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ABSTRACT:

Recently, analysis of man events in real-time using computer vision techniques became a very important research field. Especially,

understanding motion of people can be helpful to prevent unpleasant conditions. Understanding behavioral dynamics of people can also

help to estimate future states of underground passages, shopping center like public entrances, or streets. In order to bring an automated

solution to this problem, we propose a novel approach using airborne image sequences. Although airborne image resolutions are not

enough to see each person in detail, we can still notice a change of color components in the place where a person exists. Therefore,

we propose a color feature detection based probabilistic framework in order to detect people automatically. Extracted local features

behave as observations of the probability density function (pdf) of the people locations to be estimated. Using an adaptive kernel

density estimation method, we estimate the corresponding pdf. First, we use estimated pdf to detect boundaries of dense crowds.

After that, using background information of dense crowds and previously extracted local features, we detect other people in non-crowd

regions automatically for each image in the sequence. We benefit from Kalman filtering to track motion of detected people. To test our

algorithm, we use a stadium entrance image data set taken from airborne camera system. Our experimental results indicate possible

usage of the algorithm in real-life man events. We believe that the proposed approach can also provide crucial information to police

departments and crisis management teams to achieve more detailed observations of people in large open area events to prevent possible

accidents or unpleasant conditions.

1 INTRODUCTION

Recently automatic detection of people and understanding their

behaviors from images became a very important research field,

since it can provide crucial information especially for police de-

partments and crisis management teams. Tracking people, un-

derstanding their moving directions and speeds can be used for

detecting abnormal situations. Besides, it can also help to esti-

mate locations where a crowd can congregate which gives idea

about future states of underground passages, shopping center like

public entrances, or streets which can also affect the traffic.

Due to the importance of the topic, many researchers tried to

monitor behaviors of people using street, or indoor cameras which

are also known as close-range cameras. However, most of the

previous studies aimed to detect boundaries of large groups, and

to extract information about them. The early studies in this field

were developed from closed-circuit television images (Davies et

al., 1995), (Regazzoni and Tesei, 1994), (Regazzoni and Tesei,

1996). Unfortunately, these cameras can only monitor a few

square meters in indoor regions, and it is not possible to adapt

those algorithms to street or airborne cameras since the human

face and body contours will not appear as clearly as in close-

range indoor camera images due to the resolution and scale dif-

ferences. In order to be able to monitor bigger events researchers

tried to develop algorithms which can work on outdoor cam-

era images or video streams. Arandjelovic (Arandjelovic, Sep.

2008) developed a local interest point extraction based crowd de-

tection method to classify single terrestrial images as crowd and

non-crowd regions. They observed that dense crowds produce a

high number of interest points. Therefore, they used density of

SIFT features for classification. After generating crowd and non-

crowd training sets, they used SVM based classification to detect

crowds. They obtained scale invariant and good results in ter-

restrial images. Unfortunately, these images do not enable mon-

itoring large events, and different crowd samples should be de-

tected before hand to train the classifier. Ge and Collins (Ge and

Collins, 2009) proposed a Bayesian marked point process to de-

tect and count people in single images. They used football match

images, and also street camera images for testing their algorithm.

It requires clear detection of body boundaries, which is not possi-

ble in airborne images. In another study, Ge and Collins (Ge and

Collins, 2010) used multiple close-range images which are taken

at the same time from different viewing angles. They used three-

dimensional heights of the objects to detect people on streets. Un-

fortunately, it is not always possible to obtain these multi-view

close-range images for the street where an event occurs. Chao et

al. (Lin et al., Nov. 2001) wanted to obtain quantitative measures

about crowds using single images. They used Haar wavelet trans-

form to detect head-like contours, then using SVM they classified

detected contours as head or non-head regions. They provided

quantitative measures about number of people in crowd and sizes

of crowd. Although results are promising, this method requires

clear detection of human head contours and a training of the clas-

sifier. Unfortunately, street cameras also have a limited coverage

area to monitor large outdoor events. In addition to that, in most

of the cases, it is not possible to obtain close-range street images

or video streams in the place where an event occurs. Therefore,

in order to behaviors of large groups of people in very big out-

door events, the best way is to use airborne images which began

to give more information to researchers with the development of

sensor technology. Since most of the previous approaches in this

field needed clear detection of face or body features, curves, or

boundaries to detect people and crowd boundaries which is not

possible in airborne images, new approaches are needed to ex-
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tract information from these images. In a previous study Hinz et

