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Abstract 
Using known camera motion to estimate depth from image sequences is an important problem in robot vision. Many 
applications of depth-from-motion, including navigation and manipulation, require algorithms that can estimate depth 
in an on-line, incremental fashion. This requires a representation that records the uncertainty in depth estimates and 

a mechanism that integrates new measurements with existing depth estimates to reduce the uncertainty over time. 
Kalman filtering provides this mechanism. Previous applications of Kalman filtering to depth-from-motion have been 
limited to estimating depth at the location of a sparse set of features. In this paper, we introduce a new, pixel-based 
(iconic) algcrithm that estimates depth and depth uncertainty at each pixel and incrementally refines these estimates 
over time. We describe the algorithm and contrast its formulation and performance to that of a feature-based Kalman 

filtering algorithm. We compare the performance of the two approaches by analyzing their theoretical convergence 
rates, by conducting quantitative experiments with images of a flat poster, and by conducting qualitative experiments 
with images of a realistic outdoor-scene model. The results show that the new method is an effective way to extract 

depth from lateral camera translations. This approach can be extended to incorporate general motion and to integrate 
other sources of information, such as stereo. The algorithms we have developed, which combine Kalman filtering with 
iconic descriptions of depth, therefore can serve as a useful and general framework for low-level dynamic vision. 

1 Introduction 

Using known camera motion to estimate depth from 
image sequences is important in many applications of 
computer vision to robot navigation and manipulation. 

In these applications, depth-from-motion can be used 
by itself, as part of a multimodal sensing strategy, or 

as a way to guide stereo matching. Many applications 
require a depth estimation algorithm that operates in 
an on-line, incremental fashion. To develop such an 
algorithm, we require a depth representation that in- 

cludes not only the current depth estimate, but also an 
estimate of the uncertainty in the current depth estimate. 

Previous work [3, 5. 9, 10, 16, 17, 251 has identified 
Kalman filtering as a viable framework for this prob- 
lem, because it incorporates representations of uncer- 
tainty and provides a mechanism for incrementally 

reducing uncertainty over time. To date, applications 
of this framework have largely been restricted to 
estimating the positions of a sparse set of trackable 
features, such as points or line segments. While this 
is adequate for many robotics applications, it requires 

reliable feature extraction and it fails to describe large 
areas of the image. Another line of work has addressed 
the problem of extracting dense displacement or depth 
estimates from image sequences. However, these 

previous approaches have either been restricted to two- 
frame analysis [l] or have used batch processing of the 
image sequence, for example via spatiotemporal filter- 

ing [ll]. 
In this paper we introduce a new, pixed-based 

(iconic) approach to incremental depth estimation and 
compare it mathematically and experimentally to a 

feature-based approach we developed previously [16]. 
The new approach represents depth and depth variance 
at every pixel and uses Kalman filtering to extrapolate 
and update the pixel-based depth representation. The 
algorithm uses correlation to measure the optical flow 

and to estimate the variance in the flow, then uses the 
known camera motion to convert the flow field into a 
depth map. It then uses the Kalman filter to generate 
an updated depth map from a weighted combination 
of the new measurements and the prior depth estimates. 
Regularization is employed to smooth the depth map 
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and to till in the underconstrained areas. The resulting 
algorithm is parallel, uniform, and can take advantage 
of mesh-connected or multiresolution (pyramidal) proc- 
essing architectures. 

The remainder of this paper is structured as follows. 
In the next section, we give a brief review of Kalman 
filtering and introduce our overall approach to Kalman 
filtering of depth. Next, we review the equations of mo- 
tion, present a simple camera model, and examine the 
potential accuracy of the method by analyzing its sen- 
sitivity to the direction of camera motion. We then 
describe our new, pixel-based depth-from-motion algor- 
ithm and review the formulation of the feature-based 
algorithm. Next, we analyze the theoretical accuracy 
of both methods, compare them both to the theoretical 
accuracy of stereo matching, and verify this analysis 
experimentally using images of a flat scene. We then 
show the performance of both methods on images of 
realistic outdoor scene models. In the final section, we 
discuss the promise and the problems involved in ex- 
tending the method to arbitrary motion. We also con- 
clude that the ideas and results presented apply directly 
to the much broader problem of integrating depth infor- 
mation from multiple sources. 

2 Estimation Framework 

The depth-from-motion algorithms described in this 
paper use image sequences with small frame-to-frame 
camera motion [4]. Small motion minimizes the corres- 
pondence problem between successive images, but sac- 
rifices depth resolution because of the small baseline 
between consecutive image pairs. This problem can be 
overcome by integrating information over the course of 
the image sequence. For many applications, it is desir- 
able to process the images incrementally by generating 

Table I. Kalman filter equations. 

updated depth estimates after each new image is ac- 
quired, instead of processing many images together in 
a batch. The incremental approach offers real-time 
operation and requires less storage, since only the cur- 
rent estimates of depth and depth uncertainty need to 
be stored. 

The Kalman filter is a powerful technique for doing 
incremental, real-time estimation in dynamic systems. It 
allows for the integration of information over time and 
is robust with respect to both system and sensor noise. 
In this section, we first present the notation and the 
equations of the Kalman filter, along with a simple ex- 
ample. We then sketch the application of this frame- 
work to motion-sequence processing and discuss those 
parts of the framework that are common to both the 
iconic and the feature-based algorithms. The details 
of these algorithms are given in sections 4 and 5, 
respectively. 

2.1. Kalmun Filter 

The Kalman filter is a Bayesian estimation technique 
used to track stochastic dynamic systems being observed 
with noisy sensors. The filter is based on three separate 
probabilistic models, as shown in table 1. The first 
model, the system model, describes the evolution over 
time of the current state vector u,. The transition be- 
tween states is characterized by the known transition 
matrix @, and the addition of Gaussian noise with a 
covariance Q,. The second model, the measurement 
(oi sensor) model, relates the measurement vector dl 
to the current state through a measurement matrix H, 
and the addition of Gaussian noise with a covariance 
R,. The third model, the prior model, describes the 
knowledge about the system state ia and its covariance 
Pa before the first measurement is taken. The sensor 
and process noise are assumed to be uncorrelated. 

Models 

Prediction phase 

Update phase 

system model 

measurement model 

prior model 

(other assumptions) 

state estimate extrapolation 

state covariance extrapolation 

state estimate update 

state coviarance update 

Kalman gain matrix 

11, = @,-p-, + ‘I,. ‘I, - NQQ,) 
d, = Hp, + S,, E, - N(O,R,) 

E(u,] = Lo, cov[ulJ] = PO 

O&r1 = 0 

i-i,- = *,-,r(,t, 

P,-= @,w,P,?,& + Q,-, 

iy = ii,- + K,[d, - H,i,J 

P: = [I - K,H,]fy 

K, = P,-H;[H,P-HTR,] -’ 
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To illustrate the equations of table 1, we will use the 

example of a ping-pong-playing robot that tracks a mov- 
ing ball. In this example, the state consists of the ball 

position and velocity, u = [X y z X j i l]r, where x and 
y he parallel to the image plane (J is up), and z is 
parallel to the optical axis. The state transition matrix 
models the ball dynamics, for example by the matrix 

lOOAt 0 0 0 
010 0 At 0 0 

001 0 0 At 0 
000-p 0 0 0 
000 0 -0 0 -gAt 

000 0 0 -p 0 
0000 00 I 

where At is the time step, /3 is the coefficient of fric- 
tion and g is gravitational acceleration. The process 

noise matrix Q, models the random disturbances that 
influence the trajectory. If we assume that the camera 
uses orthographic projection and uses a simple 
algorithm to find the “center of mass” (x,y) of the ball, 
then the sensor can then be modeled by the matrix 

H, = 
[ 

1000000 
0100000 1 

which maps the state u to the measurement d. The 

uncertainty in the sensed ball position can be modeled 
by a 2x2 covariance matrix R,. 

Once the system. measurement, and prior models 

have been specified (i.e., the upper third of table 1), 
the Kalman filter algorithm follows from the formula- 
tion in the lower two thirds of table 1. The algorithm 

operates in two phases: extrapolation (prediction) and 
update (correction). At time t, the previous state and 
covariance estimates, L,?, and PL, , are extrapolated to 
predict the current state I;,-and covariance P,-. The 

predicted covariance is used to compute the new Kal- 
man gain matrix K, and the updated covariance matrix 
P,? Finally, the measurement residual d, - H&-is 
weighted by the gain matrix K, and added to the 
predicted state 14,~ to yield the updated state u:. A 
block diagram for the Kalman filter is given in figure 1. 

