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Due to its widespread application in the robotics field, the Kalman filter has received increased attention from researchers. This
work reviews some of the modifications conducted on to this algorithm over the last years. Problems such as the consistency,
convergence, and accuracy of the filter are also dealt with. Sixty years after its creation, the Kalman filter is still used in
autonomous navigation processes, robot control, and trajectory tracking, among other activities. The filter is not only restricted
to robotics but is also present in different fields, such as economics and medicine. In addition, the characteristics of each
modification on this filter are analyzed and compared.

1. Introduction

Over the last 20 years, several articles on the use of Kalman
filter have been published, with numerous variations and
contributions to solve specific problems, particularly con-
cerning robotic systems. This filter has multiple applications,
for example, in the car, military, and biomedicine industries.
Therefore, it is not limited to the engineering field but also
employed in economic systems.

The KF (Kalman filter) developed by Rudolf E. Kalman [1]
in 1960 is an algorithm for the estimation of nonobservable
state variables based on observable variables that may have
some measurement error. In other words, it enables identifying
the hidden (nonmeasurable) state of a dynamic linear system in
the same way as the Luenberger observer but also works when
the system is subject to additive white noise [2]. Since this filter
is a linear and optimal estimator, from the least-squares per-
spective, and due to its widespread use in problem solving, it
became necessary to extend its use to nonlinear systems.

In 1960, Dr. Kalman introduced its known publication
[1] to Dr. Schmidt from the ARC (Ames Research Center)
and to other researchers who were working on midcourse
navigation and guidance for the circumlunar mission from

1959. The problems these researchers were dealing with
were modeled through nonlinear systems, but the filter used
was linear. However, Kalman’s proposal was interesting to
these researchers as the new filter could be adapted and used
not only as a solution for their problems but also to mitigate
computation calculation problems in IBM 704 computers.
Back then, such problems could not be solved by the Weiner
filter as this conducted estimations that restricted severely
the observation of the system or destroyed inherent preci-
sion, even though it had been used in guidance and naviga-
tion for beamrider and homing missiles.

Later, studies about KF conducted by the Dynamic Analysis
Branch of NASA—headed by Dr. Schmidt—undoubtedly were
fundamental to the emergence of what today is known as the
EKF (Extended Kalman Filter). Thanks to these studies and
their first major application, the following was achieved [3]:

(1) A demonstration of the adaptability of Kalman orig-
inal theory to nonlinear problems

(2) The development of EKF, which reduces the effects of
the problems arising in nonlinear systems after con-
ducting a linearization over the best real state
estimation
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(3) The decomposition and reformulation of the original
Kalman algorithm in separate time-update and
measurement-update portions so measurements
could be processed at any arbitrary time interval

(4) Showing the potential of the Kalman filter through
its application in a full digital simulation that solved
a nonlinear orientation and navigation problem that
occurs on a spaceship

(5) The dissemination of results from the simulation
conducted at the MIT Instrument Laboratory for
their possible incorporation into the control and
navigation system of the Apollo spacecraft

(6) The dissemination of information about the Ames
Kalman filter to a large number of scientific and
aerospatial units through presentations and formal
work

The EKF extension is achieved using Taylor’s approxima-
tion, through which a nonlinear system can be linearized
employing estimation techniques. This algorithm is a very
powerful tool for positioning: it can accept different types of
data, solve a large number of parameters, and produce reliable
and accurate results [4]. Both the KF and the EKF are used in
robotics, where they are applied in trajectory tracking, position
estimation for manipulator robots, SLAM (Simultaneous
Localization and Mapping), and object detection, among
others, depending on the linearity or nonlinearity of the
model. The flexibility of this algorithm has enabled the inte-
gration of information from different types of sensors and
techniques such as odometry, GNSS (Global Navigation Satel-
lite System), laser and ultrasonic sensors, and recently, artifi-
cial vision, making it possible to answer the fundamental
questions of autonomous navigation: Where am I? Where
am I going? And how do I reach my destination?

The Kalman filter is better than other algorithms used
for estimation due to the small room it needs for storage
and its wide variety of uses. However, the impact on the
environment surrounding it, errors from measuring equip-
ment, and incorrect parameter selection usually cause sys-
tem errors in real applications [5]. Researchers have
developed different variants or modifications in the last
years. These modifications are aimed at solving the problems
the algorithm presents due to the increase in the complexity
of the equipment in which is applied, and also owing to the
accuracy and efficiency that manufacturing, medicine elabo-
ration, and navigation, among other processes, need nowa-
days. An analysis of the systems in which the Kalman filter
or its modifications have been employed is proposed in this
work, emphasizing that the main advantages of the KF and
its variants are its simplicity and capability to provide
accurate estimations and prediction results.

This work addresses the different modifications made to
the KF across time, as well as the diverse problems that these
modifications have solved, and the original filter failed to
deal with. Additionally, some applications for KF/EKF mod-
ifications in robotics are presented. This work is divided into
five sections. Section 2 introduces the structure of the Kal-

man filter and its extensions to nonlinear systems. In Section
3, different modifications are described, and Section 4 ana-
lyzes different applications of the KF. In Section 5, some
comparisons and conclusions are drawn.

2. Kalman Filter

2.1. Kalman Filter for Lineal Systems. The KF is an algorithm
that requires two types of equations: one type links state var-
iables to observable variables (main equations), while the
other determines the temporary structure of state variables
(state equations).

Estimations of state variables are conducted based on the
dynamics of these variables (time dimension), as well as on
the measurements of observable variables obtained at each
time instant (transversal). In other words, the dynamics are
summarized in two steps as follows:

(i) Estimation of state variables using their own dynam-
ics (prediction stage)

(ii) Improvement of the first estimation using informa-
tion from observable variables (correction stage)

An attractive characteristic of this methodology is its
recursion, which implies that it can be used in real time.
Once the algorithm predicts the new state at moment t, it
adds a correction term, and the new “corrected” state serves
as an initial condition at the following stage, t + 1. In this
way, the estimation of the state variables uses all the infor-
mation available up to that moment and not only that of
the stage before estimation (this is known as “signal
extraction”).

Given the linear process represented by

xk = Axk−1 + Buk +wk−1, ð1Þ

and the measurement equation:

zk =Hxk + vk, ð2Þ

where the independent, white, Gaussian distributed process
noise and measurement noise are pðwÞ ∼Nð0,QÞ, pðvÞ ∼N
ð0, RÞ.

The KF represents a belief or trust in the xk state at time
k that is given by the mean, x̂−k , and the P−k covariance. The
entry received by KF is the belief in time k − 1, represented
by x̂k−1 and Pk−1. To update such a belief, the KF also
requires control signals (uk) and the environment observa-
tions provided by the sensors (zk). The output of the KF
would be the belief in the time instant k, represented by x̂k
and Pk.

Kalman filter stages:

(i) Prediction stage

x̂−k = Akx̂k−1 + Buk, ð3Þ

2 Journal of Sensors



P−k = AkPk−1A
H
+Qk

ð4Þ

(ii) Update stage

Kk = P−kH
H
k HkPkH

H
k + Rk

� �

−1
, ð5Þ

x̂k = x̂−k + Kk zk −Hkx̂
−

kð Þ, ð6Þ

Pk = I − KkHkð ÞP−k ð7Þ

Equations (3), (2), (3), (4), and (7) show the steps of the
KF algorithm, which are explained in the following:

Prediction stage: the state and covariance of the error are
projected in the current instant t. It is the sum of instant
t − 1, which was generated from the instant before the cur-
rent, to the system.