al. (Hinz, 2009) registered airborne image sequences to estimate

density and motion of people in crowded regions. For this pur-

pose, first a training background segment is selected manually to

classify image as foreground and background pixels. They used

the ratio of background pixels and foreground pixels in a neigh-

borhood to plot density map. Observing change of the density

map in the sequence, they estimated motion of people. Unfortu-

nately, their approach did not provide quantitative measures about

crowds. In a following study (Burkert et al., Sep. 2010), they

used previous approach to detect individuals. Positions of de-

tected people are linked with graphs. They used these graphs for

understanding behaviors of people.

In order to bring an automated solution to the problem, herein

we propose a novel automatic framework to track people and to

understand their behaviors from airborne images. For this pur-

pose, first we introduce our automatic crowd and people detec-

tion approach which is based on local features extracted from

chroma bands of the input image. After detecting dense crowd

regions and people in sparse groups, we apply tracking using

Kalman filter. Our experiments on registered color airborne im-

age sequences indicate possible usage of the proposed framework

in real-life applications. We believe that proposed dense crowd

detection, people detection, and people tracking approaches can

provide crucial information to police departments and crisis man-

agement teams to prevent possible accidents or unpleasant condi-

tions.

2 DETECTING PEOPLE FROM AIRBORNE IMAGES

For each airborne image in the input sequence, before tracking

process, we apply dense crowd detection and people detection

approach. Next, we introduce steps of the approach in detail.

2.1 Local Feature Extraction

In order to illustrate the algorithm steps, we pick Stadium1 im-

age from our Stadium1−43 test image sequence. In Fig.1.(a), we

represent Stadium1 test image, and in Fig.1.(b), we represent a

subpart of the original image in order to give information about

real resolution of the image. As can be seen here, airborne image

resolutions do not enable to see each single person with sharp de-

tails. However, we can still notice a change of color components

in the place where a person exists. Therefore, our dense crowd

and people detection method depends on local features extracted

from chroma bands of the input test image.

For local feature extraction, we use features from accelerated seg-

ment test (FAST). FAST feature extraction method is especially

developed for corner detection purposes by Rosten et al. (Ros-

ten et al., Nov. 2010), however it also gives high responses on

small regions which are significantly different than surrounding

pixels. The method depends on wedge-model-style corner detec-

tion and machine learning techniques. For each feature candidate

pixel, its 16 neighbors are checked. If there exist nine contigu-

ous pixels passing a set of pixels, the candidate pixel is labeled

as a feature location. In FAST method, these tests are done using

machine learning techniques to speed up the operation.

For FAST feature extraction from invariant color bands of the

image, we first start with converting our RGB test image into

CIELab color space. In many computer applications, the CIELab

color space is used since it mimics the human visual system.

CIELab color space bands are able to enhance different colors

best and minimize color variances (Fairchild, 1998). After trans-

forming the RGB color image into CIELab color space, again we

(a) (b)

Figure 1: (a) Stadium1 test image from our airborne image se-

quence including both crowded and sparse people groups, (b)

Closer view of a crowded region in Image1.

obtain three bands as L, a, and b (Paschos, 2001). Here, L band

corresponds to intensity of the image pixels. a, b bands contain

chroma features of the image. These two bands give information

about the color information independent of illumination. For il-

lumination invariance, in this study we use only a and b chroma

bands of image for local feature extraction. To detect small re-

gions which have significantly different color values than their

surroundings, we extract FAST features from a and b chroma

bands of the image. For detailed explanation of FAST feature

extraction method please see (Rosten et al., Nov. 2010).

