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Kalman conjecture for resonant second-order systems with time delay

Jingfan Zhang, William P. Heath, Joaquin Carrasco

Abstract— We construct Zames-Falb multipliers for second-
order systems with time delay. There are at least two equality
constraints on the multiplier phase in the limiting case as
the damping ratio tends to zero and the gain approaches the
Nyquist gain. Nevertheless we demonstrate a multiplier exists
for every system we consider. Our results depend on numerical
examples and searches; thus while the Kalman Conjecture is
apparently verified for this class of system, a formal proof is
beyond the scope of the paper.

I. INTRODUCTION
The Kalman conjecture [1] addresses the absolute stability

of a Lur’e system [2] where the LTI plant is in negative
feedback with a memoryless slope-restricted nonlinearity.
While the Kalman conjecture is true for third-order plants
[3], there are fourth-order counterexamples [4]. For a recent
discussion, see [5].

In this paper we address Lur’e systems where the LTI
system is second-order (with no zeros) but with delay, as
in Figure 1. With time delay it remains an open question
what class of system satisfies the Kalman conjecture [6]. On
the one hand, a system with time delay, i.e. G(s) = Gne−sTd

where Gn is stable and rational, may be thought as a high
order system, so it might seem reasonable that the Kalman
conjecture may not be satisfied even when the order of Gn(s)
is low. On the other hand, it is straightforward to show, via
the off-axis circle criterion, that first order systems with delay
satisfy the Kalman conjecture. Moreover, we have introduced
[7] a wide class of system where, if Gn satisfies the Kalman
conjecture, then G(s) also satisfies the Kalman conjecture.
In fact, to the authors’ knowledge, there is no example in the
literature where a general plant Gn(s) satisfies the Kalman
conjecture but G(s) does not.

We can use multiplier theory to establish input-output
stability; specifically, if a multiplier exists for a given LTI
plant then the corresponding Lur’e system is absolutely sta-
ble. The Zames-Falb multipliers [8] are widest known class
available for such analysis [9]. Recently several searches
for Zames-Falb multipliers have been published [10]–[14].
Note that Zames-Falb multipliers are used both to establish
that third-order plants satisfy the Kalman conjecture [3] and
in the proof of the off-axis circle criterion [15] via phase-
substitution [17].

The class of system considered in [7] includes second-
order systems (with no zeros) with delay but without reso-
nance (i.e. with damping ratio greater than 1/

√
2). Hence in
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this paper we focus on systems where the damping ratio
is less than 1/

√
2. Specifically we construct Zames-Falb

multipliers for a wide variety of delay and damping ratio and
hence show the Kalman conjecture to be true for each case.
This requires construction of a Zames-Falb multiplier M
such that the phase of M( jω)(1+kNG(ω)) is positive at all
frequencies, where kN is the Kalman gain. Since by definition
there is a frequency ωN such that 1 + kNG( jωN) = 0 it
follows that the phases of 1+kNG( jω+

N ) and 1+kNG( jω−N )
differ by 180o. Hence the phase of M( jωN) is fixed; specif-
ically we require

∠M( jωN)+
(
∠1+ kNG( jω+

N )+∠1+ kNG( jω−N )
)
/2 = 0.

This puts a severe restriction on the available multipliers
and renders the standard searches inapplicable. This is related
to the restrictions found in [3] and the phase restriction for
discrete-time multipliers discussed in [16]. For some delay
values there are two frequencies where 1+kNG( jω) = 0. In
this case there are two frequencies where the phase of M
is fixed. We note that if these phases are different then the
off-axis circle criterion cannot be applied.

The main part of this paper, Section III, focuses on the
limiting case where the damping ratio tends to zero. This
imposes a further frequency (specifically ω = 1) where the
multiplier phase is fixed. In this sense the limiting case is the
hardest for which to find multipliers. In Section IV we briefly
discuss the case where the damping ratio is non-zero. In this
case the limitations on the phase are less severe. However
several quantities are no longer analytic necessitating further
reliance on numerical results.

Although we do not offer a complete proof, we have not
found any time-delayed second-order plant with no zeros
where we cannot construct a suitable multiplier. We believe
the Kalman conjecture to be true for such systems.
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Fig. 1: Lur’e System with time delay. In this paper Gn takes
the structure Gn(s) = 1

s2+2ξ s+1 , while φ(·) is a memoryless
slope-restricted nonlinearity.



