
NASA TECHNICAL NOTE 

* 
N 
0 

w  
m 

a  
c  

KALMAN FILTER ESTIMATION 

NASA TN D-8024 

L O A N  COPY: RETURN TO 

AFWL TECHNICAL LIBRARY 

KIRTLAND AFB, N. M. 

OF HUMAN PILOT-MODEL PARAMETERS 

Jdmes R. Schiess and Vincent R. Roland 

Langley Research Center 

Hampton, 'vu. 23665 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. NOVEMBER 1975 



I I 
- -  

TECH LIBRARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKAFB, "I. 

Illlll IIlllllllIllIll1Ill  
Ol13384b  

- 
I H r w r t  No 2. Government Accession No. 

NASA TN D-8024 I 
1. Title and Subtitle 

KALMAN FILTER ESTIMATION OF HUMAN 

PILOT-MODEL PARAMETERS 

7. Author(sJ 

James R. Schiess and Vincent R. Roland 

9. Performing OrgdniLdtion Ndme and Address 

NASA Langley Research Center 

Hampton, Va. 23665 

2 Swiisoring Agency Name and Address 

National Aeronautics and Space Administration 

Washington, D.C. 20546 
_ .  

5. Sbpplementary Notes 

-
6 Abstrdct 

The parameters of a human pilot-model transfe1 

3. Recipient's Catalog No. 

5.  Report Date 

November 1975 
6.  Performing Organization Code 

. __ ~____ 
8.  Performing Organlidtion Report No. 

L-10041 
~~ 

10. Work Unit No. 

506-25-99-01 
-~ 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Note 
. -._I 

14 SpoPcoring Agency Code 

function are estimated by applying 

the extended Kalman filter to  the corresponding retarded differential-difference equations in 

the time domain. Use of computer-generated data indicates that most of the parameters, 
including the implicit time delay, may be reasonably estimated in this way. When applied 

to  two sets of experimental data obtained from a closed-loop tracking task performed by 
a human, the Kalman filter generated diverging residuals for one of the measurement types, 

apparently because of model assumption errors. Application of a modified adaptive technique 

was found to overcome the divergence and to  produce reasonable estimates of most of the 

parameters. 

17. Key Words (Suggested by Author(s) I 

Kalman filter 

Pilot model 
Adaptive technique 

19.  Security Classif. (of this report) 

Unclassified 
- . 

18. Distribution Statement 

Unclassified - Unlimited 

Subject Category 6 4  
~~ 

20. Security Classif. (of this page) 1 21. NO. of Pages I 22. Price* 

Unclassified I 42 
$3.75 

F o r  sale by t he  Nat ional  Technical In fo rmat ion  Service, Springfield, Virginia 22161 



KALMAN FILTER ESTIMATION OF HUMAN 

PILOT-MODEL PARAMETERS 

James R. Schiess and Vincent R. Roland 

Langley Research Center 

SUMMARY 

The parameters of a human pilot-model transfer function are estimated by applying the 

extended Kalman filter to the corresponding retarded differential-difference equations in the 

time domain. Use of computer-generated data indicates that most of the parameters, includ­

ing the implicit time delay, may be reasonably estimated in this way. When applied t o  two 

sets of experimental data obtained from a closed-loop tracking task performed by a human, 

the Kalman filter generated diverging residuals for one of the measurement types, apparently 

because of model assumption errors. Application of a modified adaptive technique was found 

to  overcome the divergence and to  produce reasonable estimates of most of the parameters. 

INTRODUCTION 

The mathematical modeling of human dynamics in specific tasks is of considerable 

interest to control engineers. For example, a model which accurately predicts a pilot’s 

response in the pitch control of a spacecraft is beneficial in the analysis of the handling 

qualities of the vehicle during the development stages of the vehicle. Studies of the pilot 

models i n  general have been reported in the literature (refs. 1 t o  4). 

In order to use any of these models, it is necessary to  know various parameters which 

occur in the model. Investigations of applying model-matching techniques to determine the 

best parameters from pilot-response data have been reported previously (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  Since the 

human pilot-model equations classify as retarded differential-difference equations in the time 

domain, the application of linear estimators to this type of equation by Koivo and Stoller 

(refs. 6 and 7) and by Kwakernaak (ref. 8) is also of interest. The work by Kwakernaak 

(ref. 8) on the linear problem concerns an estimate of the state only and no parameters. 

Although an exact solution for the optimal filter is obtained, this approach presents practical 

computational difficulties. The findings of Koivo (ref. 6) present an estimator (not neces­

sarily optimal) both for the state and for particular parameters, but does not include the 

time delay. 

The present paper investigates an application of a form of the extended Kalman filter 

to the time-domain representation of a particular pilot model in a single-control compensatory 



tracking task. The time delay is included as one of the parameters to  be determined. The 

time delay is retained as an implicit parameter rather than as an explicit parameter (obtained 

if a Pad6 approximation is applied) for exactness. When applied t o  the experimental pilot-

response data, the initial results of the Kalman filter indicate difficulties in obtaining satis­

factory estimates. An analysis of the mathematical model and techniques for improving the 

estimates are presented. 

c(t> 

D(t> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

e(t> 

( tk+l) 

K 

K(tk+ 1) 

(tk+l I tk) 

SYMBOLS 

plant output,  V 

input-disturbing function, V 

expected value of { 1 

system error, V 

13 X 1 column vector representing right-hand side of differential-

difference equations 

measurement coefficient matrix at tk+l 

identity matrix 

plant static gain, sec-2 

pilot static gain 

Kalman filter gain at tk+l 

state covariance matrix at tk+l before processing measurement at tk+ 1 

P (tk+l Itk+l) state covariance matrix at tk+l after processing measurement at tk+] 

Q (tk+ 1) process noise covariance matrix 

9 integer defined by 9 = %/At 

2  
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variance computed in adaptive procedure 

estimated process noise variance at  tk+ 1  

measurement covariance matrix at tk+l 

second-order transfer function in pilot remnant  

Laplace operator, sec-1  

t time, sec 

tk+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 k plus first time t ,  sec 

At time increment, sec 

deterministic pilot function, V  

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 1 process noise vector  

white noise input, V/sec2  

deterministic pilot transfer function  

13 X 1 state column vector  

fourth component of -y(t) defined in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 ) ,  V  

coefficients in pilot remnant transfer function  

process noise coefficient matrix a t  tk+l  

stick motion, V  

pilot remnant, V  

pilot time delay, sec  

3  



3 - 7
1' 2 

3­
3 

@(tk+lytk)  

Superscripts: 

h 

T  

-1  

Subscript:  

k  

pilot lag-time constants, sec  

pilot lead-time constant sec  

state transition matrix from tk to tk+l  

best estimate  

first derivative with respect t o  time  

second derivative with respect t o  time  

matrix transpose  

matrix inverse  

denotes evaluation  at  time tk 

PROBLEM DESCRIPTION 

This analysis considers the problem of identifying the parameters in an assumed input-

output relationship describing the human pilot from data measured in a tracking task in which 

the pilot provides feedback control. Because of process noise which is represented by the 

pilot remnant and measurement noise in the data accumulation, the estimation process con­

siders the problem 'of minimizing the effect of the noise. A well-established method of 

reducing the error in such an estimation process is the Kalman filter. This estimator con­

siders both process and measurement noise and provides the best estimation of state and 

parameter vectors in the sense that the expected value of the sum of the squares of the 

error in the measurement is minimized. In addition, this filter provides a covariance matrix 

which indicates the quality of the estimates. 

