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Kalman Filter-Based, Dynamic 3-D Shape
Reconstruction for Steerable Needles with Fiber

Bragg Gratings in Multi-Core Fibers
Abdulhamit Donder and Ferdinando Rodriguez y Baena

Abstract—Steerable needles are a promising technology to
provide safe deployment of tools through complex anatomy in
minimally invasive surgery, including tumor-related diagnoses
and therapies. For the 3-D localization of these instruments in soft
tissue, fiber Bragg gratings (FBGs)-based reconstruction methods
have gained in popularity because of the inherent advantages of
optical fibers in a clinical setting, such as flexibility, immunity to
electromagnetic interference, non-toxicity, the absence of line of
sight issues. However, methods proposed thus far focus on shape
reconstruction of the steerable needle itself, where accuracy is
susceptible to errors in interpolation and curve fitting methods
used to estimate the curvature vectors along the needle. In this
study, we propose reconstructing the shape of the path created
by the steerable needle tip based on the follow-the-leader nature
of many of its variants. By assuming that the path made by the
tip is equivalent to the shape of the needle, this novel approach
paves the way for shape reconstruction through a single set of
FBGs at the needle tip, which provides curvature information
about every section of the path during navigation. We propose
a Kalman Filter-based sensor fusion method to update the
curvature information about the sections as they are continually
estimated during the insertion process. The proposed method
is validated through simulation, in vitro and ex vivo experiments
employing a programmable bevel-tip steerable needle (PBN). The
results show clinically acceptable accuracy, with 2.87 mm mean
PBN tip position error, and a standard deviation of 1.63 mm for
a 120 mm 3-D insertion.

Index Terms—3-D reconstruction, Biomedical, Cancer therapy,
Fiber Bragg grating, FBG, Follow-the-leader, Kalman filters,
Multi-core fiber, Programmable bevel-tip steerable needle, PBN,
Steerable needle, Sensor fusion, Soft tissue, Shape sensing

I. INTRODUCTION

RESEARCH into minimally invasive surgery (MIS) has
been growing significantly in the last few decades be-

cause of the improved clinical outcomes and reduction in
intra- and post-operative risks compared to an equivalent
open surgery approach [1]. In the context of MIS, percuta-
neous intervention is important in tumor-related diagnosis and
therapy, where rigid needles are commonly used for various
applications, including drug delivery, biopsy, ablation, and
brachytherapy. However, when a rigid needle path to a target
encounters a critical anatomical feature such as vessels, bones,
and nerves, there is no means to avoid it. This eventuality may
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Fig. 1. A bevel-tip steerable needle

cause additional damage and lengthening of the procedure due
to the need to extract and reinsert, which is not ideal. Further,
there is a possibility of the target tissue moving away from
the needle path during the insertion, with a consequent effect
on targeting accuracy.

To safely navigate instruments in complex anatomy, a
number of steerable needles have been proposed. These types
of needle enable steering during navigation into soft tissue
to avoid critical anatomical features. Many studies have been
conducted to investigate the potential of this promising tool.
Different types of steerable needle designs are discussed in
[2] and [3], with likely the most widely studied example, the
bevel-tip needle, shown in Fig. 1.

The programmable bevel-tip needle (PBN) is a bio-inspired
steerable needle based on ovipositing wasps’ egg-laying chan-
nel structure, through which they can lay their eggs, for
example, within wood, by penetrating and steering into it [4].
Similar to this structure, the PBN consists of relatively soft
slender segments held together via an “interlocking mecha-
nism”, which constrains the relative transverse motion of the
segments, as highlighted in Fig. 2. Each segment can be driven
independently at the proximal end to achieve relative axial
motion, which “programs” the shape of the bevel-tip; thus,
the needle can steer through interaction with the surrounding
tissue. Illustrations of a 4-segment PBN are shown in Fig. 2.
Some of the advantages associated to the PBN design are:

• Tissue deformation is decreased thanks to the reciprocal
motion of the PBN segments [5],[6].

• PBNs can be made from more compliant materials com-
pared to the kind of needles requiring transmission of
torque from base to tip (as in the case of duty cycle
spinning [7]), which leads to a greater steering ability.
With more compliant needle materials, follow-the-leader
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Fig. 2. 4-segment PBN a) Illustration of the cross-section and interlocking
segments. The circles represent the working channels that can be used for
sensor placement or drug delivery etc. dh ∈ R2×1 is the neutral axis
discrepancy of the hth segment, h ∈ {1, 2, 3, 4}. b-c) 4-segment PBN.

performance is also improved, as it is easier to maintain
a suitable difference between needle and substrate stiff-
nesses to counteract the natural tendency for a needle to
straighten once it is bent.

• PBNs can be made magnetic-resonance-imaging (MRI)
compatible, as the one used in this study.

• PBNs can steer in full 3-D space without the need for an
axial rotation of the needle body [8].

Detailed information about PBNs can be found in [9].
One of the leading open challenges for steerable needles

to achieve precise targeting in soft tissue is the need for
effective real-time tip tracking. The complications caused by
poor needle placement include tissue damage, misdiagnosis,
under/overdosing therapy, and unsuccessful treatment [10].
Therefore, needle tracking remains a critical focus area for
many researchers in this field [11]. Because of the absence
of line-of-sight in percutaneous intervention, proprioceptive
tracking methods, such as optical fiber-based shape sensing
methods [12], electromagnetic (EM) sensor-based tracking
methods [13], and intraoperative medical imaging modali-
ties such as ultrasound [14], [15], fluoroscopy [16], com-
puted tomography (CT) [17], and magnetic-resonance-imaging
(MRI) [18], have been studied extensively. Amongst these,
the advantages of optical fibers, which are non-ferromagnetic
[19], lightweight, small in size, suitable for dynamic-real-
time applications, flexible, and radiation-free, make them a
promising technology for medical localization.

Shape reconstruction methods based on fiber Bragg grating
(FBG)-inscribed optical fibers have been introduced for about
a decade [20], [21], [22], [23]. Particularly, improvements
arising with the use of multi-core optical fibers (MCFs) [24]
have enabled the spread of FBG-based shape reconstruction
methods because they eliminate the positioning and alignment
difficulties encountered with single-core fibers [25]. FBG-
based reconstruction methods in the literature can be grouped
into 5 main categories: Frenet-Serret frame-based methods
[26], [27], parallel transport frame-based methods [28], [24],
piecewise constant curvature methods [22], [29], polynomial

shape-based methods [30], [31], [20] and data-driven regres-
sion approaches (DDRA) [32]. Given that the spacing between
consecutive FBG sets along an MCF can only be so small,
all these methods suffer from the limited number of discrete
measurement locations along an MCF.