II. PRELIMINARIES

A. Lur’e Systems

Let RH∞ be the space consisting of proper real rational
transfer functions with no pole in the closed right-half
complex plane. The notations ℜ{G( jω)} and ℑ{G( jω)}
represent the real part and imaginary part of G( jω) in the
complex plane respectively. Throughout the text, units in
time and frequency have been omitted.

Let N+ be the set of non-negative integers, R+ be the set of
non-negative real numbers, and L2(R+) be the Hilbert space
of all square integrable and Lebesgue measurable functions
f : R+ 7→R. A truncation of the function f at T ∈R is given
by fT (t) = f (t), ∀t ≤ T ; fT (t) = 0, ∀t > T . The function f
belongs to the extended space L2e(R+) if fT ∈L2(R+) for
all T > 0.

A nonlinearity φ : L2e(R+) 7→ L2e(R+) is said to be
memoryless if there exists a map N : R → R such that
(φ(υ))(t) = N(υ(t)), ∀t ∈ R. The nonlinearity φ is said to
be slope restricted, denoted by φ ∈ S[0,k], if 0 ≤ N(x1)−
N(x2) ≤ k(x1− x2),∀x1,x2 ∈ R and x1 6= x2. The slope re-
stricted nonlinearity is also sector bounded, but the reverse
is not necessarily true.

The Lur’e system in Fig. 1 is given by

v = f +Gw, w = g−φ(v),

where the signals are in the extended space L2e(R+). The
feedback interconnection is said to be well-posed if the in-
verse map (v,w) 7→ (g, f ) is causal in L2e(R+). Additionally,
the interconnection is said to be stable if (v,w) are in L2(R+)
for any (g, f ) in L2(R+).

Definition 1 (Nyquist value, kN): The Nyquist value of a
stable transfer function G(s) is

kN = sup
k
{k > 0 : (1+ τkG(s))−1 is stable ∀τ ∈ [0,1]}.

Conjecture 1 (Kalman Conjecture [1]): Let φ be a mem-
oryless nonlinearity, and φ ∈ S[0,k]. The feedback intercon-
nection between G and φ is asymptotically stable if k < kN .

B. Zames-Falb Multipliers

As our aim is to show that the delay does not change the
behaviour of second order systems, we restrict our attention
to the class of Zames-Falb multipliers that preserve the
positivity for any φ ∈ S[0,k].

Definition 2 (Zames-Falb multiplier [8], [9]): The con-
volution operators M : L (R) 7→ L (R) are in the class of
Zames-Falb multipliers M if their impulse responses are of
the form

m(t) = h0δ (t)−
∞

∑
i=1

hiδ (t−di)−h(t),

where δ is the Dirac delta function, ∑
∞
i=1 hi < ∞, h ∈ L1,

di ∈ R, ∀i ∈ N+ and the following conditions hold:

1) ||h||1 +∑
∞
i=1 |hi|< h0,

2) h(t)≥ 0 ∀t ∈ R+ and hi ≥ 0, ∀i ∈ N+.

Theorem 1 (Zames-Falb theorem [8], [9]): Consider the
feedback system in Fig.1 with Gn ∈ RH∞ and φ ∈ S[0,k].
Suppose there exists a multiplier M ∈M satisfying

ℜ{M( jω)(1+ kG( jω))} ≥ ε ∀ω ∈ R+, (1)

where ε > 0. Then the feedback interconnection is L2-stable.
Condition in (1) is equivalent to

∠M( jω)+∠(1+ kG( jω)) ∈ (−90,90) ∀ω ∈ R+, (2)

where the phase is given in degrees.
The stability theorem is also valid for time delayed plants.

Several searches for Zames-Falb multipliers have been pro-
posed in [10]–[14]. In this paper, because the plant has a
delay, it is natural to use the class of irrational Zames-Falb
multipliers discussed in [10]. We will show that either a one-
delay multiplier, i.e.

Md( jω) = 1−λe− jdω , (3)

where 0 < λ < 1, d ∈ R; or a two-delay multiplier, i.e.

M2d( jω) = Md( jω)+µMd̂( jω) =

1−λ1e− jdω +µ(1−λ2e− jd̂ω), (4)

where µ > 0, is enough to show stability.

