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Abstract
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1 Introduction

In this paper, we consider the estimation problem for the following system

Ek+lZ(k+ 1) = Akz(k) +u(k), k = 0,1,2,... (1.1)

y(k+l) = Ckx(k+l)+r(k), k=0,1,2,... (1.2)

where matrices Ek+1 and Ak are lk x nk, and C(A is Pk x nk; u and r are zero-mean, Gaussian vector sequences
with

M (k) r(j) -] =( ST Rc ) k,j) (1.3)

where M(.) denotes the mean and 6(k, j) = 1 if k = j and 0 otherwise. We suppose that an a priori estimate
of x(0) is available.

Since no particular assumption is made about the Ek and At matrices, (1.1) does not, in general, specify

completely the sequence x. This means that z cannot be thought of as a stochastic process. The point of view

that we have adopted in this paper, is to consider x as a sequence of unknown vectors and consider both (1.1)

and (1.2) as observations of this unknown sequence. We show that this point of view is consistent with the

usual formulation of the Kalman filter in the case of Gauss-Markov processes.
We start, in Section 2, by introducing the maximum likelihood estimation and its connection with Bayesian

estimation. In section 3, we derive the descriptor Kalman filter. The results are specialized to the time-

invariant case and asymptotic properties of the filter are studied in Section 4. The construction of the steady
state descriptor Kalman filter is examined in Section 5. As in the classical case, there exists a dual control

problem for the descriptor Kalman filter; this control problem is presented in Section 6.

2 Maximum Likelihood Estimation

2.1 Maximum likelihood versus Bayesian estimation

Let x be unknown constant parameter vector and let z be an observation of x. The if P(zlx) denotes the

probability density function of z parameterized by x, the maximum likelihood (ML) estimate 2 based on
observation z satisfies

p(Z IiML) > P(:ZI) for all x. (2.1)

In the linear Gaussian case. i.e. when

: = Lx + v (2.2)

where v is a zero-mean, Gaussian random vector with variance R, and L a full column-rank matrix, iML can
be obtained by noting that

-w 111n(p(:I)) SMLr = o. (2.3)

Since v is Gaussian. so is z and

p(zlx) = a exp(-(: - Lx)T R - l(z - Lx)/2) (2.4)

where a is a normalization constant. From (2.3) and (2.4), we can see that

AIrL = (LTR-lL)-'LTR-lz. (2.5)

-I-~~III---~-- -~-~--~ -·I1C-. - I~ 1



The error variance associated with this estimate is given by

PA\L = MA[(x - ;IaL)(.:- 2.1L)T]
= (LTR - 1 L)- 1 . (2.6)

To see how the ML estimation method ties in with te Bayesian estimation method, consider the observation
(2.2) and suppose that x is not an unknown vector but a Gaussian random vector with known mean 2 and
variance P,. Then the Bayesian estimate 5:B of z based on observation z is

:B = PB(LTR- 1 + P;-') (2.7)

where PB is the covariance of the estimation error:

PB = ,M[( -R B)(: - iB)T] = (LTR-1L + P-1)-'. (2.8)

Note that if we let

P;'l =0, (2.9)

the maximum likelihood and the Bayesian estimates and estimation errors are identical.
The maximum likelihood estimation technique can also be used when an a priori estimate of z exists.

Specifically, any linear Gaussian Bayesian estimation problem can be formulated as a maximum likelihood
estimation problem. Consider the Bayesian problem stated above. This problem can be converted into a

maximum likelihood estimation problem if we consider the a priori statistics of z as an extra observation, i.e.
consider the following .IL estimation problem

(=^) ( L z + (2.10)

where w is a zero-mean. Gaussian random vector, independent of v and with variance P,. Applying expressions

(2.5) and (2.6) to this problem, we obtain the following

trIL = P.IL(LTR - 1 + P-;12) (2.11)

where

PMIL = (LTR - 1L + p.l)- (2.12)

which are exactly the Bayesian estimate and estimation error covariance (2.7), (2.8). Thus it is possible to
transform any linear Gaussian Bayesian estimation problem into an NIL problem by transforming the a priori
statistics of z into an observation.

a

2.2 The case of perfect observation

In the previous section. we considered the case where R, i.e. the variance of the observation noise, is positive

definite. If R is not invertible. it is clear that (2.5) and (2.6) cannot be used. In this case, there is a projection

of z which is known perfectly. and to obtain the NIL estimate, we have to identify this projection.
Consider the NIL estimation problem (2.2). Let T be a matrix such that