Update stage: observed characteristics are considered in
this stage. Using the estimation obtained in the prediction
stage, the location of the characteristic can be estimated so
the system can be corrected. The addition of new character-
istics to the map allows for later reobservation. This can be
carried out using information about the current characteris-
tics of the system and adding information about the relation-
ship between new and old characteristics.

Defining the matrices that appear in equations (3)–(7):
Ak: matrix n × n that relates to the state in instant t − 1

and state in instant t, in the absence of control signals.
Bk: matrix n × l that relates control signals, optional, to

the current state.
Qk: matrix n × n that represents the covariance of the

process noise, or a constant.
Hk: matrix m × n that relates the current state to the

environment observations.
Rk: matrix m ×m that represents the covariance of the

observations noise.
Kk: matrix n ×m that represents the Kalman gain. The

Kalman gain indicates the trust in the observed characteris-

tics. To this end, the uncertainty of these observed character-
istics together with a measurement of data quality.

The Kalman filter has numerous applications in technol-
ogy. A common application is the guidance, navigation, and
control of vehicles, especially aircrafts and exploration
robots. In addition, this filter is also widely used in signal
processing and econometrics.

In other words, the KF combines measurements and
predictions to find the optimal state. Figure 1 presents
an example of how these two characteristics are related,
in order to find the position of a vehicle using GNSS
for localization. In this figure, an automobile is initially
in the x̂k−1 position and the function describing this posi-
tion is given by a function representing some uncertainty,
which ensures that most time, the vehicle is in the mean
of such a distribution. The first stage of the KF is known
as prediction and consists of calculating the a priori x̂−k
estimated state and the P−k covariance error. In Figure 1,
an increase in uncertainty is observed, which is repre-
sented by higher invariance; this increase may be due to
the fact that the automobile may have found a pothole
on the road or that its tires simply slipped slightly
between the x̂k−1 and x̂−k instants. To obtain the current
position of the automobile, complementary information
is gathered through the measurements of sensors yk and
variance, which is represented by the noise associated
with each of these measurements. After calculating the
x̂−k prediction, the P−k covariance, and the measurements
for yk, the optimal form of calculating the real position
of the automobile is by combining both pieces of infor-
mation (multiplying both functions), which yields a new
Gaussian function with a Pk variance lower than previous
one due to the use of the Kk Kalman gain. The calcula-
tion of this Kalman gain gives the current position of
the automobile, as well as the mean of the represented
function, in which the automobile x̂k should be at instant
k that is calculated by the Kalman filter at the update or
correction state.

To better understand the operation of this filter, an
application example will be presented in the second-order
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Initial state estimate
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Figure 1: Estimation of vehicle position using the Kalman filter.
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model of a Direct Current (DC) motor like the one in [6].
The continuous-time state variable model of the DC
motor is

A =

−Rm

Lm

−Kb

Lm

K t

Jm

−Bm

Jm
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" #

,

ð8Þ

where Ia is the armature’s current and φ is the speed of
the DC motor. The motor parameters are represented by
an armature resistance of Rm = 2:06 ohm, armature induc-
tance of Lm = 0:238mH, a Back EMF constant of Kb =

0:02352Vs/rad, a torque constant of K t = 0:0235Nm/A, a
rotor inertia of Jm = 1:07e−5, and a mechanical damping
factor of Bm = 12e−7. Calculating values and then substitut-

ing them in the continuous-time state variable model, it is
obtained that

_Ia

_φ

" #

=
−8655:462 −98:825

21962:616 −1:121

" #

Ia

φ

" #

+
4201:68

0

" #

u,

z = Ia:

ð9Þ

The continuous-time state (Ia and φ) response in
MatLab/Simulink for a 12V input is shown in Figure 2.

Considering a sampling time of 0.0001 seconds and
using the zero-order hold discretization method, the result-
ing discrete-time DC motor model is

_Ia kð Þ

_φ kð Þ

" #

=
0:4146 −0:0066

1:4643 0:9916

" #

Ia k−1ð Þ

φ k − 1ð Þ

" #

+
0:2802

0:3521

" #

u k − 1ð Þ:

ð10Þ

To use the KF, it will be assumed that the armature cur-
rent in the DC motor was measured with an error of 0.2A
(standard deviation). In addition, in the 12V input, a noise
of 1.1V (standard) is considered.
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Figure 2: Response of armature current and speed of the DC motor when applying 12V.
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Now, to obtain the Q and R matrices, the standard devi-
ation of the noise is considered to be 0.2. Therefore, the R
matrix will simply correspond to 0:22 = 0:04. In turn, to
obtain Q, since the armature current is proportional to
0.2802 times the voltage applied to the motor, and the noise
of applied voltage is 1.1V, then the noise variance in the
armature current will be ð0:2802Þ2 · ð1:1Þ2 = 0:095, approxi-
mately. Additionally, if the speed of the DC motor is propor-
tional to 0.3521 times the voltage applied, the variance in the
noise of this speed will be ð0:35212Þ · ð1:12Þ = 0:15. Finally,
the covariance of the armature current noise and the noise
in the speed of the DC motor will equal the standard devia-
tion of the armature current noise times the noise of the DC
motor speed, i.e., ð0:2802 · 1:1Þ · ð0:3521 · 1:1Þ = 0:1194.
Afterwards, it is possible to express this as the following
matrix:

R = 0:4,

Q =
0:095 0:1194

0:1194 0:15

" #

:

ð11Þ

Additionally, the influence of the variation in Q matrix
(covariance matrix for process noises) on the KF estimation
is analyzed, for which a factor—whose initial value is 1—that
divides this matrix is included. Subsequently, this factor is
substituted for 5, 10, and 100, which improves considerably
the estimated state of both armature current and speed of
the DC motor, as shown in Figures 3 and 4, respectively.
Consequently, when comparing these results with those in
Figure 2, an excellent approximation to the ideal result,
which corresponds to the real system’s response, is achieved.

Figure 5 shows the difference existent between the pre-
diction and correction stages of the armature current of
the DC motor.

2.2. Extended Kalman Filter for Nonlinear Systems. As pro-
posed above, Kalman is an estimation method whose param-
eters are corrected for each iteration, depending on the
prediction error of the previous iteration [3]. The algorithm
for the extended Kalman filter can be described in the same
recursive steps of the linear Kalman filter, i.e., prediction and
correction, with the particularity that Taylor linearization is
conducted during prediction as shown in the following:

xk = a xk−1, uk,wk−1ð Þ,

zk = h xk, vkð Þ:
ð12Þ

Linearizing the process equation and the measurements,
we have

Ak =
∂a

∂x
x̂k−1, uk, 0ð Þ,

Wk =
∂a

∂w
x̂k−1, uk, 0ð Þ,

Hk =
∂h

∂x
x̂−k , 0ð Þ,

Vk =
∂h

∂v
x̂−k , 0ð Þ,

x̂t = a x̂k−1, uk, 0ð Þ,

ẑt = h x̂k, 0ð Þ,

ð13Þ

where

x̂−k = f x̂k−1, uk−1, 0ð Þ,

P−k = AkPk−1A
H
K + VkQk−1V

H
k ,

ð14Þ

with A and W being the Jacobian matrices of the partial
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Figure 3: Effect of the factor that acts on Q in the estimation of armature current.
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derivatives of function f , and H and V corresponding to the
Jacobian matrices of the partial derivatives of function h:

Kk = P−kH
H
k HkP

−

kH
H
k + VkRV

H
k

� �

−1
,

x̂k = x̂−k + Kk zk − h x̂−k , 0ð Þð Þ,

Pk = I − KkHkð ÞP−k :

ð15Þ

It is well known that the KF assumes a Gaussian distri-
bution. Therefore, if the transition function is linear, the dis-
tribution resulting from the application of the linear
transformation will preserve the Gaussian characteristics,
as shown in Figure 6. However, if function f ðxÞ is nonlinear,
the response—after the linear transformation—may be non-
Gaussian, and therefore, the KF may not converge with the
solution, as shown in Figure 7.

