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Abstract

This paper considers the application of Kalman estimation theory to

the problem of estimating two-dimensional isotropic random fields, whose

equations are expressed in terms of the Laplacian, given some noisy

observations on a finite disk. It is shown that this problem is equivalent
to that of solving a countably infinite number of one-dimensional estimation

problems. Markovian models for the one-dimensional processes are developed

and the associated Kalman filters are shown to be asymptotically stable.

The desired field estimate is then obtained by combining the smoothed

estimates resulting from each of the one-dimensional problems weighted in

an appropriate fashion.
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I:., . Intzroduction

Isotropic random fields are random fields whose autocorrelation function

is invariant under both rotations and translations. Apart from the fact that

the isotropic property is the natural extention of the notion of stationarity

in one dimension, isotropic fields deserve a special attention because they

arise in a number of physical problems of interest among which we can mention

the study of sound propagation in the ocean ([1] Chapter 10, [2]), the

investigation of the temperature and pressure distributions in the atmosphere

at a constant altitude (13], 141), and the analysis of turbulence in fluid

mechanics [5]. In this paper we shall study isotropic fields defined by the

integral

z(r) 2- C K0(Alr-r'l) w(dr'),r e E 2 (1.1)

where C is a matrix of size pxn, A a positive definite symmetric matrix of

size nxn,and w(dr) a random zero-mean two-dimensional Gaussian orthogonal

measure with

E[Iw(dr) 2 ] = Q dr , (1.2)

where Q is a non-negative definite matrix which commutes with A. K (Ar) denotes

here the matrix modified Bessel function of second kind and of order zero given

by

o (1/2 (r) 2 k+k1 (1/2 Ar) 2k -l~0(Ar) = - (9n(Ar) + YI) k k(13)~~0 k=~0 k!r(k+l) k=l Uk! 

where y is Euler's constant. Heuristically z(r) can be described in differential

form by the 2-D state-space model
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2 2
(I V - A ) x(r) = u(r) (1.4a)

n - -

z(r) = Cx(r) , (1.4b)

where u(r) = (I) is a two-dimensional zero-mean white Gaussian noise process
-- axDy

of intensity Q. Note that the partial differential equation (1.4a) does not

specify uniquely the state process x(r). An asymptotic condition must also be

imposed which has for effect to specify the Green's function

G(r,r') = K0 (A Ir-r') (1.5)

appearing in solution (1.1). This condition is that the state process x(r)

must have finite variance as Irl tends to infinity. It is also worth observing

that since the partial differential equation (1.4a) involves the Laplacian, it

can be used to model a large class of physical phenomena, such as potential

problems with uniformly distributed random sources in a lossy medium, where

the loss is described here by A 2 . We now show that x(r) and z(r) are indeed

isotropic processes.

Theorem 1.1: The state process x(r) defined by equation (1.4a), or equivalently

by setting C = I in equation (1.1), is an isotropic process with autocorrelation

function

R (r,s) = E[x(r)x (s)] A 1r- s - , A(1.6)
x . . ..

where K (Ar) is the matrix modified Bessel function defined by
1

K1 (Ar) = - (d__ (Ar))A (1.7)
1 dr 0

This implies that the output process z(r) is isotropic with autocorrelation

function

R (r,s) = CR (r,s)C . (1.8)
Z x
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Proof: We will first show that R (r,s) is invariant under translation.

By definition we have

R:x(r,s) =E [(r)x(s))

Q-I dr' KO(AIr-r' I) Ko(Al_-r' I)

Q ro o 2 1/2

= Q2 I du" dvI K0 (A[u1-u') + (vl-v') )1/2
42 -1 -

2 2 1/2
K (A[ (u2 - u') + (V -v') ] )

where r = (ui,v 1) and s = (u2,v 2 ). Now, perform the transformation

u" = hl + u'

v" = h 2 + v'

to obtain

R (r,s) = 2 du" dv" KO (At(u1 +h1-u + ( 2 2

2 11)2 1/2
KO (AI(u2+hl - u") + (V+h -v")2 ] )

R (r+h, s+h)

where h = hli + h . This shows that Rx(r,s) is invariant under translation.

Using this fact, we can write

R (r',s) = R (r,O)

with r = r'-s. Hence
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R (r' s) = I dr" K0(Afr-r" I) K0(AlrH l)x - 2 0- 0

-=2- K0 (Arl) * Ko(Alrl)
4w2

where * denotes the convolution operation. Thus

R (r',s) = K (Ar"') KO(A(r +r" -2rr'rcosO) l /2 )rdr n d64w2 0 0

= R (jrf)x

where Irl = r, which shows thatRx(r,s) is also invariant under rotation.