We assume (xa, ya) a ∈ [1, 2, ..., Ka] and (xb, yb) b ∈ [1, 2, ..., Kb]
as FAST local features which are extracted from a and b chroma

bands of the input image respectively. Here, Ka and Kb in-

dicates the maximum number of features extracted from each

chroma band. As local feature, in our study we use (xi, yi)
i ∈ [1, 2, ..., Ki] features which holds features coming from two

chroma bands. However, if two features from different bands are

extracted at the same coordinates, it is held only for one time in

(xi, yi) i ∈ [1, 2, ..., Ki] array. Therefore, we expect Ki number

to be less than or equal to Ka + Kb.

We represent locations of detected local features for Stadium1

test image in Fig. 2.(a). Extracted FAST features behave as ob-

servations of the probability density function (pdf) of the people

to be estimated. In the next step, we introduce an adaptive kernel

density estimation method, to estimate corresponding pdf which

will help us to detect dense people groups and people in dense

groups.

2.2 Detecting Dense Crowds Based on Probability Theory

Since we have no pre-information about the street, building, green

area boundaries and crowd locations in the image, we formulate

the crowd detection method using a probabilistic framework. As-

sume that (xi, yi) is the ith FAST feature where i ∈ [1, 2, ..., Ki].
Each FAST feature indicates a local color change which might be

a human to be detected. Therefore, we assume each FAST fea-

ture as an observation of a crowd pdf. For crowded regions, we

assume that more local features should come together. Therefore

knowing the pdf will lead to detection of crowds. For pdf estima-

tion, we benefit from a kernel based density estimation method as

Sirmacek and Unsalan represented for local feature based build-

ing detection (Sirmacek and Unsalan, 2010).

Silverman (Silverman, 1986) defined the kernel density estimator

for a discrete and bivariate pdf as follows. The bivariate kernel

function [N(x, y)] should satisfy the conditions given below;
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(a) (b) (c)

Figure 2: (a) Detected FAST feature locations on Stadium1 test image are represented with red crosses, (b) Estimated probability

density function (color coded) for Stadium1 image generated using FAST feature locations as observations, (c) Automatically detected

dense crowd boundaries and detected people in sparse groups for Stadium1 image.

∑

x

∑

y

N(x, y) = 1 (1)

N(x, y) ≥ 0, ∀(x, y) (2)

The pdf estimator with kernel N(x, y) is defined by,

p(x, y) =
1

nh

n
∑

i=1

N(
x − xi

h
,
y − yi

h
) (3)

where h is the width of window which is also called smoothing

parameter. In this equation, (xi, yi) for i = 1, 2, ..., n are obser-

vations from pdf that we want to estimate. We take N(x, y) as

a Gaussian symmetric pdf, which is used in most density estima-

tion applications. Then, the estimated pdf is formed as below;

p(x, y) =
1

R

Ki
∑

i=1

1√
2πσ

exp(− (x − xi)
2 + (y − yi)

2

2σ
) (4)

where σ is the bandwidth of Gaussian kernel (also called smooth-

ing parameter), and R is the normalizing constant to normalize

pn(x, y) values between [0, 1].

In kernel based density estimation the main problem is how to

choose the bandwidth of Gaussian kernel for a given test image,

since the estimated pdf directly depends on this value. For in-

stance, if the resolution of the camera increases or if the altitude

of the plane decreases, pixel distance between two persons will

increase. That means, Gaussian kernels with larger bandwidths

will make these two persons connected and will lead to detect

them as a group. Otherwise, there will be many separate peaks

on pdf, but we will not be able to find large hills which indicate

crowds. As a result, using a Gaussian kernel with fixed bandwidth

will lead to poor estimates. Therefore, bandwidth of Gaussian

kernel should be adapted for any given input image.