A block diagram of the pilot airplane model used in  this analysis is given i n  figure 1. 

The model consists of a closed-loop single-control compensatory tracking task. The dynamics 

of the controlled elements are of the acceleration type (K/s2). Such a type is found in the 

attitude control of a space vehicle by control jets. The dashed lines enclose the portion of 

4  



the model representing the pilot. The transfer function representing the deterministic portion 

of the pilot model Yp(s) is given (ref. 4) as 

The parameter K1 is a pilot static gain and 8 is an effective time delay made up of 

transport delays and high-frequency neuromuscular lags. The constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7
3 

is a time con­

stant associated with the low-frequency characteristics of the neuromuscular system (ref. 4).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

The parameters 7
1 

and 7
2 

are pilot-adjusted parameters. 

The pilot-remnant function used in this analysis is a second-order noise filter which 

converts the white noise input w
P

(t) to colored noise input v(t). The form of this 

filter is 

The remnant v(t) represents noise produced by the pilot. Such noise is caused by high-

frequency neuromuscular lag and lead terms and low-frequency neuromuscular lag terms. 

For the current analysis the measurement types used are the plant output c(t) and 

the stick motion 6(t). The latter is the sum of the deterministic pilot function and the 

pilot remnant. 

The functions of time which represent the aircraft dynamics, the deterministic pilot-

transfer function, and the pilot-remnant function, respectively, are given by the differential-

difference equations 

c(t)  = K 6(t)  ( 3 )  

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ii(t) + tl+ T ~ )i ( t )  + u(t) = K i.(t - 0)  + e(t - 8)1 (4)
1 2  

These equations indicate two possible difficulties in applying the Kalman filter: (1) because 

of the way in which 8 occurs, they represent a hereditary system (i.e., one represented 

by differential-difference equations); and (2) the equations are nonlinear in the combination 

of the variables and parameters. The problem of nonlinearity can be overcome by applying 

5 



the extended Kalman filter to the nonlinear equations. The problem of applying the Kalman 

filter to a hereditary system is considered in the section on “Filter Equations.” 

For  convenience in the application of the Kalman filter, equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) to (5) are trans­

formed to a state space representation by using the following definitions for the time-

dependent variables y 
1
(t) to y

6
(t): 

The variable y
4

(t) is defined in this way to simplify the final state equations. With these 

definitions and with the use of the fact that e(t) = D(t) - c(t), the state space form of 

the pilot-model equations is given by equations (7) to (12) 

1 1 
Klri[D(t - 8) - yl(t -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe )1 (9) 93(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 y4(t)  -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy y 3(t) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 7   

2 2 1 2   
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It should be observed a t  this point that equations (7) t o  (12) are linear in the y’s. 

Thus, if y(t) is defined as the six-dimensional column vector whose components are-
y 

1
(t) to y6(t), A is the 6 X 6 constant matrix containing the coefficients of the right-

hand sides of these equations, _b is the six-dimensional column vector containing the coef­

ficients of D(t -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  - y 
1
(t -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ) ,  and w(t) is the vector of white noise input. Equa­-

tions (7) to (12) can then be written in vector form as 

Equation (13) is in the form of a single-input, time-invariant linear control system to which 

the Kalman filter is immediately applicable. (See, for example, ref. 9.) 

In addition to  the six variables of equations (7) t o  (12), it is also of interest here 

to estimate seven of the parameters in these equations. The estimation may be accomplished 

by augmenting the state equations with the system 

j$t) = 0 (i = 7, 8, . . ., 13) (14) 

where y 
7

(t)  through y 
13

(t) are defined as the parameters 
K 1 ’  1’  2’ 3’ 

e ,  CY^, 
and CY 

2’ 
respectively. With -y(t) extended to  a 13-dimensional vector with the newly 

defined components, the right sides of equations (7) to (12) and (14) are now nonlinear 

functions of the vector -y(t). The general form of these equations is given by 

where -f[y(t), y ( t  - e ) ,  D(t -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ) ,  t] is a 13-dimensional column vector defined bq’ the 

right sides of equations (7) to (12) and (14), and w(t) is a 13-dimensional column vector 

which is all zero except for the sixth component which is wp(t). The time delay 0 is 

left explicit in equation (1  5 )  for later reference. 

In  the vector notation, the measurements are given by 

where m(t)  is a two-dimensional column vector,-

0 1 0 1 0 0 0 0 0 0 0
H(t) = 

7  



and 

where V 
1
(t) and V

2
(t) represent white noise and are assumed to be uncorrelated with 

each other and with the process noise wp(t). In equation (16), the first measurement 

is 6(t), the second is c(t). 

In subsequent sections of this report the stability of the closed-loop system is discussed. 

Because the time delay occurs implicitly in equations (7) t o  (12), the effect of particular 

values of this parameter on the system stability cannot be readily discerned. Instead, if the 

first order Pade approximation to ihe exponential is used in equation ( l ) ,  and if equa­

tions (2) and (3) and the new equation (1) (resulting from use of first-order Pad6 approxi­

mation) are transformed to the time domain, the resulting equations are of the form 

-$(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’ y(t) + b’  u(t) + y ( t )  

where 8 occurs explicitly in the new A‘ and b’. The approximate asymptotic stability 

of the system can then be determined by examining the eigenvalues of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’. Thus, in this 

report, the system is considered stable if all the eigenvalues of A’ have negative real parts. 

FILTER EQUATIONS 

The filter equations used for this study are the discrete extended Kalman filter equa­

tions as given by Jazwinski (ref. 9). The use of these equations overcomes the difficulty 

which arises from the fact that the state equations are nonlinear when the parameters are 

treated as state variables. It should be pointed out that the extended Kalman filter 

actually is a nonlinear filter; for example, the Kalman filter is identical t o  the nonlinear 

discrete invariant embedding algorithm of Sage and Melsa (ref. 10) when the measurement 

equation is linear as in the case under consideration here. 

In general, with any discrete filter the state is predicted to time tk+l through the 

application of the state equations to the best estimate of the state at the previous time tk. 
Since the pilot-model equations contain the state at tk - 8, an appropriate value of the 

state at  that time must be chosen. The choice is made by assuming that the time incre­

ment At between measurements is constant and that the delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 is an integral multiple 

of this increment. T ~ L I S ,let q be the integer defined by 

e
9 = -

At 

8  
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Then the state is evaluated at  time tk  - 8 by using the best estimate of the state for the 

time tkq = tk -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq At. Since the state at  tkq is known at tk, the delayed state can 

be treated simply as a known forcing function in the state equations. In a notation similar 

to that of Jazwinski (ref. 9) the extended Kalman filter is given in equations (18) to  (22) 

with q defined by equation (17) 

111 tliese equations, -p(tk+l  1 tk) is the best estimate of the state at tk+l based on 

measurements tlirough time tk;  P(tk+l Itk) is the covariaiicc matrix of -yYtk+l t k  andI )
K(tk+l) is the gain matrix. matrix @(tk+l,tk) is the state transition matrix which is 

obtained by integrating with respect to time the state equations (eq. (15)) differentiated with 

respect t o  the state variables. The matrices Q(tk+l) and R(tk+l) are the diagonal covari­

ajice matrices of the process and measurement noise, respectively. 