Fig. 1. Kalman filter block diagram 

2.2. Application to Depth from Motion 

To apply the Kalman filter estimation framework to the 
depth-from-motion problem, we specialize each of the 

three models (system, measurement, and prior) and 
define the implementations of the extrapolation and up- 
date stages. This section briefly previews how these 
components are chosen for the two depth-from-motion 
algorithms described in this paper. The details of the 

implementation are left to sections 4 and 5. 
The first step in designing a Kalman filter is to 

specify the elements of the state vector. The iconic 
depth-from-motion algorithm estimates the depth at 

each pixel in the current image, so the state vector in 
this case is the entire depth map.* Thus, the diagonal 
elements of the state covariance matrix Pt are the vari- 
ances of the depth estimates at each pixel. As discussed 

shortly, we implicitly use off-diagonal elements of the 
inverse covariance matrix Pi’ as part of the update 
stage of the filter, but do not explicitly model them 

anywhere in the algorithm because of the large size of 
the matrix. For the feature-based approach, which 
tracks edge elements through the image sequence, the 

state consists of a 3D position vector for each feature. 
We model the full covariance matrix of each individual 
feature, but treat separate features as independent. 

The system model in both approaches is based on 
the same motion equations (section 3.1), but the imple- 

mentations of the extrapolation and update stages dif- 
fer because of the differences in the underlying repre- 
sentations. For the iconic method, the extrapolation 

stage uses the depth map estimated for the current 
frame, together with knowledge of the camera motion, 
to predict the depth and depth variance at each pixel 

in the next frame. Similarly, the update stage uses 
measurements of depth at each pixel to update the depth 
and variance estimates at each pixel. For the feature- 
based method, the extrapolation stage predicts the posi- 
tion vector and covariance matrix of each feature for 
the next image, then uses measurements of the image 

coordinates of the feature to update the position vector 
and the covariance matrix. Details of the measurement 
models for each algorithm will be discussed later. 

Finally, the prior model can be used to embed prior 
knowledge about the scene. For the iconic method. for 
example, smoothness constraints requiring nearby im- 
age points to have similar disparity can be modeled eas- 
ily by off-diagonal elements of the inverse of the prior 
covariance matrix PO [29]. Our algorithm incorporates 

‘Our actual implementation uses inverse depth (called “disparity”) 

See bectlon 1. 



212 Matthies, Kanade, Szeliski 

this knowledge as part of a smoothing operation that 
follows the state update stage. Similar concepts may be 
applicable to modeling figural continuity [20,24] in the 

edge-tracking approach, that is, the constraint that con- 
nected edges must match connected edges; however, 
we have not pursued this possibility. 

3 Motion Equations and Camera Model 

Our system and measurement models are based on the 
equations relating scene depth and camera motion to 
the induced image flow. In this section, we review these 

equations for an idealized camera (focal length = 1) 
and show how to use a simple calibration model to 
relate the idealized equations to real cameras. We also 
derive an expression for the relative uncertainty in depth 

estimates obtained from lateral versus forward camera 
translation. This expression shows concretely the effects 
of camera motion on depth uncertainty and reinforces 
the need for modeling the uncertainty in computed 

depth. 

3.1. Equations of Motion 

If the inter-frame camera motion is sufficiently small, 

the resulting optical flow can be expressed to a good 
approximation in terms of the instantaneous camera 

velocity [6, 13, 331. We will specify this in terms of 
a translational velocity T and an angular velocity R. 
In the camera coordinate frame (figure 2), the motion 
of a 3D point P is described by the equation 

dP 
-=-T-RxP 
dt 

Expanding this into components yields 

dX/dt = -T, - RyZ + R,Y 
.dY/dt = -TV - RzX + R,Z PI 
dZ/dt = -T; - R,Y + RyX 

Now, projecting (X, I: Z) onto an ideal, unit focal length 

image, 

X XC- 
Z 

y,Y 
z . 

taking the derivatives of (x, y) with respect to time, and 
substituting in from equation (1) leads to the familiar 
equations of optical flow [33]: 

[g] = + [-d “1 ;] [;I [21 

+ (1 Y?) [ -(1+x2) y 2 

-xy -x 1 [I R; 

These equations relate the depth Z of the point to the 
camera motion T, R and the induced image displace- 
ments or optical flow [Ax AylT. We will use these 
equations to measure depth, given the camera motion 

and optical flow, and to predict the change in the depth 
map between frames. Note that parameterizing (2) in 
terms of the inverse depth d = l/Z makes the equa- 
tions linear in the “depth” variable. Since this leads 

to a simpler estimation formulation, we will use this 
parameterization in the balance of the paper. 

image plane 

Fig. 2. Camera model. CP is the center of projection 

3.2. Camera Model 

Relating the ideal flow equations to real measurements 
requires a camera model. If optical distortions are not 
severe, a pin-hole camera model will suffice. In this 

paper we adopt a model similar to that originated by 
Sobel [27] (figure 2). This model specifies the origin 
(c,,cJ of the image coordinate system and a pair of 
scale factors (s,, s,) that combine the focal length and 
image aspect ratio. Denoting the actual image coordin- 
ates with a subscript a, the projection onto the actual 
image is summarized by the equation 

[;I = + [sd lv f:] 

=; CP 

X 

ii 

Y 
Z 

[31 
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C is known as the collimation matrix. Thus, the ideal 
image coordinates (x, y) are related to the actual image 

coordinates by 

X0 = s,x + c., Ya = S.vY + c.v 

Equations in the balance of the paper will primarily 
use ideal image coordinates for clarity. These equations 
can be re-expressed in terms of actual coordinates using 

the transformations above. 

3.3. Sensitivity Analysis 

Before describing our Kalman filter algorithms, we will 
analyze the effect of different camera motions on the 

uncertainty in depth estimates. Given specific descrip- 
tions of real cameras and scenes, we can obtain bounds 
on the estimation accuracy of depth-from-motion algor- 

ithms using perturbation or covariance analysis tech- 
niques based on first-order Taylor expansions [8]. For 
example, if we solve the motion equations for the in- 
verse depth d in terms of the optical flow, camera mo- 
tion, and camera model, 

d = F(Ax,Ay, TR,c,,c,.,s.,,s,) [41 

then the uncertainty in depth arising from uncertainty 
in flow, motion, and calibration can be expressed by 

6d = Jf Sf + J,R 6m + J< 6c 151 

where Jfi J,R, and J,. are the Jacobians of (4) with 
respect to the flow, motion, and calibration parameters, 

respectively, and 61 6m, and 6c are perturbations of 
the respective parameters. We will use this methodology 
to draw some conclusions about the relative accuracy 
of depth estimates obtained from different classes of 
motion. 

It is well known that camera rotation provides no 

depth information. Furthermore, for a translating 
camera, the accuracy of depth estimates increases with 

increasing distance of image features from the focus 
ofexpansion (FOE), the point in the image where the 
translation vector (T) pierces the image. This implies 
that the ‘best’ translations are parallel to the image plane 
and that the ‘worst’ are forward along the camera axis. 
We will give a short derivation that demonstrates the 
relative accuracy obtainable from forward and lateral 
camera translation. The effects of measurement uncer- 
tainty on depth-from-motion calculations is also exam- 
ined in [26]. 

For clarity, we consider only one-dimensional flow 
induced by translation along the X or Z axes. For an 

ideal camera, lateral motion induces the flow 

Ax, = 2 
Z 

whereas forward motion induces the flow 

161 

Axf = x+ 

The inverse depth (or disparity) in each case is 

d 
f 

= dxf 
XT, 

Therefore, perturbations of 6x, and &xf in the flow 
measurements Ax, and A xf yield the following pertur- 
bations in the disparity estimates: 

&j I = 6x1 

ITrI 

These equations give the error in the inverse depth as 

a function of the error in the measured image displace- 
ment, the amount of camera motion, and position of 
the feature in the field of view. Since we are interested 

in comparing forward and lateral motions, a good way 
to visualize these equations is to plot the relative depth 
uncertainty, 6df/6d,. Assuming that the flow pertur- 
bations 6x, and 6-~~ are equal, the relative uncertainty is 

6df _ fixfl IxT-1 _ 1 T, 1 
--c-p 

64 k/ I Tr I I xT,I 

The image coordinate x indicates where the object ap- 
pears in the field of view. Figure 3 shows that x equals 
the tangent of the angle 0 between the object and the 
camera axis. The formula for the relative uncertainty 
is thus 

191 
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Z 

Fig. 3. Angle between object and camera axis is 0 

This relationship is plotted in figure 4 for TX = Tz 
At 45 ’ from the camera axis, depth uncertainty is equal 
for forward and lateral translations. As this angle 

approaches zero, the ratio of uncertainty grows, first 
slowly then increasingly rapidly. As a concrete exam- 
ple, for the experiments in section 6.2 the field of view 

was approximately 36 9 so the edges of the images were 
18” from the camera axis. At this angle, the ratio of 
uncertainties is 3.1; halfway from the center to the edge 
of the image, at 9 ‘, the ratio is 6.3. In general, for practi- 

cal fields of view, the accuracy of depth extracted from 
forward motion will be effectively unusable for a large 
part of the image. 

Fig. 4. Relative depth uncertainty for forward vs. lateral translation. 