TRT' = 0 (2.13)

where R is a positive definite matrix. Then (2.2) can be expressed as follows

= )+ (2.14)
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where

(Z )T, (Tz , )=TL, (2.15)

and v is a zero-mean, Gaussian random vector with invertible variance R. Now let S be an invertible matrix
such that

LS - = ( LL1 ) (2.16)

where L11 has full column rank. Then if we let

( ) = S:, (2.17)
Z2

(2.14) can be expressed as --

Z L11 0 )( ) + (o (2.18)

Finally note that since Lll has full rank, it has a left inverse. Let L-' L denote a left inverse of L11, then by

premultiplying (2.18) by

W=( --2 LI I )= (2.19)

we obtain the following

(:l)_(LO L = ( ) + ) (2.20)

where

Sq = - L2 1 L flz 1 . (2.21)

The vector zx is the portion of z which is perfectly observed. Clearly,

(41)AIL = Ll'zi, (2.22)

and x2 can be estimated from the results of the previous section,

(iO),ML = (P2)MILL T . 1- 2, (2.23)

where

(P2)AIL = (LT2R - 1L 22
)- '. (2.24)

By combining (2.22) and (2.23), we see that

(2 = ( (LTR-L )R ( (2.25)

The ML estimation error covariance P.AL and the ML estimate iML are then given by

PL = (0 (L£ R-'L-22) - ) (2.26)

i.1=L = S1( i ) (2.27)
i2 MA L

The above procedure allows us to compute the ML estimate when R is not invertible, however, it does not

allow us to express this estimate in a simple closed form expression. The following result which is proved

in Appendix A, allows us to express this estimate in terms of a limit which, even though it is not useful for

computing the ML estimate, it is useful for analysis.
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Lemma 2.1 Consider the ML estimation problem (2.2) with R possibly singular, then

PML = lim(LT(R + Q)-lL) - 1 (2.28)
--O

+

iAfL = lim ((LT(R+ eQ)-lL)-LT(R + Q)-')z (2.29)
(-O

+

where Q is any positive semi-definite matrix for which the R + eQ is positive definite for e > O. In particular,
we can take Q = I.

Note that PML does not depend on the choice of Q, however,

lim (LT(R + cQ)-lL)-1LT(R + CQ)-l
C-O+

may reflecting the non-unicity in the choice of LlL.
It is easy to verify that PIfL and iM£L can also be expressed as follows

PML = lim (O I ) R+eQ L +( (2.30)

-o+ LT 0 I

Which in the case there is no redundant perfect information, i.e., (L R) has full row rank or equivalently,
L 11 in (2.18) is square. simplify as follows (see Lemma 2.2)

PDiIL = -(0 I)( LR )( ) (2.32)

AJL = ( o I )(L. Z.)(I) (2.33)

Expressions (2.32) and (2.33) are used in the next section for deriving a closed-form expression for the descriptor
Kalman filter.

Lemma 2.2 let R be positive semi-defitife and L a full column rank matrix. Then if [R L] has full row
rank, then

(L T

is invertible.

Proof Suppose

( Y )( L )= (2.34)

then
zR + yLT = 0 (2.35)

and

xL = 0. (2.36)
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If we now take the conjugate transpose of (2.36) and multiply it on the left by y we get

yLTxT = 0 (2.37)

which after substitution in (2.35) postmultiplied by zT yields

zRz T = 0 (2.38)

which since R is positive semi-definite gives zR = 0. But we also have zL = 0 and so z = 0. It also implies
that yLT = 0 which since L is full rank implies that y = O. o

3 Descriptor Kalman filter

Consider the standard Kalman filtering problem for causal Gauss-Mharkov process:

z(k + 1) = Akx(k)+u(k), k = 0,1,2,... (3.1)

y(k+1) = Ckx(k+l)+r(k), k=0,1,2,... (3.2)

where u and r are white Gaussian sequences with

[( (k) (j) =] 3 )
The initial state z(0) is also Gaussian with mean 20, variance Po and independent of u and r. The Kalman
filter for this problem consists of sequentially computing the Bayesian estimate iB(k) of the state z(k) based

on observations (3.2) up to time k - 1. The usual derivation of the Kalman filter equations is the construction
of the Bayesian estimate of the random process z based on past information y. But the Kalman filter can also
be obtained using the NIL formulation. In particular, we consider z to be an unknown sequence and convert all
the dynamics equations (3.1) and the a priori statistics of x(0) into observations. The ML estimation problem
is then