According to the above, the EKF should be employed to
linearize the nonlinear function over the current state mean,
as shown in Figure 8. In this way, at any time instant, linear-
ization is conducted locally, and the resulting Jacobian
matrices are used in the prediction and correction stages.
This extension of the Kalman filter delivers good results in
state estimation when the nonlinear system is approximated
well by linearizing it.

However, the use of the EKF has some inconveniences,
such as the following:

(i) Estimation is not optimal if the system is highly
linear

(ii) The EKF can only be used in systems that have a
differential system

(iii) Jacobians are hard to calculate analytically

(iv) The numerical calculation of Jacobians has higher
computational requirements

After the analysis of the inconveniences associated with
the use of the EKF, the following section presents modifica-
tions made on the KF to improve its performance.

3. Kalman Filter Modifications

Since its creation, the Kalman filter has been modified sev-
eral times in order to provide a better response, solve some
operational limitations, and tackle more complex problems,
as shown in Table 1. There are two main directions for the
modifications of this algorithm: using the extended version
or employing nonsense transformation. Some modifications
are described in the following.

Some publications have denominated the EKF Kalman-
Schmidt filter due to the contribution of Dr. Schmidt to
the development of the extension of the KF. However, the
specific Kalman-Schmidt filter was created in 1966 [7]. This
filter was developed to reduce the dimensionality of the state
estimation without overlooking the effects of the additional
state on the calculation of the covariance matrix and Kalman
gains. One of the main advantages offered by this modifica-
tion is reducing computational requirements. In turn, when
residual biases are unobservable, i.e., when the effects of
residual biases cannot be separated from the measurement,
the Kalman-Schmidt filter offers a robust solution by not
attempting to estimate the values of these biases but only fol-
lowing their bias effects across the distribution of the real
error. Nevertheless, over the years, this modification has
been updated to improve its performance under different
circumstances.

In the engineering field, most of the problems to be
solved have nonlinear characteristics. This is one of the
major shortcomings of EKF, which performs a linear treat-
ment of a set of equations that are not linear. The mecha-
nism employed by the EKF therefore leads to a series of
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Figure 4: Effect of the factor that acts on Q in the estimation of DC motor speed.
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approximation problems, which are mainly reflected in an
inaccurate estimation of the covariance of the real stochastic
process [8, 9]. An improvement in this sense is achieved
through the use of the UT (Unscented Transform) [10], cre-
ating the UKF (Unscented Kalman Filter), which is based on
the premise that it is easier to approximate a probability dis-
tribution than an arbitrary linear transformation. This mod-
ification consists of selecting a group of deterministic points
in the state space, called sigma points to capture some of the
inherent properties of the distributions to be estimated. To
observe the use of this method in a graphic way, Figure 9
shows a simple illustration of a bidimensional system; on
the left are the real media and covariance propagation using
Monte Carlo sampling; on the center are the results of the
EKF linearization approach; on the right is a performance
scheme of the new sampling approach, which only requires
5 sigma points.

Most physical systems have natural symmetries (or
invariance), i.e., there are transformations that leave the sys-
tem unchanged. From a mathematical and engineering point
of view, it makes sense that a well-designed filter for the sys-
tem under consideration should retain the same invariance
properties [11]. The IEKF (Invariant Extended Kalman Fil-
ter) is a modification of the EKF equations that takes
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Figure 5: Estimation of armature current during the prediction and correction stages.
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Table 1: Modifications to the KF.

KF
EKF UKF Others

IEKF AUKF KKF

AEKF DUKF CDKF

AREKF SRUKF DKF

Q-EKF EKF-SLAM

OC-EKF UKF-SLAM

SO-EKF CDKF-SLAM

RI-EKF CV-SLAM

K-mean clustering KF
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advantage of the system symmetries [12]. Therefore, the
IEKF has the same advantages as the EKF but also retains
the invariance properties of the systems. Instead of using a
linear correction term based on a linear output error, the
IEKF uses a geometrically adapted correction term based
on an invariant output error; likewise, the gain matrix is
not updated from a linear state error, but from an invariant
state error. The main benefit is that the gain and covariance
equations converge with constant values over a much larger
set of trajectories than equilibrium points; this is the case for
the EKF, which results in better estimation convergence.
Since its development, the IEKF has been implemented at
the industrial level for drone navigation and has proven a
solution to a major issue of the EKF when applied to
SLAM [13].

Different modifications have been conducted to enhance
the adaptability of the EKF, for example, its adaptive filter-
ing. This type of filtering is based on the determination of
the dynamic system’s statistical parameters according to
the system’s behavior during data processing [14, 15]. One
of the problems associated with mobile robot localization is
error accumulation; to solve or minimize this issue, [15] pro-
poses a variation of the EKF known as AEKF (Adaptive
Extended Kalman Filter). This variant employs Taylor’s
series in sampling time as an estimator of variable noise over
time, and the Sage-Husa method to estimate the observation
noise in real time. In this way, the linearization error is cor-
rected and adaptability improves.

The KKF (Kinematic Kalman Filter), a modification of
the EKF, stands out because of its simplicity in representing
the system using the kinematic model. This modified filter
exhibits two great advantages: it is an accurate representa-
tion of the system states without involving physical parame-
ters and external disturbances, and its kinematic model is
very suitable for the Kalman filter theory [16].

The square root form of the UKF (SRUKF (Square Root
Unscented Kalman Filter)), developed in [17], is the logical
replacement for the EKF in state and parameter estimation
applications. This variation includes three powerful linear

algebra techniques that have excellent numerical properties,
namely, QR decomposition, the Cholesky update factor, and
efficient least squares. Thanks to these properties, the posi-
tive semidefiniteness of the underlying state covariance can
be guaranteed, having a lower computational effort than
the UKF in parameter estimation [18].

Another modification conducted on this filter is the use
of the quaternion, which improves the usual linearization
procedure and its associated approximation errors. How-
ever, the inherent nonlinearity of the quaternion vector mea-
surement is present in the quaternion-dependent noise but
has no effect on the filter performance, which led to the cre-
ation of the QKF (Quaternion Kalman Filter) [19]. This var-
iation has derived new filters, such as the DQEKF (Dual
Quaternion Extended Kalman Filter) and the QVEKF (Qua-
ternion Vector Extended Kalman Filter) presented in [20];
the main difference between these variations is that the rela-
tive pose in the latter is expressed by a quaternion-vector
pair and in the DQEKF by a dual quaternion.

In [21], the algorithm OC-EKF (Observability Constrained
Extended Kalman Filter) is introduced. This algorithm was
developed to improve the precision and consistency of the iner-
tial navigation system, based on its observability properties. The
improvement is made by removing false information along
unobservable directions of the estimator.

Nørgaard et al. [22] and Ito [23] exposed and proved the
central difference filter theory and created the CDKF (Cen-
tral Difference Kalman Filter). This variation of the Kalman
filter uses Sterling’s formula for polynomial interpolation to
estimate covariance, and its main advantage is that it spares
the calculation of the Jacobian matrix or the linear approxi-
mation for the nonlinear model. Other research has sug-
gested using this technique to improve the EKF, which has
continued to evolve, leading to the creation of the SOCDKF
(Second Order Central Difference Kalman Filter). The latter
employs a second-order truncated Stirling interpolation to
estimate posterior covariance, so that the approximation
accuracy of the posterior mean and autocovariance can
reach the first two elements of the UT transform [24].
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True mean
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EKF covariance
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Figure 9: Example of media and covariance propagation using three different approaches.