C. Time delayed second order systems
In this paper, we consider the case of a second order

plant with no zero. Without loss of generality, we restrict
our attention to the class G 2 given by

G±,ξ ,Td
(s) =± e−sTd

s2 +2ξ s+1
, (5)

where Td ≥ 0, ξ > 0. As we will keep negative feedback in
our analysis, we must consider both positive and negative
cases.

In this paper, we consider the following:
Conjecture 2: Suppose G ∈ G 2. Then either the off-axis

circle criterion can be used to verify the Kalman conjecture,
or there exists either a one-delay multiplier Md ∈M or a
two-delay multiplier M2d ∈M which satisfies

ℜ{Md(or 2d)( jω)(1+ kNG( jω))} ≥ 0 ∀ω ∈ R+, (6)

where kN is the Nyquist gain of G.
Remark 1: The existence of a multiplier M satisfying

inequality (6) for kN implies that for any 0 < k < kN there is
an ε > 0 such that (1) is also satisfied with the same M; see
Section 6.1 in [9] for further details. This in turn is sufficient
to verify the Kalman conjecture for G.

III. SYSTEMS WITH ZERO DAMPING RATIO

In this section, we restrict our attention to the following
two plants:

G+,Td (s) =
e−sTd

s2 +2ξ s+1
, and G−,Td (s) =

−e−sTd

s2 +2ξ s+1
,

where ξ → 0+. This seems to be the most challenging case,
as the phase of 1+ kNG has at least two changes of 180o.
But in this case an analytic value of the Nyquist gain kN can
be obtained.



A. Nyquist Gain
It is easy to check the following via the Nyquist criterion:

a) For G+,Td (s): the analytic expression for the Nyquist
value is given by

kN =


0 if n−1≤ Td/π ≤ n,
1−n2π2/T 2

d if n≤ Td/π ≤
√

n2 +n+1/2,
(n+1)2π2/T 2

d −1 if
√

n2 +n+1/2≤ Td/π ≤ n+1,
(7)

where n≥ 1 is an odd number.
b) For G−,Td (s): the analytic expression for the Nyquist

value is given by

kN =



1 if 0≤ Td/π ≤ 1/
√

2,
π2/T 2

d −1 1/
√

2≤ Td/π ≤ 1,
0 if n−1≤ Td/π ≤ n,
1−n2π2/T 2

d if n≤ Td/π ≤
√

n2 +n+1/2,
(n+1)2π2/T 2

d −1 if
√

n2 +n+1/2≤ Td/π ≤ n+1,
(8)

where n≥ 2 is an even number.

B. Slope of the Nyquist Plot
The use of the phase at crossing frequencies requires an

analysis of the slope of the tangent to the Nyquist plot at each
frequency. Note that slope of the Nyquist plot of 1+kG for
k > 0 is the same as the slope of the Nyquist plot of G, so
we will study the latter. For the sake of simplicity, let x and
y denote the real and complex values of the Nyquist plot of
G±, i.e.

x(ω) = ℜ{G( jω)}=±cos(ωTd)/(1−ω
2),

y(ω) = ℑ{G( jω)}=∓sin(ωTd)/(1−ω
2).

Then the slope of the Nyquist plot is given by

dy
dx

(ω) =
dy
dω

(ω)
dx
dω

(ω)
=

∓Td(1−ω2)cos(ωTd)∓2ω sin(ωTd)

∓Td(1−ω2)sin(ωTd)±2ω cos(ωTd)
(9)

This simplifies at the crossing frequencies for which
sin(ωcTd) = 0, and we may say

dy
dx

(ωc) =−
Td(1−ω2

c )

2ωc
. (10)

Equation (9) also provides the slope of the asymptote of the
Nyquist plot of G at ω = 1, specifically

lim
ω→1

dy
dx

(ω) =− tan(Td). (11)

C. Critical Frequencies 1+ kNG( jω)

The development of a suitable multiplier for G̃( jω) =
1+ kNG( jω) is based on the analysis of up to three critical
frequencies. These critical frequencies are:

1) Nyquist Frequency ωN: Let us define the Nyquist
frequency, ωN , as the frequency at which the left-most
crossing of negative real axis by the Nyquist plot of G occurs,
i.e. G( jωN)=−1/kN . Then there is a change of 180o degrees
in the phase of G̃, which puts an equality constraint on the
multiplier given by

∠M( jωN) =−
(
∠G̃( jω+

N )+∠G̃( jω−N )
)
/2. (12)