0 = (k+l1)-Akx(k)-u(k), k=0,1, 2,... (3.4)

y(k + 1) = Ckz(k- + 1) + r(k), k = 0,1,2,... (3.5)

i0 = X(O) +, (3.6)

where v is a Gaussian random vector, independent of u and r, with variance Po. Here, all of the left hand sides

of (3.4)-(3.6) should be considered as measurements, with -u(k), r(k) and v playing the roles of measurement
noises. A question that arises at this point is whether iB(k) is equal to the .ML estimate of z(k) based on

(3.6), (3.5) for 1 < k < j - 1 and (3.4) for all k, or, (3.6), and (3.5) and (3.4) for 0 < k < j - 1. The answer
is that both of these ML estimates yield the same result. It is straightforward to check, using the results
of the previous section, that future dynamics, given observations up to the present time, do not supply any
information regarding the present state. To see this, consider the "one step in the future" dynamics equation
for x(j):

0 = z(j + 1)- Ajz(j)- u(j). (3.7)

Given observations (3.5) only up to time k = j - 1, x(j + 1) is completely unknown which clearly implies that
(3.7) cannot supply any information regarding the value of r(j). Since (3.7), with j replaced with j + 1, does
not contain any information regarding x(j + 1) either, then by induction we can see that no future dynamic

5



contains information regarding x(j). This, in fact, is closely related to the Markovian nature of the process z
in the original formulation of the problem.

This ML formulation of the optimal filtering problem (Kalman filter) can be extended to the descriptor
system (1.1)-(1.2). NVe consider z as an unknown sequence and convert all dynamics equations (1.1) and the
a priori information on x(O) into observations. The IML estimation problem is then

0 = Ek+l(k + 1)- Akz(k)--u(k), k = 0,1,2,... (3.8)

y(k + 1) = Ckz(k+ 1)+r(k), k=0,1,2,... (3.9)

2o = z(o)+v (3.10)

where v is a Gaussian random vector, independent of u and r, with variance Po.

The difference here with the previous case is that (3.8) when k = j does indeed contain information about
x(j) when Ej+1 is not invertible even if z(j+1) is completely unknown. Specifically, (3.8) contains information
about the projection of Alj(j) which lies in the null-space of Ej+l. In general, the situation is even more
complex because x(j + 1) is not completely unknown because of future dynamics. Thus, the optimal estimate
of z(j) based on observations (3.9), up to j - 1, and observations (3.8) up to j - 1, in general differs from
the optimal estimate of x(j) based on observations (3.9), up to j - 1, and observations (3.8), for all k. For
example consider the case where

E=B = O, A=C=I (3.11)

with an a priori estimate 0o of x(0) with an associated positive-definite error variance Po. In this case, clearly
the only possibility is that x(j) = 0 for all j, however, based on the observations (3.8) up to j - 1 and
observations (3.9), up to j - 1, one can check that

AL(i)= y(j), j = 1,2,... (3.12)

So in formulating the KIalman filter for descriptor systems, we have to decide what we mean by the filtered
estimate i(j) of x(j). If we choose to take into account all future dynamics, we do not get a causal filter
because the estimate of z(j) could depend on A, and Ek for k > j. There is a priori no upper bound on how
far in the future we have to look.

Other reason for not considering the future dynamics is that when we consider the smoothing problem. we

like to have a forward and a backward ialman filter from which the smoothed estimate can be constructed.

In that case, clearly considering all the dynamics for both filters would amount to counting the dynamics
equations twice. WVe shall consider the smoothing problem in a subsequent paper.

Definition 3.1 The filtered estimate :(j) of r(j) in (1.1)-(1.2) is defined as the AML estimate ofz(j) based

on observations (3.9) and dynamics (observations (3.8)) up to j- 1 and the a priori information, i.e. (3.10).

Pj denotes the error varance associated with this estimate. The estimate 5(0) = 2o with an error variance

Po.

Note that when ( Ej ) does not have full column rank for some j, some projection of z(j) is completely

unobserved and no finite error variance estimate of it can be constructed. Thus we shall assume from here on

that ( C' ) has full column rank for all j > 1.

Theorem 3.1 Let i(j) denote the filtered estimate of x(j) and Pj the associated error variance for descriptor

system (1.1)-(1.2). Then. the filtered estimate i5(j + 1) of x(j + 1) and the associated error variance Pj+'
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are respectively equal to the ML estimate of z(j + 1) and its associated estimation error variance based on the
following observations

y(j + 1) = Cj+lx(j + 1) + r(j) (3.13)

Aji(j) = Ej+lz(j + 1) + w(j) (3.14)

where w(j) is a Gaussian random vector independent of r(j + 1) with variance AjPjAT + Qj.