8 Journal of Sensors



The DEKF (Dual Extended Kalman Filter) is presented in
[25]. In this variant, two extended Kalman filters are run
simultaneously, one for state estimation and another for
weight estimation. By transforming the weighting filter into
an observed error form; all developed cost functions are min-
imized. Overall, the dual EKF algorithm represents a sequen-
tial approach that is applicable to both linear and nonlinear
models and that can even be used in the presence of white or
colored noise measurement. In addition, this algorithm has
been extended to provide an estimate of the noise variance
parameters, which is crucial in very many applications.

Another variation of the KF is carried out in [26] where
the algorithm “K-means clustering” is used together with
the EKF to decompose the state space of mobile robots.
This decomposition is one of the fundamental problems
to build a map and move and locate a robot in an unknown
environment. The contribution of the authors is that this
method takes the values returned by the EKF and passes
them onto an algorithm that is capable of creating a group
of coordinate sets (x; y), which are the obstacles or invalid
map zones, in order to build the map of the environment
where the robot moves.

The information used by the KF is key for good perfor-
mance. In robotics, this information originates from the
measurements of different sensors equipped in robotic sys-
tems. Although the KF and its variants offer an optimal solu-
tion for the problems they are applied to, synchronous
measurements are required in most cases. This is because
the response of the KF can degrade or diverge when incom-
plete system information or measurements from asynchro-
nous systems are employed. In turn, in most practical
applications, the Qk and Rk covariance matrices are initially
estimated or unknown in many cases; in addition, poor esti-
mations of noise input to the system can affect the perfor-
mance of the KF. Considering the above, the authors of
[27] propose to use the AFEKF (Adaptive Fading Extended
Kalman Filter), which included a Ck innovation covariance
that is affected at several times by unaccounted errors, or
nonmodeled dynamics. Therefore, [28] uses the AFEKF to
design a fault-tolerant navigation system since the filter con-
siders the effect of unaccounted errors of the system model.
The modification proposed in [27] considers that the mea-
surement equation is not known accurately and thus the
estimation error and the innovation covariance may also
increase due to the effect of unknown information, as
explained above. By not including the errors not accounted
for in the dynamic equation, the innovation covariance
experiences an increase caused by the augmented measure-
ment covariance instead of the predicted error covariance.
However, the effects of excluding errors unaccounted for
are compensated in the measurement equation by the reduc-
tion of Kk magnitude, which implies less dependence on the
measurement information. This variant of the AFEKF is
known as AFEKF with Kk rescaling.

In [29–31], several works conducted on the KF and that
converge in the creation of the DKF (Distributed Kalman
Filter) are presented. The DKF is an algorithm composed
of a MKF (Micro Kalman Filter) network in which each filter
is integrated through a low-pass and a band-pass consensus

filter. This MKF network is able to provide a state estimation
of the process observed that is identical to the estimation
obtained from a central KF as all the nodes converge in
two central sums. Consensus filters can approximate these
sums and yield an approximated distributed Kalman filter
algorithm for the sensor network. The function of consensus
filters is to fusion data from the sensor with the covariance
obtained from each node. Specifically, [31] presents a mod-
ification of the original DKF, as this could not be used in
sensors with different nonlinear detection models. There-
fore, thanks to this modification, better results are obtained
when the analyzed system presents multiple sensors with
different nonlinear models or when a robot team or vehicles
are employed. In [32], a performance comparison of the
DEKF and MCDPF (Markov Chain Distributed Particle Fil-
ter) using a vehicle flocking model is conducted, which dem-
onstrates that the DEKF has a RMSE value lower than that
of MCDPF for simple systems, i.e., with fewer vehicles or
high measurement frequency; however, for complex sys-
tems, i.e., with more vehicles or with lower measurement
frequency, the resulting MCDPF is more accurate and
robust than DEKF.

In some practical situations, system models contain
parameters that may deviate from their nominal values due
to unknown constants or random biases. In turn, unknown
random bias can seriously degrade filter performance and
even make its performance to diverge. This problem can be
solved by using the ASKF (Augmented State Kalman Filter)
proposed in [33, 34], where the bias term is included in the
state vector. However, the use of ASKF imposes extra com-
putational requirements which translates into an increase
in the size of the matrices involved in the filter, causing
numerical problems during implementation, especially in
ill-conditioned systems [35]. In turn, and related to the con-
tributions to the ASKF above, the authors of [36] made two
great advances. First, the system is capable to deal with sev-
eral loops, and second, the system could dynamically opti-
mize data as new data enter the system as this is a
sequential algorithm, instead of waiting for all data to be
processed later as in the case of batch filters.

To tackle the problems faced by the ASKF, the TEKF
(Two-stage Extended Kalman Filter), which expresses opti-
mal estimation as an unbiased filter output and conducts
correction with the filter output containing bias, can be
employed [37]. Recent studies demonstrate that TEKF is
applicable not only under constant bias but also under vari-
able bias [35, 38]. Its use is proposed in nonlinear sys-
tems [39].

In addition, [40] proposes to use the adaptability prop-
erty of TEKF. By using an adaptive fading EKF, unknown
random biases can be estimated based on the relationship
between the covariance of calculated innovation and the
covariance of estimated innovation. This proposal was vali-
dated in an INS-GPS (Inertial Navigation System-Global
Positioning System) loosely coupled system with an
unknown fault bias.

Since EKF is based on statistical linearization or closing
approximation, which is too severe to be useful for all cases,
in these opportunities, one of the filters proposed for dealing
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with strongly nonlinear dynamics is the EnKF (Ensemble
Kalman Filter) [41]. The EnKF is a sequential data assimila-
tion method that uses Monte Carlo methods and offers a
better alternative to employing the approximate error
covariance equation in the EKF, which is extremely demand-
ing in computational terms. This is because integrating a set
of model states forward in time makes it possible to calculate
the mean and error covariances necessary during analysis.
Therefore, the associated numerical calculation implies a
computation time shorter than with the EKF, as in general,
a limited number of these model states is enough to achieve
a reasonable statistical convergence [42]. However, if the
state dimension is large, the EnKF is manageable only when
the set size is maintained at the minimum, which compen-
sates for computational effort. There have been some other
approximations to this filter variant, such as the one intro-
duced in [43], in which the results show that the EnKF can
yield estimates of almost equal quality than optimal KF but
at a fraction of the computation time.

3.1. Comparisons. Due to its widespread use, the KF and its
modifications have been compared with one another and
with filters that do not belong to this family. If KFs were
divided into three big families, these would be represented
by the KF, EKF, and UKF. All the modifications derived
from them, which can be utilized in different models.
Table 2 displays the optimal estimations for each of these
models. The results presented in this table are supported
by diverse studies that measure and compare the perfor-
mance of all the filters cited in [44–49], among others.

In [50], to solve the same problem, GPF (Gaussian Par-
ticle Filter) presents a lower MSE (Mean Square Error); how-
ever, its computation time is longer than that of EKF and
UKF, as shown in Figure 10. Consequently, generally speak-
ing, using GPF may reduce considerably estimation errors,
improving filter accuracy but with longer computation time.
However, to achieve an excellent performance without con-
suming so many resources and computation time, UKF is
the best option.

Several indicators measure the complexity of an algo-
rithm; one of the most widely employed is FLOP (FLoating
point OPerations). This indicator is used in [51] to compare
the EKF and UKF algorithms, demonstrating that UKF
demands about twice the computing time of an equivalent
EKF. The study also proves that the computational complex-
ity of these filters rapidly increases with the size of the sys-
tem model. Thus, when selecting a filter for a task, an
analysis of the resources available needs to be conducted
beforehand, including the required computational effort,
which can be decisive in small applications.