To address this drawback, interpolation or curve fitting
techniques have been suggested to estimate the intermediate
curvature vectors in all the methods, but DDRA. These tech-
niques bring along inherent approximation inaccuracies. Sim-
ilarly, in DDRA, regression performance is a function of the
number of measurement locations. Specifically, in all of these
methods, as the FBG sets become sparse along the fiber, shape
reconstruction accuracy becomes increasingly susceptible to
the relative position of bending direction discontinuities with
respect to the gratings, as investigated in this study. One way
to increase accuracy is to increase the number of FBG sets
along the fiber. However, this comes at the expense of higher
manufacturing costs, higher calibration complexity, and the
increased probability of fiber damage and malfunction [30].

This paper introduces a novel FBG-based shape reconstruc-
tion method that ensures that frequent measurements along
the fiber length can be acquired even in the presence of only
1 FBG set, which is located at the needle tip, irrespective
of the number of bending direction discontinuities along the
length of the fiber. Previously proposed approaches focused
on reconstructing the steerable needle shape itself, whereas we
propose to reconstruct the path created by the steerable needle
tip during its insertion into soft tissue instead. This method is
based on the follow-the-leader assumption, where the needle
body follows the needle tip, which is a valid approximation
for most needle embodiments [9], [22], [33]. This approach
also enables the reconstruction of the full needle, regardless
of where the gratings stop.

In a sense, only using the FBG set at the needle tip is similar
to tip tracing methods based on, e.g. an EM sensor embed-
ded within the needle tip. However, while 3-D tip position
information can be acquired directly in this way, curvature
vectors covering the entire fiber are needed in the case of
FBGs to estimate the same information so that the shape is
reconstructed from base to tip by numerical integration. We
propose a method to acquire the required curvature vectors
along the entire needle with only 1 FBG set. Furthermore, we
introduce a Kalman Filter (KF)-based algorithm to fuse the
information at different discrete time steps, and from different
FBG sets in the case where there is more than one along
the fiber, which enables the detection of shape changes due
to possible soft tissue movements, alongside an increase in
reconstruction and tracking accuracy.

Kalman Filtering is one of the most extensively used
methods for sensor fusion [34], [35], [36]. The reason for
this is that it is well-suited for real-time applications with a
stochastic nature. In [34], it was used to combine a flexible
catheter’s tip position obtained using both ultrasound-based
and FBG-based tracking methods. Similarly, to increase needle
tip position tracking accuracy, in [37], a KF was used to fuse
the information from an optical tracker and an EM sensor.
Another study about needle insertion is [38], where the needle
tip tracking accuracy was increased by fusing tip position
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information from a less accurate but smaller EM sensor at
the needle tip and a more accurate but bigger EM sensor at
the needle base together with a deflection model. Finally, an
extended KF was used for model-based tip pose estimation of
a PBN with EM sensors in [39].

The proposed method’s performance and other commonly
used methods from the literature have been compared in
a noise-free simulation environment. Additionally, validation
experiments were performed in vitro and ex vivo with a
clinically-sized, medical-grade PBN.

This paper is structured as follows. An introduction of FBG
theory is presented in Section II. In Section III, a review
of shape reconstruction methods from the literature is given.
In Section IV, the proposed shape reconstruction approach is
introduced together with the KF-based fusion algorithm. Then,
in Section V, the simulation methods are outlined together
with their results. This section is followed by Section VI,
where the experimental setup and methods are explained, and
results are given. In Section VII, the results are discussed, and
possible sources of error are presented. Lastly, in Section VIII,
conclusions and future work are given.

II. FIBER BRAGG GRATING (FBG) THEORY

FBGs are used as optical strain gauges in a variety of areas
such as mechanical, medical, civil, and aerospace engineering
applications [40], [41]. An FBG is a grating pattern with a
periodic refractive index modulation etched onto an optical
fiber, which has the property of reflecting the light of a specific
wavelength, the Bragg wavelength, λB , which is a function of
temperature and strain [42].

λB = 2neffΛ (1)

where neff is the effective refractive index and Λ is the grating
period. The relationship between the reflected wavelength shift
and change in temperature, ∆T , and strain, ε, is given as
follows:

∆λ = λB((1− pe)ε+ (αλ + αn)∆T ) (2)

where pe is the photo-elastic coefficient, and αλ and αn are the
thermal expansion coefficient and the thermo-optic coefficient,
respectively [42].

When the temperature change can be assumed to be 0, the
axial strain on an FBG can be computed as:

ε =
∆λ

λB(1− pe)
(3)

Assuming that the fiber is in pure bending and behaves as a
uniform, symmetric, linear Kirchhoff rod [43], the axial strains
due to bending at each core can be derived from mechanics
principles as follows [44]:

εj(s) = −κ(s)δj(s) (4)

where s represents the arc length parameter along the fiber
(0, L), where L is the length of the fiber, εj(s) is the strain
at the jth core, with j ∈ 1, ..., G, and G is the total number
of off-centered cores. κ(s) is the curvature, and δj(s) is the

Fig. 3. Left: FBG-inscribed MCF including 4 cores: 1 centered, 3 off-
centered. Right: MCF with 3 off-centered cores in section view (an FBG
set). The cores are denoted by the numbers: 1, 2, 3. rj is the radial distance
from the MCF center to the center of the jth core, where j ∈ {1, 2, 3}. δj is
the distance between the neutral bending plane and the jth core center. The
local frame is denoted by the x, y axes. θ is the angular offset from the local
x axis to the 1st core. β is the angular offset from the curvature vector to the
local x axis. θ12 is the angle from the 1st core to the 2nd core. Similarly, θ13
is the angle from the 1st core to the 3rd core.

distance between the center of the jth core and the neutral
bending plane, as shown in Fig. 3. Therefore, (4) can be
written as follows:

εj(s) = −κ(s)rjcos(β(s) + θ + θ1j) + ε0(s) (5)

where rj is the radial distance between the fiber center and
the center of the jth core, β(s) is the angular offset from
the curvature vector to the x axis of the local frame, and θ
is the angular offset from the x axis of the local frame to
the 1st core. Similarly, θ1j is the angular offset from the 1st

core to the jth core, with θ11(s) = 0. The curvature vector is
defined with κ(s) being the magnitude and β(s) the bending
direction of the curvature vector. It can also be defined as the
rate of change of the curve’s unit tangent vector with respect
to s: dT (s)/ds. The strain bias ε0(s) is due to additional axial
strain and temperature change. When a temperature change can
be assumed to affect all the gratings in an FBG set equally
due to the proximity of the fibers (as in the case of MCFs), the
effect of it can be assumed to be compensated by the strain bias
[45], [46]. Additionally, in the case of separation between the
neutral axes of a needle and the fiber, it is instrumented with,
the additional axial strain reflects on ε0(s) as well. (5) is a
general formula, which is valid for any number of cores along
a fiber in any configuration, symmetrical or asymmetrical. An
example configuration is shown in Fig. 3, with 3 cores to
illustrate the parameters used in (5).