The effectiveness of the filter equations in estimating the state variables can be deter­

mined by examining the diagonal elements of the covariance matrix P(tk / tk), since these 

elements are the variances of the estimated state variables. Further, the sum of the squares 

of the measurement residuals may be treated as a cost function in order t o  measure the 

overall effectiveness of the filtering process. 

RESULTS FROM COMPUTER-GENERATED DATA 

In order to observe the behavior of the pilot-model state equations and to  uncover 

difficulties associated with applying the extended Kalman filter t o  these state equations, the 

Kalman filter was first applied to data generated with the differential-difference equations. 

9 

I 



All zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the computations required for this study, including the generation of the simulated 

data and the filtering of both the simulated and experimental data, were performed on the 

Control Data series 6000 series computers a t  Langley Research Center. 

In generating the data, reasonable initial conditions for the state variables and parameters 

were chosen; the state equations were numerically integrated t o  obtain a “true” time history 

of the variables. The “true” variables were then used t o  calculate a series of measurements 
2

containing an additive random noise of zero mean and a variance of 0.00092 volt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. For 

the simulated data presented here, the static gain K was 10 seconds-2, and the variance 

of the process noise was 59 600 volts2/seconds4. The value of 59 600 volts2/seconds4 for 

the process noise was obtained experimentally so that the ratio of the mean-squared pilot 

remnant t o  the mean-squared stick motion is about 0.5, as is indicated by current pilot-model 

theory (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) .  The parameter values along with the initial values of the variables are given 

in the first column of table I; for these values, the system is stable. (The first-order Pad6 

approximation is stable.) 

The disturbing function D(t) was chosen t o  be 0.25 sin t .  The state integrated to  

the final time of 10.25 seconds is found in the first column of table 11. Using these data, 

measurements containing the additive noise were generated at the rate of 100 measurements 

per second. 

The values used to  initiate the estimation procedure are given in the second column 

of table I. The parameter values are simply guesses; the variable values were mainly derived 

from the.  data according t o  the following scheme: the second measurement (the plant out­

put c(t)) gives a direct measure of  the first variable; since the first measurement (the stick 

motion 6(t)) is the sum of the variables u(t) and q(t) ,  the variable u(t) was arbitrarily 

chosen to  be zero and q(t)  evaluated with the measurement value; the second variable 

t ( t )  is evaluated by computing the first-order divided difference of the plant output c(t) 

based on two consecutive values of c(t); the fourth variable was arbitrarily set to  zero and 

the sixth evaluated by using the first-order divided difference of the measured stick motion 

based on consecutive values of 6(t). 

For the parameter variances, each standard deviation was set equal to  10 percent of 

the corresponding parameter value. Since the plant output is both a state variable and a 

measurement, it  is reasonable t o  choose the initial variance of this variable t o  be equal to  

the variance of the corresponding measurement (0.00092 volt 2). Since the stick motion 

is the sum of the deterministic pilot output and the pilot remnant, it is true that for the 

variances 

IE/[u(t) + q(t)I2’I -- E’[6(t)I2j = 0.00092 volt2 

10  



However, expanding the left expectation yields 

11 I 2(t)1= E 1 2
I 

(t)
1
I + 2E i 

I 
u(t) V(t) 1

I 
+E

I 
77 

where in the last step the linearity of the expectation has been used. If, to simplify the 

analysis, i t  is assumed the two variables are uncorrelated, then the second term on  the 

right in equation (24) is zero. Finally, by assuming the two variable variances are equal 

and by  using equation (23), the result is that the initial variances for u(t) and v(t) 

are 0.00046 volt
2 . The remaining variances were arbitrarily chosen to be 0.1. 

The results given in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 as case 1 indicate that c(t) and t(t) have been well 

estimated but that the remaining variables are in error by at  least 8 percent. The estimates 

of u(t) and v(t) illustrate that although the error in the stick motion (which is the 

sum of these two variables) is small, the errors in the individual estimates may be large 

offsetting values. Further, an examination of the correlation coefficients, which can be 

derived by normalizing the covariance matrix, indicated that the correlation coefficient 

for u(t) and q(t)  is -0.991. On the other hand, the error in y
4

(t)  is quite large; 

this large error presumably results from defining y
4

(t)  in terms of u(t) (see eqs. (6)) 

which contains a 46-percent error. Finally, the variable G(t) is poorly estimated since 

in the state equations this variable is a function of q(t)  and of the two poorly estimated 

parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
1 

and a
2 
. 

An examination of the state equations (eqs. (7) t o  (1 2)) shows potential difficulties 

in estimating the parameters. These difficulties are verified by the case 1 results. First, 

the pilot static gain K1 always occurs in combination with T~ and r2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA1t hough 

these latter two parameters occur separately elsewhere, the manner in which K 
1 

occurs 

suggests difficulty in separating the three parameters. The case 1 results show that the 

estimates of these three parameters are less accurate than the initial guesses; the results also 

indicate that separation of these parameters may be difficult. Also, the delayed term coef­

ficients 
K1r3 
- and -"'(1 - -:;) are less accurate than the initial guess as a ' resul t  of 
172 ?1

the poor estimates obtained for the parameters. 

In the case of time delay 8 the estimate has changed only slightly, possibly 

because of the poor estimates obtained for the coefficients of the delayed terms in equa­

tions (9) and (10). There is also only a slight change in a2. The poor estimate obtained 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa
1 

is evidently because of the poor values obtained for q(t)  and $t); all these 

values occur in equation (12). 

11  



In table I11 the variable and parameter standard deviations and the root-mean­

squared (rms) measurement residuals are presented. For  case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 the standard deviations for 

cy1 and a2 have changed only slightly from the initial values (0.31623). This fact, 

along with the small changes in the estimates of 
cxl 

and a2, suggests that these parameters 

are not “observable” in this particular problem; that is, it is not possible to determine the 

values of these parameters by observing the behavior of the measurements. However, actual 

proof of observability in nonlinear problems is difficult t o  obtain. Instead, a separate case, 

identical to case 1 except that a I  and a2 were not estimated, was attempted. The 

resulting estimates for all the other variables and parameters were not significantly different 

(less than 0.8 percent) from those given for case 1 in table 11; thus, retaining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 and 012 

as constant unestimated’ but erroneous values does not significantly bias the other estimates. 

Therefore, a l  and a2 need not be estimated; however, in all tlie cases studied these 

parameters were estimated in order to retain any influence they may have exerted on the 

other estimates. 