4. Applications of the Kalman Filter in the
Robotics Field

As commented above, the first application of the Kalman fil-
ter and its extension was conducted in the guided navigation
field, specifically in the Apollo space program. Since this
moment, the KF and its variants have been used in a wide
range of tasks, including all forms of navigation (aerospace,
land, and maritime navigation), nuclear plant instrumenta-
tion, demographic models, and manufacture, among others.
Robotics has been one of the fields that has benefited the
most from this filter and its variants in different areas that
range from parameter identification and robot control to
the autonomous navigation of mobile robots.

This algorithm has been used extensively in the field of
robotics thanks to the convenience it provides. In [52], it is
employed to estimate the angular velocity of a motor in
the low-speed range and in the presence of random external
disturbances. At low speeds, accuracy is not high, and speed
has to be measured with an encoder. This is because the fre-
quency of the latter is proportional to the motor speed and
the pulse rate is too low, making the measurement accuracy
low [53]. In this work, the KKF was modified by adding a PI
controller that will only act before random disturbances of
the system that single KKF is not able to reduce. The advan-
tage offered by this KKF variation is that adding propor-
tional action instantly enables continuing the
measurement, while the integral action reduces the station-
ary status error. Despite the excellent results obtained in this
specific work, the system has not been tested on other non-
linear systems.

Several types of robots employ the KF or one of its sub-
sequent modifications in tasks such as determining the posi-
tion and orientation of a vehicle at any moment,
denominated localization, which is crucial to achieve an
autonomous, reliable, and robust navigation. This type of fil-
ter is also used to correct the uncertain position of mobile
robots. This position is estimated based on a set of markers
displayed in a known geometry and combined with the mea-
surements of the inertial sensors [54]. Trajectory or road
tracking is another major area of application for this type
of filter, as well as object and detection and tracking, which
is widely employed as a prediction module for calculating
the movement vectors of objects in motion.

Table 3 presents a summary of the most common appli-
cations of the most widespread variations of the KF in sev-
eral robot types.

The work in [55] proposes using contact-aided RI-EKF
to estimate the state of a legged robot, as shown in
Figure 11. To this end, the filter uses IMU (Inertial

Table 2: Comparison between KF and its modifications.

State estimator Model Assumed distribution Computational effort

Kalman filter Lineal Gaussian Low

Extended Kalman filter Locally linear Gaussian Low or medium

Unscented Kalman filter Nonlinear Gaussian Medium

Particle filter Nonlinear Non-Gaussian High
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Measurement Unit) and contact movement models with
corrections made through direct kinematics; consequently,
this filter can be used to estimate the state of a robot that
has an arbitrary (finite) number of contact points on the
static environment. Although the filter is particularly useful
for legged robots, the same theory can be applied to manip-
ulator robots as long as the points in [55] are verified.
Dynamic simulation is carried out with a biped robot from
the Cassie series (Figure 11), comparing the response of
the RI-EKF (Right Invariant-Extended Kalman Filter)—-
which has initialization errors—to the response of the Q-
EKF (Quaternion-Extended Kalman Filter), which is widely
employed in this type of robots. This simulation can be
divided into two parts: in the presence and in the absence
of IMU. To compare the convergence properties of both fil-
ters, 100 simulations of each filter were conducted using the
same measures, noise statistics, initial covariance, and sev-
eral random initial orientations and speeds. The roll and
pitch estimations, as well as the speed estimations (body
frame), with the inertial measure unit turned off for both fil-
ters, show that the filters converge with the set of initial con-
ditions. However, this seems to indicate that the RI-EKF
converges much faster than the Q-EKF. The same is
observed when IMU is incorporated; in this case, the RI-
EKF converges faster and more consistently than the Q-
EKF during the 100 passes. Therefore, the initialization con-

vergence and reliability for tracking displayed by the RI-EKF
demonstrate the superiority of the filter proposed in [55].

Manipulator robots are increasingly used in industrial
processes. Some of the production systems in the field are
large scale or need great accuracy to perform a specific task.
Therefore, their control is essential, especially in environ-
ments with disturbances that affect their correct operation.
In [56], the use of AREKF (Adaptive Robust Extended Kal-
man Filter), which applies Lyapunov’s discontinuous control
theory and the EKF, is proposed. The algorithm is used to
control a 2-DoF (Degrees of Freedom) manipulator robot,
particularly to predict the position and speed of each joint,
obtaining a performance superior to that of the EKF alone
in the trajectory-tracking task suggested in the study.

Regarding the use of adaptative Kalman filters, the sim-
ulation conducted in [15] demonstrated that when following
a defined trajectory, the AEKF presents less error than the
EKF.

An interesting approach on the use of different sensors
to obtain the position and location of a mobile robot in a
specific space, as well as their destination, is conducted in
[57]. In this study, a mobile robot is equipped with several
types of sensors such as encoder, GNSS, gyroscopes, com-
passes, and accelerometers. These sensors undergo three dif-
ferent experiments that use only some of them. Afterwards,
data is sent to the EKF, and its response is used to track
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Figure 10: Computation time and mean square error [50].
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the indicated trajectory. The experiment is divided into
groups: in the first one, the EKF uses data obtained from
the encoder GNSS and the compass. The second one
employs data from the gyroscope, the accelerometer, and
the GNSS. The third group integrates all sensors. The exper-
iment is conducted following two trajectories: a circular one
and an 8-shaped one. The results show that the more the
information about the robot’s position, the better the trajec-
tory tracking. Therefore, the third group presents the best
performance, with a mean square error lower than the other
groups. A disadvantage of this type of robot is that the
method is less accurate to find robot position in environ-
ments where a GNSS cannot be employed.

Using robot teams has gained prominence in rescue
missions and in the military industry, among other fields.
There are two main variations to obtain the location and
direction of a robot team. In the first one, each robot esti-
mates manually its own position with data from its sen-

sors, for which variants of the EKF have been developed
as proposed in this work. The second one has become
increasingly popular in the last time due to the fact that
each robot estimates its own operation time based on the
sensors of the server robot and the information of its team
members; thanks to which the robots minimize their oper-
ation time. Precisely [58] deals with the localization of a
robot team composed of a leader and two followers, using
the EKF in two separate stages. In the first one, the Kal-
man filter is applied to obtain the followers’ position,
while in the second one, the leader’s position is calculated,
thereby simplifying implementation and reducing compu-
tational requirements.

One of the problems in navigation or CL (Cooperative
Localization) is that the model of the error state system
employed in the standard EKF-based CL always has a higher
dimensional observable subspace than that of the actual
nonlinear CL system. This results in an unwarranted reduc-
tion of the EKF covariance estimates in directions of the
state space where no information is available, which leads
to inconsistency. Considering the above, in [59], an
observability-based methodology is developed to build con-
sistent estimators. Two estimators are proposed, namely,
OC-EKF 1.0 and OC-EKF 2.0: in OC-EKF 1.0, Jacobians
are calculated using the previous state estimates as lineariza-
tion points, while in OC-EKF 2.0, the linearization points are
selected to minimize their expected errors under observabil-
ity constraints. Simulation and real-world experimental tests
prove that both OC-EKFs perform better in terms of accu-
racy and consistency compared to the standard EKF.

In [60], the use of extended Kalman filters to estimate
future skeleton trajectories is proposed. In this way, a repre-
sentation of B-IPOD (Bio-Inspired Predictive Orientation
Decomposition) with critical capabilities to reduce noisy
skeleton observation data and predict the ongoing activities
is achieved. In turn, fractional-order Kalman filters have also
been designed for fractional-order linear systems with col-
ored noises, using Tustin’s generating function [61].