In probability theory, there are several methods to estimate the

bandwidth of kernel functions for given observations. One well-

known approach is using statistical classification. This method is

based on computing the pdf using different bandwidth parame-

ters and then comparing them. Unfortunately, in our field such

a framework can be very time consuming for large input im-

ages. The other well-known approach is called balloon estima-

tors. This method checks k-nearest neighborhoods of each obser-

vation point to understand the density in that area. If the density

is high, bandwidth is reduced proportional to the detected den-

sity measure. This method is generally used for variable kernel

density estimation, where a different kernel bandwidth is used for

each observation point. However, in our study we need to com-

pute one fixed kernel bandwidth to use at all observation points.

To this end, we follow an approach which is slightly different

from balloon estimators. First, we pick Ki/2 number of random

observations (FAST feature locations) to reduce the computation

time. For each observation location, we compute the distance to

the nearest neighbor observation point. Then, the mean of all dis-

tances give us a number l (calculated 105.6 for Stadium1). We

assume that variance of Gaussian kernel (σ2) should be equal or

greater than l. In order to guarantee to intersect kernels of two

close observations, we assume variance of Gaussian kernel as 5l
in our study. Consequently, bandwidth of Gaussian kernel is esti-

mated as σ =
√

5l. For a given sequence, that value is computed

only one time over one image. Then, the same σ value is used

for all observations which are extracted from images of the same

sequence. The introduced automatic kernel bandwidth estima-

tion method, makes the algorithm robust to scale and resolution

changes.

In Fig. 2.(b), we represent obtained pdf for Stadium1 test image.

Represented pdf function is color coded, which means yellow-red

regions show high probability values, and dark blue regions show

low probability values. As can be seen in this figure, crowded ar-

eas have very high probability values, and they are highlighted in

estimated pdf. We use Otsu’s automatic thresholding method on

this pdf to detect regions having high probability values (Otsu,

2009). After thresholding our pdf function, in obtained binary

image we eliminate regions with an area smaller than 1000 pixels

since they cannot indicate large human crowds. The resulting bi-

nary image Bc(x, y) holds dense crowd regions. For Stadium1
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image, boundaries of detected crowd regions are represented on

original input image with blue borders in Fig. 2.(c). After de-

tecting very dense people groups, in the next step we focus on

detecting other people in sparse groups.

After detecting dense crowds automatically, we also extract quan-

titative measures from detected crowds for more detailed analy-

sis. Since they indicate local color changes, we assume that de-

tected features can give information about number of people in

crowded areas. Unfortunately, number of features in a crowd re-

gion do not give the number of people directly. In most cases,

shadows of people or small gaps between people also generate

a feature. Besides, two neighbor features might come from two

different chroma bands for the same person. In order to decrease

counting errors coming from these features, we follow a different

strategy to estimate the number of people in detected crowds. We

use a binary mask Bf (x, y) where feature locations have value

1. Then, we dilate Bf (x, y) using a disk shape structuring el-

ement with a radius of 2 to connect close feature locations. Fi-

nally, we apply connected component analysis to mask, and we

assume the total number connected components which are laying

in a crowd area as the number of people (N ). In this process,

slight change of radius of structuring element does not make a

significant change in estimated people number N . However, an

appreciable increase in radius can connect features coming from

different persons, and that decreases N which leads to poor num-

ber of people estimates.

If the resolution of the input image is known, using estimated

number of people in crowd, the density of people (d) can also be

calculated. Lets assume, Bj
c(x, y) is the jth connected compo-

nent in Bc(x, y) crowd mask. We calculate crowd density for jth

crowd as dj = N/(
∑

X

∑

Y
Bj

c(x, y) × a), where X and Y
are the numbers of pixels in the image in horizontal and vertical

directions respectively, and a is the area of one pixel as m2.

