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Abstract

This chapter presents Kalman filters for tracking moving objects and their efficient
design strategy based on steady-state performance analysis. First, a dynamic/measure-
ment model is defined for the tracking systems, assuming both position-only and
position-velocity measurements. Then, problems with the Kalman filter design in track-
ing systems are summarized, and an efficient steady-state performance index proposed
by the author [termed the root-mean-squared error index (the RMS index)] is introduced
to resolve these concerns. The analytical relationship between the proposed RMS index
and the covariance matrix of the process noise is shown, leading to a proposed design
strategy that is based on this relationship. Theoretical performance analysis is conducted
using the performance indices to show the optimality of the design strategy. Numerical
simulations show the validity of the theoretical analyses and effectiveness of the pro-
posed strategy in realistic situations. In addition, the optimal performance of the
position-only-measured and position-velocity-measured systems is analyzed and com-
pared. This comparison shows that the position-velocity-measured Kalman filter track-
ing is accurate when compared with the position-only-measured filter.

Keywords: Kalman tracking filter, moving object tracking, steady-state analysis,
performance index, filter design, process noise

1. Introduction

Remote monitoring systems for cars and robots require accurate tracking of moving objects.

Representative tracking algorithms include the Kalman filter [1–5] and its variants, such as the

extended/unscented Kalman [6–9] and particle filters [10–12]. These can accurately track

movement based on adaptive filtering by using a state-space model.

To use the Kalman filter for the tracking of moving objects, it is necessary to design a dynamic

model of target motion. The most common dynamic model is a constant velocity (CV) model
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[1, 10], which assumes that the velocity is constant during a sampling interval. This model has

been used in many applications because of its versatility, effectiveness, and simplicity. How-

ever, in almost conventional tracking systems, the selection of process noise (zero-mean white

noise in the dynamic model) is conducted empirically [4, 6, 8]. This is because conventional

studies tend to assume that process noise takes one of a limited number of forms, which is

known as appropriate selections. Thus, despite the large number of investigations into Kalman

filter trackers, the optimal selection of a process noise model has not been discussed. The

general problems of model selection for Kalman filter trackers were discussed by Ekstrand in

2012 [1]. In the years since, further research on these issues has been conducted, but no

satisfactory solutions to the abovementioned problems have been presented. Crouse [13]

described a general solution for optimal trackers in a steady state. However, this method also

requires an empirical selection of the dynamic models. A detailed analysis of the Kalman filter

has been provided for various applications, including global navigation satellite systems [14]

and video trackers [15]. However, only limited systems have yet been considered, and no

definitive parameter-setting procedure for the Kalman tracking filter has been provided.

Although various criteria have been proposed and investigated for the design of Kalman filters

and its variants to achieve better tracking accuracy, robustness, and real-time capability, rela-

tionship between these performance indices and the model parameters such as the process

noise variance is not discussed even in recent studies [16].

Another significant problem in a measurement model of the conventional Kalman tracking

filter is that most studies consider only position measurements and therefore cannot make full

use of modern sensors that are able to measure velocity, such as ultrawideband Doppler radar

[17, 18]. Moreover, sensor fusion based on Internet of Things technology also enables the

simultaneous measurement of position and velocity (e.g., sensor data fusion based on the

communication between radars/lasers/sonars and speedometers embedded in targets). Conse-

quently, Kalman filters for such systems have become an important area of research [19–24]. In

Ref. [24], the extended Kalman filter for radar measurements is modified for range (position)

and range-rate (velocity) measurements, and its effectiveness in realistic radar applications is

verified. However, concrete design criterion is not shown. The number of conventional studies

on position-velocity-measured (PVM) Kalman filters is smaller than those on the more com-

mon position-only-measured (POM) Kalman filters, and the performance and design of PVM

Kalman filters are not sufficiently considered.