Table 3: Main filters used in robotics.

Filter Wheels and legs Aquatic Aerial Manipulators

EKF

Localization Localization Control Control

Positioning Trajectory Navigation and guidance Parameter estimation

Trajectory Parameter identification

Detection

UKF

Localization Position estimation Control Parameter estimation

Positioning Positioning Parameter identification Control

Trajectory

Detection

AEKF

Localization Navigation Navigation and guidance Control

Estimation Localization Trajectory tracking

Position estimation

AUKF
Trajectory tracking Position and direction estimation Control Attitude estimation

Navigation

IEKF
State estimation

(position and speed)
State estimation (position and speed)

IMU frame

Contact frame

Figure 11: A Cassie-series biped robot is used for both simulation
and experimental results. The robot was developed by Agility
Robotics and has 20 degrees of freedom, 10 actuators, joint
encoders, and an IMU [55].
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As commented throughout this work, the Kalman filter
has been combined with other techniques such as optimiza-
tion and fuzzy logic. The study in [62] tests both combina-
tions. First, the authors apply particle swarm optimization
to the covariance values for the KF noise using mean square
error as a target function in order to obtain an optimized
performance of the filter. Second, a new adaptive KF struc-
ture is developed that combines disturbance magnitude
through fuzzy logic to modify the noise covariance values
according to the dynamic behavior of the system. Both
methods are used to estimate the attitude of a mobile robot,
shown in Figure 12. As a result, optimization improved fil-
tration over convergence in the initial filter by 78%, whereas
fuzzy logic increased performance by 10.9% compared to
optimization. Both methods are compared against two pop-
ular IMU-based algorithms, demonstrating that the pro-
posed methods have robust and even superior performances.

In this vein, all variants of the KF have been combined
with classic control techniques like PID (Proportional-Inte-
gral-Derivative controller). In a study conducted by [63],
the design of a control structure for a robot arm with flexible
joints is presented. The authors propose closed-loop control
with a Proportional Derivative (PD) structure and the EKF
as a state estimator.

Based on the motor measurements, the output or posi-
tion is estimated, which minimizes readings from multiple
sensors and reduces the effect of external disturbances,
increasing accuracy. In this article, the authors also analyze
the stability of the system when using the filter. The simula-
tions conducted for the trajectory tracking of the robot arm
with flexible joints confirm the superiority of the method
proposed by comparing it to a PD controller under the same
simulation with RMSE. The methodology proposed presents
also better stability when the system is subject to external
disturbances, proving that the observer is able to handle
external interference in real time.

In a recent work by [64], a new online method based on
DKF (Discrete Kalman Filter) is presented for the rapid pre-
diction of the RSS metrics in regions unexplored by the
robot. This is conducted by employing a localized linear
regression for the path loss component by applying differen-
tial path loss between RSS measurements at several positions
previously visited by the robot. A rapid prediction is
achieved, which allows for modest requirements in terms
of data and calculations. Additionally, the fading of the
shadow is modeled using an empirical spatial variogram.
DKF is employed to combine the previous models, filtrate
data, and provide spatial extrapolation of RSS. The method
uses a set of measurements from two robots, the Tracked
UGV and the YouBot, of real indoor and outdoor environ-
ments. The results show significant improvements in perfor-
mance compared with more recent methods such as Kriging
interpolation algorithms, GPR (Gaussian Process of Regres-
sion), and the LR (Lineal Regression) algorithm. With the
implementation of this filter, an average prediction accuracy
of 96% was reached for RSS up to 20 meters ahead of the
robot trajectory.

The study conducted by [65] deals with a navigation
method designed to enable an efficient, accurate indoor

localization in real time for a mobile robot system. This tech-
nology is applicable to IMUs, which consist of gyroscopes,
accelerometers, and magnetic vision, in addition to SV (Ste-
reo Vision). First, highly accurate information about the
position of the mobile robot can be collected using the fusion
algorithm of the Kalman filter for accelerometers, gyro-
scopes, and magnetometers. Second, the accuracy of the
inertial measurement can be optimized using the KF algo-
rithm combined with the artificial vision localization algo-
rithm. The methodology proposed is implemented in the
MT-R robot shown in Figure 13. This methodology demon-
strates the superiority of IMU/SV over single IMU due to a
much lower RMS error.

The EKF has also been used for improving the position-
ing of a MEGV (Magnetic Encoder-type Guided Vehicle), as
shown in Figure 14, along with the code compensation
method [66].

Legged robots are gaining increasing importance due to
the advantages they exhibit over wheeled robots in irregular
fields, but there are still many challenges related to their con-
trol and design. The authors in [67] employ the spring-
loaded inverted pendulum dynamic model to analyze biped
locomotion. This article uses the Kalman filter to predict
the SLIP (Spring Loaded Inverted Pendulum) model based
on simulated sensor data by applying the two Kalman filters
to the complete model and determine the state of the robot
components.

The first filter is aimed at determining the attitude of the
model body by employing a gyroscope and a control torque
applied during stance. The second one is a fusion sensor Kal-
man filter that uses an accelerometer and a gyroscope on the
leg’s pivoting points. The simulations conducted show that
in both cases, Kalman filters generate better results. In the
first case, the RMS error is much lower than the estimation
obtained with the gyroscope alone and with the gyroscope
and estimate torque combined. In the second case, the KF
was compared with a complementary filter and also per-
formed better, with an RMSE lower than half the comple-
mentary filter. In both cases, the robot worked as well as if
reading the true states, operating at the desired speed of
2m/s with a 0.2m/s deviation.

This algorithm has also been implemented for the cali-
bration of a normal sensor like the one in [68], which is used
in a robot drill. These authors apply a parameter estimation

Figure 12: Mobile robot [62].

13Journal of Sensors



method based on the EKF and thereby estimate the errors in
the robot’s kinematic parameters. To validate the methodol-
ogy proposed, a simulation is conducted to calibrate a nor-
mal sensor and the results are compared to those in the
methodology described by [69]. As a result, the proposed
calibration method is more accurate than the method in
[69]. Furthermore, it can improve the accuracy of the nor-
mal surface measurement and satisfy the robot drilling
requirements, showing a significant improvement in the
reduction of the mean angular deviation and the normal
maximum deviation, thus validating the proposed method-
ology. In addition to the simulation, an experiment is con-
ducted on a KUKA KR210 robot drill, which can be seen
in Figure 15, in which the methodology is implemented.
The experiment shows that accuracy in the robot’s perpen-
dicularity increases after calibration, which meets the dril-
ling requirements of fields like aeronautics.

This filter has been employed by the authors of [70] to esti-
mate the unknown state vector of a ballbot-type robot system.
The estimated vector is used by an LQR (Lineal Quadratic
Regulator) that leads the robot to a vertical position. When
these criteria are put into practice to control the robot under
study, the use of the EKF and LQR proves effective, as the sys-
tem is asymptotically stable even with some fictitious uncer-
tainties. In addition, system convergence is analyzed.

As proposed in [71], the EKF can be also employed to
determine the coordinates for vertices 3-D from multiple
images of the robot workspace shown in Figure 16. Applica-
tions in driving assistance for advanced systems also use the
Kalman filter, as it provides an accurate estimation of a vehi-
cle’s position in a digital roadmap based on the Belief The-
ory, GNSS, and ABS sensors located in the rear wheel of a
car [72].