The locations of the FBG sets along a fiber are known a
priori. To compute the curvature vector, at least 3 linearly
independent (i.e., not symmetric about the fiber center), off-
centered cores are necessary. As many equations as the number
of such cores can be obtained from (5), which can be solved
simultaneously to compute the curvature value, κ(s), bending
direction, β(s), and ε0(s). Note that at least 3 equations are
required for this calculation (G ∈ Z≥3). In the presence of
more than 3 available cores, the equations from all of the cores
can be used to increase accuracy and improve robustness via
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redundancy. In matrix form, (5) can be written for G cores as
follows:

ε1(s)
...

εG(s)

︸ ︷︷ ︸
ε(s)

=

−r1cos(θ11 + θ) r1sin(θ11 + θ) 1
...

...
...

−rGcos(θ1G + θ) rGsin(θ1G + θ) 1

︸ ︷︷ ︸
M

κ(s)cosβ(s)
κ(s)sinβ(s)

ε0(s)

︸ ︷︷ ︸
α(s)

(6)
Solving for α(s):

α(s) = M †ε(s) (7)

where M † is Moore-Penrose pseudo-inverse of M (Note that
M is not necessarily a square matrix).

As a result:

κ(s) =
√
α1(s)2 +α2(s)2 (8)

β(s) = atan2(α2(s),α1(s)) (9)

The torsion can be approximated with numerical derivation:

τ(s) =
β(s)− β(s−∆s)

∆s
(10)

κ(s), β(s), and τ(s) are used for shape reconstruction, as
reviewed in the following section.

III. FBG-BASED SHAPE RECONSTRUCTION AND TIP
TRACKING METHODS

Shape reconstruction methods require the information from
the strain values or the curvature vectors along the entire
fiber. However, only sparse measurements can be obtained
with discrete FBG sets, and, therefore, an interpolation/curve
fitting method is required to estimate the intermediate values.
Although, in this study, we propose a shape reconstruction
method that does not require the estimation of the intermediate
strain values or curvature vectors in between the FBG sets,
an overview of interpolation and curve fitting methods is
given in Section III-A for completeness. A review of shape
reconstruction methods is presented in Section III-B.

A. Interpolation / Curve Fitting Methods

In this section, interpolation and curve fitting methods
based on discrete FBG measurements are reviewed from the
literature to help interpret the comparative study in Section V.

The accuracy of fiber tip pose estimation highly depends on
selecting the most suitable interpolation/curve fitting methods
to determine the intermediate strain values or curvature vectors
between the discrete FBG sets. For example, a small curvature
error due to the applied interpolation method will result in
a large position error at the tip due to error accumulation
during numerical integration. Henken et al. [46] presented an
error analysis of standard interpolation methods. They used
the curvature vector as the interpolation parameter, as in most
of the studies in the literature. However, Jäckle et al. [45]
proposed interpolating the strain because of its continuity
along the fiber, when considering the possible discontinuity
in the bending direction.

A simulation study comparing the proposed method with
the methods requiring interpolation is given in Section V,
alongside an analysis investigating the effect of discontinuities
in the bending direction to shape sensing accuracy.

B. FBG-Based Shape Reconstruction and Fiber Tip Position
Estimation Methods

In this section, shape reconstruction methods from the
literature, based on discrete FBG measurements, are reviewed.
These methods show promise, but their accuracy is susceptible
to errors of the interpolation methods.

1) Frenet-Serret frame-based methods: This shape recon-
struction method is based on the Frenet-Serret equations [47]:

dγ(s)

ds
= T (s),

dN(s)

ds
= −κ(s)N(s) + τ(s)B(s)

dT (s)

ds
= κ(s)N(s),

dB(s)

ds
= −τ(s)N(s) (11)

where γ(s) is the position vector in R3, T (s) the unit tangent
vector, N(s) the unit normal vector, B(s) the unit binormal
vector, κ(s) the curvature value, and τ(s) the torsion of the
curve (i.e., the rate of change of bending direction, β(s)).

This method requires that the curve to be reconstructed
must be with non-zero curvature along its length; otherwise,
it generates ambiguity in the definition of N(s) and B(s),
because τ(s) is not defined in the case of zero curvature [48].
After estimating intermediate curvature values in between the
FBG sets using one of the methods in Section III-A, the shape
is constructed by the integration of vectors T (s).

2) Parallel transport frame-based methods: This shape
reconstruction method is based on the parallel transport frame
[49], which satisfies the following frame equations:

dγ(s)

ds
= T (s),

dT (s)

ds
= κ1(s)N1(s) + κ2(s)N2(s)

dN1(s)

ds
= −κ1(s)T (s),

dN2(s)

ds
= −κ2(s)T (s) (12)

where T (s) is the unit tangent vector and N1(s), N2(s) the
unit normal vectors. κ1(s) and κ2(s) describe the change of
T (s) in the N1(s) and N2(s) directions at arc length position
s and are calculated as follows:

κ1(s) = κ(s)cos(β(s))

κ2(s) = κ(s)sin(β(s)) (13)

This method is advantageous over the Frenet-Serret frame
since it is defined for every curve, including zero curvature
curves. N1(s), and N2(s) change slightly along the curve
upon being chosen arbitrarily at the needle base, such that the
frame components are perpendicular to one another. The shape
is reconstructed in a similar way as in the case of Frenet-Serret
frame-based reconstruction.
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3) Piecewise constant curvature method: Roesthuis et al.
[22] proposed a reconstruction method based on piecewise
constant curvature elements. The (i+1)th element expressed in
previous element’s frame is created with a constant curvature
vector:

pii+1 =
[
dx dy dz

]
=
[
ρisin(dθi) 0 ρicos(dθi)− ρi

]
(14)

where dx, dy, and dz are the cartesian distances, ρi is the
radius of curvature, and dθi = ds/ρi with ds being the
length of the curvature element. Therefore, the whole shape is
obtained by directly integrating these discrete elements. Linear
spline interpolation was used to estimate the intermediate
curvature values in their study.

4) Polynomial shape-based methods: Seifabadi et al. [30]
proposed fitting an nth order polynomial to n curvature values
obtained from FBG measurements. The displacement along
the fiber is obtained by integrating the polynomial twice and
applying the boundary conditions; y′(0) = 0 and y(0) = 0.

y′′(s) = κ(s) (15)

where y(s) is the deflection, y′(s) and y′′(s) are the first
and second derivatives of deflection, and κ(s) is the curvature
value at arc length s. In this method, the intermediate curvature
values are accessed via the fitted continuous polynomial.

5) Data-driven tip position estimation approaches: Sefati
et al. [32] proposed a regression-model-based method which
is sensor-model-independent and only requires the raw data
of the FBG wavelengths to estimate the tip position of a
continuum dexterous manipulator. Although this method does
not require the estimation of intermediate strain values or
curvature vectors, the tip position estimation performance is
expected to increase as the number of measurements increases
along the fiber.

IV. MATERIALS AND METHODS

Regardless of the total number of FBG sets that an MCF
inside a needle possesses, we propose that only the FBG set
at the fiber’s tip is used to reconstruct the shape during soft
tissue navigation. In the case of more than 1 available FBG
set, the information from different sets can then be fused using
the method proposed in Section IV-C.