To resolve the two problems described above concerning the process noise selection and PVM

systems, our previous work clarified the fundamental properties of PVM tracking filters [25,

26] and generated an efficient performance index to design an optimal process noise matrix [3,

5]. In the studies of PVM tracking filters [25, 26], fixed-gain PVM filter properties were

analytically clarified, but there was no optimization of the PVM Kalman filters. In our work

on the process noise matrix [3], an optimal POM Kalman filter, with respect to position

prediction, was presented. In this chapter, an appropriate process noise design strategy, based

on our proposed efficient steady-state performance index (introduced in Section 3), and its

applicability are verified. Our previous work highlighted the following issues, which we

address in this chapter:
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i. Analysis of the performance of a PVM Kalman filter with a CV model, based on the

proposed index.

ii. Application of the proposed process noise design strategy to a PVM Kalman filter.

iii. Comparison of the performance of optimal POM and PVM Kalman filters.

This chapter presents the theoretical analyses and simulations required to tackle these issues.

The remainder of this chapter is organized as follows: Section 2 defines the tracking filtering

problem dealt in this chapter and explains the existing concerns and models for POM and PVM

Kalman filter design. Section 3 introduces our proposed efficient performance indices with their

mathematical formulations. Section 4 presents the proposed process noise design strategy based

on the performance index. Section 5 shows the theoretical analysis of the optimal POM and

PVM Kalman filter performance in a steady state. The effectiveness of the PVM Kalman filter is

proven by the comparison with the POM filter. Section 6 shows realistic maneuvering-target-

tracking application examples. Section 7 concludes this chapter and proposes future tasks.

2. Problem statement

This section introduces the Kalman filter for moving object tracking and defines the model

assumed in this chapter.

2.1. Dynamic model

The Kalman filter for tracking moving objects estimates a state vector comprising the param-

eters of the target, such as position and velocity, based on a dynamic/measurement model. For

simplicity, this chapter deals with a typical second-order one-dimensional Kalman filter

tracker whose true state vector is defined as

xt ¼ xt vtð ÞT, (1)

where xt and vt are the true position and velocity of the target moving object, respectively,

and T denotes the transpose. The assumed dynamic model is a CV model, which is a simple

and popular model for tracking moving objects. The CV model assumes that the velocity is

constant during the sampling interval, which is expressed as

xtk ¼Φxtk�1 þwk, (2)

where xtk denotes the true state at time kT, T is the sampling interval,wk is the process noise with

covariance matrixQ, andΦ is the transition matrix from kT to kþ 1ð ÞT, which is expressed as

Φ ¼
1 T

0 1

� �

, (3)

The Kalman filter predicts the target state based on this dynamic model.
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2.2. Measurement model

The measurements are simply modeled as

zk ¼ Hxtk þ vk, (4)

where zk denotes the measurement vector, H denotes the measurement matrix, and vk is the

measurement noise with covariance matrix R. This chapter considers two types of measure-

ment systems, which are discussed as follows.

2.2.1. Position-only-measured system

The POM system assumes that the sensors (such as radar, laser, and sonar) can measure only

the position of the target. This is a general assumption in the moving object tracking. H and R

of this model are expressed as

H ¼ 1 0ð Þ, (5)

R ¼ Bxð Þ, (6)

where Bxis the variance of the position measurement errors.

2.2.2. Position-velocity-measured system

The PVM system assumes that the sensor system can measure position and velocity simulta-

neously. One example of the PVM model system is a pulse Doppler radar. Sensor fusion

systems using communications of position/velocity sensors can also be expressed by the PVM

model. H of this model is expressed as

H ¼
1 0

0 1

 !

: (7)

We now assume that the noises of position and velocity measurements are uncorrelated, and R

of PVM systems under this assumption is defined as

R ¼
Bx 0

0 Bv

 !

: (8)

where Bvis the variance of the velocity measurement errors.