In this line, several researchers have attempted to dem-
onstrate the superiority of this KF variation over the EKF.
In [73], this type of comparison is conducted; both filters
are used in a robot system, shown in Figure 17, with real
data in order to show the theoretical superiority of the
UKF in a real scenario. Additionally, this work departs from
the theory that the more measurements, the better the esti-
mation. Therefore, five ultrasonic sensors and an algorithm
are used to determine the best sensors for each filter. Simu-
lation is conducted in five different scenarios depending on
sensor use. Twenty experiments are conducted, measuring
the average error position index and the average estimation
error covariance in each of them. As a result, both filters
have a similar behavior. This is fundamentally attributed to
the fact that the system model is good and not excessively
nonlinear, which usually marks a difference between the
UKF and the EKF; however, the average estimation error
of covariance is much lower than that of the EKF.

As above mentioned, another application field for the
EKF is medicine. For example, the use of flexible needles
to access areas of the human body by avoiding obstacles
has flourished over the last years. For a flexible needle to
reach its target, its position and orientation are necessary
[74]. The authors in [74] compare three filters to solve the
estimation problem for needle orientation, namely, EKF,
UKF, and PF (Particle Filter). Simulations are conducted
considering first that the model of the flexible needle is exact;
then, a variation of the system during its operation is pro-
posed, and finally, a simulation on the system with non-
Gaussian noise is computed. The results from these three
simulations indicate that the UKF and PF provide more
accurate estimations than the EKF. In addition, the particle
filter adapts better to the situation when system noise is
non-Gaussian. The EKF has a much faster response than
the other filters and is able to follow the state; however, it
does not provide accurate results with non-Gaussian noise.
In general, the results obtained by the EKF in the estimation
of the position and orientation of the flexible needle are
worse than those of the other filters.

Another type of system that has attracted increased
attention these days is AUV (Autonomous Underwater
Vehicles), shown in Figure 18, which is involved in explora-
tion tasks and complex scenarios that need accurate and
robust navigation systems. A recent work by [75] proposes
the UKF to estimate the position of this type of system,
which has a highly nonlinear dynamic model. The naviga-
tion algorithm showed good accuracy for estimating the
position and orientation of the vehicle, even when faced with
environment disturbances like sea currents, which can
strongly affect the accuracy of the navigation system. It must
be noted that this is the first time that this methodology is
employed online and with an AUV in this type of system;
other works have used it offline.

Other modification to the KF is the QUKF (Quaternion
Unscented Kalman Filter), which is used in [76] with iner-
tial/magnetic sensors to follow the trajectory of a human
arm, as shown in Figure 19. To obtain the best estimation
of the forearm and upper arm, a restriction equation is pre-
sented, which is based on the relative speed of the elbow

Bumb lebee2

JY901

Figure 13: MT-R mobile robot [65].
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joint according to the inertia sensors located in the two
structures above. The proposed algorithm is experimentally
assessed, demonstrating the accuracy and good performance
of such an algorithm.

In [18], the authors propose an estimation method for
the parameters of a coaxial quadrotor UAV (Unmanned
Aerial Vehicle) based on SRUKF. Their results show that a
fast and reliable estimation of the model parameters can be
obtained with SRUKF. However, the classic method can lead
to instability, and thus, the estimation algorithm is modified,
becoming more robust from a numerical stability stand-
point. In this study, the algorithm tracking properties are
presented, which make this method more feasible.

Another contribution to this type of aerial vehicle that
uses EKF is the one made by [77]. In the latter case, EKF

is used to develop a special Euclidian group for the geomet-
ric control of a UAV quadrotor, as shown in Figure 20. The
estimator proposed considers all the effect pairs between
translation and rotation dynamics. The performance of this
estimator is presented through numerical examples and is
the product of experiments in different scenarios.

Another adaptive Kalman filter is the one presented in
[78], in which the UKF is employed with the aim of avoiding
divergence and further improving the estimation and filter-
ing accuracy. The proposed filter is able to simultaneously
estimate the process online and measure the noise covari-
ance and simplify the adaptation algorithm. The proposed
AUKF method consists of two main steps: in the first step,
the measurement noise covariance matrix is estimated based
on the residual covariance matching method, and in the
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Figure 14: Magnet-encoder-type guided vehicle [66].

Figure 15: The robotic drilling system [68].
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second step, the process noise covariance is adapted using an
adaptive scaling factor based on the noise estimation. Simu-
lation comparisons between the proposed RQAUKF and the
standard UKF show that the proposed RQAUKF can effec-
tively improve estimation accuracy and stability while
improving controller performance.

In [79], the authors propose a novel methodology for
simultaneously solving trajectory tracking problems and
avoiding obstacles in a WMR (Wheels Mobile Robot), as
shown in Figure 21, with unknown slipping parameters.

Slipping is estimated by an Adaptive UKF, implementing
an adaptive adjustment of noise covariances in the estima-
tion process through a covariance match technique within
the framework of the Kalman filter. In this work, unified
control is developed as a response to the two problems pro-
posed, using the slide estimation response provided by the
filer designed. This innovative technique is applied to a
WMR following two trajectories, a straight line and a circle,
with obstacles. The results of both simulations indicate that
this new approach is better than using UKF alone, and that
allows for better robot performance after estimation of wheel

Figure 16: Photograph of the experimental Pioneer 2 mobile
robot [71].

Figure 17: The Khepera III mobile robot [73].

Figure 18: Typhoon AUV [75].

Figure 19: Attached inertial sensors and optical tracker
markers [76].
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Figure 20: Hardware development for a quadrotor UAV [77].

Figure 21: Mobile robot in real experiment [79].
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slipping parameters. Therefore, the unified controller
designed, which uses AUKF estimation, presents an excel-
lent performance in tracking control, obstacle avoidance,
and robustness against the slipping of unknown wheels.

While in [80], VBAUKF (Variational Bayesian Adaptive
Unscented Kalman Filtering) is researched for indoor local-
ization based on RSSI (Received Signal Strength Indication)
in inaccurate processes and measurement noise covariance
matrices. First, an inaccurate and slowly varying measure-
ment noise covariance matrix can be estimated by choosing
a suitable conjugate prior to distribution for an indoor local-
ization model with inaccurate measurement and process
noise covariance matrices. By choosing Wishart’s inverse a
priori distribution, the state, predicted error, and measure-
ment noise covariance matrices are inferred separately each
time. Second, a parameter optimization algorithm is
designed to minimize the VBAUKF localization error until
it is less than the threshold set in advance.

Robustness is one of the fundamental characteristics of a
control system. Therefore, the authors of [81] propose a
RUKF- (Robust Unscented Kalman Filter-) type filter based
on a multiplicative quaternion error approach for the posi-
tion estimation of a nanosatellite in the presence of measure-
ment faults. In this work, the global position
parameterization is given by a quaternion, while the local
attitude error is defined using a generalized three-
dimensional attitude representation. The proposed algo-
rithm uses a statistical function that includes measurement
residuals to detect measurement faults and then uses an
adaptation scheme based on a multiple measurement scaling
factor for filter robustness to faulty measurements. It is
shown that the proposed algorithm yields a robust and accu-
rate attitude estimation, outperforming other algorithms in
the presence of different measurement faults.

One of the main EKF-SLAM problems cited in the liter-
ature is its inconsistency. This is because the method returns
a covariance matrix that is excessively optimistic, which
leads to inaccurate estimation [59, 82], i.e., the algorithm
overlooks the uncertainty of the estimator, conducing to an
excessively stable result. The lack in observability and the
poor capacity of the EKF to tackle this issue are considered
the root cause of this issue. Therefore, [83] suggests using
inconsistency to develop the I-EKF, which prevents the
reduction in covariance toward the state space. This varia-
tion of the EKF is compared with other filters through a sim-
ulation. As a result, the best filter is OC-EKF [59], which is
the only method that ensures the adequate dimensions of
the nonobservable space when compared with the UKF
and the EKF. In this work, researchers highlight that the
most important factor when using any of these filters is the
adequate linearization of the system.