One other notable item given in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 for case 1 is the rms residual for the stick 

motion 6(t). The rms residual should be approximately equal to the standard deviation of 

the noise added to  this measurement (0.03033 volt). The smaller value obtained by the 

Kalman filter is undoubtedly a result of the fact that this measurement is the sum of the 

variables u(t) and q(t). Since these variables have nearly equal variances and a large 

negative correlation, the correlation tends to  produce the small measurement variance. This 

tendency is clearly seen in the following relationship Variance of x any 

variable) and p is the correlation coefficient: 

Var[u(t) + q(t)l  = Var[u(t)] + Var[q( 

Another possible reason for tlie poor parameter estimates is the standard deviation 

of {(t) which is much larger than tlie standard deviations of the parameters; this 

relationship is seen in table 111 where the standard deviations at t = 10.25 are given. 

The large standard deviation for t ( t )  is a direct result of the large process-noise standard 

deviation. Since the variance of {(t) is so large, this variable seems to absorb too niuch 

of the stick-motion residual. I n  order t o  test this possibility tlie initial parameter standard 

deviations were increased to  100 percent of the parameter values in case 2. 

The results of case 2 in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 indicate some improvement in the estimates of 

K 1 ’  
r2, r3, and a ] ; however, the estimates of r l ,  0 ,  and a? are less accurate. 

,-

Further, the coefficients of the delayed terms are not significantly better, evidently because 

of the degraded time-delay estimate. Therefore, increasing the parameter variances generally 

did not improve the estimates. 
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Additional experiments in choosing the variances were attempted. None of the experi­

ments resulted in generally good estimates. Although using a smaller process-noise variance 

produces a smaller mean-squared pilot-remnant t o  mean-squared stick-motion ratio, the 

remaining simulated cases discussed here use data generated with a smaller process-noise 

variance. In this manner the effect of a smaller variance on the estimates was investigated. 

Except for this smaller variance, the initial parameter and variable values are identical to 

those used before. For case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 the process-noise variance was chosen to be 576 volts2/sec­

o n d ~ ~ ;compared to the previous data, the ratio of the mean-squared pilot remnant to the 

mean-squared stick motion for the new data is only 0.04. 

The results given in tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 as case 3 were produced by using 10 percent 

of the parameter values for the initial standard deviation, extending the time interval for 

processing the measurements to 15 seconds, and iterating the filter process three times over 

this interval. Of the various attempts a t  filtering this data, case 3 gave the best estimates 

of the parameters. The variable estimates are not given in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 since a change in the 

process-noise variance significantly changed the time histories of the variables. However, 

the estimates of all the variables are better than in case 1 or 2; for example, the error 

in u(t) is only 10 percent. The estimates of K1, r l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ ,and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l  are better than 

the previous two cases. Although the estimate of 72 is poor, the improvement in the 

other three deterministic pilot parameters resulted in much better estimates of the delayed 

term coefficients. The degraded estimate of r2 emphasizes the apparent difficulty in 

separating these four parameters. 

The small changes in 0 and a2 suggest that these variables are not observable for 

some reason. An “observable” parameter here means that a change in the parameter results in 

an observable change in one or more of the measured quantities. The use of large parameter 

variances i n  a case not presented here did produce a significant change in the estimated time 

delay thus indicating that 8 is t o  some extent observable. However, for the saine case, 

the estimate of a2 was not significantly different from the value given in case 3 .  More 

significant, perhaps, was the fact that the resulting parameter estimates yielded an unstable 

system. As a final test of the observability of 8, a new set of measurcments was generated; 

this set differed from the data for case 3 in that only the input disturbance D(t) was 

changed. For the new data, D(t) was composed of two sine functions having distinct 

amplitudes and frequencies. The purpose of this test was to determine if the observability 

of 8 depends on the characteristics of the disturbing function. The time delay estimated 

from the new data (0.0402) differed only slightly from the case 3 estimate. Thus, the 

ability to estimate 8 depends on other factors. The observability of a2 is questionable. 

Figures 2 and 3 present the time histories of the stick-motion and plant-output 

residuals for case 3 .  Although all the parameters are not correctly estimated, these figures 

indicate that the measurement residuals are generally random as is desired. In the case of 



the plant output,  the residuals in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 are of the same magnitude as the noise; this 

finding is further exemplified by the rms residual given in table 111: In addition, figure 2 

and the rms stick-motion residual in table 111 illustrate the fact that the estimates of 

q(t) and u(t) contain a significant portion of the measurement noise. 

For the final case presented, the process-noise variance was reduced to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 volts2/sec­

onds4zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. The object was to process data with process noise comparable to that  of the experi­

mental data, even though the ratio of the average pilot remnant to the average stick motion 

is less than 0.01. Other than this smaller variance, all the parameter and variable values and 

the measurement-noise variance are the same as in the previous cases. The disturbing func­

tion is the same function used in case 3 .  The estimates given in table I1 as case 4 are 

the result of iterating the filtering process three times. Since this estimation problem is 

nonlinear, it is reasonable to iterate the estimation process in order to obtain satisfactory 

parameter estimates. In this context “iteration” means using parameter estimates and the 

corresponding variances a t  the final time of one pass through the filter equations as initial 

values for the next pass through the filter. 

The results of case 4 show improvement in the estimates of K r l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr3 ,  8, and 

a l .   In particular, the much better estimate of 8 indicates that the ability to  estimate 

this parameter is mainly related t o  the magnitude of the process noise and not t o  the 

disturbing function. Further, the improved estimate of a 
1 

is also evidently a result of 

the smaller process noise, whereas the slight degradation of the a2 estimate suggests this 

parameter is unobservable. The unobservability is further confirmed by the fact that a,, 
has the smallest correlations of all the parameters (specifically, the correlations between the 

parameters and the three variables (c(t), u(t), and q(t)) defining the measurements). The 

degraded estimate of r2 indicates the apparent difficulty i n  separating the four deterministic 

pilot parameters. Even with this poor estimate, the two resulting delayed-term coefficients 

are generally good. 

Comparison of the standard deviations in table I11 with the estimation errors derived 

from the estimates in table I1 provides a means for determining the ability of the standard 

deviations to  predict the actual variable and parameter errors. In almost every instance the 

estimate errors are less than three standard deviations; in case 4, which is of major interest 

here, over half of the estimate errors are less than one standard deviation. The one excep­

tion to this statement is the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ which was poorly estimated. Therefore, the 

standard deviations give a good measure of the errors in the estimates. 

Based on the results obtained by processing simulated data, certain conclusions have 

been reached. Reasonably accurate estimates of the variables c(t), u(t), and q(t)  may 

be obtained, although separation of the stick motion 6(t) into good estimates of u(t) 

and q(t) may be difficult. If the process noise is approximately the same order of 

magnitude as the pilot-remnant parameters a l  and a
2’ 

then good estimates of all the 
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parameters (except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 and possibly one of the deterministic pilot-model 'parameters) may 

be obtained. Further, the ability to estimate the time delay depends on the magnitude of 

the process noise and not on the disturbing function. Finally, the standard deviations pro­

vided by the filter give a good measure of the estimate errors. 

RESULTS BASED ON EXPERIMENTAL DATA 

The experimental data used in this analysis were obtained from closed-loop compensatory 

tracking tasks conducted by Langley Research Center personnel with engineers and test pilots 

used as subjects. A description of this research has been reported by Adams (ref. 5 ) ;  in the 

particular cases discussed here, an engineer was the subject. 