2.3. Kalman filter tracking

The Kalman filter tracker based on the abovementioned models sequentially estimates state

vectors via the Kalman filter equations. The prediction and estimation are calculated as
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~xk ¼Φbxk�1, (9)

bxk ¼ ~xk þKk zk �H~xkð Þ, (10)

where predicts and estimates are denoted by ~ and ^, respectively, and Kk denotes the Kalman

gain that minimizes the errors in the estimated position and velocity. Kk is calculated as

Kk ¼ ~PkH
T H~PkH

T þ R
� �

: (11)

where Pk is the covariance matrix of errors determined from

~Pk ¼ΦbPk�1Φ
T þQ: (12)

bPk ¼ ~Pk � KkH~Pk: (13)

2.4. Aspects of tracking filter design

Moving object tracking obtains accurate and sequential estimation of the target position and

velocity by using Eqs. (9)–(13). As indicated in Eqs. (1)–(13), the design parameters of the

Kalman filter tracker are elements of the covariance matrix of the process noise Q. We must

set Q to achieve tracking errors that are as small as possible. Thus, we must know how to

design an appropriateQ. Moreover, we must be able to define the evaluation index of the filter

performance. However, these issues have not been sufficiently deliberated because the selec-

tion of Q has not been sufficiently addressed in previous studies. Here, the design of Q is

empirically carried out.

In the conventional tracking systems, the most commonly used random acceleration (RA)

process noise is often selected because it has a better performance. Its Q is

Qra ¼
T4=4 T3=2

T3=2 T2

 !

σ
2
q: (14)

The appropriate selection of σq is important because σq (and sensor noise variance R) directly

determines the performance of the tracking filter with the CV model. However, in conven-

tional studies, process noises and their parameters are empirically selected, and the validity of

the selection is discussed only casually [1, 16]. Many conventional tracking systems select the

RA process noises (Qra), with variance σq set based on the assumed target motion. However,

no definitive method of determining σq has been established. Although tracking index defined

by Kalata [27] is known as an effective design parameter, its empirical selection is still required.

Moreover, the validity in selecting the RA process noise is also questionable. Various other

forms of Q are known and have been used for different target motions [12]. For example,

random velocity model [2] and the diagonal Q, which do not include correlations in process

noise [7], are also frequently used. However, for the reasons discussed earlier, the differences

in performance between the various process noise models are not known.
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3. The efficient steady-state performance index (RMS index)

The process noise selection problems discussed in Section 2.3 must be solved to effectively

design Kalman tracking filters. Thus, we must properly evaluate the performance of the filter.

The effective steady-state performance index was derived [3] and is termed root-mean-squared

error index (an RMS index). This section introduces the RMS index for POM and PVM systems

and shows the analytical relationships between the RMS index and Q.

3.1. Definition of RMS index

In tracking filtering, the following two functions are required:

• Function 1. Reduces random errors caused by measurement noises.

• Function 2. Tracks targets with complicated motions (e.g., accurate tracking of an acceler-

ating target is required for the CV model).

The RMS index is proposed for the comprehensive evaluation of the performance of these two

functions and is defined as

εp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xtak � ~xkð Þ2
h i

r

(15)

where ~xk is the predicted target position (second element of ~xk ), E[] indicates the mean with

respect to k, and xtak is the true position of a constant acceleration target which is

xtak ¼ ac kTð Þ2=2 (16)

where ac is constant acceleration of the target. In the Kalman filter tracker using the CV model,

it is assumed that the target velocity is constant during the sampling interval. Thus, for the

constant acceleration target, a steady-state bias error occurs because of the difference between

the target motion and the assumed dynamic model. Moreover, ~xk includes random errors due

to measurement noise. Thus, the RMS index εp expresses both bias errors and random errors.

With the steady-state bias error due to the model/motion difference of eac and the steady-state

standard deviation of the random errors in ~xk of σp, εp is expressed as

εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2ac þ σ
2
p

q

(17)

σp expresses the performance corresponding to Function 1 and eac expresses the performance

corresponding to Function 2. The smaller these errors are, the better is the tracking filter. Thus,

the minimum εp achieves the best tracking filter in a steady state.

3.2. RMS index of a POM system

One important advantage of the RMS index is that it can be expressed in closed form. The

closed form of εp for the POM system was derived in Ref. [3]. This subsection introduces the

RMS index and its relationship to the design parameter Q in the POM system.
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First, the arbitrary Q is defined as

Qgen ¼
a b

b c

 !