2.3 Detecting People in Sparse Groups

Besides detecting dense crowd regions and extracting quantitative

measures on them, detecting other people in non-crowd regions

is also crucial. Since detecting people in non-crowd regions can

help to develop people tracking or behavior understanding sys-

tems.

In order to detect people in non-crowd regions, we apply con-

nected component analysis (Sonka et al., 2007) to Bf (x, y) ma-

trix, and pick mass centers of the connected components (xp, yp)
p ∈ [1, 2, ..., Kp] which satisfy Bc(xp, yp) = 0 as locations of

individual people in sparse groups. Unfortunately, each (xp, yp)
p ∈ [1, 2, ..., Kp] location satisfying this rule does not indicate a

person appearance directly. Since the location might be coming

from irrelevant local features coming of another object like a tree

or chimney of a rooftop. In order to decide that, if a (xp, yp)
position is indicating a person appearance or not, we apply a

background comparison test. At this step, in order to represent

a person, background color of a connected component which is

centered in (xp, yp) position should be very similar to the back-

ground color of detected dense crowds.

In order to do background similarity test, first we pick all border

pixels of the binary objects (crowd regions) in Bc(x, y) binary

crowd mask. We assume Lc, ac, and bc as mean of L, a, b color

band values of these pixels. For each (xp, yp) p ∈ [1, 2, ..., Kp]
location which satisfy Bc(xp, yp) = 0 equation, we apply the

same procedure and obtain Lp, ap, bp values which indicates

mean of L, a, b color band values around connected component

located at (xp, yp) center point. In order to test background simi-

larity, we check if extracted values satisfy inequality given below,

√

(Lc − Lp)2 + (ac − ap)2 + (bc − bp)2 < ξ (5)

In our study, we select ξ as equal to 10 after extensive tests. Al-

though slight changes of ξ value does not effect detection result,

large increase of this threshold might lead to false detections, on

the other hand large decrease might lead to inadequate detections.

In Fig.2.(c), we provide detected people in non-crowd regions of

Stadium1 test image.

3 PEOPLE TRACKING USING KALMAN FILTER

Tracking allows us to see how each person is behaving over time,

which provides another very important information. Unfortu-

nately, we cannot track people which appear in dense crowd re-

gions. We try to track individual people in sparse groups that we

detected in previous step.

In order to track and extract the motion path of detected people,

we benefit from Kalman filter. The Kalman filter is an efficient re-

cursive filter which estimates the state of a dynamic system from

a series of incomplete and noisy measurements, developed by

Rudolf Kalman (Kalman, 1960). The filtering process consists of

two main steps; time update (prediction) step, and measurement

update (correction) step. The time update step is responsible for

projecting the current state forward in time to obtain the priori

estimates for the next time step. The measurement update step

deals with the feedback of the system to obtain improved a poste-

riori values. In our study, we benefit from Kalman filter in order

to connect person’s positions represented with (xn
p , yn

p ) for nth

image with person’s positions represented with (xn+1
p , yn+1

p ) in

n + 1th image. Kalman filter helps us to predict location of a

person in the next image of the sequence using the information

obtained in the previous image. First, we define the state vector

Xn as Xn = (xn
p , yn

p , vn
x , vn

y )T . Here, (xn
p , yn

p ), (vn
x , vn

y ) holds

location and velocity vectors of detected people respectively in

nth image of the sequence. Observation vector Yn is defined to

represent the location of the people in nth image. The state vec-

tor Xn and the observation vector Yn are related as the following

basic system equation;

Xn = φXn−1 + Gwn−1 (6)

Yn = HXn + vn (7)

where φ is known as the state transition matrix, G is the driving

matrix, H is the observation matrix, and wn is the system noise

added to the velocity of the state vector Xn, and vn is the obser-

vation noise which is the error between real and detected location.