Finally, by using the properties of Hankel transforms and the fact that

x(r,s) = 2 K(Air-sl) * Ko0(Al r-sl , (1.9)x -- - -2 '
4'r

we have

R (r,s) =OA-
1 K (Air-s)x--- O l4A7r - 1

The motivation for considering isotropic fields which admit the integral

representation (1.1), or equivalently, which are described by the partial

differential equation (1.4a), is that the spectral density

S() = C(2 I+A2)-1 Q(X2I+A2)-iCT
z

=C(X2I+A2) 2 QCT
(1.10)

which is obtained from (1.9) is rational. Furthermore, since A is symmetric

and positive definite, the poles of the spectrum S (p) obtained by setting

p = jX in (1.10) are all real and occur in sets of four: p=a (twice) and

p = -a (twice), where a > 0 is an eigenvalue of A. To see how random fields

of this type appear physically, consider a random field z(-) which is obtained
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by passing 2-D white noise through a linear, stable, rational filter F(X2 )

which is invariant under translations and rotations. Then,if p = jX, the

poles of F(-) appear in pairs p=±a, where a is real (this is a consequence

of the circular symmetry of F(-)), and the spectrum of z(-) is given by

S (X) = F(2 )F(2 ) . (1.11)
z

This implies that the field z(') has a realization of the form (1.1) or

(1.4). We see therefore that the class of random fields with a spectral

density of the form (1.10) is quite large. It is, in fact, the analog of

the class of stationary processes which are obtained by passing white noise

through a finite dimensional, linear time-invariant filter in one dimension.

In the remainder of this paper we shall develop a theory of Kalman

filtering and smoothing for the process z(r). Specifically, we shall consider

the problem of finding the best estimate z(rjR) of z(r) given some noisy

observations y(r) of z(r) where

y(r) = z(r)-+ v(r) r < R , (1.12)

and where v(r) is a two-dimensional zero-mean white Gaussian noise process

such that

E[v(r)v(s)] = V6(,r-s) (1.13)

E[v(r)u(s)] = 0.

Here V is a positive definite matrix and 6(-) denotes a two dimensional impulse

function. In Section 2 we shall show that the above problem is equivalent to a

countably infinite number of orthogonal one-dimensional estimation problems. We

will then develop a state-space Markov realization for each of the one dimensional

estimation problems in Section 3, Kalman estimation theory can then be applied

to each problem separately and the resulting estimates can be combined in a

proper fashion to obtain z(rlR). The stability of the Kalman filters associated

with each one-dimensional problem is studied in Section 4.
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II. Fourier Series Expansions for Isotropic Fields

Following [6] we expand each isotropic field appearing in equation;(1.12)

in Fourier series

y(r) = Z n(r)e (2.la)
-- n=-co n

jn6
z(r) = n z (r)e (2.1lb)

- n=-" n

v(r) = v (r) ej , (2.1c)
- n=-- n

where the Fourier coefficients

1 2 7T -jn6
y: (r) 2 0 y(r,e)e dO (2.2a)

1 2,ff -jnO
z C r) 2T= 27r z(r,6)e de (2.2b)

n (Tr)- 2 27 -jnO
n r) = v(r,)e de (2.2c)

define some one-dimensional estimation problems

y'n(r)= z (r) ± Cr) < r < R (2.3)n n n- -

The main feature of this expansion is that the Fourier coefficients of different

orders are uncorrelated,i.e.

E[n (r)z *)()] E[v (r) *(s)]
n m n m

= E[z (r)V *(s)] = 0 (2.4)
n m

for n5m ([7]). Hence z(rJR) = E[Z(r)IYR], where YR denotes the Hilbert space

spanned by the observation process 5 (r) for r < R, can be written as
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z(rIR) = Z E[z (r)IYRn] enO (2.5)n=- c n

where Y = H(y (r), 0 < r < R) is the Hilbert space spanned by the nth Fourier
R n - -

coefficient of the observations. The two-dimensional estimation problem has thus

been reduced to a countably infinite number of one-dimensional estimation problems.

In practice one would consider only a finite set of N of these one dimensional

estimation problems, where N increases in a non-linear fashion with increasing

distance from the origin of the location where z(r) is to be estimat.ed,and

decreases with increasing allowable error; covariances. Thus,if one is

interested in the value of z(OJR) at the origin,one would use only the zero

order Fourier processes.