(18)

where a > 0, b > 0, and c > 0, and the dimensions of a, b, and c are [m2], [m2/s], and [m2/s2],

respectively. For example, substituting a; b; cð Þ ¼ σ2qT
4=4; σ2qT

3=2; σ2qT
2

� �

into Eq. (18) gives the

Qra of Eq. (14) and b = 0 leads to the diagonal Q. The analytical relationship between Qgen and

εp is expressed by the following closed form.

ε2p,pom ¼
ac

2T4

β2
þ
2α2 þ 2βþ αβ

α 4� 2α� β
� �Bx (19)

where α and β are components of the steady-state Kalman gain K∞ ¼ α; β=T
� �T

calculated

from (a, b, c) using the following equations:

β ¼
Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 16þ 4A� 4Bþ Cð Þ
p

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 16þ 4A� 4Bþ Cð Þ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 16þ 4A� 4Bþ Cð Þ
p þ

Cð2A� 2Bþ C

8

s

(20)

A ¼ a=Bx, B ¼ bT=Bx, C ¼ cT2=Bx (21)

α ¼ 1� β2=C (22)

The derivation process of these equations is shown in Ref. [3]. As shown in Eqs. (19)–(22), the

optimal (a, b, c) is designed minimizing εp.

3.3. RMS index of a PVM system

In a similar manner to the treatment of the POM system, this subsection introduces the RMS

index of a PVM system and its relationship to Qgen. The RMS index of the PVM system is

ε2p,pvm ¼
2� 2η� θ

2 βþ αθ� βη
� �

 !2

a2cT
4 þ

g2 α; β; η;θ
� �

Bx þ g3 α; β; η;θ
� �

T2Bv

g1 α; β; η;θ
� � (23)

where α, β, η, and θ are components of the steady-state Kalman gain:

K
∞
¼

α Tη

β=T θ

� �

(24)

and,

g1 α; β; η;θ
� �

¼ βη� αθ� β
� �

αθ� βη� α� θ
� �

4� 2α� β� 2θþ αθ� βη
� �

(25)
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g2 α; β; η;θ
� �

¼ α3θ θ� 2ð Þ θ� 1ð Þ þ α2β 2� 2θ� 3ηθ2 þ 6ηθ� 2η
� �

þ α2θ2 2� θð Þ þ 2αβθ η� 2ð Þ θ� 2ð Þ þ αβ2 1þ 2η� θ� 3η2 þ 3η2θ
� �

þ β3η 1þ ηð Þ 1� ηð Þ þ β2η 2� ηð Þ θ� 2ð Þ þ β2 2� θð Þ

(26)

g3 α; β; η;θ
� �

¼ αθ 2η2 þ 2ηθþ θ2 � θ
� �

þ ηβ 2ηþ 2θ� 2η2 � θ2 � 2ηθ
� �

þ θ2 2� θð Þ (27)

Eq. (22) is obtained from σ2p and eac of the steady-state PVM Kalman filter (α� β� η� θ filter)

by using Eq. (17). The derivation processes for these are shown in Ref. [25]. The relationship

between the steady-state Kalman gains and Qgen is derived as follows:

a ¼
T2Bv

1� Rxvβ
2 � 1� θð Þα� θ

αβ2 þ 2β3 þ β2 þ θ� 1ð Þθβ
� �

Rxv

	

þα2Rxv 1� θð Þ 1þ 2αβ
� �

þ β2θþ β 3θ� 2� θ2
� �� �

þ θ 1� θð Þ α� 1ð Þ



(28)

b ¼
β3R2

xv þ Rxv α β 1� θð Þ � θ2 þ θ
� �

þ β2θþ βθþ θ2 � θ
� �

1� Rxvβ
2 � 1� θð Þα� θ

TBv (29)

c ¼
Rxv αβθþ β2 θþ 1ð Þ � βθ

� �

� αθ βþ θ
� �

þ βθþ θ2

1� Rxvβ
2 � 1� θð Þα� θ

Bv (30)

where

Rxv ¼ Bx=T
2Bv (31)

η ¼ Rxvβ (32)

The derivation of these is given in the Appendix. Note that the dimensionless parameter Rxv

corresponds to the ratio of the measurement accuracies in position and velocity and directly

affects the tracking accuracy in PVM tracking systems. From these results, we also obtain the

closed form of the RMS index for PVM systems and can design optimalQ using Eqs. (22)–(32).