As in most of the human motion tracking studies, in our study we

assume approximately uniform straight motion for a person in

successive images. Then, φ, G, H are defined as follows;

φ =







1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1







(8)

G =

[

0 0 1 0
0 0 0 1

]T

(9)
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H =

[

1 0 0 0
0 1 0 0

]

(10)

Because of the short capturing time between input images, we

assume ∆t = 1. wn and vn are assumed as constant Gaussian

noise with zero mean. Thus the covariance matrix for wn and

vn become σ2
wI2×2 and σ2

vI2×2, where I2×2 represent a 2 × 2
identity matrix. Finally, we formulate Kalman filter as,

Kn = P̄nHT (HP̄nHT + I2×2)
−1

(11)

x̄n
p = φx̄n−1

p + Kn−1(y
n−1
p − Hx̄n−1

p ) (12)

P̄n = φ(P̄n−1 − Kn−1HP̄n−1)φ
T +

σ2
w

σ2
v

Qn−1 (13)

where x̄n
p and ȳn

p are estimated values of xn
p and yn

p . P̄n equals

to C/σ2
v , C represents the covariance matrix of estimated error

of x̄n
p . Kn is Kalman gain, and Q equals to GGT . Then the

predicted location of the feature in n + 1th image is given as

(x̄p(n+1), ȳp(n+1)). For more detailed explanation of Kalman

filtering process please refer to related reference (Kalman, 1960).

After predicting next movement positions for each person us-

ing their previous position information, we use this information

for tracking. For jth person detected in (xn
p (j), yn

p (j)) loca-

tion in nth image of the sequence, we calculate predicted posi-

tion in the next step as (x̄n+1
p , ȳn+1

p ). If we can find a person in

(xn+1
p (l), yn+1

p (l)) position in the n+1th image, where the posi-

tion satisfies
√

(x̄n+1
p − xn+1

p (l))2 − (ȳn+1
p − yn+1

p (l))2 < 5
inequality, in another saying if the person in n + 1th image in

(xn
p (j), yn

p (j)) location is less than 5 pixels away from the pre-

dicted position of the person in (xn
p (j), yn

p (j)), we assume that

(xn+1
p (l), yn+1

p (l)) is the next position of this person. Using this

information, we can connect motion path of each individual per-

son in input images.

In some cases, because of the low resolution of the airborne im-

ages, we cannot detect the same person in each image of the

sequence. In that case, for jth person in (xn
p (j), yn

p (j)) posi-

tion, we cannot find a (xn+1
p (l), yn+1

p (l)) position which satis-

fies
√

(x̄n+1
p − xn+1

p (l))2 − (ȳn+1
p − yn+1

p (l))2 < 5 inequal-

ity. In order to continue to tracking process, we assume Kalman

filter’s estimated position (x̄n+1
p (j), ȳn+1

p (j)) as the next posi-

tion of the person. Therefore, besides enabling multiple object

tracking, Kalman filter also help us to continue tracking process

even if a person cannot be detected in some of the images of the

sequence.

In Fig.3 and 4, we provide example tracking results for three dif-

ferent conditions. In Fig.3, in sequence there is also one false

person detection in the sequence which does not effect our track-

ing process. In Fig.4.(a) we present detected motion paths for

two persons walking in opposite directions, and in Fig.4.(b) two

persons who are walking very close to each other are tracked cor-

rectly.

4 EXPERIMENTS

To test our method, we use airborne images which are obtained

using a new low-cost airborne frame camera system (named 3K

Figure 3: Tracking process of one person. (a) A sub-region from

Stadium1 test image, (b) A sub-region from Stadium6 test im-

age (includes also a false detected person location), (c) A sub-

region from Stadium15 test image, (d) Detected motion path of

the person.