The variances of the measurements used in this experiment were obtained by  setting 

the disturbance D(t) to zero, removing the pilot from the loop, and recording the measure­

ments (which therefore should consist only of noise). The resulting value for both measure--
ment variances was 0.00092 voltL. The variance of the process noise was obtained by a 

power spectral-density analysis of a model of the pilot remnant used by Adams (ref. 5). 
3The resulting variance values were 19.8 volts2/seconds4 and 5.9 volts-/seconds 4 , respectively, 

for the first and second sets of experimental data presented here. The same engineer was 

the subject for both experiments, 

In order t o  obtain initial conditions for the estimation procedure a modification of 

the method presented in the previous section was used. The variables c(t) and :(t) were 

evaluated from the measurements as previously described. However, the pilot remnant was 

evaluated using a mathematical model given by Adams (ref. 5 ) .  This value, along with the 

measured stick motion, provides the initial value for the deterministic pilot output u(t). 

The derivative of the pilot remnant is obtained by numerically differencing pilot-remnant 

values a t  consecutive points; the variable y
4

(t) is evaluated from equations (6). The param­

eter values are based on those given by Adams (ref. 5) and yield a stable system. For  the 

variable variances, the same initial values used for case 1 of the simulated data were 

employed. Thus, the variances for the variables c(t), u(t), and q(t) were 0.00092 volt2, 

0.00046 volt2, and 0.00046 volt2, respectively; for the remaining variables, the value 0.1 was 

used. For the parameter variances, each standard deviation was set to 10 percent of the 

corresponding parameter value. The initial conditions for the first set of experimental data 

are given in column one of table IV. The estimates obtained after processing 1500 data 

points may be found as case 1 in the second column of table IV. The statistical parameters 

are in column one of table V. Most of the parameter estimates differ considerably from 

the corresponding initial values, particularly the negative values of 
K1, 

a l ,  and a2. 
Further, these parameters represent an unstable system. The most revealing information is 

contained in the rms residual of the plant output,  which is almost two orders of magnitude 
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larger than the known measurement noise standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.0303 volt). The time histories 

of the stick-motion and plant-output residuals are given in figures 4 and 5. The behavior of 

the residuals in figure 5 suggests that the plant-output errors contain a signal as a result of 

errors in the mathematical model. Only the plant-output residuals are consistently larger than 

the measurement standard deviation whereas the corresponding variable c(t) standard devia­

tion is small (0.0063 in table V). Therefore, it appears that the Kalman gain on this variable 

initially decreased rapidly as the measurement residuals decreased; the gain could not increase 

to  compensate for later large measurement residuals. Since this phenomenon did not arise 

during the processing of the computer-generated data, the divergence of the plant-output 

residuals is a result either of processing very accurate measurements for a short period or  of 

the presence of an unknown process noise (ref. 11). This situation is further aggravated by 

model biases caused by incorrect parameter values. The net result is an adjustment of the 

parameters; such adjustment continues until the system becomes unstable. 

As indicated by reference 11, all of the possible causes of the divergence may be 

treated by assuming the existcnce of a process noise of appropriate magnitude. The adaptive 

technique described in the appendix was chosen to calculate automatically the required process­

lloise statistics. Application of the original adaptive technique to this problem proved satis­

factory. However, since the stick-motion residuals did not diverge in case 1 .  the tnodified 

technique described in the appendix was found to  be sufficient to treat the plant-output 

divergence. In the modified technique only excessive plant-output residuals (that is, those 

exceeding the one-sigma value of 0.0303 volt) are used to adjust directly the Kalnian filter 

gain for only the plant-output variable c(t). Changes in other gains and variables are the 

direct result of a normal application of the Kalman filter. In this way the modified tech­

nique prodiices a compromise between the results of the Kalman filter and the original 

ad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;I p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ive te ch t i  i que . 

The results of applying the modified technique are given as case 2 i n  tables IV and V. 

The rms plant-outpu t residual is approximately the correct value while the rms stick-motion 

residual is little changed from that of case 1 .  Comparison of figures 4 and 5 with 

figures 6 and 7 further illustrates that only the plant output is significantly affected and 

that these residuals are more random. The new parameter estimates are clearly more reason­

able than those in case 1. The system evaluated with these estimates is also stable. 

Table V indicates that by increasing the Kalman gain on only the plant output, many of 

the standard deviations have also increased to account for the uncertainty introduced into 

the modified estimation procedure by the fictitious process noise. 

Since the study using computer-generated noise indicated that iterating thc Kalman filter 

over the data improved the paranieter estimates, this iterative approach was also applied to 

the experimental data. The case 2 parameter estimates and variances are used to  start the 

second iteration of the filter equations at 5.3 seconds. In the tables, case 3 gives the 

16 



I  

estimates a t  the end of the third iteration. Although zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK l Y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr3,  8, and al  appear 

to be converging to  constant values, T~ appears to be decreasing rapidly. For this partic­

ular problem all the parameters should be positive. The poor estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 
1 

undoubtedly 

results from tlie difficulty in separating the deterministic pilot-model parameters; a similar 

difficulty was obscrved in the case of the simulated data. Also, as seen previously, the 

observability of  a2 is highly questionable; in case 3,  a2 appears to be converging to  a 

large positive number at best. The stability of case 3 is ve.rified by the eigenvalues in 

table VI. 

Since the initial parameter values used in cases 1 t o  3 should be good starting values 

for the estimation process, the only quantities which can be adjusted to  improve the esti­

mates of case 3 are the initial parameter variances. With this idea in mind, iteration of  

the Kalman filter was reinitiated rising the original parameter values and new standard 

deviations equal to 3.2 percent of the parameter values. The results after three iterations 

are given as case 4 i n  tables IV and V. 

All of the parameters except a2 
have essentially converged to constants i n  case 4 ;  

a few additional iterations would only refine tlie vnlues in the third or  fourth place. For 

this cnse, all tlic p;irameters including are ieasonable: the smaller initial v:iriances have 
T~ 

reclu~.i'd the tendency of any one parameter to tlivcrge. Even a,  appcars that i t  would-
converge to a inore reasonable, although large, value if enough iterations were attempted. 

As in  the previous cases, the system evaluated with these parameter values is stable; the 

system eigenvalues are given in table VI. 

Examination of the correlations for case 4 shows that u(t) and v( t )  have the 

cxpectcd large ncgative correlation (-0.97) and that only the correlations bctwcen t i ( t )  

: ind  y
4

( t )  (0 .85) .  lietwi.cn y4(t) a n d  v( t )  (-0.82), and belwwn u(t)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT
3 

(-0.31) 

Lire wry  significant. m c  (u(t),y4(t)) atid (U(i),T3) correlations arc incjuceci t3y equation (9); 

tlic (y4(t).q(t)) correlation is a result of the (u(t) .v(t))  and (u(t).y4(t)) correlations. 