By setting 6df/6di = 1, equation (9) also expresses 

the relative distances the camera must move forward 
and laterally to obtain equally precise depth estimates. 
An alternate interpretation for figure 4 is that it ex- 
presses the relative precision of stereo and depth-from- 

motion in a dynamic, binocular stereo system. 
We draw several conclusions from this analysis. 

First, it underscores the value of representing depth 
uncertainty as we describe in the following sections. 
Second, for practical depth estimation, forward motion 

is effectively unusable compared with lateral motion. 
Finally, we can relate these results to dynamic, binoc- 
ular stereo by noting that depth from forward motion 
will be relatively ineffective for constraining or con- 
firming binocular correspondence. 

4 Iconic Depth Estimation 

This section describes the incremental, iconic depth- 
estimation algorithm we have developed. The algorithm 
processes each new image as it arrives, extracting op- 

tical flow at each pixel using the current and previous 
intensity images, then integrates this new information 
with the existing depth estimates. 

image(k-I 

raw 

dnparity 

cumulative smoothed 

image[klI 

Fig. 5. Iconic depth-estimation block diagram 

The algorithm consists of four main stages (figure 

5). The first stage uses correlation to compute estimates 
of optical flow vectors and their associated covariance 
matrixes. These are converted into disparity (inverse- 
depth) measurements using the known camera motion. 
The second stage integrates this information with the 
disparity map predicted from the previous time step. 
The third stage uses regularization-based smoothing to 
reduce measurement noise and to fill in areas of un- 
known disparity. The last stage uses the known cam- 
era motion to predict the disparity field that will be seen 
in the next frame and resamples the field to keep it 
iconic (pixel-based). 
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4.1. Measuring Disparity 

The first stage of the Kalman filter computes measure- 
ments of disparity from the difference in intensity be- 
tween the current image and the previous image. This 
computation proceeds in two parts. First, a two-dimen- 
sional optical flow vector is computed at each point 

using a correlation-based algorithm. The uncertainty 
in this vector is characterized by a bivariate Gaussian 
distribution. Second, these vectors are converted into 
disparity measurements using the known camera mo- 
tion and the motion equations developed in section 3.1. 

This two-part formulation is desirable for several 
reasons. First, it allows probabilistic characterizations 
of uncertainty in flow to be translated into probabilistic 

characterizations of uncertainty in disparity. This is 
especially valuable if the camera motion is also uncer- 
tain, since the equations relating flow to disparity can 

be extended to model this as well [25]. Second, by char- 
acterizing the level of uncertainty in the flow. it allows 
us to evaluate the potential accuracy of the algorithm 
independent of how flow is obtained. Finally, bivariate 
Gaussian distributions can capture the distinctions be- 

tween knowing zero, one, or both components of flow 
[l, 11,221, and therefore subsume the notion of the aper- 
ture problem. 

The problem of optical flow estimation has been 

studied extensively. Early approaches used the ratio of 
the spatial and temporal image derivatives [12], while 
more recent approaches have used correlation between 
images [l] or spatiotemporal filtering [II]. In this paper 
we use a simple version of correlation-based matching. 

This technique, which has been called the suwz of 
squared differences (SSD) method [l], integrates the 
squared intensity difference between two shifted images 
over a small area to obtain an error measure 

e, (Ax, Aq; .Y. y) = 

11 
V;(.r - Ax + X, y - A>, + 7) 

- f;-,(x + A, y + q)]* dX dq 

where f, and J-, are the two intensity images, and 
w(X, 7) is a weighting function. The SSD measure is 
computed at each pixel for a number of possible flow 
values. In [l], a coarse-to-fine technique is used to limit 
the range of possible flow values. In our images the 
possible range of values is small (since we are using 
small-motion sequences), so a single-resolution 
algorithm suffices.* The resulting error surface 
e,(Ax,A y; x,~) is approximately parabolic in shape. 

The lowest point of this surface defines the flow 
measurement and the shape of the surface defines the 
covariance matrix of the measurement. 

To convert the displacement vector [Ax A y]’ into 

a disparity measurement, we assume that the camera 
motion (T,R) is given. The optical flow equation (2) 
can then be used to estimate depth as follows. First we 
abbreviate (2) to 

where d is the inverse depth and 4 is an error vector 
representing noise in the flow measurement. The noise 

4 is assumed to be a bivariate Gaussian random vector 
with a zero mean and a covariance matrix P,,, com- 
puted by the flow estimation algorithm. Equation (10) 
can be re-expressed in the following standard form for 

linear estimation problems: 

VI 

=Hd+( 

The optimal estimate of the disparity d is then [19] 

VI 

and the variance of this disparity measurement is 

L131 

0 

0 

;* 

Fig. 6. Parabolic to fit to SSD error w&c. 

‘It may be necessary to use a larger search range at first, but once 

the estimator has “latched on” to a good disparity map, the predicted 

disparity and disparity variance can be used to limit the search by 

computing confidence interval\. 
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This measurement process has been implemented 
in a simplified form, under the assumption that the flow 
is parallel to the image raster. To improve precision, 

each scan line of two successive images is magnified 
by a factor of four by cubic interpolation. The SSD 
measure ek is computed at each interpolated subpixel 
displacement vk, using a 5,x5-pixel window. The 
minimum error (vi, ei) is found and a parabola 

e(v) = av* + bv + c 

is fit to this point and its two neighbors (vi-i, et-t) and 
(vi,, , ek+,) (figure 6). The minimum of this parabola 
establishes the flow estimate (to sub-sub-pixel preci- 
sion). Appendix A shows that the variance of the flow 

measurement is 

2 

var(e) = 25 
a 

where ui is the variance of the image noise process. 

The appendix also shows that adjacent flow estimates 
are correlated over both space and time. The signifi- 
cance of this fact is considered in the following two sec- 
tions and in section 6.1. 

4.2. Updating the Disparity Map 

The next stage in the iconic depth estimator is the inte- 
gration of the new disparity measurements with the pre- 

dicted disparity map (this step is omitted for the first 
pair of images). If each value in the measured and the 

predicted disparity maps is not correlated with its 
neighbors, then the map updating can be done at each 
pixel independently. In this case, the covariance 
matrices RI and P; of table 1 are diagonal, so the 

matrix equations of the update phase decompose into 
separate scalar equations for each pixel. We will 
describe the procedure for this case first, then consider 
the consequences of correlation. 

To update a pixel value, we first compute the vari- 

ance of. the updated disparity estimate 

+ = [@;,-I + (&l-I = Pt cz 
PI 

Pt + (6 

and the Kalman filter gain K 

K - P: _ Pi 

d PI- + d 

We then update the disparity value by using the Kalman 
filter update equation 

+= 4 u; + K(d - a;) 

where u; and UT are the predicted and updated dis- 
parity estimates and d is the new disparity measure- 
ment. This update equation can also be written as 

u: =,:(,+ AI!-) 

This shows that the updated disparity estimate is a linear 

combination of the predicted and measured values, in- 
versely weighted by their respective variances. 

As noted in the previous section, the depth measure- 

ments d are actually correlated over both space and 
time. This induces correlations in the updated depth 
estimates u,+ and implies that the measurement 
covariance matrix Rt and the updated state covariance 
matrix P!+ will not be diagonal in a complete 
stochastic model for this problem. We currently do not 
model these correlations because of the large expense 
involved in computing and storing the entire covariance 
matrices. Finding more concise models of the correla- 

tion is a subject for future research. 

4.3. Smoothing the Map 

The raw depth or disparity values obtained from opti- 
cal flow measurements can be very noisy, especially 
in areas of uniform intensity. We employ smoothness 

constraints to reduce the noise and to “fill in” under- 
constrained areas. The earliest example of this approach 
is that of Horn and Schunck [12]. They smoothed the 
optical flow field (u, v) by jointly minimizing the error 
in the flow equation 

Gb = E,u + E,v + E, 

(E is image intensity) and the departure from 
smoothness 

&; = pu12 + Ivvl2 

The smoothed flow was that which minimized the total 
error 

+ a2&f) ah dy 

where CY is a blending constant. More recently, this ap- 

proach has been formalized using the theory of 
regularization [31] and extended to use two-dimensional 
confidence measures equivalent to local covariance 

estimates [l, 221. 
For our application, smoothing is done on the dis- 

parity field, using the inverse variance of the disparity 
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estimate as the confidence in each measurement. The 
smoother we use is the generalized piecewise contin- 

uous spline under tension [32], which uses finite ele- 
ment relaxation to compute the smoothed field. The 
algorithm is implemented with a three-level coarse-to- 
fine strategy to speed convergence and is amenable to 

implementation on a parallel computer. 
Surface smoothness assumptions are violated where 

discontinuities exist in the true depth function, in par- 
ticular at object boundaries. To reduce blurring of 
the depth map across such boundaries, we incorporate 
a discontinuity detection procedure in the smoother. 