Because of the “follow-the-leader” nature of steerable nee-
dles, we assume that the needle’s shape overlaps with the path
created by its tip during navigation into soft tissue. Therefore,
instead of reconstructing the fiber shape, the shape of the path
covered by the fiber’s tip is reconstructed. The curve created
during navigation of the MCF tip is modeled as a regular
unit-speed space curve in R3 with i ∈ {1, ..., Nk} denoting
the discrete curve points. Nk is the total number of curve
points at discrete sampling time k: tk. The fiber is assumed
to be in pure bending, and it is modeled as a uniform-density,
symmetric (circular cross-section), linear Kirchhoff rod [43].

A. Obtaining Curvature Pairs

The curve points are assumed to be fixed with respect to
the soft tissue (and not with respect to the needle). Therefore,
as the needle advances into the soft tissue, the curvature
vectors at newly covered ground are calculated at each time
step (Fig. 4). Let nk ∈ Z≥0 be the number of curve points
created (i.e., positions of which are calculated) at tk in the
case of the advancement of the needle into soft tissue. Let
c̃k =

[
κ̃1,k κ̃2,k

]T ∈ R2×1 be the curvature pair as given in
(13) calculated after obtaining the segment’s curvature vectors
using wavelength readings at tk.

Also, let ĉik =
[
κi1,k κi2,k

]T ∈ R2×1 be the curvature pair
of the ith curve point at tk. The curvature pairs corresponding
to newly covered ground, and Nk are obtained as follows.

ĉik = c̃k (16)

Nk = Nk−1 + nk (17)

B. Compensation for the Lead-Out Length

We call the length between the tip FBG set and the needle
tip the “lead-out” length, as shown in Fig. 4 as llead. This
length is required for three reasons: (i) to accommodate the
needle tip’s beveled shape, (ii) to protect the end of the fiber,
(iii) to position the tip FBG set at a point where the relevant
curvature of the needle tip can be measured. The curvature
of the needle tip is best measured at a small distance from
its very tip due to the soft needle material, and the tolerances
between the outer diameter of the fiber and the diameter of the
needle’s working channel. This situation is illustrated in Fig.
5. Therefore, c̃k is also assigned to curvatures corresponding
to this length.

Fig. 4. 2-D Illustration of needle insertion into soft tissue. A bevel-tip needle
is illustrated at three successive time steps. The FBG set with the length of l
is shown at the tip in grey. The discrete curve points are assumed to be fixed
with respect to the soft tissue (not with respect to the needle). The curve
points created at the current time step are shown in blue circles, whereas the
curve points created at the previous time steps are shown in black squares.
The distance between the needle tip and the FBG set is called lead-out length,
llead, and the curvature values of which can be estimated by extrapolation.
nk ∈ Z≥0 is the number of curve points created at tk .
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Fig. 5. A needle working channel. The last bits of fibers tend to be straight
even if the needle curves because of the soft needle material and the clearance
between the fiber and the channel. The width of the channel is exaggerated
for clarity.

C. Kalman Filter-Based Sensor Fusion

In this study, we use a KF to obtain more reliable estimates
of the curvatures along the fiber length. The measurements at
a time step are used to create or update the curve points of
the ground that is covered by the FBG set/sets at that time
step. Let M be the total number of FBG sets along a fiber,
and FBGm, m ∈ {1, ...,M}, be the mth FBG set from the
fiber tip (e.g., FBG1 is the FBG set at the fiber tip) as shown
in Fig. 6. As a needle is inserted into a soft tissue, the very
first shape reconstruction is obtained by FBG1 as described
in the previous sections. If there are other FBG sets, once
FBG2 reaches a curve point of the reconstructed path, the
curvature information from FBG1 is fused with that of FBG2

by means of a KF. This is repeated as FBG2 continues to take
measurements or other FBG sets start taking measurements
from that curve point. This procedure is performed for all the
curve points along the fiber. The information from an FBG set
is used to update the curvature information of the curve points
covered by any part of its length. This process enables shape
reconstruction at a length which is greater than the length of
the sensorized segment of the fiber.

The KF-based sensor fusion consists of two steps: prediction
and correction, which require the formulation of a process
model with process noise, and a measurement model with
measurement noise, respectively [50].

The first state vector, i.e., curvature pair values, of any
curve point is always obtained with FBG1 because the path
is created by the tip. After that, the state vector is updated by
means of the KF if this curve point is covered by one of the
FBG sets. Otherwise, the same values are used for the next
time step’s state vector.

The process model is defined as a linear stochastic equation:

ĉik = ĉik−1 +w (18)

Fig. 6. 2-D Illustration of a bevel-tip needle with an MCF possessing more
than one FBG set along its length. The discrete curve points are assumed to
be fixed to the soft tissue.

where w ∼N(0,Q) ∈ R2×1 is the process noise vector rep-
resented by zero-mean Gaussian distribution with Q ∈ R2×2

being the covariance matrix. The reason for process noise
uncertainties arises from the possible non-zero error in the
follow-the-leader assumption.

The measurement model is defined as follows:

zik = ĉik + v (19)

where zik is the measurement variable and v ∼ N(0,R) ∈
R2×1 is the measurement noise vector represented by a
zero-mean Gaussian distribution with R ∈ R2×2 being the
covariance matrix.

The covariance matrices Q and R are determined as per
description at the end of this subsection. Based on the process
and the measurement models, the filter’s prediction and cor-
rection steps are applied at each sampling loop to correct the
state estimates.

Prediction step: In this step, the a priori system state at tk
is estimated:

ĉ−,ik = ĉik−1 (20)

Given the initial estimate, the a priori error covariance
P−,i ∈ R2×2, which is the combination of process noise
and the propagation of the error covariance, P i

k−1, from the
previous state, is estimated as follows:

P−,ik = P i
k−1Q (21)

Correction Step: In this step, a priori estimates of the system
state and error covariance are updated with the Kalman Gain,
Ki
k ∈ R2×2.

Ki
k = P−,ik (P−,ik +R)−1

ĉik = ĉ−,ik +Ki
k(zik − ĉ

−,i
k ) (22)

P i
k = (I2 −Ki

k)P−,ik

where I2 ∈ R2×2 is an identity matrix. If a curve point is not
covered by any FBG set at tk, ĉik−1 and P i

k−1 are directly
assigned to ĉik and P i

k respectively:

ĉik = ĉik−1 (23)

P i
k = P i

k−1 (24)

Calculation of the Covariance Matrices: In order to
determine the matrixR, which is defined to be the same for all
the FBG sets, the needle is driven along a constant curvature
trajectory, and R is calculated using the curvature pair error
values, ea ∈ RA×2, which are given as follows:

ea = c̃a −
1

A

A∑
f=1

c̃f (25)

where a ∈ {1, ..., A}, A being the total number of measure-
ments for all of the FBG sets, and c̃a ∈ R1×2 the ath curvature
pair measurement.
Q is defined as follows:
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Q = ξ

[
σ2
κ1

σκ1κ2

σκ1κ2
σ2
κ2

]
(26)

where σ2
κ1

and σ2
κ2

are the process error variances of the
curvatures, which are assumed to be equal to each other,
given that the PBN has a symmetric cross-section. ξ is a
variable scaling parameter defined to scale the matrix at the
first prediction step when a new FBG reaches the position,
and it is used to give more weight to the newer measure:

ξ =

{
ρ, First prediction step of a new FBG
1, otherwise

(27)

In order to collect data to be used to determine the un-
knowns of the matrix Q, a steerable needle instrumented with
an optical fiber is inserted into a soft tissue phantom, and
curvature values are collected from FBG sets throughout the
insertion. The three unknowns, ρ, σ2

κ1
and σκ1κ2

, the last of
which is the co-variance of the curvature process error, are
optimized with the interior point algorithm [51] so the mean tip
position error between the ground truth and the reconstruction
is minimized.