To obtain the Fourier expansion of the fields specified by equation (1.1)

and equation (1.12) we shall make use of the following identity

o (AIr-r'I) = IO(Ar< ) K (Ar>)

-1
+ E I (Ar<) K (Ar>) cos n(e-0')

n- n < n >

+ nZ I (Ar<) K (Ar>) cos n(0-e') , (2.6)
n=l n < n >

where

r = (r,O), r' = (r',8')

r< = min (r,r') r = max (r,r') , (2.7),

and I (Ar) and K (Ar) are modified Bessel functions of the first and second
n n

kind respectively and are defined by



1 2k

I (Ar) (Ar) (2.8)
n 2 k=0 k! r(n+k+l)

n-1
K (Ar) = Ar) -n k ' (-1 /4 A2 2 )k + (-1) n+l ArI (Ar)
n 2 2 k=0 k! 2 n

, -jne
Upon multiplying both sides of (1.12) by and integrating from 0 to 27

we obtain

Yn(r) = Zn (r) + v (r), (2.10)

where

z (r) = C( dr' r' I (Ar')K (Ar)u (r')

X n n n
+ dr' r' I(Ar) K(ArT)u Cr')) (2.11)r

U r) 2- Ju(r,1) eJn dj . (2.12)

The two noise processes u (r) and v (r) are zero-mean white Gaussian noise processes

with covariance

n f (Sr 01 6(r-s)
Eftn (r) uTs) n vTs)1 = 

2Trr

Note that the noise intensities vary as - . This can be explained as follows.
r

The noise processes u (r) and v (r) are obtained by averaging the white noises
n n

u(r) and v(r) weighted by e on annular strips centered at the origin.
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Since the total noise energy associated with u(r) and v(r) is constant

independent of position, then the total energy associated with u (r) and v (r)

on any strip must be constant, and since the area of an annular strip varies

1
as r, the noise intensities of u (r) and v (r) must vary as -. In the next

n n r

section we develop a state-space realization for equations (2.10) and (2.11).
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III. State-Space Realizations of the Fourier Processes

Let us define two new processes i (r) and 1n (r) as
n n

5 (r) = dr' r' I (Ar')u (r') (3.1)
n n n

n (r) = jdr' r' K (Ar')u (r') . (3.2)
r

Clearly

z (r) = CK (Ar) n(r) + CI (Ar)n (r) (3.4)
n n n n n

By differentiating (3.1) and (3.2) we obtain

n(r) = rI (Ar)u (r) (3.5)
n n n

(r) = -r K (Ar)u (r) , (3.6)

with the limiting conditions n (0) = 0 and n (c) = 0. Note that E (C) is

propagating in a radially outwards direction,while n (-) is propagating in a

radially inwards direction. The set of equations (3.4) - (3.6) constitutes

a state-space description of process z (-), but it is non-causal. In order

to apply Kalman filtering techniques to this state-space model, we must transform

it into an ordinary forwards propagating model. This can be done by applying

the method of Verghese and Kailath [8], for constructing backwards Markovian

models, to the problem of reversing the direction of propagation of nn( ).
n

Let X = a{n (r'): 0 < r' < r} denote the sigma field generated by the process
r n

n(r') for r' < r. Then
n

E (u (r) X r ] = E[u (r)r T (r)]) ( (r)
n r n n n n n

2 -1
= -K (Ar) D (Ar)fn (r) , (3.7)

n n n
r



where

D (Ar) = r(K (Ar)K (Ar) -2K (Ar)) , (3.8)
n n-l n+l n

and where we have used the fact that Q and A commute. Equations (3.5) and (3.6)

can now be rewritten as

2 -1
(r) = - 2K (Ar) (Ar)(r) (r) - rK (Ar)u Cr)u (3.9b)

n n n n n n

where u (r) is an X :-martingale having the same intensity Q/27rr as u (r). By
n r n

applying the state transformation

K (Ar) o

T (r) (3.10)
[ A0 I (Ar)

n

to equations (3.9), and using equations (2.10) and (3.4), we obtain the following

state-space Markovian model for the nth-order Fourier coefficients

c(r)=A (r)x (r) + B (r)ui (r) (3.11a)
n n n n n

Yn() = (r)x (r) + vn (r) x (3.11b)

with

-( 2 -l(Ar)

n n n n [n; (Ar)n (Ar) 2K(Arr) (Ar) - (Ar)
A (r) = (3.12)

On AI (r- 2 -1
0 AI (ar)I -(Ar) - 2K (Ar)D (Ar)

n n n n
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rI (Ar) K (Ar)
n n

B (r) = (3.13)

-rIn(Ar) Kn (Ar)

C (r) = [C C] , (3.14)

and where u. (r) and v (r) are two-independent zero-mean white Gaussian noise
n n

processes with

E 1[ un (F) v ) 6(r-s) (3.15)