After several iterations of smoothing have been per- 
formed, depth discontinuities are detected by thresh- 
olding the angle between the view vector and the local 
surface normal (appendix B) and doing nonmaximum 
suppression. This is superior to applying edge detec- 

tion directly to the disparity image, because it prop- 
erly takes into account the 3D geometry and perspec- 
tive projection. Once discontinuities have been 

detected, they are incorporated into the piecewise con- 
tinuous smoothing algorithm and a few more smoothing 
iterations are performed. Our approach to discontinuity 

detection, which interleaves smoothing and boundary 
detection, is similar to Terzopoulos’ continuation 
method [32]. The alternative of trying to estimate the 
boundaries in conjunction with the smoothing [14] has 
not been tried, but could be implemented within our 

framework. An interesting issue we have not explored 
is the propagation of detected discontinuities between 
frames. 

The smoothing stage can be viewed as the part of 
the Kalman filtering algorithm that incorporates prior 

knowledge about the smoothness of the disparity map. 
As shown in [29], a regularization-based smoother is 

equivalent to a prior model with a correlation function 
defined by the degree of the stabilizing spline (e.g., 
membrane or thin plate). In terms of table 1, this means 

that the prior covariance matrix PO is nondiagonal. 
The resulting posterior covariance matrix of the dispar- 
ity map contains off-diagonal elements modeling the 
covariance of neighboring pixels. Note that this re- 
flects the surface smoothness model and is distinct from 
the measurement-induced correlation discussed in the 
previous section. An optimal implementation of the 
Kalman filter would require transforming the prior 

model covariance during the prediction stage and would 
significantly complicate the algorithm. Our choice to 
explicitly model only the variance at each pixel, with 
covariance information implicitly modeled in a fixed 
regularization stage, has worked well in practice. 

4.4. Predicting the Next Dispario Map 

The extrapolation stage of the Kalman filter must 
predict both the depth and the depth uncertainty for 
each pixel in the next image. We will describe the dis- 
parity extrapolation first, then consider the uncertainty 

extrapolation. 

Xt 

Fig. % Illustration of disparity prediction stage 

Our approach is illustrated in figure 7. At time t, 
the current disparity map and motion estimate are used 
to predict the optical flow between images t and t + 1, 
which in turn indicates where the pixels in frame t will 

‘move to’ in the next frame: 

x I+I = x, + Ax, 
Y,+I = Y, + AY, 

The flow estimates are computed with equation (2). 
assuming that Z, T, and R are known.3 Next we predict 

what the new depth of this point will be using the equa- 
tions of motion. From (2) we have 

AZ, = -T, - R,Y, + R,.X, 
= -T; - R,y,Z, + R,.x,Z, 

so that the predicted depth at x,+,, y,+, is 

Z 1+1 = Z, +A& 
= (1 - R.,v, + R,.x,)Z, - c 
= aZ, - T. 

An estimate of the inverse depth can be obtained by 
inverting this equation, yielding 

+ 
u- 1+1 = 

4 
1141 

a - T,u; 

‘There wll be uncertamty m x,+, and y,+,due to uncertainty in the 

motion and disparity estimates. We ignore this for now. 
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This equation is nonlinear in the state variable, so it 
deviates from the form of linear system model illus- 

trated in table 1. Nonlinear models are discussed in a 
number of references, such as [19]. 

In general, this prediction process will yield 
estimates of disparity between pixels in the new image 

(figure 7), so we need to resample to obtain predicted 
disparity at pixel locations. For a given pixel x ’ in the 
new image, we find the square of extrapolated pixels 

that overlap x’ and compute the disparity at x’ by bi- 
linear interpolation of the extrapolated disparities. Note 
that it may be possible to detect occlusions by recor- 
ding where the extrapolated squares turn away from the 
camera. Detecting “disocclusions,” where newly visi- 

ble areas become exposed, is not possible if the dispari- 
ty field is assumed to be continuous, but is possible 
if disparity discontinuities have been detected. 

Uncertainty will increase in the prediction phase due 

to errors from many sources, including uncertainty in 
the motion parameters, errors in calibration, and inac- 
curate models of the camera optics. A simple approach 
to modeling these errors is to lump them together by 

inflating the current variance estimates by a small multi- 
plicative factor in the prediction stage. Thus, the 
variance prediction associated with the disparity predic- 
tion of equation (14) is 

P,Gl = (1 + fIPf+ 

In the Kalman filtering literature this is known as expo- 

nential age-weighting of measurements [19], because 
it decreases the weight given to previous measurements 
by an exponential function of time. This is the approach 
used in our implementation. We first inflate the variance 

in the current disparity map using equation (15), then 
warp and interpolate the variance map in the same way 
as the disparity map. A more exact approach is to at- 
tempt to model the individual sources of error and to 

propagate their effects through the prediction equations. 
Appendix C examines this for uncertain camera motion. 

5 Feature-Based Depth Estimation 

The dense, iconic depth-estimation algorithm described 
in the previous section can be compared with existing 
depth-estimation methods based on sparse feature track- 
ing. Such methods [2, 5, 10, 161 typically define the 
state vector to be the parameters of the 3D object be- 
ing tracked, which is usually a point or straight-line 
segment. The 3D motion of the object between frames 
defines the system model of the filter and the perspec- 
tive projection of the object onto each image defines 

the measurement model. This implies that the measure- 
ment equations (the perspective projection) are 
nonlinear functions of the state variables (e.g., the 3D 
position vector); this requires linearization in the up- 

date equations and implies that the error distribution 
of the 3D coordinates will not be Gaussian. In the case 
of arbitrary camera motion, a further complication is 
that it is difficult to reliably track features between 

frames. In this section, we will describe in detail an 
approach to feature-based Kalman filtering for lateral 
camera translation that tracks edgels along each scan 

line and avoids nonlinear measurement equations. The 
restriction to lateral motion simplifies the comparison 
of the iconic and feature-based algorithms performed 
in the following section; it also has valuable practical 
applications in the context of manipulator-mounted 

cameras and in bootstrapping binocular stereo corres- 
pondence. Extensions to arbitrary motion can be based 
on the method presented here. 

5.1. Kalman Filter Formulation for Lateral Motion 

Lateral camera translation considerably simplifies the 
feature tracking problem, since in this case features 

flow along scan lines. Moreover, the position of a fea- 
ture on a scan line is a linear function of the distance 
moved by the camera, since 

Ax = -T,d o x, = x0 - tT,d 

where x0 is the position of the feature in the first frame 

and d is the inverse depth of the feature. The epipolar- 
plane-image method [4] exploits these characteristics 
by extracting lines in “space-time” (epipolar plane) 
images formed by concatenating scan lines from an en- 
tire image sequence. However, sequential estimation 

techniques like Kalman filtering are a more practical 
approach to this problem because they allow images 
to be processing on-line by incrementally refining the 
depth model. 

Taking x0 and d as the state variables defining the 
location of the feature, instead of the 3D coordinates 

X and 2, keeps the entire estimation problem linear. 
This is advantageous because it avoids the approxima- 
tions needed for error estimation with nonlinear equa- 
tions. For point features, if the position of the feature 

in each image is given by the sequence of measurements 
x’ = [io,n,,. . .,x,1 r, knowledge of the camera posi- 
tion for each image allows the feature location to be 
determined by fitting a line to the measurement vector 
X: 
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WI 

where H is a (n + 1) x 2 matrix whose first column 
contains all l’s and whose second column is defined 

by the camera position for each frame, relative to the 
initial camera position. This fit can be computed 
sequentially by accumulating the terms of the normal 
equation solution for x0 and d. The covariance matrix 

C of x0 and d can be determined from the covariance 
matrix of the measurement vector X. 

The approach outlined above uses the position of the 
feature in the first frame x0 as one of the two state 

variables. We can reformulate this in terms of the cur- 
rent frame by taking x, and d to be the state variables. 
Assuming that the camera motion is exact and that 
measured feature positions have normally distributed 

uncertainty with variance d, the initial state vector 
and covariance matrix are expressed in terms of ideal 
image coordinates as 

x, = i, 
_ _ 

d = -‘o - ‘1 

T 

P,+ = IJ: l 
[ 

-1 IT, 
-1 IT, 2/q 1 

where K is the camera translation between the first and 
second frame. The covariance matrix comes from ap- 
plying standard linear error propagation methods to the 
equations for x, and d [19]. 

After initialization, if T, is the translation between 
frames t - 1 and t, the motion equations that transform 
the state vector and covariance matrix to the current 
frame are 

4- = [“;I-] = [ :, -;I [$I = @‘,.& [17] 

WI 

The superscript minuses indicate that these estimates 
do not incorporate the measured edge position at time 
t. The newly measured edge position i, is incorporated 

by computing the updated covariance matrix P,?. a gain 
matrix K, and the updated parameter vector u,? 