4. Filter design strategy based on the RMS index

Using the RMS index introduced in the previous section, we can design the Kalman filter

parameters (i.e.,Q) to achieve optimal tracking. This section defines the optimization problems

for POM and PVM systems with a Q that minimizes the RMS index εp.

4.1. RMS-index minimization problem

4.1.1. POM system optimization

The evaluating function to determine optimalQ is εp,pom normalized by Bx, which is defined as
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μpom ¼ ε2p,pom=Bx ¼
aD

2

β2
þ
2α2 þ 2βþ αβ

α 4� 2α� β
� � (33)

where

a2D ¼ a2cT
4=Bx (34)

is the preset parameter for the proposed strategy. Substituting Eqs. (20)–(22) into (33), we

obtain μpom a; b; c; aDð Þ. Using this, the optimal (a, b, c) for the POM system is determined by

solving

argmin
a, b, c

μpom a; b; c; aDð Þ

sub: to: a > 0, b > 0, c > 0, and aD ¼ Const:
(35)

4.1.2. PVM system optimization

Like the POM system, a normalized RMS index can be used for the design of the PVM system.

Normalizing Eq. (22) by Bx and substituting Eqs. (31) and (32) into this, the evaluating function

for the PVM system is given by

μpvm ¼ ε2p,pvm=Bx ¼
2� 2βRxv � θ

2 βþ αθ� β2Rxv

� �

 !2

aD
2 þ

g2 α; β;θ;Rxv

� �

þ g3 α; β;θ;Rxv

� �

=Rxv

g1 α; β;θ;Rxv

� � (36)

To design optimal (a, b, c) for the PVM system, the optimal steady-state Kalman gains are

calculated by solving the following minimization problem.

arg min
α, β,θ

μpvm α; β;θ;Rxv

� �

sub: to: Stability conditions are satisfied, and aD ¼ Const:
(37)

where the stability conditions with respect to Kalman gains are easily derived by the well-

known Jury’s test as

1� ηð Þβ < αθ and 4� 2α� β� 2θþ αθ� ηβ > 0 and αθ� ηβ� α� θþ 1
�

�

�

� < 1 (38)

Substituting the optimal (α, β,θ) calculated by Eq. (37) into Eqs. (28)–(30), we obtain an optimal

(a, b, c) for the PVM Kalman filter.

4.2. Procedure and notes of the proposed design strategy

The procedure of the proposed strategy for each system is summarized in this section.

4.2.1. Design procedure for a POM system

1. Set Bx from the sensor performance.
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2. Preset aD based on the approximate target acceleration.

3. Determine (a, b, c) by solving Eq. (35).

The methodology of presetting aD is discussed in the simulation section.

4.2.2. Design procedure for a PVM system

1. Set Bx and Bv from the sensor performance.

2. Preset aD based on the approximate target acceleration.

3. Determine α; β;θ
� �

by solving Eq. (37).

4. Determine (a, b, c) from α; β;θ
� �

using Eqs. (28)–(30).

4.2.3. Notes on computation in the proposed strategy

With respect to the proposed strategy, note that:

• Eqs. (35) and (37) can be solved by gradient descent with several initial values. This is

because that the parameter searching range is narrow due to the stability conditions.

• The proposed design process is only carried out once before using the Kalman filter.

Although the computational cost of the above optimization process is not small, it does

not affect the Kalman filtering process.

4.3. Discussion on preset parameter aD

Here, the appropriate presetting for aD in practical use is discussed. The covariance matrix of

process noise Q determined by the proposed strategy is only optimal when aD is matched to

the target acceleration and the target is moving with constant acceleration corresponding to aD.