(a) (b)

Figure 4: (a) Detected motion paths for two persons walking in

opposite directions, (b) Detected motion paths for two persons

which are walking very close to each other.

camera) which has been developed at the German Aerospace Cen-

ter (DLR). The spatial resolution and swath width of the camera

system range between 15cm to 50cm, and 2, 5km to 8km re-

spectively. Within two minutes an area of approximately 10km×
8km can be monitored. That high observation coverage gives

great advantage to monitor large events. Obtained image data

are processed onboard by five computers using data from a real-

time GPS/IMU system including direct georeferencing. In this

study, our 3K airborne camera image data set consists of a sta-

dium entrance data set (Stadium1−43) which includes 43 multi-

temporal images. Because of manually focusing difficulties of

the current camera system, unfortunately most of the images in

our data set are blurred. Although this issue decreases detection

capabilities of our system, obtained results can still provide im-

portant information about states of the crowds and approximate

quantitative measures of crowd and non-crowd regions. Besides,

we can apply tracking operation to extract motion path of peo-

ple in non-crowd regions. We believe that future airborne camera

systems with correct focusing capabilities will help us to obtain

more accurate estimations.

In order to obtain a measure about the performance of crowd anal-

ysis step of the algorithm, we have generated groundtruth data for

four dense crowds in Stadium1 which are represented in Fig.

5. Since even for human observer it is hard to count the exact

number of people in crowds, we have assumed mean of counts

of three human observers as groundtruth. In Table 1, we com-

pare automatically detected number of people (N ), and density

(d) with groundtruth data (Ngth and dgth respectively) for each

crowd. Similarity of our measures with groundtruth shows the
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high performance of the proposed approach.

Figure 5: A small part of Stadium1 test image. Labels of de-

tected crowds which are used for performance analysis are writ-

ten on the image.

Table 1: Comparison of groundtruth and automatically detected

people number and density estimation results for test regions in

Stadium1. N and d stand for number of people and number of

people per square meter respectively.
REGION1 REGION2 REGION3 REGION4

N 139 211 115 102

Ngth 132 180 114 98

d 0.81 0.74 0.68 0.76

dgth 0.76 0.63 0.67 0.73

In order to measure performance of the tracking step, for each

individual person we measure the Euclidean distance between

(x̄n
p , ȳn

p ) position which is estimated at n−1th step, with the po-

sition (xn
p , yn

p ) which is detected at nth step. Mean of difference

measures which are calculated from each input image of the se-

quence gives us information about the tracking performance. For

jth person of the scene, we calculate the tracking performance

with the following equation.

Err =

∑N

n=2

√

(xn
p (j) − x̄n

p (j))2 + (yn
p (j) − ȳn

p (j))2

N − 1
(14)

Here, smaller Err value indicates smaller error in the estima-

tions of tracking process, or in other saying smaller Err indicates

higher tracking performance. For instance, for the tracking opera-

tion represented in Fig.3, Err is calculated as 4, 90. Despite very

low image resolutions, 283 of 365 persons in non-crowd regions

are detected and tracked automatically.

5 CONCLUSIONS AND FUTURE WORK

In order to solve crowd and people behavior analysis problem,

herein we propose a novel and fully automatic approach using

airborne images.

Although resolutions of airborne images are not enough to see

each person with sharp details, we can still notice a change of

color components in the place where a person exists. Therefore,

we used local features which are extracted from illumination in-

variant chroma bands of the image. Assuming extracted local

features as observation points, we generated a probability den-

sity function using Gaussian kernel functions with constant band-

width which can adapt itself automatically regarding input im-

age resolutions. Using obtained pdf function, first dense crowd

boundaries are robustly detected and quantitative measures are

extracted for crowds. For detecting other people, we have de-

tected background color for crowd regions, and we searched for

feature locations with similar background color. Detected in-

dividual people are tracked in the input image sequence using

Kalman filtering. We have tested our algorithm on a stadium en-

trance airborne image sequence. Our experimental results indi-

cate possible usage of the algorithm in real-life events, also for

on-board applications.
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