P: = f(P,-)p + s> -1 

where 

UT= u; + K [& - x,-l 

Since these equations are linear, we can see how 
uncertainty decreases as the number of measurements 
increases by computing the sequence of covariance 

matrices P,, given only the measurement uncertainty 
u,” and the sequence of camera motions T,. This is 

addressed in section 6.1 
Note that the equations above can be generalized to 

arbitrary, uncertain camera motion using either the x, 
y, d image-based parameterization of point locations 

or an X, Y, 2 three-dimensional parameterization. The 
choice of parameterization may affect the condition- 
ing of general depth-from-motion algorithms, but we 
have addressed this question to date. 

5.2. Feature Extraction and Matching 

To implement the feature-based depth estimator, we 
must specify how to extract feature positions, how to 
estimate the noise level in these positions, and how to 

track features from frame to frame. For lateral motion, 
with image flow parallel to the scanlines, tracking 
edgels on each scanline is a natural implementation. 
Therefore, in this section we will describe how we ex- 
tract edges to subpixel precision, how we estimate the 

variance of the edge positions, and how we track edges 
from frame to frame. 

For one-dimensional signals, estimating the variance 
of edge positions has been addressed in [7]. We will 
review this analysis before considering the general case. 

In one dimension, edge extraction amounts to finding 
the zero crossings in the second derivative of the 
Gaussian-smoothed signal, which is equivalent to find- 
ing zero-crossings after convolving the image with a 
second derivative of Gaussian operator, 

F(x) = - d2G(x) * Qx) 
ah2 

We assume that the image I is corrupted by white noise 
with variance a,‘. Splitting the response of the 
operator into that due to the signal F,, and that due to 
noise, F,,, edges are marked where 

F,(x) + F,(x) = 0 u91 
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An expression for the edge variance is obtained by tak- 

ing a first-order Taylor expansion of the deterministic 
part of the response in the vicinity of the zero cross- 
ing, then taking mean square values. Thus, if the zero 

crossing occurs at x,, in the noise free signal and x0 + 6x 
in the noisy signal, we have 

F(q) + 6x) = F&J + F&q)) 6x 

WI 
+ F,(xo + 6x) = 0 

so that 

hx = -(F&o + w + Fs(xo)) 
WI 

FXxo) 

The presence of a zero crossing implies that 
F&J = 0 and the assumption of zero mean noise im- 

plies that E[F,,(x,)] = 0. Therefore, the variance of the 
edge position is 

E[Sx2] = d = fJsw~n(X,)~21 

(F:(xo))~ 
WI 

In a discrete implementation, E[(P’,&,))*] is the sum 
of the squares of the coefficients in the convolution 

mask. F;(x,) is the slope of the zero crossing and is 
approximated by fitting a local curve to the filtered 
image. The zero crossing of this curve gives the 
estimate of the subpixel edge position. 

For two-dimensional images, an analogous edge 
operator is a directional derivative filter with a 
derivative of Gaussian profile in one direction and a 
Gaussian profile in the orthogonal direction. Assum- 
ing that the operator is oriented to take the derivative 

in the direction of the gradient, the analysis above will 
give the variance of the edge position in the direction 
of the gradient (see [23] for an alternate approach). 
However, for edge tracking along scanlines, we require 
the variance of the edge position in the scanline direc- 

tion, not the gradient direction. This is straightforward 
to compute for the difference of Gaussian (DOG) edge 
operator; the required variance estimate comes directly 
from equations (19)-(22), replacing F with the DOG 

and F’ with the partial derivative d/ax. Details of the 

discrete implementation in this case are similar to those 
described above. Experimentally, the cameras and 
digitizing hardware we use provide g-bit images with 

intensity variance a,’ = 4. 
It is worth emphasizing that estimating the variance 

of edge positions is more than a mathematical nicety; 
it is valuable in practice. The uncertainty in the posi- 
tion of an edge is affected by the contrast of the edge, 

the amount of noise in the image, and, in matching ap- 
plications such as this one, by the edge orientiation. 
For example, in tracking edges under lateral motion, 

edges that are close to horizontal provide much less 
precise depth estimates than edges that are vertical. 
Estimating variance quantifies these differences in 

precision. Such quantification is important in predic- 
tive tracking, fitting surface models, and applications 
of depth-from-motion to constraining stereo. These 

remarks of course apply to image features in general, 
not just to edges. 

Tracking features from frame to frame is very sim- 
ple if either the camera motion is very small or the 
feature depth is already known quite accurately. In the 
former case, a search window is defined that limits the 

feature displacement to a small number of pixels from 
the position in the previous image. For the experiments 

described in section 6, tracking was implemented this 
way, with a window width of two pixels. Alternatively, 
when the depth of a feature is already known fairly ac- 
curately, the position of the feature in a new image can 

be predicted from equation (17) to be 

the variance of the prediction can be determined from 
equation (18), and a search window can be defined as 

aconfidence interval estimated from this variance. This 
allows tight search windows to be defined for existing 
features even when the camera motion is not small. A 
simplified version of this procedure is used in our im- 

plementation to ensure that candidate edge matches are 
consistent with the existing depth model. The prede- 
fined search window is scanned for possible matches, 
and these are accepted only if they lie within some 
distance of the predicted edge location. Additional ac- 

ceptance criteria require the candidate match to have 
properties similar to those of the feature in the previous 
image; for edges, these properties are edge orientation 
and edge strength (gradient magnitude or zero-crossing 
slope). Given knowledge of the noise level in the image, 
this comparison function can be defined probabilistic- 
ally as well, but we have not pursued this direction. 

Finally, if the noise level in the image is unknown 
it can be estimated from the residuals of the observa- 
tions after x and d have been determined. Such methods 
are discussed in [21] for batch-oriented techniques 
analogous to equation (16) and in [18] for Kalman 
filtering. 
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6 Evaluation 

In this section, we compare the performance of the 

iconic and feature-based depth estimation algorithms 
in three ways. First, we perform a mathematical analysis 
of the reduction in depth variance as a function of time. 
Second, we use a sequence of images of a flat scene 
to determine the quantitative performance of the two 

approaches and to check the validity of our analysis. 
Third, we test our algorithms on images of realistic 
scenes with complicated variations in depth. 

6.1. Mathematical Analysis 

We wish to compare the theoretical variance of the 
depth estimates obtained by the iconic method of sec- 

tion 4 to those obtained by the feature-based method 
of section 5. We will also compare the accuracy of both 
methods to the accuracy of stereo matching with the 
first and last frames of the image sequence. To do this, 

we will derive expressions for the depth variance as 
a function of the number of frames processed, assum- 
ing a constant noise level in the images and constant 
camera motion between frames. For clarity, we will 
assume this motion is T, = 1. 

61.1. Iconic Approach. For the iconic method, we will 
ignore process noise in the system model and assume 
that the variance of successive flow measurements is 

constant. For lateral motion, the equations developed 
in section 2 can be simplified to show that the Kalman 
filter simply computes the average flow [30]. Therefore, 

a sequence of flow measurements Ax,, Ax,, . . ,Ax, is 
equivalent to the following batch measurement equation 

Ax = = d = Hd 

Estimating d by averaging the flow measurements im- 
plies that 

d = -~H~AX = -;,=, dx, E 
I WI 

If the flow measurements were independent with 
variance 20,2/a, where a: is the noise level in the im- 

age (appendix A), the resulting variance of the disparity 
estimate would be 

20; 

ta 
]241 

However, the flow measurements are not actually inde- 

pendent. Because noise is present in every image, flow 
measurements between frames i - 1 and i will be 
correlated with measurements for frames i and i + 1. 
Appendix A shows that a sequence of correlation-based 
flow measurements that track the same point in the im- 

age sequence will have the following covariance matrix: 

2 -1 
-1 2 -1 

pm = 4 
a 

-1 

2 -1 

-1 2 

where u,’ is the level of noise in the image and a 
reflects the local slope of the intensity surface. With 
this covariance matrix, averaging the flow measure- 

ments actually yields the following variance for the 
estimated flow: 

U&) = L HTP,H = ?d 
t2 ?a 

P51 

This is interesting and rather surprising. Comparing 
equations (24) and (29, the correlation structure that 

exists in the measurements means that the algorithm 
converges faster than we first expected. 

With correlated measurements, averaging the flow 

measurements in fact is a suboptimal estimator for d. 
The optimal estimator is obtained by substituting the 
expressions for H and P,,, into equation (12) and (13). 
This estimator does not give equal weight to all flow 
measurements; instead, measurements near the center 

of the sequence receive more weight than those near 
the end. The variance of the depth estimate is 

4, (t) = 
12d 

t(t + l)(t + 2)a 

The optimal convergence is cubic, whereas the conver- 
gence of the averaging method we implemented is quad- 

ratic. Developing an incremental version of the optimal 
estimator requires extending our Kalman filter formula- 
tion to model the correlated nature of the measure- 
ments. This extension is currently being investigated. 

61.2. Feature-based approach. For the feature-based 

approach, the desired variance estimates come from 
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computing the sequence of covariance matrices P,, as 

mentioned at the end of section 5.1. A closed form 
expression for this matrix is easier to obtain from the 

batch method suggested by equation (16) than from the 
Kalman filter formulation and yields an equivalent 
result. Taking the constant camera translation to be 
T’ = 1 for simplicity, equation (16) expands to 

go 
Xl 

_ -5 

= 

1 0 

1 -1 
. . 
. . 
. . 