Comparison of the p;irainctcr standard deviations for C;ISCS 3 and 4 verifies the con­

vergence of case 4. Since the initial standard deviations of GISCS 3 and 4 are, respectively, 

10 percent and 3.2 percent of the initial parameter values, the case 4 initial standard 

deviations are 32 percent of those of case 3. However, from table V, the parameter 

standard deviations of  case 4 are 35 percent to  73 percent of those of case 3.  The smaller 

standard deviations suggest that the standard deviations of case 4 are attaining steady values 

which are bounded below by the Crainer-Rdo bound. This fact was further confirmed by 

examination of the behavior of the standard deviations on the third iteration; during this 

iteration the standard deviations changed much less than on previous iterations. 

The second set of experimental data was obtained with tlie same cngineer as test 

subject; essentially the same closed-loop task was performed but with a different disturbing 

function. The measurement variances are identical to  those for tlie first experiment; however, 
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since the disturbing function was different, the process-noise variance of the pilot remnant 

changed to  5.9 volts2/seconds4. The initial conditions for the estimation problem, given 

in table VII, were obtained from the measured data in the same manner as they were com­

puted for the first experiment. The state variances for each case are ider.tica1 to  the vari­

ances chosen for the corresponding case of the first experiment. The initial parameters, 

which can be found in reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  yield a stable system. The initial parameter standard 

deviations are 10 percent of the parameter values. 

The results of case 1, in which the unmodified extended Kalman filter was applied 

to  the data, are given in table VI1 and in figures 8 and 9. As with the previous data 

set, the plant-output residuals are excessively large and appear t o  contain a signal. This 

situation is apparently caused by the same errors that occurred in the case of the first 

experimental data set. Because of the erroneous parameter estimates, particularly the 

estimate of K1, the system has become unstable. 

Application of the complete adaptive technique to  the data again indicated the use of 

the modified adaptive technique. Therefore, in case 2 one iteration of the modified tech­

nique was used; this technique uses only the plant-output residuals and only the predicted 

variance of the plant output is directly altered. Figures 10 and 11 and the rms residuals 

in table VI11 indicate that the divergence of the plant-output residuals has been corrected 

with little effect on the stick-motion residuals. Although the parameter estimates appear 

reasonable, the system of equations based on these estimates is unstable, and therefore 

inadequate to  describe the physical system. 

As in the case of the previous data, the approach to  preventing the system from 

becoming unstable is to restrict the changes in the parameter estimates by reducing the 

variances. I n  case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  therefore, 3.2 percent of the parameter values was used for the corre­

sponding initial standard deviations. The parameters given in table VI1 are the result of 

two iterations of the Kalman filter. Although these values appear reasonable, the system 

actually became unstable during the course of the second iteration. (See table VI.) Thus, 

the estimation procedure was abandoned for this set of standard deviations. 

In case 4 ,  1 percent of the parameter values was used for the initial standard deviations. 

The values in tables VI1 and VI11 are the results obtained after four iterations of the Kalman 

filter. The system based on these values is stable. (See table VI.) With the exception 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa
2 

the estimates have essentially converged. Although the estimates and standard 

deviations of r 
1 

and r2 are sufficiently similar to  suggest these parameters are highly 

correlated, such is not the case. The two parameters have very similar, but extremely small, 

correlations with several other variables and parameters; thus, since the correlation coeffi­

cient for 7
1 

and r
2 

is only -0.0043, the two parameters only appear to  be correlated. 

With the exception of the usual high correlation between u(t) and q(t), the greatest 

correlations are between u(t) and y4(t) (0.79) and between u(t) and r3 (-0.86). 
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Therefore, the modified technique provides reasonable estimates of the state and of 

most of the parameters when applied to experimentzl data if a careful selection of the initial 

variances is made. In particular, reasonable estimates of the deterministic pilot-model param­

eters can be made. 

CONCLUDING REMARKS 

An attempt has been made to estimate the parameters of a human pilot model by 

using the extended Kalman filter. The chosen human pilot model, originally written in 

transfer function form, was transformed to a differential-difference equation in the time 

domain; in this form the pilot model was amenable to treatment by the extended Kalman 

filter, although the time delay occurs implicitly. 

In studies utilizing computer-generated data, it was found that the deterministic pilot-

model parameters, including the time delay, could be reasonably estimated if the magnitude 

of the process noise was sufficiently small, although the remnant to stick-motion ratio was 

realistically too small. The only difficulties appear to be separation of delayed term coeffi­

cients into component parameters and correct estimation of a parameter in the pilot remnant. 

In the case of experimental data, it was found that the Kalman filter produced 

diverging plant-output residuals, apparently because of erroneous assumptions made on the 

mathematical model. Application of a modified adaptive technique was found to  overcome 

this divergence problem. Careful selection of initial parameter variances produced reasonable 

estimates of the deterministic pilot-model parameters and maintained the stability of the 

system of equations. 

Therefore, the extended Kalman filter is recommended as a technique for estimating 

the parameters of the dynamical plant model and of the deterministic pilot model in a 

human track ing-t ask situ ationzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Langley Research Center  

National Aeronautics and Space Administration  

Hampton, Va. 23665  

July 9, 1975  
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APPENDIX 

AN ADAPTIVE TECHNIQUE THAT COMPENSATES FOR MODEL ERRORS 

In many estimation problems, errors in the state model arise from the use of simplified 

models or  models containing erroneous parameter values. As a result of using such models, 

the estimation procedure fails t o  track the measurements properly and eventually diverges. 

Various techniques for alleviating this divergence phenomenon have been proposed (ref. 12). 

For  the purposes of the current study a technique which could be easily automated was 

desired. 

The technique selected for this research is basically the scheme presented by Jazwinski 

in references 9 and 13. The philosophy of this technique is based on the fact that as long 

as the measurement residuals d o  not exceed the one standard deviation level, the Kalman 

filter is not altered. However, should the residuals exceed this level, a fictitious plant noise 

is computed from the measurement residuals. The fictitious noise is calculated in such a 

fashion that as the measurement residuals increase, the fictitious plant noise increases. The 

effect of the fictitious noise is t o  increase the predicted covariance matrix of equation (19) 

and, consequently, the filter gain. Thus, as the measurement residuals increase, the gain 

increases to  “open” the filter. (That is, the filter uses more of the residuals t o  correct the 

predicted state.) If the residuals decrease to  less than one standard deviation, the fictitious 

noise is not computed and the covariance matrix and gains reduce. 

With the use of this technique, it is necessary to rewrite two of the filter equations. 