2) ω = 1: As ω→ 1, the gains of both G( jω) and G̃( jω)
tend to infinity. In particular the Nyquist plot of G̃( jω)
has an asymptote at ω = 1. There is a 180o change in the
phase of G̃( jω) which puts another equality constraint on
the multiplier given by

∠M( j1) =−
(
∠G̃( j1+)+∠G̃( j1−)

)
/2. (13)

3) 2nd Critical Crossing Frequency ω̂: If ωN < 1, let ω̂ be
the lowest value of ω > 1 such that ℑ[G( jω)] = 0. Similarly
if ωN > 1 let ω̂ be the highest value of ω < 1 such that
ℑ[G( jω)] = 0. In general there is an inequality constraint on
the phase of the multiplier at ω̂ and the smaller the distance
G̃(ω̂)− G̃(ωN) the tighter the constraint. For some values of
delay this distance is equal to zero, i.e. ω̂ is a second Nyquist
frequency; in such cases there is also an equality constraint
on the phase of the multiplier at ω̂ given by

∠M( jω̂) =−
(
∠G̃( jω̂+)+∠G̃( jω̂−)

)
/2. (14)

This happens when the nth crossing at ω = nπ

Td
< 1 and

(n+ 1)th crossing at ω = (n+1)π
Td

> 1 coincide. This occurs
when the delay takes the value

T ∗d,n = π

√
n2 +n+1/2, for some n. (15)

D. Phase Properties of G̃( jω)

Here we analyse the geometrical properties of G̃( jω) and
identify the values for the critical frequencies with different
time delays. We focus on the interval Td ∈ (0,2π] as this
is enough to illustrate the behaviour of all the different
phenomena that can occur. The interval is split into the
following subintervals:

1) Subinterval 1: 0 < Td/π ≤ 1/2,
2) Subinterval 2: 1/2 < Td/π ≤

√
1/2,

3) Subinterval 3: 1/
√

2 < Td/π ≤ 1,
4) Subinterval 4: 1 < Td/π ≤

√
5/2,

5) Subinterval 5:
√

5/2 < Td/π ≤ 2.
As discussed in Section III-A, we are concerned with

G−,Td for subintervals 1, 2, and 3 and with G+,Td for
subintervals 4 and 5.

Subinterval 1: On this subinterval the off-axis circle
criterion can be used to verify the Kalman conjecture, since
the Nyquist plot of G̃( jω) with ω > 0 lies to the right of a
line through the origin with slope − tan(Td).

Specifically, when Td ∈ (0,π/
√

2], ωN = 0, kN = 1 and the
phase of G̃( j0+) is 90o. As ω→ 1 the Nyquist plot of G̃( jω)
approaches an asymptote with slope − tan(Td) that crosses
the real axis at 1− Td

2sinTd
. Since ξ > 0 (we are considering

the case ξ → 0+) the Nyquist plot sweeps clockwise as the
frequency changes from 1− to 1+. The frequency of the
second crossing is ω̂ = π

Td
> 1, and the second crossing of

the negative real axis is at G̃( jω̂) = 1− T 2
d

π2−T 2
d
> 1− Td

2sinTd
.

Since the slope of the line in the off-axis circle criterion
is negative, it follows that there exists an appropriate RC
multiplier [15]. The RC multipliers can be phase-substituted
by anticausal Zames-Falb multipliers [17].



When Td = π/2, the Nyquist plot of G̃( jω) has a vertical
asymptote at x = 1−π/4 and its real part is always positive.
Hence the circle criterion is sufficient for absolute stability.

In summary, when Td ∈ (0,π/2], the Kalman conjecture
is verified.

Subinterval 2: When π/2 < Td ≤ π/
√

2 then as before
ωN = 0 and kN = 1. The formulae for ω̂ , G̃( jω̂) and the
asymptote are also the same as for Subinterval 1. However
the slope of the asymptote is positive so the maximum phase
difference in the Nyquist plot of G̃( jω) is greater than 180o.
Hence, the off-axis circle criterion is not suitable, and it is
necessary to construct a multiplier.

The phase of the multiplier at ω = 0 and ω = 1 is given
by (12) and (13), respectively, i.e.

∠M( j0) = 0; ∠M( j1) =−90(1−2
Td

π
). (16)

For low values of Td a one-delay parametrisation of the
multiplier is sufficient. We remark that since ∠G̃( j0+)= 90o,
so ∠M( j0+) should be negative, which indicates a negative
value for d in (3), i.e. an anticausal multiplier as with
Subinterval 1.