Although the curvature pairs are used as the state vari-
ables, curvature vectors, FBG strain values, or the ratios
between wavelength shifts and Bragg wavelengths would also
be suitable. This is because these are independent variables
describing the state of curve points, and the shape can be
reconstructed using the curvatures calculated using them, as
explained in Section II and Section III. However, strain and
wavelength values are less intuitive for the intended use-case
compared to others, and using curvature vectors would require
tuning three elements of matrix Q instead of two elements,
as in this study, since the elements on the main diagonal (the
curvature and the bending direction) cannot be assumed to be
equal.

A single evaluation of shape reconstruction performance for
an MCF with KF, sampled every 50 µm (20 Hz at 1 mm·s-1)
throughout the navigation process, running on an Intel(R)
Core(TM) i7-10510U CPU @ 1.80 GHz - 2.30 GHz with
MATLAB 2020b, takes an average of 23 ms in the presence
of only the tip FBG set (before the other FBG sets reach the
points created by the tip FBG set) and 88 ms in the presence
of eight FBG sets, each of which is assumed to be 5 mm long.

D. Application to Needle Steering

If a steerable needle navigates in soft tissue in a follow-the-
leader fashion and can be instrumented with an FBG-inscribed
multi-core optical fiber, the proposed methods can be used for
shape reconstruction. In this study, the validation experiments
were performed using a PBN.

The zero-torsion and follow-the-leader assumptions, we
make in this study for PBNs, are considered acceptable
according to the PBN-tissue interaction model developed and
validated in [9].

When a PBN where all the segments contain an MCF
is inserted into a soft tissue, each segment’s shape can be
reconstructed individually with the proposed method. Also,

the shape of the PBN at tk can be assumed to be always
equivalent to that of the segment that is further ahead (i.e., the
leading segment). However, we propose integrating the curva-
ture information from all the segments to increase accuracy by
averaging the curvatures corresponding to each curve point of
the PBN. Let p ∈ {1, ..., NPBN

k } correspond to discrete curve
points along the PBN, where NPBN

k is the total number of the
curve points. Also, let the superscript υ ∈ {1, ..., gpk} denote
the υth curve, created by one of the segment tips, of which one
curve point corresponds to p, with gpk being the total number
of the curves. This parametrization allows the reconstruction
to complete successfully if the segments tips are not aligned,
a configuration that is essential to create curvature.

Therefore, the corresponding curvatures for all PBN curve
positions are averaged to calculate the resultant curvatures
along the PBN.

Considering a PBN’s curvilinear navigation, a path-
dependent discrepancy is expected between the segments’ nav-
igation lengths because of the separation between their neutral
axes. A similar discrepancy is also expected between the
curves created by the segment tips. Therefore, this discrepancy
must be taken into account when matching the corresponding
curvatures along the PBN. This issue was discussed by Watts
et al. in [9], where they proposed an open-loop compensation
method for the case where the curve points of the PBN center-
line are known, which is the inverse of what is available in this
study, where the curve points of the individual segments are
known. Therefore, their algorithm was adapted with additional
steps in our study to compensate for this discrepancy and,
thus, match the steps of individual curves corresponding to
curve points along the PBN. The updated algorithm is given
in Algorithm 1.

Let dh ∈ R2×1 be the neutral axis discrepancy of the hth

segment, h ∈ {1, 2, 3, 4}, as shown in Fig. 2 and ĉi,hk ∈ R2×1

be the curvature value pair of the hth segment’s ith curve
point. Therefore, the curves’ curvature pairs corresponding to
PBN curve points are calculated with Algorithm 1, and the
curvature pairs, c̄PBN,pk ∈ R2×1, of the PBN are calculated
by averaging the curvature pairs corresponding to PBN curve
points:

c̄PBN,pk =
1

gpk

gpk∑
υ=1

cυ,pk (28)

Finally, the PBN shape is reconstructed with the resul-
tant curvature pairs, c̄PBN,pk , based on the parallel transport
frames-based method given in Section III-B because of its sta-
bility and noise handling capabilities, making it advantageous
over the other methods, as suggested in [45].

E. Calibration and Curvature Value Correction

Firstly, calibration is required to determine the FBG wave-
lengths at zero-strain, which are to be used as Bragg wave-
lengths in (3). These are determined by placing the fiber into a
linear guide. Secondly, calibration is needed to determine the
angular position of the 1st core with respect to the local frame
as denoted by θ in Fig. 3. This is determined by placing the
fiber into a 2-D curved guide with a known bending direction.
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Algorithm 1 An algorithm to calculate PBN curvature pairs
by matching the curve points of individual curves. All the
parameters are for the discrete time step, tk

Input: Neutral axis separations: dh, h ∈ {1, 2, 3, 4},
Curvature value pairs: ĉi,hk , The total number of curve points
of the curves created by the segment tips: Nh

k

Output: gpk, and all the curves’ curvature pairs corre-
sponding to PBN curve points: cυ,pk

1: lh = Nh
k +

∑Nh
k

i=1(dh · ĉi,hk ) . Corresponding length of
curve h at PBN centerline

2: L = Index of Max(l1, l2, l3, l4) . Leading segment
3: Th = 0
4: for all p do . NPBN

k = NL
k

5: gpk = 0, υ = 0
6: for h = 1, 2, 3, 4 do
7: Th = Th + (1− dh ·

ĉp,Lk

‖1+ĉp,Lk ·dL‖ )(1 + dL · ĉp,Lk )

8: if Nh
k ≥ Th then

9: gpk = gpk + 1, υ = υ + 1

10: cυ,pk = ĉ
round(Th),h
k

11: end if
12: end for
13: end for

Additionally, as proposed in [45], since the photo-elastic co-
efficient, pe, could be biased, a correction parameter, ccorrect,
is determined to calculate the curvature values more accurately,
as follows:

κreal = ccorrectκmeasured (29)

The parameter, ccorrect, is determined for each of the FBG
sets separately by placing the fiber in 2-D curved guides with
known curvatures (κreal) and comparing it with the ones
obtained from FBG measurements (κmeasured). Therefore,
ccorrect and the angle θ (the angular offset from the x
axis of the local frame to the 1st core - Fig. 3) can be
determined simultaneously. This calibration procedure needs
to be performed for each fiber only once after fiber-needle
fixation.