The initial conditions associated with system (3.11) are

E[xn(0)] = 0, (3.16)

and

-O O

E[x (0)x (0)] = A o (3.17)
n n 2

where :n0 denotes the Kronecker delta function. Equation (3.17) is a direct
nO

result of the fact that as r tends to zero the covariance of the process x (r)

behaves as

,£2

2 0 0
16,n (n+l)

T
E[x (g)x (8)] 2

n n 2 I(3.18)
16fn (n+l)
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for n30 or 1, as

T ( ) Q 1 0

E[x )x T ( ] (3.19)
2

1 1 CeQ (I+2kn(AE))

for n=l, and as

-a inn2 (A£)(I- (A&) 2

E[x0 (£) x0T)| (3.20)

0 4T- (I-((Ae)Pn(A£))
41T_

It is interesting to examine the asymptotic form of the system (3.11) as r tends

to zero and to infinity. Note that as r tends to zero the only process of interest

is the zero order Fourier process. As r tends to zero the matrices A (r),

B (r) and Co(r) tend to the following matrices

1-n-l(Ar) 2A2rkn (Ar)

A (r) - A 0 (r) =2 (3.21)
A r - 2A2 rn 2 (Ar)

-rkn(Ar)

B0 (r) - B0 (r) = ] (3.22)

r9n (Ar) 
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C (r) = [C C] . (3.23)

Clearly the product A (r)x(r) is ill-behaved as r tends to zero. To circumvent

this difficulty we make the following state-space transformation

xO() = P (r)x Cr) (3.24a)

o0 n (Ar)

P 0(r) = , (3.24b)

to obtain the following model for the zero order Fourier process

x0(r) = AO(r)xO(r) + B0(r)u0(r) (3.25a)

yO(r) = C0 ( r)x 0 ( r) + v ( r) ,(3.25b)

with

-AK 1 (Ar)K (-1Ar) 1 -n- (Ar) -2AK (Ar)Qn (Ar)
I 1 0 r -

AI .O~~r)~D CAr)

0 AI1 (Ar)I (Ar) - 2K0 (Ar) 
1 0 0 J- (3.26)

D (Ar)

-rKo (Ar) Pn- (Ar)

B0(r) = (3.27)

-rK (Ar)n - (Ar)

Co(r) = [-9n(Ar) I] C (3.28)
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and with initial conditions

E[x0(0)] = 0 (3.29a)

0O 0

E[x0 O (0)) ] = (3,29b)
0 ~i~0(O)~i 0 QA- -2

47r

The model (3.21) is well behaved near the origin since

lim 0 (r) = lim B (r) = 0 (3.30a)

r+0 r+0O

r+ 0

lim C0 (r)X (r) = z0 (0) , (3.30c)

r-00

th
and should be used for the zero order Fourier processes instead of model

(3.11) near the origin.

On the other hand as r tends to infinity the system (3.11) tends to

n(r) = Ax (r) + BU (r) (3.31a)
n n n

Yn(r =Cx (r) + v (r) (3.31b)

with

A= (3.32)

B = 1 1 (3.33)

C = [C C] . (3.34)
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It is interesting to note that A, B and C do not depend on the order of

the Fourier coefficients. This reflects the fact that as r tends to infinity all

Fourier processes have an equal importance in the sense that to obtain

meaningful results one would have to retain a very large number of terms in

the expansions (.2.1a) to (2.1c). Furthermore, A, B and C are constant matrices and

A is stable, an observation that will be used in the sequel to show that the

Kalman filter associated with the model (3.11) is stable.

Models (3.31) and (3.11) define a singular estimation problem as r tends

to infinity. This is due to the fact that the intensity of the noise processes

-1

un (r) and v (r) varies as r . To overcome this difficulty we introduce the

following normalized processes

x (r) = r /2 (r) (3.35a)
n n

u (r) = r /2u (r) (3.35b)
n n

v (r) = r v/2 (r) (3.35c)

Yntr) = r y (r) (3.35d)

z r) = r/2z (r) (3.35e)
'n n

The normalized processes n(r) and x (r) have a Markovian state-space model of
n

the form

n3 (r) = (A (r) + r I) - (r) + B (r)u (r) (3.36a)n n 2r n n n

n(r) = Cn:r)x n(r) + v (r), (3.36b)n· n n

where A (r), B (r) and C (r) are defined by equations (3.12) - (3.14), and where
n n n

u (r) and V (r) are two uncorrelated zero-mean Gaussian noise processes with
n n

intensities
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E [ - T(S) v ()] = [ (r-s) . (3.37)

(r)
n 27

The initial condition associated with system (3.36) is x (0) = 0 with probability

one. Note that as r tends to infinity the estimation problem is non-singular.