As Td increases so the value of G̃( jω̂) approaches
G̃( jωN) = 0; the values coincide when Td = π/

√
2. With

this delay value the phase of the multiplier is fixed at ω̂

by (14), i.e.

∠M( jω̂) = 90− arctan
π2−T 2

d
2π

with Td =
π√
2
, (17)

where we have used (10) at ωTd = π . For larger values of
delay Td it is useful to enrich the choice of multiplier by
including two delays as in (4).

A summary of the conditions in this subinterval is given
in Table I.

Critical Frequency Crossing Phase of M( jω) (degrees)
ωN = 0 -1 0

1 N/A 90(2 Td
π
−1)

ω̂ = π/Td > 1 −T 2
d

π2−T d2
90− arctan π2−T 2

d
2π

(as Td →
√

1/2π−)

TABLE I: Subinterval 2 summary

Subinterval 3: In this case ωN = π

Td
> 1, kN = π2

T 2
d
−1, and

ω̂ = 0. For Td→
√

1/2π+, the proximity between both cross-
ing requires the flexibility provided by (4). As ℜ{G̃( j0+)}
is a small positive number, so the initial condition of the
multiplier, i.e. d < 0, is still needed.

The conditions on the multiplier can be developed as
previously, and are summarised in Table II. In this case there
is no longer a requirement from the phase change of G̃( j0)
that ∠M( j0) = 0. However this is a natural condition for any
Zames-Falb multiplier.

As Td → π , kN → 0 and the search becomes simpler but
the value of λ in (3) approaches 1. In the case Td = π , kN = 0
so there is no available multiplier.

Critical Frequency Crossing Phase of M( jω) (degrees)

ωN = π/Td > 1 −T 2
d

π2−T d2 90− arctan π2−T 2
d

2π

1 N/A 90(2 Td
π
−1)

ω̂ = 0 −1 0

TABLE II: Subinterval 3 summary

Critical Frequency Crossing Phase of M( jω) (degrees)

ωN = π/Td < 1 −T 2
d

T d2−π2 90− arctan π2−T 2
d

2π

1 N/A 90(2 Td
π
−3)

ω̂ = 2π/T d > 1 −T 2
d

4π2−T d2
90− arctan 4π2−T 2

d
4π

(as Td →
√

5/2π−)

TABLE III: Subinterval 4 summary

Subinterval 4: When π < Td ≤
√

5/2π , the summary of
critical frequencies is provided by Table III

Similar to Subinterval 2, the two crossings are far apart
from each other at the initial values of the interval, the
multiplier should satisfy the phase requirements at ωN and 1,
and multiple solutions of the multiplier in (3) can be obtained
with d ∈ R.

Similarly, when Td →
√

5/2π+, especially at Td =√
5/2π , ℜ{G+,Td ( jω̂)}= ℜ{G+,Td ( jωN)}, so both ωN and

ω̂ are Nyquist frequencies. As a result, the phase of the
multiplier is severely restricted at three frequencies and a
two-delay multiplier in the form of (4) is needed.

Subinterval 5: This case is very similar to Subinterval 4,
but the role of the critical frequencies changes a shown in
Table IV.

Critical Frequency Crossing Phase of M( jω) (degrees)

ωN = 2π/T d > 1 −T 2
d

4π2−T d2 90− arctan 4π2−T 2
d

4π

1 N/A 90(2 Td
π
−3)

ω̂ = π/T d > 1 −T 2
d

T d2−π2
90− arctan π2−T 2

d
2π

(as Td →
√

5/2π+)

TABLE IV: Subinterval 5 summary

As previously discussed, the search requires the two
delay multiplier given by (4) when Td is slightly larger
than

√
5/2π , as the 3 constraints are significant. When Td

approaches 2π , the problem become easier and the multiplier
parametrised by (3) is enough to show stability.

When Td = 2π , kN = 0; hence no multiplier is required.

E. Selected Multipliers

The analysis carried out in the previous section provides
the essential properties so multipliers for different time
delays can be found. We show several examples covering
different scenarios. Firstly, we focus our attention in the
interval [0,2π]. Secondly, we show the existence of the
multiplier for critical cases with higher time-delay.