V. SIMULATIONS

According to Henken et al. [46], shape errors are lowest
with cubic spline interpolation, which was used in this simula-
tion study. The shape was reconstructed with the interpolation
of the strain values corresponding to virtual FBG set locations.
Several simulations were performed to show the advantages of
the proposed method over the methods requiring interpolation
in a noise-free environment. A steerable needle is assumed to
be driven into three different shapes consisting of two parts
with zero torsion along their length. The radius of curvature of
the first parts is 90 mm. The radius of curvature of the second
parts, which are in planes perpendicular to the first segments,
is 120 mm.

Shape 1: both two parts are 49 mm long,
Shape 2: the first part is 44 mm long, and the second part

is 54 mm long,

Shape 3: the first part is 54 mm long, and the second part
is 44 mm long.

At each time instant during the insertions, the ground truth
curvatures and strain values corresponding to the virtual FBG
sets’ locations are considered to be the measurements obtained
from them.

A. Shape Reconstruction with Interpolation

Eight virtual pointwise FBG sets were modeled with 14 mm
center-to-center distances. The simulation flow chart is given
in Fig. 7. The curvatures and the strain values corresponding
only to the 8 virtual FBG set locations on the ground truth
curve were used. These FBG sets are illustrated in Fig. 8 along
with the 3 shapes. These pointwise values were interpolated,
and the parallel transport frame method was used for shape
reconstruction since it is advantageous over the other methods,
as described in Section IV-D. Lastly, the tip positions of the
reconstructed curves were compared with that of the ground
truths.

B. Shape Reconstruction with The Proposed Method

A simulation using the proposed method was conducted
with only one pointwise FBG set at the fiber tip with an
insertion speed of 1 mm·s-1 and a sampling frequency of
100 Hz, which results in sampling at each 10 µm of the
insertion trajectory. No interpolation or curve fitting was used.
Also, since the simulation was conducted in a noise-free
environment, the KF was not used.

C. Results

The results of the simulations are given in Table I. The small
error of the reconstruction without interpolation is clearly
due to the high sampling frequency throughout the insertion
trajectory.

Fig. 7. Shape Reconstruction with a Method Requiring Interpolation.

TABLE I
SIMULATION STUDY TIP POSITION ERRORS [MM] WHEN A STEERABLE

NEEDLE IS DRIVEN INTO THREE SHAPES.

Shape 1 Shape 2 Shape 3
Shape recon. with interpolation 0.6 3.26 1.65

Shape recon. with proposed method 0.048 0.094 0.040
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Fig. 8. Illustration of the three shapes with the virtual FBG sets used in
the simulation study. Markers represent the locations of the pointwise FBGs.
Dimensions are in millimeters.

VI. EXPERIMENTAL METHODS

In vitro and ex vivo tests were conducted to validate the
proposed shape reconstruction methods. Two error measures
were defined to quantify performance, as follows:

1) The absolute difference between the tip of the
reconstruction and the corresponding ground truth
point:

etippos =
∥∥∥γtiprecon − γtipgt ∥∥∥ (30)

where the ”gt” subscript is for ”ground truth”, and γtipgt is
the ground truth point corresponding to the reconstructed
tip point γtiprecon

2) The absolute angular difference between the orientations
at the tips of the ground truth and the reconstructed curve:

etipo = cos−1

(
rtipgt · rtiprecon∥∥∥rtipgt ∥∥∥∥∥∥rtiprecon∥∥∥

)
(31)

where rtiprecon is the reconstructed tip orientation vector,
and rtipgt is the ground truth orientation vector correspond-
ing to the reconstructed tip orientation. Minimizing this
error is essential when the intervention, such as drug
delivery or tissue ablation, must be performed at a given
tip orientation [52].

The tip errors are expected to be the greatest because of the
error accumulation in numerical integration.

A. Setup

The experiments were conducted utilizing a clinically-sized,
medical-grade, 4-segment PBN (Fig. 2), with all the segments
instrumented with FBG-inscribed MCFs (FBGS International
NV, Geel, Belgium). The specifications of the MCFs are given
in Table II, and an MCF cross-section is illustrated in Fig. 9.
The FBGs inscribed with the Draw Tower Gratings (DTG®)
method were chosen because fibers of relatively high strength
are required in the dynamic experiments [53]. The FBG data
acquisition was performed with a sampling frequency of 50
Hz. In addition to the KF, a moving average filter using the
data of 5 time steps was utilized to further mitigate the effect
of noise.

Electromagnetic sensors (NDI - Aurora System - Ontario,
Canada) with 5 degrees of freedom, including pitch, yaw, and

TABLE II
MCF SPECIFICATIONS - FBGS INTERNATIONAL NV (GEEL, BELGIUM)

Production technique Draw Tower Gratings (DTG®)

Operating temperature -20°C to 200°C

Wavelength configurations MCF 1: 1513.0nm - 1529.8nm
of the 4 MCFs MCF 2: 1532.2nm - 1549.0nm

MCF 3: 1551.4nm - 1568.2nm
MCF 4: 1570.6nm - 1587.4nm

Consecutive FBG Bragg- 2.4nm
wavelength difference

Gage Factor (1− pe) 0.737

Interrogator model FBGS FBG-scan 804D

Fiber coating ORMOCER®-T

FBG Refractive Index 3%

Number of cores 7 cores – 1 centered, 6 off-centered

Number of FBG sets 8

FBG length 5 mm

Consecutive FBG 14 mm
center to center distance

Sensorized fiber length 103 mm

position in 3 dimensions, were used as ground truth in the
experiments. As per manufacturer specification, the root mean
square error of the sensors is 0.7 mm in position and 0.2
degrees in orientation.

The PBN, with a 15 MPa Young’s modulus, is 2.5 mm in
diameter and was produced via extrusion (Xograph Healthcare
Ltd. - Gloucestershire, United Kingdom) of a medical-grade
polymer (plasticized polyvinyl chloride) with 86 Shore “A”
hardness. Nano-coating with Poly(para-xylylene) was applied
to reduce friction between segments. Each segment of the PBN
has 0.25 mm and 0.3 mm outer diameter lumens, which are
used to accommodate the MCFs and EM sensors, respectively.
Four EM sensors were inserted into the segment lumens in
such a way that each sensor was located at one of the segment
tips.

The PBN segments were actuated at a predefined speed of
1 mm·s-1, which was stated as suitable for neurosurgery in
[6], by an actuation unit consisting of 4 linear actuators. The
actuation unit also incorporates encoders, which are used to
determine nk of each segment at each time step. Both the
actuation and the shape sensing software were developed in-
house in MathWorks MATLAB 2020b. The ex vivo experi-
mental setup is shown in Fig. 10 and the PBN during one of
the gelatin experiments is captured in Fig 11.