However, using the proposed strategy, the tracking accuracy is always better than when using

conventional models as verified in Ref. [3]. Consequently, the proposed method achieves

sufficient accuracy, even if aD is not matched to the true target acceleration. This means that

the relatively small difference between the true and preset acceleration is acceptable. Thus, in

practical use, we estimate an approximate or a typical value for the acceleration (e.g., mean

and maximum) in advance based on the assumed motion of the target and then set aD by using

this estimated value. The example application presented in Section 6 assumes the approximate

maximum acceleration of the target is known and is used for the Kalman filter design.

Thus, target acceleration information is required for accurate Kalman filter tracking by using

the proposed strategy. As a method to obtain an approximated acceleration, communications

between the tracking systems and the accelerometers embedded in targets can be considered.

Many sensing targets have acceleration sensors; for example, robots and vehicles have inertial

sensors, and humans have accelerometers embedded in smartphones. Soon, Internet of Things
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technology will make data communications between robots, smartphones, and radar possible.

Thus, we can obtain approximated acceleration based on this novel technology.

5. Theoretical steady-state performance analysis

This section presents theoretical performance analyses of the Kalman tracking filters by using

the proposed design strategy. With respect to POM systems, our previous study [3] verified the

effectiveness of the proposed strategy by comparison with a conventional random acceleration

model based filter design. Thus, the RMS indices for the following filters are compared:

• Optimal POM filter: the Kalman filter for the POM system designed using the strategy

mentioned in Section 4.2.1.

• Optimal PVM filter: the Kalman filter for the PVM system designed using the strategy

mentioned in Section 4.2.2.

• RA filter: the Kalman filter for the PVM system with the RA process noises by using

optimal σq with respect to the RMS index.

The comparison of the optimal PVM filter with the RA filter indicates the effectiveness of the

proposed strategy (i.e., considering the arbitrary covariance matrix of the process noise Qgen)

and the comparison of the optimal POM and PVM filters illustrates the enhancement of

tracking accuracy by using the velocity measurements in the proposed strategy. This section

assumes that Bx and T are normalized to 1.

Figure 1 shows the relationship between the design parameter aD and the minimum RMS

index εp,opt for Rxv = 1 (Figure 1 left) and Rxv = 10 (Figure 1 right). It can be seen that the

optimal PVM filter achieves the best performance. This result verifies that the proposed strat-

egy determines steady-state gains corresponding to a better covariance matrix of process noise

than the RA model. The optimal PVM filter also achieves better performance compared with

the optimal POM filter even for Rxv ¼ 1, which means that the measurement accuracy of the

Figure 1. Analytical relationship between aD and εp,opt(Rxv ¼ 1 (left), Rxv ¼ 10 (right)).
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position and velocity is the same. The addition of the velocity measurements effectively

enhances the tracking accuracy. Furthermore, when the velocity measurement accuracy is high,

the optimal PVM filter achieves greater accuracy than the POM filter.

Figure 2 shows the relationship between Rxv and εp,opt for a
2
D ¼ 0:01 (left) and 0.1 (right). Both

cases exhibit the same trend. For both optimal PVM and RA filters, better performance is

achieved with better velocity measurement accuracy. The performance of the optimal PVM

filter is better than that of the optimal POM filter including relatively small Rxv (the velocity

measurement accuracy is low). In contrast, the performance of the RA filter is worse than that

of the optimal POM filter for small Rxv because the covariance matrix is limited to Eq. (14).

Moreover, by comparing the two insets of Figure 2, we see the greater effectiveness of the

proposed strategy for relatively large aD.

6. Application to radar tracking simulation

Finally, this section provides an example of the Kalman filter tracker designed with the

proposed strategy in a realistic application, namely, pulse Doppler radar tracking.

6.1. Simulation setup

We simulated the pulse Doppler radar tracking of a maneuvering target and compared the

tracking errors of the filters assumed in the previous section. Figure 3 shows the simulation

scenario and the true target acceleration. The true target position is xtk; ytk
� �

¼ kTð Þ2; 20þ
�

kTð Þ1:5 cos πkT=5ð ÞÞ. Two-dimensional tracking in the x-y plane of the point target is assumed.