1) Td ∈ [0,2π]: Some feasible multipliers for plants with
Td ∈ [0,2π] are listed in Table V. For each case we are able
to find a multiplier and hence verify the Kalman conjecture.
We avoid the interval [0,π/2] as the off-axis circle criterion
is sufficient on this subinterval.



Ex. Td kN Suitable Multipliers
1 2.00 1 Md = 1−0.5448e4.4000s

2
√

0.5π 1 M2d = 1−0.7886e−31.6411s

+8
(
1−0.9988e4.4438s)

4 2.50 0.5791 Md = 1−0.9996e5.0006s

6 3.13 0.0074 Md = 1−0.99999905e6.2608s

7 3.15 0.0053 Md1 = 1−0.9999647e−6.2751s

9 1.5π 0.5556 Md1 = 1−0.8326e−6.2832s

Md2 = 1−0.8330e3.1416s

11
√

2.5π 0.6000 M2d = 1−0.9280e−6.2878s

+0.02181
(
1−0.9365e23.5192s)

12 4.97 0.5983 Md1 = 1−0.9412e−6.2997s

Md2 = 1−0.9972e9.9407s

14 6.27 0.0042 Md1 = 1−0.9999e−6.2899s

Md2 = 1−0.9999e6.2635s

TABLE V: Feasible multipliers for different Td ∈ [0,2π].
Figures and code for all examples are available in our
website: https://goo.gl/BLuaNK.

It is instructive to consider Examples 2 and 11 in detail.
These correspond to the values of Td on the interval (0,2π]
where G̃( jωN) = G̃( jω̂).
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Fig. 2: Nyquist plot of G̃( jω) of of Ex.2

Fig. 3: ∠M2d( jω) with forbidden zone of Ex.2

Fig 2 shows the Nyquist plot of G̃( jω) for Example 2
(Td =

√
1/2π). This is the limiting case between Subinter-

vals 2 and 3. Fig 3 shows the phase requirements for the
multiplier, where the red regions are the forbidden zones.
In particular there is an equality constraint on the multiplier
at ω = 1 and ω =

√
2 (there is a further equality constraint

at ω = 0, not shown). Similar diagrams appear in [18]–[21]
albeit in [19]–[21] with ratio between imaginary and real
parts rather than phase shown on the vertical axis. In [21]
such diagrams are named “Lipatov plots” after [19], [20].

Example 11 (Td =
√

5/2π) is the limiting case between
Subinterval 4 and 5 where the multiplier should satisfy the

Real
-1 -0.5 0 0.5 1 1.5

Im
ag

-2

0

2

4

ωN

ω̂

ω = 1−

ω = 1+

Fig. 4: Nyquist plot of G̃( jω) of Ex.11

Fig. 5: ∠M2d( jω) with forbidden zone of Ex.11

phase requirement at three critical frequencies (see Figs 4
and 5). Similar to the discussion above, the phase of the
multiplier passes through each intersection of the forbidden
zone at each frequency, so the phase requirements in (12)
(13) (14) hold, and the multiplier is valid.

2) Longer time delays: For Td > 2π we limit our analysis
the most challenging cases, where the two crossing at fre-
quencies ωN and ω̂ overlap at the same point. The results
are listed in Table VI.

n T ∗d,n kN Suitable Multipliers

1 4.9673 0.6000 M2d = 1−0.9280e−6.2878s

+0.02181
(
1−0.9365e23.5192s)

2 8.0095 0.3846 Md = 1−0.9990e16.0187s

3 11.1072 0.2800 M2d = 1−0.7434e−12.5210s

+12.8760
(
1−0.7434e9.6934s)

15 48.7200 0.0644 M2d = 1−0.6581e−50.2446s

+4.3971
(
1−0.6581e47.1955s)

16 51.8601 0.0606 M2d = 1−0.6183e−50.2369s

+3.1257
(
1−0.6183e53.4832s)

55 174.3655 0.0180 M2d = 1−0.6424e−175.9225s

+3.8448
(
1−0.6424e172.8085s)

56 177.5069 0.0177 M2d = 1−0.6311e−175.9219s

+3.4913
(
1−0.63114e179.0920s)

155 488.5202 0.0064 M2d = 1−0.6387e−490.0860s

+3.7235
(
1−0.6387e486.9544s)

156 491.6618 0.0064 M2d = 1−0.6346e−490.0859s

+3.5954
(
1−0.6346e493.2376s)

TABLE VI: Feasible multipliers for different T ∗d,n.