The proof is given in Appendix B.
Theorem 3.1 implies that we can construct the estimate at time j + 1 from the estimate at time j and

y(j + 1). This gives us a recursive method for computing i(j) and is just the descriptor Kalman filter.

Corollary 3.1 If past and present observations and dynamics do not supply redundant perfect informations,

i.e. when
AjPjAT+Qj Sj Ej+ 

ST Rj Cj+ 

has full row rank, then the filtered estimate i(j+ 1) and the corresponding error variance Pj+1 can be obtained
as follows:

AjPjAT + Qj Si E+ Aj1(j)

i(j+1) = (0 0 I) ST R C+ y(j + 1) + (3.15)

,E?+1 cf+, o 0

00AjP 0 0 AT+ Qj S Ej+ 0 .16)

-( I) R c 1 | OI (3.16)
EJT+I C7+I O I

Note that the condition of Theorem 3.1 may not be fulfilled even in the standard causal case, i.e. when

Ek = I if Rik is singular.

4 Time-invariant case

In this section, we study the asymptotic properties of the descriptor Kalman filter in the time-invariant case:

E.r(k+1) = Ax(k)+u(k), k=0,1,2,... (4.17)

y(k+1) = Cx(k+l)+r(k), k=0,1,2,... (4.18)

where matrices E and A are I x n, and C is p x n; u and r are zero-mean, white, Gaussian sequences with
variance

[( (> u(j) j Q M r(k) r(j) S'] Q R )6(k)s (4.19)



4.1 Stability and convergence of the descriptor Kalman filter

Here, we extend the existing results concerning the stability and the convergence of the standard Kalman filter
to the descriptor case.

Definition 4.1 System (4.17)-(4.13) is called detectable if

sE - tA

has full column rank for all (s, t) : (0.0) such that Isl > ItlI

It is called stabilizable if
( sE-tA Q S

C ST R

has full row rank for all (s, t) # (0, O0) such that Isl > Itl.

Note that our definitions of stabilizability and detectability are consistent with classical definitions when E = I
and R > 0.

If the system is detectable. we can always find a stable estimator filter. The optimal estimator, i.e. the
descriptor Kalman filter, however does not necessarily converge to a stable filter.

Theorem 4.1 Let (4.17)-(4.13) be detectable, then there exists a stable filter

Z,(k + 1) = A,x,(k) + K,y(k + 1) (4.20)

such that

lir .V[(x(k)- x,(k))(x(k) - z,(k))T ] < c0. (4.21)
L.--oo

Proof of Theorem 4.1: We start the proof by showing the following lemma:

Lemma 4.1 Let (4.17)-(4.18) be detectable, then there exists a left inverse (L, L,) of ( ) i.e.

LeE + L¢C = I, (4.22)

such that LeA is stable.

Proof of Lemma 4.1: Since ( C ) has full rank, there exist invertible matrices U and V such that

UEV = (I ) (4.23)

CV = ( 0 C ) (4.24)

where C2 has full column rank. If we denote

UAV = ( All A2 ) (4.25)
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then detectability of (C, E, A) implies that

sl - Al)

has full column rank for Is/t >_ 1 which means that (All, A 21) is detectable in the classical sense. Thus, there
exists a matrix D such that All + DA 1 2 is stable. It is now straightforward to verify that if F is any matrix
satisfying

FC = (-DE 22 ) (4.26)

then

I( I)( E3 ) +F( 0 C 2 )=I (4.27)

and
( I D ) ( All A 1 2 ) ( A1+ +DA 21 2 ) (4.28)

which is stable because All + DA1 2 is stable. Thus by taking

L = V (I D ) U (4.29)

Lc = VFU (4.30)

the lemma is proved. 3

Continuing the proof of the theorem, note that using the above lemma, we can express z(k + 1) as follows

z(k + 1) = LeAx(k) + Ly(k + 1) + Lu(k) - Lcr(k + 1) (4.31)

where LeA is stable. If we now define

z,(k + 1) = L Az,(k) + Lcy(k + 1) (4.32)

we can easily see that
lir M[(z(k) - x,(k))(x(k)- z,(k)) T ] = P, (4.33)

k oo

where P1 is the unique positive semi-definite solution of the Lyapunov equation

P, -(LA)P,(LA) T = ( L, L ) ( Q (434)SR Le (4.34)

The theorem is thus proved. O

Theorem 4.2 Let (4.17)-(4.18) be detectable. Then the algebraic descriptor Riccati equation

APA T + Q S
P= lirm ( E T ) APA+ E (4.35)

has a positive semni-definite solution.
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Proof of Theorem 4.2: We prove the existence of a positive semi-definite solution P to (4.35) by showing
that the descriptor Riccati recursion

P = ( ET C T ) (( APjAT+Q ) e +I) ( E (4.36)

(4.37)j-AfATi-oQ+ AP AT+Q (4.39) 

APA T Q < APJR1 A T +Q S (4C40)with Po = 0 is monotone increasing and bounded.