Fig. 9. MCF cross-section including 1 centered and 6 off-centered cores. The
4 cores used in this study are marked with black and white circles.
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Four adjacent cores of the MCFs were used in this study
(Fig. 9) for shape reconstruction because of the better signal
quality with the cores at one half of the cross-section, as a
result of the production method.

To enable repeated use of the FBG sets, the fibers need to
be able to be removed easily. However, they also need to be
fixed to the segments during the insertion process. Therefore,
a part was designed, and 3-D printed to fix the fibers to the
corresponding segment bases, Fig. 12.

The in vitro experiments were conducted in a gelatin soft
tissue simulant, and the ex vivo experiments were conducted in
ex vivo brain tissue to test the validity of the proposed methods.
In both types of the experiments, the PBN was inserted into
the soft mediums using the actuation unit so that it created the
following shapes:

1) Single bend: this is a planar curved-shape with a 150 mm
radius.

2) Double bend: this is a planar shape with 2 bends along
its length. The radius of each bend is 150 mm.

3) 3-D shape: this is similar to the one used in the simula-
tion. It consists of two 60 mm parts and has zero torsion
along its length. The first part’s radius of curvature is 150
mm. The radius of curvature of the second part, which is
in a plane perpendicular to the first one, is 200 mm.

The insertions were completed in such a way that there
were always two aligned segments ahead of the other two so
that the ground truth PBN tip position and orientation could
be computed using the EM sensors attached to the leading
segments.

Six insertion experiments (3 in vitro and 3 ex vivo) were
conducted in total, and the PBN was reconstructed online. All
the insertions were carried out to a depth of 120 mm, which
is longer than the fiber’s sensorized length. The tip position
and orientation reconstructions for each PBN segment were
compared with the ground truth data obtained from the EM
sensor attached to the corresponding segment. Thus, validation
was performed using the reconstructions of 24 single segments
and 6 PBNs in total.

Fig. 10. The ex vivo experimental setup

The gelatin phantom was produced from 7% by weight
bovine gelatin, which mimics human brain tissue [54]. Sheep
brains were purchased from a local butcher, and several of
them were used to create a large enough volume for steering
to become observable.
R was calculated via the method explained in Section IV-C,

and the moving average filter used in the experiments was
also taken into account in the determination of R. In order
to optimize Q, the PBN instrumented with both optical fibers
and EM sensors was inserted into a gelatin phantom in such a
way that the PBN created the 3-D shape, which was the one
used in experiments, as defined earlier in this section. Then, Q
and ρ were optimized with the interior point algorithm using
MATLAB 2020b (Mathworks inc.) to minimize the tip position
reconstruction error. As a result, the matrices and the scaling
factor ρ were determined to be as follows:

R =

[
0.21 −0.15
−0.15 0.26

]
m−2, Q = ξ

[
2.21 −0.85
−0.85 2.21

]
m−2

ρ = 2.04

The neutral axis separations were calculated using Dassault
Systèmes SolidWorks:

d1 =

[
0.40
0.63

]
mm, d2 =

[
−0.63
0.40

]
mm

d3 =

[
−0.40
−0.63

]
mm, d4 =

[
0.63
−0.40

]
mm

The tip position reconstruction was also performed with an
interpolation-based method to compare the proposed method’s
performance with a standard approach. The reconstruction was
made on the basis of the parallel transport frames to use
the same method as in the proposed approach after strain
interpolation, which is preferred because of the advantages
explained in Section III-A. However, the shape could be
reconstructed with the interpolation-based method only until
an insertion length of 113 mm, as this value corresponds to the

Fig. 11. The in vitro experimental setup. - The PBN navigating inside the
gelatin phantom
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Fig. 12. The 3-D printed part fixing the fibers with PBN segment bases

sum of the sensorized fiber length and lead-out length, llead,
the last of which measured as 10 mm.

B. Results

The mean, standard deviation, and maximum of the tip
errors for both PBN and individual segment reconstructions
were calculated online at each time step over the 120 mm
insertion and are presented in Table III and Table IV, for
position and orientation, respectively. Fig. 13 shows the PBN
tip position reconstruction and the ground truth during the
ex vivo experiment with the 3-D shape. The single segment
results cover all four segments of the PBN. The results of the
reconstructions made with the interpolation-based method are
given in Table V.

VII. DISCUSSION

The simulation results show that both the interpolation
method and the positions of angle discontinuities along a fiber
significantly influence the tip position error. By eliminating
these uncertainties, shape reconstruction with the proposed
method has resulted in the tip position error being decreased
to a negligible level in a noise-free simulation environment.

The best experimental results were obtained using all the
FBG sets of the fibers, which was expected. It is seen that in
this case, the highest mean position error is 2.87 mm, which
is in the clinically acceptable margin for tumors with 0.5 ml

Fig. 13. The EM sensor position measurements and the FBG-based tip pose
reconstruction

volume, the limit for clinically significant prostate tumors as
reported in [55].

The error values obtained using 8 FBG sets are considerably
lower than those obtained with only the tip FBG sets. This is
probably because a higher number of FBG sets along a fiber
enables better detection of curvature changes due to tissue
deformation and leads to more accurate shape reconstruction.
Thanks to our KF approach, the FBG sets other than the one
at the tip are also used to correct the reconstruction constantly.

Results for the in vitro experiments are lower than those
for the ex vivo experiments, as expected, because of the
homogeneity of the soft tissue phantom compared to biological
tissue. Navigating through the ex vivo tissue might have
resulted in slight buckling of the PBN when penetrating tissue
layers, and nonuniform deformation of the tissue, which would
have affected the needle shape. These cases were accounted
for, to a certain extent, by fusing the curvature information of
the previously created points with those of new measurements.
The results show that our method is capable of dealing with
tissue heterogeneity and tissue layers with different mechan-
ical properties. Also, we expect that better results could be
obtained with less compliant tissue such as the liver, which
would provide better support for the needle to navigate in a
follow-the-leader fashion, thanks to its higher stiffness.

The orientation error results are generally in agreement
with the position errors. In comparison to the interpolation-
based method, similar results were obtained in the case of the
Single Bend shape. However, especially when looking at the
maximum error values, the performance of the proposed ap-
proach seems to outperform the interpolation-based approach
in the case of experiments with 3D Shape and Double Bends,
for which inflection points were shown to be one of the
most significant error sources for the reconstruction methods
requiring interpolation.

Compared to our previous work [24], where an FBG-based
shape reconstruction method requiring interpolation was used
for the dynamic reconstruction of a PBN, the mean tip position
and orientation errors decreased significantly. When compared
to the results in [27], where the needle shape was reconstructed
statically, a higher mean error was obtained in our study. The
lower accuracy may be due to the lower signal-to-noise-ratio
in the dynamic reconstruction, tissue movements during the
dynamic experiments, and the low refractivity of the MCFs
produced with the DTG method. This method’s advantage,
providing durable fibers suitable for dynamic environments,
comes at the cost of low refractivity compared to other produc-
tion methods, such as the Phase Mask technique. Therefore,
this leads to lower performance in wavelength detection and,
accordingly, higher tip position error.