1 -t 

X0 [ 1 d 
= flu [26] 

Recall that ii are the edge positions in each frame, x,, 
is the best fit edge position in the first frame, and d 
is the best fit displacement or flow between frames. 
Since we assume that the measured edge positions ,?; 

are independent with equal variance a, , we find that 

il -ii 
i=O i=O 

-fJ ii2 

i=O i=O 

-I 

[W 

The summations can be expressed in closed form, 

leading to the conclusion that 

c&t) = 
120; 

t(t + l)(t + 2) 

The variance of the displacement or flow estimate d 

thus decreases as the cube of the number of images. 
This expression is identical in structure to the optimal 

estimate for the iconic approach, the only difference 
being the replacement of the variable of the SSD min- 
imum by the variance of the edge position. Thus, if our 
estimators incorporate appropriate models of measure- 
ment noise, the iconic and feature-based methods theo- 
retically achieve the same rate of convergence. This is 
surprising, given that the basic Kalman filter for the 
iconic method maintains only one state parameter (d) 

for each pixel, whereas the feature-based method main- 
tains two per feature (x0 and d). We suspect that an 
incremental version of the optimal iconic estimator will 
require the same amount of state as the feature-based 
method. 

61.3. Comparison with Stereo. To compare these 
methods to stereo matching on the first and last frames 
of the image sequence, we must scale the stereo dispar- 

ity and its uncertainty to be commensurate with the flow 
between frames. This implies dividing the stereo 
disparity by t and the uncertainty by t2. For the iconic 
method, we assume that the uncertainty in a stereo 
measurement will be the same as that for an individual 
flow measurement. Thus, the scaled uncertainty is 

u&t) = 3 
tLa 

This is the same as is achieved with our incremental 

algorithm which processes all of the intermediate 
frames. Therefore, processing the intermediate frames 
(while ignoring the temporal correlation of the measure- 
ments) may improve the reliability of the matching but 

in this case it does not improve precision. 
For the feature-based approach, the uncertainty in 

stereo disparity is twice the uncertainty a,’ in the 
feature position; the scaled uncertainty is therefore 

In this case using the intermediate frames helps, since 

@F(t) 1 -=- 

(JFSW ON3 

Thus, extracting depth from a small-motion image 
sequence has several advantages over stereo matching 

between the first and last frames. The ease of matching 
is increased, reducing the number of correspondence 
errors. Occlusion is less of a problem, since it can be 
predicted from early measurements. Finally, better 

accuracy is available by using the feature-based method 
or the optimal version of the iconic method. 

6.2. Quantitative Experiments: Flat Images 

The goals of our quantitative evaluation were to examine 
the actual convergence rates of the depth estimators, 
to assess the validity of the noise models, and to com- 
pare the performance of the iconic and feature-based 
algorithms. To obtain ground truth depth data, we used 

the facilities of the Calibrated Imaging Laboratory at 
CMU to digitize a sequence of images of a flat-mounted 
poster. We used a Sony XC-37 CCD camera with a 
16-mm lens, which gave a field of view of 36 degrees. 
The poster was set about 20 inches (51 cm) from the 

camera. The camera motion between frames was 0.04 
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inches (1 mm), which gave an actual flow of approx- 

imately two pixels per frame in 480x512 images. For 

convenience, our experiments were run on images 

reduced to 240x256 by Gaussian convolution and sub- 

sampling. The image sequence we will discuss here was 

taken with vertical camera motion. This proved to give 

somewhat better results than horizontal motion; we at- 

tribute this to jitter in the scanline clock, which induces 

more noise in horizontal flow than in vertical flow. 

Figure 8 shows the poster and the edges extracted 

from it. For both the iconic and the feature-based 

algorithms, a ground truth value for the depth was deter- 

mined by fitting a plane to the measured values. The 

level of measurement noise was then estimated by com- 

puting the RMS deviation of the measurements from 

the plane fit. Optical aberrations made the flow 

measurements consistently smaller near the periphery 

of the image than the center, so the RMS calculation 

was performed over only the center quarter of the im- 

age. Note that all experiments described in this sec- 

tion did n o t  use regularization to smooth the depth 

estimates, so the results show only the effect of  the 

Kalman filtering algorithm. 

To determine the reliability of the flow variance esti- 

mates, we grouped flow measurements produced by the 

SSD algorithm according to their estimated variances, 

took sample variances over each group, and plotted the 

SSD variance estimates against the sample variances 

(figure 9). The strong linear relationship indicates fairly 

reliable variance estimates. The deviation of the slope 

of the line from the ideal value of one is due to an 

inaccurate estimate of the image noise (o,2,). 
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To examine the convergence of the Kalman filter, the 

RMS depth error was computed for the iconic and the 

feature-based algorithms after processing each image 

in the sequence• We computed two sets of statistics, one 

for "sparse" depth and one for "dense" depth. The 

sparse statistic computes the RMS error for only those 

pixels where both algorithms gave depth estimates (that 

is, where edges were found), whereas the dense statistic 

computes the RMS error of the iconic algorithm over 

the full image. Figure 10 plots the relative RMS errors 

as a function of the number of images processed. Com- 

paring the sparse error curves, the convergence rate of  
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Fig. IO. RMS error in depth estimate. 

the iconic algorithm is slower than the feature-based 
algorithm, as expected. In this particular experiment, 
both methods converged to an error level of approx- 

imately 0.5 % after processing eleven images. Since the 
poster was 20 inches from the camera, this equates to 
a depth error of 0.1 inches. Note that the overall baseline 
between the first and the eleventh image was only 0.44 

inches. 
To compare the theoretical convergence rates derived 

earlier to the experimental rates, the theoretical curves 
were scaled to coincide with the experimental error 
after processing the first two frames. These scaled 

curves are also shown in figure 10. For the iconic 
method, the theoretical rate plotted is the quadratic con- 
vergence predicted by the correlated flow measurement 
model. The agreement between theory and practice is 

quite good for the first three frames. Thereafter, the 
experimental RMS error decreases more slowly; this 
is probably due to the effects of unmodeled sources of 
noise. For the feature-based method, the experimental 
error initially decreases faster than predicted because 
the implementation required new edge matches to be 
consistent with the prior depth estimate. When this 
requirement was dropped, the results agreed very 
closely with the expected convergence rate. 

Note that the comparison between theoretical and 
experimental results also allows us to estimate the preci- 
sion of the subpixel edge extractor. The variance of a 
disparity estimate is twice the variance of the edge posi- 
tions. Since the frame-to-frame displacement in this 
image sequence was one pixel and the relative RMS 

error was 12 % for the first disparity estimate, the RMS 
error in edge localization was O.lz/\/z = 0.09 pixels. 

Finally, Figure 10 also compares the RMS error for 
the sparse and dense depth estimates from the iconic 

method. The dense flow field is considerably noisier 
than the flow estimates that coincide with edges, though 
still just over two percent error by the end of eleven 
frames. Some of this error is due to a systematic bias 
produced by the SSD flow estimator in the vicinity of 

ramp edges. This is illustrated in figure 11. Figure lla 
shows a test image of horizontal bars and figure llb 
shows an intensity profile of a vertical slice taken 
through one of the light-to-dark transitions. Disparity 
and variance estimates computed along this profile are 

shown in figures llc and lld, respectively. As can be 
seen, the disparity estimate is biased low (away from the 
“true” value in the central flat part) on one side of the 
discontinuity, and biased “high” on the other. This bias 
can also be confirmed by using an analytic model of a 

ramp edge. Fortunately, the variance estimates reflect 
this large error, so regularization-based smoothing can 
compensate for this systematic error. We conclude that 
the dense depth estimates do provide fairly good depth 

information. 

6.3. Qualitative Experiments: Real Scenes 

We have also tested the iconic and edge-based algor- 
ithms on complicated, realistic scenes obtained from 

the Calibrated Imaging Laboratory. Two sequences of 
ten images were taken with camera motion of 0.05 
inches (1.27 mm) between frames; one sequence moved 
the camera vertically, the other horizontally. The overall 
range of motion was therefore 0.5 inches (1.27 cm); this 

compares with distances to objects in the scene of 20 
to 40 inches (51 to 102 cm). 

Figure 12 shows one of the images. Figures 13a-d 
show a reduced version of the image, the edges ex- 

tracted from it with an oriented Canny operator [7], 
and depth maps produced by applying the iconic algor- 
ithm to the horizontal and vertical image sequences, 
respectively. Lighter areas in the depth maps are nearer. 
The main structure of the scene is recovered quite well 
in both cases, though the results with the horizontal 

sequence are considerably more noisy. This is most 
likely due to scanline jitter, as mentioned earlier. Edges 
oriented parallel to the direction of flow cause some 
scene structure to be observable in one sequence but 
not the other. This is most noticeable near the center 
of the scene, where a thin vertical object appears in 
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Fig. 12. CIL tmage. 

figure 13c but is not visible in figure 13d. This object 

corresponds to an antenna on the top of a foreground 

building (figure 13a). In general, motion in orthogonal 

directions will yield more information than motion in 

any single direction. 