We consider two pulse Doppler radars located at (x, y) = (0.5 m, 0) and (1.0 m, 0). The sampling

interval T is 100 ms, and the observation time is 4 s. The transmitted signal is a pulse with

central frequency of 60 GHz and bandwidth of 500 MHz. The received radar signals are

calculated using ray tracing with the addition of the Gaussian white noise. The radar measure-

ment parameter depends on the system under consideration: the POM system assumes the

measurement of the position by using ranging results, and the PVM system assumes the

position and velocity measurements where the position measurement is the same as the POM

Figure 2. Analytical relationship between Rxv and εp,opt (aD ¼ 0:01 (left), aD ¼ 0:1 (right)).
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system, and the velocity measurement is based on the Doppler shift with the method

presented in Ref. [18]. We determine a variance for this noise to set Bx ¼ 9� 10�4 m2 and

Bv ¼ 0:09 m2/s2. In these settings, Rxv ¼ 1. These values are the averages along the two axes.

Using the RMS prediction error calculated from 1000 Monte Carlo simulations, the perfor-

mance is defined as

εk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1000

X

1000

m¼1

xtk � xpmk

� �2
þ ytk � ypmk

� �2
� 


v

u

u

t (39)

where xpmk and ypmk are the predicted positions in the mth Monte Carlo simulation.

6.2. Implementation of Kalman filter

First, the implementation of the Kalman filters for two-dimensional system is presented. The

implementation of a two-dimensional optimal POM filter is as follows:

xt ¼ xt vxt yt vyt
� �T

(40)

Φ ¼

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

0

B

B

B

B

@

1

C

C

C

C

A

(41)

H ¼

1 0 0 0

0 0 1 0

 !

(42)

R ¼
Bx 0

0 Bx

� �

(43)

Figure 3. Simulation setting (simulation scenario (left), true target acceleration (right)).
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Q ¼

aopt bopt 0 0

bopt copt 0 0

0 0 aopt bopt

0 0 bopt copt

0

B

B

B

@

1

C

C

C

A

(44)

where vyt is the true velocity in the y-axis and aopt; bopt; copt
� �

is optimized (a, b, c), calculated

using the procedure in Section 4.2.1. xt and Φ of a two-dimensional PVM filter are the same as

for a POM filter. H and R are

H ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

(45)

R ¼

Bx 0 0 0

0 Bv 0 0

0 0 Bx 0

0 0 0 Bv

0

B

B

B

@

1

C

C

C

A

(46)

In addition, the formulation of Q is the same as in Eq. (43) and aopt; bopt; copt
� �

is calculated

using the procedure in Section 4.2.2. A two-dimensional RA filter is the same as the optimal

PVM filter, with the exception of Q. Q of the RA filter is

Qra ¼

T4=4 T3=2 0 0

T3=2 T2 0 0

0 0 T4=4 T3=2

0 0 T3=2 T2

0

B

B

B

@

1

C

C

C

A

σ
2
q (47)

Next, the design for an appropriate aD is presented. We presume an approximate prediction of

accelerations. For instance, when the maximum acceleration of the target in Figure 3 is

predicted to be approximately ac ¼ 3 m/s2, aD is then 1.0, from Eq. (34). Using this aDand the

radar settings described in the previous section, we have aopt; bopt; copt
� �

for each filter.

6.3. Results and discussion

Figure 4 shows the simulation results. Clearly, the filters using velocity measurements achieve

greater accuracy than the optimal POM filter. The mean steady-state prediction RMS errors

(E εk½ � in 2 s < kT) of the optimal POM, RA, and optimal PVM filters are 0.59, 0.46, and 0.19 m,

respectively. These results indicate that the proposed strategy achieves greater accuracy than

the conventional RA filter even in realistic situations. The mean RMS error of the optimal PVM

filter is 41% of that of the RA filter. This is because the RA model cannot track the abrupt

motion of the high-maneuvering target because of limitations in expressing the process noise.