Equation (18) is replaced by 

+ r’(k + 1 )  w(k 

-f [ i ( tkHk),  2pk-qlfk-q)- D(tk-q)i t]dt 

+ 1) ( A l l  

wlicre I’(k + 1) is a 13 X 1 coefficient matrix and w(k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  is a zero mean 

Gaussian sequence with variance 

Eiw(k) W Q ) /  = G(k)&kj 

With this change, equation ( 19) becomes 

P ( t k + l ( t k )  = @(tk+l.tk). P ( tk ( tk )  @T(tk+ll tk)  

+ Q(tk+l) + c(k + 1)  r ( k  + 1) IYT(k + 1) 
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APPENDIX 

-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The key to  the adaptive process is to select the variance q(k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) (eq. (A2)) which 

reflects the previously stated philosophy. This selection is accomplished by estimating
-
q(k + 1) from the measurement re2iduals; then s ( k  + 1) can be averaged over several 

measurement times to provide a statistically significant value. 
-

The variance q ( k  + 1 )  is estimated by maximizing the probability-density function 

of the residual with respect to q ( k  + 1); details of the derivation may be found in 

reference 9. The result of this derivation is that 

(If  positive) 
(A31 

(0themise) 

where 

is the average nortnalized predicted residual at  tk+l ;  

N N 

E 1 r 2 ( k  + l ) l<(k)  = 0) = J- + ' Hj(tk+l) P(tk+lltk) l 'F(tk+l) (A5) 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN2 j=1 i= l  [Rlj(tk+l)]li2[R(r
I I  k + l  

and 

In equations (A4) to (A5), mj(tk+l) and [H(tk+l) G(tk+l indicate the j th compo­

nent of the corresponding vectors, Rjj(tk+1) and Rii(tk+1) are the j th  and it11 diagonal 

dements of R tk+l , and Hj(tk+l), and Hi(tk+l) are the j t h  and ith rows ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
H(tk+l).  In these equations, N is the number of measurements at  time tk+l ;  for the 

-
pilot-model problem, N = 2. The variance q ( k  + 1) was then averaged over the latest 

20 time points for this particular application. 

The major difficulty in applying this adaptive technique to  a particular problem is in 

engineering an appropriate coefficient matrix I'(k + 1). Experimentation with the pilot 

model indicated the vector 

r(k $. 1) = c0.707, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0.5, 0, 0.5, 0, 0,  . . ., 01 
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provided adequate results. However, since the results of case 1 based on the unmodified 

Kalman filter showed that only the plant-output residuals diverged, the use of the stick-

motion residuals in the adaptive technique and the modification of the corresponding 

gains (Le., the gains for the deterministic pilot output and the pilot remnant) should be 

unnecessary. Therefore, the technique was modified to  use only the plant-output residuals; 

the coefficient matrix r ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 )  was altered to  influence only the plant-output estimate. 

The former modification requires restricting the summations in equations (A4) t o  (A6) t o  

only those terms involving the plant. output;  the latter was accomplished by defining 

r ( k  + 1) by r (k  + 1) = [0.707, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; 0 ,  0,  0 ,  . . ., 0IT. These modifications were used 

in cases 2 to  4 for both sets of experimental data. 
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TABLE I.- INITIAL CONDITIONS FOR SIMULATED CASES  

True value 
( t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.25) 

-0.9590 

-5.6363 

.6237 

-.6880 

.4105 

2.5484 

1.o 
.1 

.1 

.5 

.05 

4.427 

10.0 

50.0 

-40.0 

. .  . 

Initial estimate 
(t = 0.25) 

-0.9496  

-.5900  

0  

0  

1.0109  

2.48  

1.1  

.09 

.12 

.6 

.04 

4.0 

10.5 

61.1 

-69.25 
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- - - - - -  

- - - - - -  

-- 

I A B L b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11.- t=b l IMAlIUN K k b U L I Y  B A 3 E U  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWN 

True Case 1 Case 2 
value estimates est i inat es 

[t = 10.25) (t  = 10.25) (t  = 10.25) 

-1.0692 -1.0602 - 1.0602 

-3.042 1 -3.0225 -3.0223 

2.2984 3.3659 3.2007 

-.9398 -2.4520 -2.8760 

.0734 -.994 1 -.8189 

10.9367 1 1.8296 12.5505 

1.o 1.1425 1.1415 

. I  .0865 .083 1 

. I  . I  154 . I060  

.5 .ti245 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS782 

.05 ,0399 ,0265 

4.427 4.00 14 4.0650 

10.0 10.4644 7.023 1 

50.0 71.48 74.93 

-40.0 -82.15 -8 1.84 

-

b l M U L R I L U  U A I A  

. 

Case 3 Case 4 
est i mates  est i inates 

(t = 15.25) ( t  = 15.25) 

_ _ - _ _ _  

_ _ _ - - _  

_ - - - - _  

_ - - - - _  

1.0488 

.093G 

. I  249 

,5720 

,0401 

4.0980 

10.4035 

5 1.33. 

-57.27 
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TABLE 111.- STANDARD DEVIATIONS AND ROOT-MEAN-SQUARE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(ITIS) MEASUREMENT RESIDUALS OF SIMULATED-DATA CASES 

Quantity 

Standard deviation 
of c(t) 

Standard deviation 
of i ( t )  

Standard deviation 
of u(t) 

Standard deviation 

of Y4(t) 

Standard deviation 

of d t )  

Standard deviation 

of %t) 

Standard deviation 
of K 1  

Standard deviation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7

1 
Standard deviation 

of 7-
2 

Standard deviation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr

3 
Standard deviation 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 

Standard deviation 
of a1 

Standard deviation 
of Cr2 

rms residual, 
stick motion 

rms residual, 
plant output 

Case 1 Case 2 Case 3 Case 4 

0.0063 0.0063 0.0063 0.0063 

.0201 .020 1 .020 1 .020 1 

.3173 2.5077 .0580 .1604 

.5370 4.90 18 .1584 .4374 

.3187 2.5079 .0677 .1628 

240.04 240.01 24.3396 5.771 1 

.0969 .8868 .0966 .0648 

.0081 .0753 .0082 .0063 

.O 106 .lo03 .O 108 .o 100 

.OS32 SO38 .0530 .0368 

.0040 .0353 .0040 .0056 

.3999 3.9432 .3999 .3983 

1.0484 10.2003 1.0488 1.0475 

.00023 .00002 .00101 .00654 

.0320 .0320 .03 17 .0240 
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’ABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1V.- RESULTS BASED ON FIRST EXPERIMENTAL-DATA SET  

- ~­

Initial Case 1 Case 2 Case 3 Case 4 
values estimates estimates estimates estimates 

(t = 5.3) ( t  = 20.3) (t = 20.3) (t = 20.3) ( t  = 20.3) 
.. . 