Figure 14 shows intensity-coded depth maps and 3D 

perspective reconstructions obtained with both the 

iconic and feature-based methods. These results were 

produced by combining disparity estimates from both 

horizontal and vertical camera motion. The depth map 

for the feature-based approach was produced from the 

sparse depth estimates by regularization. It is difficult 

to make quantitative statements about the performance 

of either method from this data, but qualitatively it is 

clear that both recover the structure of the scene quite 

well. 

The iconic algorithm was also used to extract occlud- 

ing boundaries from the depth map of figure 13c (iconic 

method with vertical camera motion). We first com- 

puted an intrinsic "grazing angle" image giving the 

angle between the view vector through each pixel and 

the normal vector of the local 3D surface. Edge detec- 

tion and thresholding were applied to this image to find 

pixels where the view vector and the surface normal 

were nearly perpendicular. The resulting boundaries 

are shown along with the depth map in figure 15. The 

method found most of the prominent building outlines 

and the outline of the bridge in the upper left. 

Figures 16 and 17 show the results of our algorithms 

on a different model set up in the Calibrated Imaging 

Laboratory. The same camera and camera motion were 

used as before. Figure 16 shows the first frame, the 

extracted edges, and the depth maps obtained from 

horizontal and vertical motion. Figure 17 shows the 

depth maps and the perspective reconstructions 

obtained with the iconic and feature-based methods. 

Again, the algorithms recovered the structure of the 

scene quite well. 

Finally, we present the results of using the first 10 

frames of the image sequence used in [4]. Figure 18 

shows the first frame from the sequence, the extracted 

edges, and the depth maps obtained from running the 

iconic and feature-based algorithms. As expected, the 

results from using the feature-based method are similar 

to those obtained with the epipolar-plane image tech- 

nique [4]. The iconic algorithm produces a denser esti- 

mate of depth than is available from either edge-based 

technique. These results show that the sparse (edge- 

based) batch-processing algorithm for small motion 

sequences introduced in [4] can be extended to use 

dense depth maps and incremental processing. 
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(c) (d) 

Fig. 14. CIL orthogonal motion results: (a) icomc method depth map, (b) perspectwe view, (c) feature-based method depth map, (d) perspectwe view• 



Kalman Filter-based Algorithms for Estimating Depth from Image Sequences 229 

(a) 

I f  
I 

(b) 

C- 

f 

L. 

C 

( 

m 

Ftg 15 Occluding boundaries (a) ~ertlcal motion depth map, (b) occluding boundarxes 



2 3 0  Matthies, Szeliski, Kanade 

(a) 

: "  , ~ , , - - ~ .  ~ . . -r .-  ..:.,. 
• - . - - , - , , ~ - ~ . ~  . z  ~+=.- ~-~,- - ~ . =  -.:------ .~ +-. 

_ _ ,  ~ - : - , . . , ~  

~ - ~ -  -~---- . . . .  - - 2 ~ :  : ~ -  - . . . . . - .  - :  _ 
• ~ . _ _ _ _  . .  + - , . - _  

+ 
~.. +,+ ~ ?  

(b) 

• t t . ~  , ~ : l , , ' . ' "  

, ,..q.;~.:-,..,,,..,. 

(c) 

,'+ 

(o) 

Fig. 16 CIL-2depth maps: (a) first frame, (b) edges, (c) horizontal-motnon depth map, (d) vertical-motion depth map. 



Kalman Filter-based Algorithms for Estimating Depth from Image Sequences 231 

~ . ~  ......... ~ ~ 

(a) (b) 

(c) (d) 

Fig 17. CIL-2 orthogonal motion results: (a) Jcomc method depth map, (b) perspective view, (c) feature-based method depth maD, 
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7 Conclusions 

This paper has presented a new algorithm for extract- 

ing depth from known motion. The algorithm processes 
an image sequence taken with small interframe dis- 
placements and produces an on-line estimate of depth 
that is refined over time. The algorithm produces a 
dense, iconic depth map and is suitable for implemen- 

tation on parallel architectures. 
The on-line depth estimator is based on Kalman fil- 

tering. A correlation-based flow algorithm measures 
both the local displacement at each pixel and the con- 
fidence (or variance) of the displacement. These two 

“measurement images” are integrated with predicted 
depth and variance maps using a weighted least-squares 
technique derived from the Kalman filter. Regulariza- 
tion-based smoothing is used to till in areas of unknown 
disparity and to reduce the noise in the flow estimates. 

The current maps are extrapolated to the next frame 
by image warping, using knowledge of the camera 
motion, and are resampled to keep the maps iconic. 

The algorithm has been implemented for lateral cam- 
era translation, evaluated mathematically and experi- 
mentally, and compared with a feature-based algorithm 
that uses Kalman filtering to estimate the depth of edges. 

The mathematical analysis shows that the iconic ap- 
proach will have a slower convergence rate because it 
only keeps one element of state per pixel (the disparity), 

while the feature-based approach keeps both the dispar- 
ity and the subpixel position of the feature. However, 
an optimal implementation of the iconic method (which 
takes into account temporal correlations in the measure- 

ments) has the potential to equal the convergence rate 
and accuracy of the symbolic method. Experiments 
with images of a flat poster have confirmed this analysis 

and given quantitative measures of the performance of 
both algorithms. Finally, experiments with images of 
a realistic outdoor-scene model have shown that the new 
algorithm performs well on images with large varia- 
tions in depth and that occluding boundaries can be ex- 

tracted from the resulting depth maps. 
The lateral motion implementations developed in this 

paper have several potential robotics applications. For 

example, manipulators with cameras mounted near the 
end-effector can use small translations to acquire shape 
information about a workpiece. In addition, binocular 
stereo systems can take great advantage of such motions 
by using depth from motion to constrain binocular corre- 
spondence. The degrees of freedom necessary for this are 
already available in manipulator-mounted systems and 
can be designed into vehicle-mounted stereo systems. 

Extensions 

The algorithms described in this paper can be extended 
in several ways. The most straightforward extension is 
to the case of nonlateral motion. As sketched in sec- 

tion 4, this can be accomplished by designing a 
correlation-based flow estimator that produces two- 
dimensional flow vectors and an associated covariance 
matrix estimate [l]. This approach can also be used 

when the camera motion is uncertain, or when the 
camera motion is variable (e.g., for widening baseline 
stereo [34]). The alternative of searching only along 
epipolar lines during the correlation phase may be 
easier to implement, but is less general. 

More research is required into the behavior of the 
correlation based flow and confidence estimator. In par- 
ticular, we have observed that our current estimator pro- 

duces biased estimates in the vicinity of intensity step 
edges. The correlation between spatially adjacent flow 
estimates, which is currently ignored, should be inte- 

grated into the Kalman filter framework. More sophis- 
ticated representations for the intensity and depth fields 
are also being investigated [28]. 

Finally, as noted above. the incremental depth from 
motion algorithms can be used to initiate stereo fusion. 

Work is currently in progress investigating the integra- 
tion of depth-from-motion and stereo [15]. We believe 
that the framework presented in this paper will prove 

to be useful for integrating information from multiple 
visual sources and for tracking such information in a 
dynamic environment. 
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Appendix A: Optic Flow Computation 

In this appendix, we will analyze the performance of 
a simple correlation-based flow estimator, the sum-of- 
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squared-differences (SSD) estimator [l] _ This estimator 
selects at each pixel the disparity that minimizes the 
SSD measure 

e(&x) = 
s 

w(h)lf,(x + ;i + X) 

where f&x) and f,(x) are the two successive image 

frames, and w(X) is a symmetric, non-negative weight- 
ing function. To analyze its performance, we will 

assume that the two image frames are generated from 
an underlying true intensity image, f(x), to which un- 
correlated (white) Gaussian noise with variance a; has 

been added: 

h(x) = f(x) + n&L 

h(x) = f(x - 4 + 44 

Using this model, we can rewrite the error measure as* 

e(d;x) = 
s 

w(X)Lf(x + d - d + h) 

- f(x + A) + n,(x + h) - n,(x + A)]* dX 

If 2 2: d, we can use a Taylor series expansion to 
obtain 

e(&x) = 
1 

w(X)Lf’(x + A)](2 - d>’ 

+ 2w(h)f’(x + A) 

x[n,(x + X) - n,(x + X)1 

X(2 - d) + w(h) 

x[n,(x + X) - n,,(x + X)]’ dX 

= a(x)(J - d)* + 2[b,(x) - b,(x)] 

~(2 - d) + c(x) 

a(x) = 
s 

w(h)Lf’(x + A)]* dh 

bj(x) = 
I 

w(X)f’(x + h)ni(x + h) dh 

c(x) = 
.I’ 

w(h)[n,(x + II) - no(x + h)]*dX 

*This equation is actually incorrect, since it should contain n,(x + 

2 - d + X) instead of n,(.x + A). The effect of including the cor- 

rect term is to add small random terms involving integrals of w(X), 

w’(X),f’(x + A), f”(x + A), and n,(x) to the quadratic coefficients 

a(x), b,(x), and c(x) that are derived below. This intentional omis- 

sion has been made to simplify the presentation. 