In the same line, several authors deal with the inconsis-
tency of the EKF, yet this is not the only difficulty that arises
from its use. Another problem this filter presents is conver-
gence. An analysis of these two last problems is conducted
by [84] and its application to the 3D SLAM observation sys-
tems. To validate the alleged superiority of this method, a
Monte Carlo simulation is conducted with several algo-
rithms, namely, SO (3)-EKF, Robotcentric-EKF, Pseudo-

RI-EKF, and SE (3), under different noise levels. The results
after conducting RMS and NEES were as expected, confirm-
ing the impact of I-EKF on the consistency and accuracy of
the estimator.

In [85], CDKF is proposed to correct the issues of EKF-
SLAM. The simulations conducted, together with the large-
scale experiment, show the superiority of the method pro-
posed over EKF-SLAM and UKF-SLAM in terms of accu-
racy. The consistency of the algorithm is also analyzed, and
NEES is measured over 50 Monte Carlo passes per filter, in
which since linearization errors do not accumulate, the
CDKF-SLAM consistency extends over time.

Following the same line of using Kalman filter in SLAM
to estimate robot position and then rebuilt its map, [86] pro-
poses the stable CV-SLAM (Ceiling Vision-based Simulta-
neous Localization and Mapping) technique which uses
circles and corners as reference points in a scene and
improves process stability by measuring feature saliency
strength. This study provides a method that uses different
characteristic detection algorithms to search for several key
points and then measures the saliency of each point to select
the most stable characteristics and generate a hybrid map
based on Delaunay triangles between these points. The
authors state that the EKF is a fundamental aspect in robot
SLAM.

In [87], the VR-SLAM (Vision Range sensor-SLAM)
algorithm is proposed to combine ultrasonic sensors and a
stereo camera very effectively. This combination improves
the practical capacity and economic efficiency of SLAM. In
particular, the false data association and divergence problem
of an algorithm using only ultrasonic sensor is solved; fur-
thermore, the low update rate of SLAM, caused by the com-
putational load and the weakness to illumination changes of
an algorithm employing only vision sensor, is overcome. The
results of this work show that, with the combination of both
techniques that use the EKF-SLAM, correct data association
through object recognition and high-frequency update
through ultrasonic sensor functions can be achieved. The
performance of this algorithm is verified by means of several
experiments in real indoor environments.

In [88], a robot tracking algorithm in SLAM with the
MMUKF (Masreliez-Martin Unscented Kalman Filter) is
proposed. This variation is employed to estimate the process
noise covariance with an adaptive factor to improve the
tracking performance in the MMUKF. Finally, the MMUKF
is employed to estimate the positions of robots and land-
marks. The proposed algorithm can complete robot tracking
with good accuracy and obtain reliable state estimation in
SLAM.

5. Conclusions

The KF is not influenced by possible structural breaks dur-
ing estimation. Being a recursive method, it uses the entire
history of a series and has the advantage of estimating the
stochastic path of the coefficients rather than a deterministic
one. The Gauss-Markov theorem enhances the capability of
the KF to solve a wide range of statistical inference problems.
In this way, the KF stands out due to its ability to predict the
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state of a model in the past, present, and future, even when
the precise nature of the modeled system is unknown.

Despite the advantages above, this filter also exhibits
some disadvantages, which has led many authors to develop
several modifications to it, as presented in this paper. The
comparisons presented show the advantages and disadvan-
tages of some KF and KF-derived filters.

One of the most widely used variants of the KF is the
UKF, which consistently outperforms the EKF in terms of
prediction and estimation error, having equal computational
complexity for general state-space problems. This is primar-
ily because the EKF can be viewed as a “first-order” approx-
imation and, in turn, the SO-EKF allows the use of an
approximation with the second-order terms of the Taylor
series. However, these approximations can introduce large
errors in the true posterior mean and in the covariance of
the transformed (Gaussian) random variable, which can lead
to suboptimal performance and sometimes to filter
divergence.

In SRUKF, square root provides numerical stability and
guarantees positive semidefiniteness of state covariances.
Other advantages of this square root form of the UKF are
the natural ability it offers in trajectory tracking, which
allows for its application in nonstationary models.

The convergence of the EKF is one of the most discussed
problems in the literature. In this regard, it has been shown
that when the state estimate is initialized close to the true
value, the RI-EKF and Q-EKF have similar and superior per-
formance to the EKF because the linearization of the error
dynamics accurately reflects the underlying nonlinear
dynamics. Nevertheless, when the state estimate is far from
the true value, simulation and experimental results show
that the RI-EKF converges considerably faster than the other
filters analyzed. Furthermore, when bias estimation is dis-
abled, the invariant error dynamics of the RI-EKF does not
depend on the current state estimate. Although this theoret-
ical advantage is lost when bias estimation is turned on, both
the simulations are performed, and the experimental results
indicate that the RI-EKF has a lower sensitivity to
initialization.

Compared to the use of KF in SLAM, UKF-SLAM and
CDKF-SLAM provide lower estimation errors and slightly
tighter uncertainty bounds than the EKF-SLAM approach.
This is because in the CDKF, as in the UKF, they provide
a more accurate transformation and produce better esti-
mated results than the linear approximation of the nonlinear
model. In turn, the IEKF offers the convergence, stability,
and robustness that the conventional EKF lacks. Conse-
quently, the IEKF is used in SLAM to solve inconsistency
problems.

Basically, the success of the methods employed by the
conventional Kalman filter depends on the previous knowl-
edge of the characteristics and statistics of the measurement
noises and of the same processes in which this filter is used.
However, without prior knowledge, the use of adaptive Kal-
man filter methods is imperative to estimate states.

The AEKF provides possible solutions to the problem of
error accumulation in mobile robot localization. This filter
uses the Taylor series and the Sage-Husa time-varying noise

estimator to overcome linearization errors and improve
environmental adaptability. Compared with the EKF, it has
better localization performance, in addition to good all-
round performance in terms of speed and accuracy.

The Kalman filter has become one of the main engineer-
ing tools used in both linear and nonlinear systems. Over its
60 years of existence, this filter has been employed to solve
state estimation problems in several fields, from complex
to apparently simple ones, such as system control, robotics,
medicine, and economics, among other implementations.

With the scientific and technical advances, the imple-
mentation of this technique has received contributions and
experienced modifications in order to help in the resolution
of new problems and improve the performance of the activ-
ity addressed. In robotics, the Kalman filter is one of the fun-
damental pillars in localization, position, trajectory tracking,
parameter identification, and also mobile robot control, as
shown in this work. The implementation of a navigation sys-
tem equipped with EKF-SLAM was briefly introduced,
which will be further implemented in a hexapod robot.

The EKF is widely used in integrated navigation systems,
although the EKF cannot effectively track parameters that
vary over time, nor unknown parameters. To achieve this,
the ATEKF or the TEKF should be employed, as they can
remove unknown fault biases caused by accelerometers and
gyroscopes, among others, in an effective way.

One of the main advantages of this filter is its low com-
putational requirements and easy implementation, as well as
its fast convergence and reliability. The last two characteris-
tics have been enhanced through modifications made by
researchers over the years, particularly the EKF. In some sys-
tems, the Kalman filter is combined with classic or advanced
control techniques to improve the performance of such sys-
tems. Nowadays, the major contribution to science that Rud-
olf Kalman made in 1960 acquires great relevance among
researchers, not only because of its wide variety of uses but
also due to the problems that still need solutions and that
are proposed in this work.
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