Another error source with the dynamic experiments can
be that the fibers are fixed to the needle only at the needle
base, which may not be sufficient to prevent relative motion
between needle and fiber under strain. The resulting errors can
be mitigated using a needle’s mechanics model, such as [9]
for PBNs.

Similar to single-core fibers [25], [46], imprecise placement
of the MCFs along the needle may be another possible source
of error.
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TABLE III
MEAN (ētippos), STANDARD DEVIATION (σ

e
tip
pos

) AND MAXIMUM (etippos,max) OF TIP POSITION ERRORS: ētippos (σ
e
tip
pos

) [etippos,max] (mm)

PBN (4 MCFs) Single Segments (1 MCF)
Reconstruction with → Tip FBG set 8 FBG sets Tip FBG set 8 FBG sets

In
vi

tr
o Single Bend 2.03(1.33)[4.72] 1.01(0.51)[2.22] 3.69(1.69)[6.96] 1.77(0.98)[3.57]

Double Bend 2.24(1.54)[5.10] 1.95(0.98)[4.62] 4.81(1.94)[8.71] 2.09(1.48)[4.99]
3D Shape 3.08(1.70)[6.25] 2.18(1.30)[4.96] 5.16(2.35)[9.53] 2.95(1.65)[6.12]

E
x

vi
vo Single Bend 4.69(1.37)[7.12] 1.16(0.64)[2.71] 5.79(1.78)[9.30] 2.10(0.97)[4.05]

Double Bend 5.60(2.70)[11.84] 2.04(1.01)[5.24] 6.93(2.93)[11.91] 2.27(1.33)[5.32]
3D Shape 5.42(1.91)[9.95] 2.87(1.63)[5.76] 7.54(3.28)[11.46] 3.24(1.84)[6.87]

TABLE IV
MEAN (ētipo ), STANDARD DEVIATION (σ

e
tip
o

) AND MAXIMUM (etipo,max) OF TIP ORIENTATION ERRORS: ētipo (σ
e
tip
o

) [etipo,max] (deg)

PBN (4 MCFs) Single Segments (1 MCF)
Reconstruction with → Tip FBG set 8 FBG sets Tip FBG set 8 FBG sets

In
vi

tr
o Single Bend 2.89(1.14)[5.57] 2.47(1.08)[4.19] 3.35(1.50)[6.86] 2.68(1.21)[5.33]

Double Bend 3.11(1.88)[6.35] 2.51(1.49)[5.67] 3.60(2.12)[7.46] 2.96(1.99)[6.95]
3D Shape 4.21(2.44)[7.26] 3.43(2.21)[6.41] 4.61(2.59)[8.38] 3.74(2.48)[7.64]

E
x

vi
vo Single Bend 3.18(2.08)[5.89] 2.33(1.60)[4.66] 4.18(2.59)[7.45] 3.52(2.54)[6.81]

Double Bend 4.01(2.72)[7.10] 3.78(2.39)[6.71] 5.78(2.83)[10.94] 4.24(2.60)[8.22]
3D Shape 4.48(2.84)[9.79] 3.84(2.76)[8.29] 6.66(3.01)[12.10] 5.45(2.90)[9.49]

TABLE V
TIP POSITION ERRORS OF SINGLE SEGMENT RECONSTRUCTIONS WITH

THE INTERPOLATION-BASED METHOD: ētippos (σ
e
tip
pos

) [etippos,max] (mm)

In vitro Ex vivo

Single Bend 2.54(1.16)[4.15] 2.86(1.27)[5.20]

Double Bend 3.66(2.25)[9.91] 4.06(2.76)[11.55]

3D Shape 5.24(2.33)[10.84] 6.1(3.64)[13.29]

Errors can also be attributed to calibration inaccuracies
because, as in [45], small errors in wavelength in zero-
strain and bending direction with respect to the 1st core, θ,
accumulate throughout the MCF length, resulting in significant
position error at the tip.

The sampling frequency along the navigation path can be
increased to improve the shape reconstruction accuracy by
decreasing the insertion speed or increasing the interrogator’s
sampling frequency. The single evaluation time of the algo-
rithm and the experimental results show that the algorithm can
work on an average PC with an adequate sampling frequency
to run online.

Although a constant insertion speed was preferred in this
study, since the number of curve points created at each time
step is computed using the navigation length, our method
allows navigation with other speeds or varying speeds for each
PBN segment.

In this study, the torsion that the needle is exposed to was
assumed to be negligible. However, considering the isotropic
material structure of the PBN and the asymmetric forces and
deformations that the PBN might have undergone during the
navigation in heterogeneous soft tissue, the errors can also be
attributed to this assumption. To reduce the resulting errors,

a composite steerable needle could be used with a wire braid
that is stiff in torsion and compliant in bending, as suggested in
[56]. Alternatively, the torsion can be detected and accounted
for using helically-wrapped optical fibers [57], [58].

Lastly, although our results were obtained with a PBN, we
believe that they are representative of the performance of other
steerable needle designs that operate in a follow-the-leader
fashion, given that a single PBN segment can be considered
as an independent bevel-tip steerable needle.

VIII. CONCLUSION AND FUTURE WORK

This study presented a novel method for FBG-based shape
reconstruction of steerable needles where the needle tip creates
the insertion trajectory and is followed by the rest, assuming a
follow-the-leader insertion method. Instead of reconstructing
the steerable needle’s shape, we proposed reconstructing the
trajectory created by the needle tip during insertion into soft
tissue under the assumption that the needle shape and the
trajectory created by the needle tip are equivalent. This leads
to the possibility of shape reconstruction even in the presence
of 1 FBG set only, located at the needle tip. This approach,
independently of the number of FBG sets used, also removes
the limit that the reconstruction length can only be so long
as the length of the sensorized region which is, to the best
of our knowledge, a first in FBG-based steerable needle shape
reconstruction. Besides, a KF-based sensor fusion method was
introduced to combine the sensory information of a specific
location on the trajectory acquired at different times. We
also proposed a fusion method for combining the sensory
information from different sensors for the case where more
than 1 FBG set is present along an MCF. We assessed the
performance of the methods in both simulation and experi-
ments with a clinically-sized PBN. The lead-out length, which
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is between the needle tip and the last FBG set, was taken
into account, and the errors were calculated with respect to
the PBN tip and PBN segment tips. In vitro and ex vivo
dynamic experiments in both 2-D and 3-D were conducted
to validate the proposed methods and demonstrate clinically
acceptable tracking accuracy. Finally, the effect of bending
direction discontinuities on shape reconstruction accuracy was
investigated with a simulation study.

This method can enable effective closed-loop control of a
PBN along a desired three-dimensional trajectory. As future
work, based on the proposed shape reconstruction method,
investigations of curvature tracking controllers for trajectory
following of a steerable needle are planned.
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[45] S. Jäckle, T. Eixmann, H. Schulz-Hildebrandt, G. Hüttmann, and
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