1 =
Further,as r tends to infinity (A (x) + 2 I), B (r) and C (r) tend to A, B and

n 2r n n

C respectively,where A, B and C are defined by equations (3.32) - (3.34). A

nice way to interpret the asymptotic model is to note that

C(jX-A) B = C(jX+A) -2 (3.38)

where C(jX+A) -21/2 is a stable spectral factor of S (X). Models (3.11), (3.31)

and (3.36) can now be used to develop Kalman filters for the processes z (r).

Filtering corresponds to processing the data in a radially outward direction while

smoothing involves processing the data in both the outwards and inwards radial

directions, and combining the results of the outwards and inwards processing

operations via standard smoothing formulas, such as the two-filter smoothing

formula, or the Rauch-Tung-Striebel, or innovations formulas. By combining

the smoothed estimates z (rfR) one can then obtain z(rlR) via equation (2.5).



IV. Stability and Asymptotic properties of the Kalman Filters

We begin this section by showing that the system (3.10) is exponentially

stable. To do this we will need the following lemma which is an adaptation of

a result of Coddington and Levinson ([9], p. 314).

Lemma 4.1: Let

x = Ax + f(t,xl (4.1)

where A is a real constant matrix with eigenvalues all having negative real

parts. Let f be real, continuous for small Ixj and t > 0, and such that

f(t,x) = O(Ixl) as Ixi - 0o

uniformly in t, t > 0. Then,the system (4.1) is exponentially stable,

Proof: Let ¢ (t) be a solution of (.4.1). So long as ~ (t) exists, it follows

from (4.1) that

¢(t) = e (0) + Je f((s, (s))ds · (4.2)
0

Because the real parts of the characteristic roots of A are negative, there

exist positive constants K and a such that

Ie A t ] < Ke- a t t > 0 . (4.3)

Hence from (4.3) and (4.2) we have

la(t) < K I (O))et + K ;fe ( f(s,4 (s))Ids .
0

Given £ > 0, there exists a 6 such that lf(tx)[ < k for xlI < 6, by

assumption. Thus,as, long as |+ (t) < 6, it follows that

e I t (t)I <_ KI (0) + J e Sl(s)lds
It
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This inequality yields

e Ic (t) I <_ K (0)et

or

I (t) I < K(0) Ie- (- c) t > 0 W (4.4)

Lemma 4.1 can now be used to prove the following theorem

Theorem 4.1: The systems defined by equations (3.11) and (3.36) are exponentially

stable.

Proof: The proof follows by writing

A Cr) = A + A' (r)
n n

where A is defined by equation (3.28). By taking f(r,x) in Lemma 4.1 as

Kf(r, x) = A '(r)x(r)
n

and noting that

lim A '(r) =0

r-e

we obtain the desired result for system (3.11) by invoking the above mentioned

lemma. A similar proof can be constructed for system (3.36) by absorbing 2r I

into A '(r).
n

We can now state and prove the main result of this section.

Theorem 4.2: The Kalman filters associated with the models (3.11) and (3.36)

are asymptotically stable. Furthermore, the error covariances associated with the

normalized processes converge to a non-negative definite matrix P as r tends to

infifnity,, where P is the solution of the algebraic Riccati equation

- -=T = =T -T -1=-
0 = AP + PA + BQB - PC V CP . (4.5)

Proof. The result follows by direct application of Theorem 4.10 of [10].
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V. Conclusion

In this paper we have studied the class of rational isotropic processes

z(r) r e ER defined by equation (1.1). We showed that the problem of estimating

z(r) given some noisy measurements on a disk of radius R is equivalent to a

countably infinite set of one-dimensional estimation problems. Markovian models

for the one-dimensional problems were developed and Kalman estimation theory was

used to obtain a smoothed estimate of z(r) given the noisy measurements. Finally,

the Kalman filters associated with the one dimensional problems were shown to be

asymptotically stable.

In view of the fact that in one dimension, Kalman filtering theory applies

to nonstationary processes as well as to stationary processes, it ought to be

possible to generalize our work to the case where the matrices A and C appearing

in equations (1.4) are functions of r = Irl and where the intensity of the noise

processes u(r) and v(r) are also functions of r.

Finally, further studies based on the ideas introduced in [51, [11]-[13] will

be required to understand and characterize rational isotropic fields which obey

equations containing not only the Laplacian, but also gradients, curls or

divergences. This will require the study of isotropic 2-D vector fields,

in addition to the scalar fields that we examined here.
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