The four coefficients a(x), b,(x), bL(x), and c(x) 
define the shape of the error surface e(d;x). The first 
coefficient, a(x), is related to the average “roughness” 
or “slope” of the intensity surface, and determines the 
confidence given to the disparity estimate (see below). 

The second and third coefficients, b,(x) and b,(x), are 
independent, zero-mean Gaussian random variables that 
determine the difference between (3 and d, i.e., the error 
in flow estimator. The fourth coefficient, c(x), is a chi- 
squared-distributed random variable with mean 

(24s w(X) dh), and defines the computed error at 
ii = d. 

To estimate the disparity at point x given the error 
surface e(&x), we find the 2 such that 

e(i;x) = min(d;x) 
2 

From the above quadratic equation,’ we can compute 
t?(x) as 

&x) = d + hdx) - htx) 

4x) 

To calculate the variance in this estimate, we must first 
calculate the variance in b,(x), 

var (b,(X)) = 0: 
s 

w*(X)lf’(x + X)12 dh 

If we set w(x) = 1 on some finite interval, and zero else- 
where, this variance reduces to u,2a(x), and we obtain 

var (2) = -52 

4-d 

In addition to calculating the disparity-estimate vari- 

ance, we can compute its covariance with other estimates 
either in the same frame or in a subsequent frame. As 
described in section 6.1, knowing the correlation be- 
tween adjacent or successive measurements is impor- 
tant in obtaining good overall uncertainty estimates. 

To determine the cor_relation-between two adja- 
cent disparity estimates, d(x) and d(x + Ax), we must 
first determine the correlation between b;(x) and 
bi(x + AX), 

(b;(xPi(x + Ax>) 

= 
JJ wG9w(rV’(x + W’(x + Ax + 7) 

X (ni(x + h)ni(x + AX + 11)) dX dq 

$The true equation (when higher order Taylor series terms are 

included) is a polynomial series in (d-d, with random coefficients 

of decreasing variance. This explains the “rough” nature of the P(&x) 

observed in practice. 
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= 
J’J’ w(Vw(rlY’(x + W’Cx + Ax + 7) 

x 6(h - Ax - $a; dX dq 

= a,: 
i 

’ w(X)w(X - Ax)lf’(x + X)1* dX 

For a slowly varying gradientf’(x), this correlation is 
proportional to the autocorrelation of the weighting 

function, 

RJAx) = 
J’ 

w(h)w(h + Ax) dX 

For the simple case of w(X) = 1 on [-s, s], we obtain 

R&x + Ax) = z 

for 1x1 5 2s 

The correlation between two successive measure- 
ments in time is easier to compute. Since 

“fz(x + 24 = f(x) + n*(x) 

we can show that the flow estimate obtained from the 
second pair of frames is 

(1 (x) 
2 

= d + bA.4 - b,(x) 

a(x) 

The covariance between C?,(X) and J2(x) is 

cov @,O,~,CxN = (b%(x) - 4(&(x) - 4) 

and the covariance matrix of the sequence of 
measurements d, is 

P,,, = $ 

2 -1 
-1 2 -1 

-1 

2 -1 

-1 2 

This structure is used in section 6.1 to estimate the 
theoretical accuracy and convergence rate of the iconic 
depth from motion algorithm. 

Appendix B: Three-Dimensional Discontinuity 
Detection 

To calculate a discontinuity in the depth map, we com- 

pute the angle between the local normal N and the view 
vector V. The surface normal at pixel value (r, c) is com- 
puted by using the 3D locations of the three points: 

PO = (X0, Y,,Zo) = (Xo,Yo, us do 
where 

x0 
c - c, r - c, 

=-------,yo=- 
S.Y s 1. 

P I = (X Y Z) = (x1 y 1)s I’ 19 I J I1 
d, 

where 

c + 1 - c., _ 1 
X I = - x0 + -. 

S, St 

r - c, _ 
Yl = -- - Yo 

s., 

P2 = (X2, y,,Z*) = G*,Y*, 11: 
2 

where 

x2 
c - cc _ = ___ - x0, 

S.Y 

r + 1 - cX _ 1 
y2 = - -yo-- 

S.V s.V 

We can obtain the normal from the cross product of 
the two vectors 
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Q1 = P, - P, = TX 

- TX do 

[ 
- 

do4 s, 
- no@, - do), -yo(d, - do), --Cd, - do) 1 

Q2 = P2 - PO = TX 

do), -Tiff - yo(dz - do), -(dz - do) 

SY 1 
Q, x Q2 0~ r -do@, - do) do@, - do) _ 4 + xodo(4 - do) - 

L JY 

Simplifying we obtain 

N = (-sxA,,s,& 

-do + w,A, 

v = (Xo,Yo, 1) 

N * V = -do 

SA sxsy SY 

The motion equations for a 

(x,d) are 

- YG~&) 

COS fJ = Y.5 

INI IV1 

where A, = d,(d, -do) and A 2 = d,(d,-do). To im- 

plement the edge detector, we require that 

cos I9 < cos 8, 

or 

[$A: + ,;A: + (-do + x,,sxA, - y,,.~,A,)~l 

x (xi + yt + 1) > di set* 8, 

If the field of view of the camera is small, we have 

near orthographic projection, and the above equations 
simplify to 

N = s A, Q2 -+T,-' 1 = (P,q, -1) 
0 

v = (Xo,Yo, 1) 

and this reduces to the familiar gradient-based threshold 
p” + q* > tan* 0, 

Appendix C: Prediction Equations 

To predict the new disparity map and variance map 
from the current maps, we will first map each pixel 
to its new location and value, and then use interpola- 
tion to resample the map. For simplicity, the develop- 
ment given here shows only the one-dimensional case, 
i.e., disparity d as a function of x. The extension to 
two dimensions is straightforward. 

X ’ = x + t,d + r, 

d’ = d + t; 

yodo(4 - do) 

SX 1 
point in the pixel map 

We will assume that the points which define the patch 
under consideration have the same t,, r,, and tz values. 

These three parameters are actually stochastic variables, 
due to the uncertainty in camera motion. For the lateral- 
motion case, we assume that the mean of t., is known 

and nonzero, while the means of t-, and tZ are zero. 
We can write the vector equations for the motion of 

the points in a patch as 

X ’ = x + t,xd + r,e 

d’ = d + tze 

where 

e = [l.. .l]r 

The Jacobian of this vector equation is 

a(x : d ‘) 
a(x,d,t,,r.,,t;) = 

I t.rI d 
0 I 0 

and the variance of the predicted points 

var (x ‘, d ‘) 

c 
C, + t.fC, + dd’$, + ee’u:, = 
1 t.rcd 

e0 T 
0 e 1 

is 
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To obtain the new depth and variance at a point x, 
we must define an interpolation function for the patch 
surrounding this point. For a linear interpolant, the 

equation is 

d = d;:‘l;” - -‘) + di+, tx - xi) 
X I+1 - x;) (Xi+1 - Xi) 

= (1 - h)d, + Ad;,,, 

where h = 0 - Xi) 

(Xi+1 - 4) 

ad -= (%+I - 4 

adi (xi+, - xi) 
= (1 - X) 

ad = -(d,+, - d;)(xi+, - xi) 

axi (Xi+1 - xp 

= -m(l - h) 

where m = (di+, - 4) 

@i+l - .?I 

and the associated Jacobian is 

34 

Xxi.x;+l,d,,di+l) 

=[ 
-m(l - h) -mX (1 - A) X 1 

The variance of the new depth estimate is thus 

var (d) = m2[(1 - X)%7:, + h%~~~+,] 

+ (1 - f,m)2[(1 - X)*u$, + h20i,+,] 

+ m2[d2$ + uf,] + u:, 

Each of the above four terms can be analyzed separately. 
The first term in the above equation, which involves 
$, depends on the positional uncertainty of the points 
in the old map. It can either be ignored (if each disparity 
element represents the disparity at its center), or u: 

can be set to l/2. The second term is a blend of the varil 
antes at the two endpoints of the interpolated interval. 
Note that for X = l/2, the variance is actually reduced 
by half (the average of two uncertain measurements is 

more certain). It may be desirable to use a pure blend 
[(l - h)ui,+ A&$+,] to eliminate this bias. The sec- 
ond term also encodes the interaction between the 
disparity uncertainty and the disparity gradient m. The 

third term encodes the interaction between the disparity 
gradient and the camera translation and pan uncertainty. 
The final term is the uncertainty in camera forward mo- 
tion, which should in practice be negligible. 
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