As demonstrated in the table, multipliers have been ob-
tained, and the Kalman conjecture is true for these examples.
In general as T ∗d,n increases so kN decreases. However, the
values of both λ1 and λ2 in (4) reduce and appear to converge
to a limit around 0.63. Meanwhile, the values of both d and d̂



in (4) take values close to T ∗d,n for relatively larger delays.
Once again, in all the cases we consider we are able

to construct a suitable multiplier. Furthermore the search
becomes easier as Td increases. In conclusion, the Kalman
conjecture appears to be verified when ξ → 0+.

IV. SYSTEMS WITH NON-ZERO DAMPING RATIOS

When the damping ratio is fixed at a value greater than
0, the restriction on the phase of the multiplier at ω = 1 is
less severe. In fact, as ξ increases, the range of delays for
which the off-axis circle criterion is suitable increases. We
show in [7] that when ξ > 1√

2
the off-axis circle criterion

can be used to verify the Kalman conjecture for any delay.
However there may no longer be analytic expressions for

ωN , kN , ω̂ , G( jω̂), T ∗d,n etc. Thus although matters may be
simpler, we do not claim a formal proof of absolute stability
for all cases.

Therefore, in this section, a few examples are provided
with different ξ < 1√

2
at time delays with two Nyquist

frequencies (i.e. where G̃( jω̂) = G̃( jωN) = 0). The results
are listed in Table. VII.

ξ T ∗d,1 kN Feasible Multipliers

0.0001 4.9675 0.6001 M2d = 1−0.9271e−6.2876s

+0.02245
(
1−0.9357e23.5194s)

0.001 4.9693 0.6009 Md = 1−0.9275e−6.2877s

0.1 5.2140 0.6842 Md = 1−0.8782e−6.5085s

0.4 6.9621 0.8993 Md = 1−0.6543e−8.2613s

0.6 11.8303 0.9854 Md = 1−0.3757e−13.1903s

TABLE VII: Feasible multipliers for different T ∗d,1 with ξ 6= 0

As illustrated in the table, when ξ is still close to zero,
such as ξ = 0.0001, the phase requirement of the multiplier
at ω = 1 is not completely relaxed, so the multiplier structure
as in last section is also needed. As ξ increases, the condition
is relaxed and, hence the structure of the multiplier can be
simplified.

The results appear to confirm that the case ξ → 0+ is the
most challenging. As ξ increases, kN also increases but the
behaviour of the phase of G̃( jω) allows simpler multipliers
to be used.

V. CONCLUSION

The paper has analysed a wide range of second-order
systems with time delay, and shown in each case that a
Zames-Falb multiplier can be found at the Nyquist value.
All the examples considered satisfy the Kalman conjecture.

The design of the multiplier is significantly different to
the case without delay, where a Popov multiplier suffices [3].
Indeed for 0 < Td < π/

√
2 the restriction on the multiplier

at ω = 0 means a Popov multiplier cannot be used. We
show that the complexity of the multiplier depends on the
proximity between the two largest crossings of the Nyquist
plot with the negative real axis. The lack of closed-form
values for the Nyquist value impedes the development of a
formal proof, but our numerical analysis seems to indicate

that the structure of the multiplier is not limited by any phase
limitation presented in [22].

It remains open whether there exists any system which
satisfies the Kalman conjecture without delay but fails to
satisfy the Kalman conjecture when delay is included. This
remains the topic of further investigation.

REFERENCES

[1] R. E. Kalman, “Physical and mathematical mechanisms of instabil-
ity in nonlinear automatic control systems,” Transactions of ASME,
vol. 79, pp. 553–566, 1957.

[2] A. I. Lurie and V. N. Postnikov, “On the stability theory of control
systems,” Russian Prikl. Matem. i Mekh., vol. 8, 1944.

[3] N. E. Barabanov, “On the Kalman problem,” Sib. Math. J., vol. 29,
pp. 333–341, 1988.

[4] R. E. Fitts, “Two counterexamples to Aizerman’s conjecture,” IEEE
Transactions on Automatic Control, vol. 11, pp. 553–556, 1966.

[5] G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, “Algorithm for
constructing counterexamples to the Kalman problem,” in Doklady
Mathematics, 2010, vol. 82, pp. 540–542.
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