKM) values78. The significance of
individual hazard ratios was estimated by Wald’s test. Optimal cut-off points for H-

score were determined as previously described6,79 (Supplementary Fig. 3). The
solid lines and histogram present data for samples with levels higher (red) or lower
(blue); the dashed lines present data for samples divided into two groups (higher-
red or lower-blue) based on the “optimal cut-off” algorithm79. Unsupervised
hierarchical clustering of IHC protein score from all breast cancer samples was
performed using complete linkage and distance correlations with the number of
bootstrap replications (n= 1000) using the ‘pvclust’ R package80. The estimated
clustering stability is measured by AU (approximately unbiased) (red) p-value and
BP (bootstrap probability) (green) value for each cluster in a dendrogram80

(Supplementary Fig. 12). To explore the expression value together with clinical-
pathological information, a heatmap was drawn where patients were arranged
based on the order of the hierarchical clustering outcome.

Gene set enrichment analysis of patient RNA-Seq data. The median cut-off of
protein data was used to classify patients into two groups based on H-scores (e.g.,
low versus high Kaiso cytoplasmic) and mRNA abundance (RNA-seq). A two-
sided t-test was performed, and all available genes were ranked according to p-
value (lowest to highest). The p-value ranked gene list was used for functional
correlation using the GSEA software (http://software.broadinstitute.org/gsea/index.
jsp).

Gene set enrichment analysis of MDA-MB-231 cell line gene expression. Four
(N= 4) RNA samples each from WT MBA-MB-231 and RNAi Kaiso-depleted
MBA-MD-231 cells were analyzed on the Affymetrix Human Gene 2.0 ST
microarray and CEL files generated were normalized to produce gene-level
expression values with the Robust Multiarray Average from the affy package to
pre-process arrays and the limma package for identifying differentially expressed
genes81,82. Relative fold depression of Kaiso (ZBTB33) mRNA was a 6-fold
reduction. The hypergeometric test and Gene Set Enrichment Analysis (GSEA)83

was used to identify enriched signatures using the different pathway collections
in the MSigDB database84. The GSEA pre-ranked method from GSEA was
applied for this analysis. Human Gene 2.0 ST microarray of WT versus RNAi
depleted MDA-MB-231 shows significant concordance with scrambled hairpin
RNAi expressing MDA-MB-231 cells compared to Kaiso-depleted cell lines
analyzed on the Nanostring DGE platform (Supplementary Fig. 6 and Supple-
mentary Table 7).

Genetic admixture analysis. For admixture analysis, RNA-Seq reads from 136
breast cancer patients were aligned to hg19 using STAR v2.5.2b85 with subsequent
variant calling completed using GATK (v3.8) HaplotypeCaller54,86. After variant
calling, Admixture v1.3.055 was used to estimate ancestry proportions based on
reference populations from the 1000 Genomes Project phase 387 super populations.
Rare variants (i.e., <5% across all phase 3 1000 genomes), all INDELs, and any
SNPs that were not biallelic were removed before analysis.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
RNA-seq data are available at SRA archives https://www.ncbi.nlm.nih.gov/

sraSRP158272. Proteomic and immunofluorescent intensity (x,y) coordinate point cloud

data for nearest-neighbor analysis (Figs. 1–7) has been uploaded to figshare https://

figshare.com/s/b5652eb7712fa83cf8bc. Additional supplemental data for Figs. 1–6 are

also provided as Supplementary Data 1–7. Additional clinical source data and custom

program code used to generate figures will be made available upon request (contact: SK

Singhal).
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