-0.5 -9.9201 -4.071 1 -4.07 11 -4.0709 

-6.248 -8.423 1 .20.9579 -21.0600 -20.9791 

-.128 -.5683 -1.0824 -1.3206 -1.0170 

.05 -.571 1 -3.2801 -5.3395 -3.5209 

.1 2.7453 3.2530 3.4880 3.1870 

1.5615 5.5469 15.5910 12.3238 17.2188 

.8 -.1463 .5661 .4474 .6354 

.1 .3527 .0986 .0417 .I099 

.1 .1669 .lo34 .lo46 .lo94 

.6 .07 13 .4790 .4980 .4855 

.05 .0544 .0706 .0826 .0655 

4.427 -.92 18 3.4763 2.8634 3.9206 

10.0 -36.755 12.6328 16.5106 10.9260 
..- .. 
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TABJ,E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV.- STANDPLRD DEVIATIONS AND ROOT-MEAN-SQUARE 

(rmsj MEASUREMENT RESIDUALS FOR FIRST 

EXPERI MENTAL-DATA SET 

__._. 

Quantity
___~ 

Standard deviation 
of c(t) 

Standard deviation 
of i ( t j  

Standard deviation 
of u(t)  

Standard deviation 

of Y4(t) 

St ati el arc1 d cv i :I t io t i  

of q(t)  

St ;I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnd a r J  dev i a t ioti 

of {(t) 

St a t i  d ard d a i a  t io t i  

of K 1  

Standa rcl dev i a t i ot i  

of 7 
1 

Sta 11d a rcl d t'v i at i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo t i  

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

St ;i tiJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:i I-tl clcv i u  t i (iI I  

of r 
3 

Standard deviation 
of 0 

St a ti d a rcl clcvi ;I t io ti 
of CYl 

Standard dxviatinii 
of a)? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

rtns rcsicliial, 
stick motion 

rins residual. 
plant nut I )LI  t 

__-. 

Case 1 Case 2 Case 3 Case 4 

0.0063 0.0297 0.0297 0.0297 

.020 1 .lo02 .0934 .i006 

.1638 .2452 .200G .1089 

. I243 .4678 .5326 .2068 

. I664 .2466 .3021 .! 122 

5.2829 5.4000 5.3325 5.2471 

.0358 .0682 .0543 .0236 

.0086 .0092 ,0050 .0030 

.0015 ,0093 ,0086 ,0030 

.0350 .OS78 ,0488 .(I171 

. ~ 0 2 0  .0016 . O O l l  .0008 

.3475 ,3790 .2772 .1235 

,9637 .9 197 .8735 .3063 

.Q116 .O107 .0101 .0108 

2.8557 .0339 .o?J59 .0340 
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TABLE VI . -  EIGENVALUES OF FIRST ORDER P A D i  MODEL FOR 

SELECTED EXPERIMENTAL-DATA CASES 

First data  set, First cl a t a setzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 

case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 case 4 

(-4.754, 0) (-79.363, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  

(-0.03 5 ,  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O 24) (-15.780, 0) 

(-0.635, -2.624) (-3.171, 0) 

(-1.432, 3.803) (-0.229, 3.2c)7) 

(-1.432, -3.803) (-0.229, -3.297) 

(-25.86 1 ,  6.886) (-1.960, 2.661) 

(-25.861. -6.886) (-1.760, -2.66 1) 

Second data set, 
case 3 

(-31.952, 0) 

(-14.438, 0) 

(-4.577, 0) 

(0.026, 2.973) 

(0.026, -2.973) 

(-2.1 16, 2.546) 

(-2.1 16, -2.546) 

case 4 

(-36.575, 0) 

(-15.615, 0) 

(-4.159, 0) 

(-2.186, 2.310) 

(-2.186, -2.310) 

(-0.130, 3.342) 

(-0.130, -3.342) 
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TABLE VI1.- RESULTS BASED ON SECOND EXPERIMENTAL-DATA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASET  

_____~ 

. Initial Case 1 Case 2 Case 3 Case 4 
values estimates estimates estimates estimates 

(t = 5.0) 
~ ~~ 

(t = 20.0: (t = 20.0 ( t  = 20.0: (t = 20.0) 

-0.0 155 -2.498 1 -1.5373 -1.5375 -1.5376 

-4.68 19 -2.2670 -4.2 194 -4.2693 -4.3483 

-.081 1 -.I618 .0603 -.0003 -.0692 

.3583 .3 185 -.3228 -.5054 -.6790 

.05 1.4936 1.2697 1.3307 1.4012 

.o 3.8801 5.6356 5.9007 5.96 16 

.8 -.1364 S 4 8 8  .6854 .7629 

.1 . l o68  .1132 . lo95  . l o 3 4  

.1 .0850 .1147 . l o94  . l o35  

.4 ,2930 .2944 .3438 .38 18 

.05 .05568 .0646 .06 13 .0536 

4.427 4.3639 4.0958 4.2329 4.372 1 

10.0 .O 199 13.9415 10.9624 10.1136 
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TABLE VII1.- STANDARD DEVIATIONS AND ROOT-MEAN-SQUARE 

(rms) MEASUREMENT RESIDUALS FOR SECOND 

EXPERIMENTAL-DATA SET 

Quantity 

Standard deviation 
of c(t) 

Standard deviation 
of t ( t )  

Standard deviation 
of u(t) 

Standard deviation 

of Y4(t)  

Standard deviation 

of 77(t) 

Standard deviation 

of 60) 
Standard deviation 

of K 1  

Standard deviation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7

1 
Standard deviation 

of 7
2 

Standard deviation 
of 7

3 
Standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 

Standard deviation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

1 

Standard deviation 
of 01

2 

rms residual, 
stick motion 

rms residual, 
plant output 

Case 1 Case 2 Case 3 Case 4 

0.0063 0.0246 0.0246 0.0247 

.020 1 .0706 .07 14 .0724 

.0687 .033 1 .0142 .0053 

. I626 .0708 .0344 .O 135 

.0734 .04 18 .0293 .0262 

3. I752 3.1645 3.1599 3.1580 

.058 1 .07 16 .0248 .0079 

.0093 .0095 .0031 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .0001 

.0096 .0095 .003 1 .ooo 1 

.0373 .0366 .O 124 .0040 

.0035 .0024 .OO 13 .0004 

.3357 .3 174 ,1332 .0436 

.9587 .9337 .3 136 .0997 

.O 164 .O 163 .O 165 .O 169 

1.3194 ,0373 .0368 .0360 
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Figure 1.- Block diagram of pilot dynamics. 



-- 

x 10-3 

10 

5
> 
E: 
0  
.3 + 
0 

E 

-5.3 

= o 
E: 
.3 

4- 

E 
2 

-5 

-10 .- I!. - _  - .  - - .  . .  . _ .  I .-.-.-IzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 5 IO 15 

Time, sec 

Figure 2.- Stick-motion error plotted against time for simulated data, case 3 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.- Plant-output error plotted against time for simulated data, case 3 .  
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Figure 4.- Stick-motion error plotted against time for case 1 of 

first experimental-data set. 
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Figure 5.- Plant-output error plotted against time for case 1 of 

first experimental-data set. 
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Figure 6.- Stick-motion error plotted against time for case 2 of 

first experimental-data set. 
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Figure 7.- Plant-output error plotted against time for case 2 of 

first experimental-data set. 
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Figure 8.- Stick-motion error plotted against time for case 1 of 

second experimental-data set. 



31- 

Y

F: 
cd  

CI 

a  

Time, sec 

Figure 9.- Plant-output error plotted against time for case 1 of 

second experimental-data set. 

40  



I  

x-
10 

5 
9 

c"  
0..-,
c, 
0

E 

-3.*Y 

.3 os 
5 
t:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W 

-5 

-10 

Figure 10.- Stick-motion error plotted against time for case 2 of 

second experimental-data set. 

41  



x 
15 

10 

5 

0 

-5  

-10 . - . .  1 . . . . . . .  1 . - .  . - - .. . .  -~- 1 
5 IO I5 20 

Time, sec 

Figure 11.- Plant-output error plotted against time for case 2 of 
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