In contrast, the optimal PVM filter can set gains corresponding to the appropriate process
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noise to accurately track high-maneuvering target. Moreover, the mean RMS error of the

optimal PVM filter is 32% of the error in optimal POM filter, and this clearly indicates the

effectiveness of the velocity measurement, even when Rxv ¼ 1 (when the measurement reli-

ability of the position and velocity are the same). These simulation results are consistent with

the theoretical analyses presented in Figure 1.

7. Final remarks

7.1. Conclusions

In this chapter, the efficient steady-state performance index, known as the RMS index, was

introduced for both POM and PVM Kalman filters for systems that track moving objects.

Automatic design (preset) of the covariance matrix of the process noise Q, to realize optimal

position prediction, was achieved using the analytical relationship between Q and the RMS

index. The validity of the proposed design strategy was shown via analyses and simulations.

These results verified that the proposed index attained accurate tracking when compared with

the conventional RA-model-based Kalman filter design. A simulation of a realistic situation

indicated that the optimal performance given by the proposed strategy is 41% better than that

given by the conventional design procedure for a PVM system. Moreover, the optimal perfor-

mance of the optimal POM and PVM Kalman filters was compared showing that the optimal

PVM Kalman filter is accurate when compared with the POM filter in a steady state.

7.2. Future works

The most important future objective is the extension of the RMS index-based design strategy

to the third-order (and higher order) Kalman filters that are widely used for real applications.

In third-order tracking, an acceleration is added to the state vector, becoming one of the

input parameters of the Kalman filter. Performance analysis and the establishment of a design

Figure 4. Simulation results.
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strategy for such systems (i.e., position/acceleration and position/velocity/acceleration mea-

sured Kalman filters) are important considerations for advanced sensor fusion systems

under development. Moreover, considerations of other dynamic models (e.g., the constant

turn model) should also be probed for use in many applications including pedestrian tracking.

A. Appendix

A.1. Derivation of Eqs. (28)–(30)

Because we assume a steady state, the index k of all parameters and matrices is omitted in the

following calculations. The ith row and jth column of a matrix P are denoted as Pi, j.

Eq. (11) is also written using bP as

K ¼ bPHTR�1 (48)

As indicated in Eq. (7), H of the PVM Kalman filter is the identity matrix. Thus, from Eq. (48),

the relationship between the Kalman gains and the error covariance matrix in the estimated

state bP is calculated using Eqs. (8) and (24) as

bP ¼ KR ¼
αBx TηBv

βBx=T θBv

� �
(49)

With P1,2 ¼ P2,1 and Eq. (31), we have the following relationship:

η ¼ β
Bx

T2Bv

¼ βRxv (50)

Eq. (50) is equal to Eq. (32), showing that this relationship is satisfied in the assumed PVM

Kalman filter without depending on the process noise. bP is also calculated using Eq. (13) by

substituting Eqs. (7) and (24) as

bP ¼
1� αð Þ~P1,1 � Tη~P1,2 1� αð Þ~P1,2 � Tη~P2,2

1� θð Þ~P1,2 � β=T
� �

~P1,1 1� θð Þ~P2,2 � β=T
� �

~P1,2

 !

(51)

Elements of ~Pare required to calculate Eq. (51) and are calculated using Eqs. (3), (12), and (18) as

~P ¼
P1,1 þ 2TP1,2 þ T2P2,2 þ a P1,2 þ TP2,2 þ b

P1,2 þ TP2,2 þ b P2,2 þ c

 !

(52)

Substituting Eq. (52) into Eq. (51), and comparing elements of Eq. (49), we have the following

linear system:
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αBx ¼ 1� αð Þ αBx þ 2ηT2
Bv þ θT2

Bv þ a
� �

� ηT ηTBv þ θTBv þ bð Þ (53)

βBx=T ¼ 1� αð Þ ηTBv þ θTBv þ bð Þ � ηT θBv þ cð Þ (54)

θBv ¼ 1� θð Þ θBv þ cð Þ � β=T
� �

ηTBv þ θTBv þ bð Þ (55)

Solving this linear system with respect to (a, b, c) and substituting Eq. (50) into the solutions,

we arrive at Eqs. (28)–(30).
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