To sheorem .3 boundedness of 1, conside r tectable and stable filter (4.32) with ,() = It is then clear that the
associated error variance matrices P,(k) converge asymptotically to P, the unique solution of (4.34) and that

th anks to the optimality of the descriptor Kalman filter, P < P,to a stable flter).
WeProof show that Pk is monotone increasing by induction. Clearly

PIt is straightforwa P = 0. (4.37)

Now suppose that

Pj > P j-1, ) ( ) ( ) (4.38)

then

[A Pj, A + Q APj-iA T+Q, (4.39)

The algebraic Riccati equation can nowv be expresscd asP= (L.4)P(L) S L I ) ( ) ( ) (4

TSr <ST R + (I4<40+e10P+,+ >_ Pi. (4.41)
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where

( L K )= lim
O---+

[ cT ((P T R+) + 1 E )]' (T (( PAT + Q S ) +e
ET S,(( APAT R Q E ST R )+

(4.45)
It is not difficult also to see that

LE = I- - KC. (4.46)

WVe show that LA is stable using the fact that (4.44) has a positive semi-definite solution. Suppose LA is not

stable then there exist a scalar A > 1 and a complex row vector v such that

vLA = Av. (4.47)

From (4.44) we get that

(1- IA 2)vPvH = v ( L K )( )( KT )R (4.48)

where (.)H denotes the conjugate-transpose. Since the right hand side of (4.48) is non-negative and its left

hand side, non-positive, we must have

u ( L )( S r )= (4 49)

But then thanks to (4.46) and (4.47) we get that

AvLE = vLA - AvKC. (4.50)

From (4.49) and (4.50) follows that

v(L K)(AE-A Q S)=0 (4.51)
C ST R ) (4.51)

which since v(L K),. 0 (vL $ 0 thanks to (4.47)) contradicts the stabilizability assumption. Thus LA is

stable.
Now we must show that for any arbitrary positive semi-definite P0o, the descriptor Riccati equation con-

verges. We shall first prove this result for the case where Po is positive-definite. From (4.42) we get that

Pi = (Lj_ 1ALij-,A...LoA)Po(Li- 1ALi-, 2 A...LoA) T + non-negative terms. (4.52)

But Pj is bounded thus thanks to the assumption that Po is positive-definite, we get that

Gj = Lj_,ALj_2A...LoA (4.53)

is bounded. Now let P be a positive semi-definite solution of the algebraic descriptor Riccati equation (4.35),

then using expression (4.36) and after some algebra we can show that

Pj+l - P = (LA)(Pj - P)(LjA)T. (4.54)



Thus,

Pj+l - P = (LA)j+l(Po - P)GjT+, (4.55)

but Gj is bounded and LA is stable, which mean that Pj converges to P.

To extend this result to the case where Po is only positive semi-definite, simply let PJi represent the sequence

of matrices satisfying the descriptor Riccati equation with PJ = 0 and P2 the sequence of matrices satisfying

the same equation with Po- > P0 and Po > 0. Then Pj < Pj < P? (where Pj denotes the sequence generated

by the descriptor Riccati equation with initial condition Po) and since P,' and Pj converge to P, so does Pj.

Note that we have shown that Pj converges to P from any arbitrary initial condition Po > 0, where P is
any positive semi-definite solution of the algebraic descriptor Riccati equation. This clearly implies that P is
unique.

Now we have to show that Pi converges exponentially fast for any initial condition P0o > 0. For this, we
shall show the result for the case where Po > 0 and the case where P0o = 0. These results can then be extended
to the general case by an argument similar to the one used to show convergence.

Let P0o be positive-definite, then Gj is bounded. Thus, since LA is stable, from (4.55) we can deduce that
Pj converges to P exponentially fast at a rate determined by the magnitude of the largest eigenvalue of LA.

Now let Po be zero. If for some j, Pj becomes positive definite then exponential convergence follows
immediately from the result of the previous case. If Pj never becomes positive definite, using the fact that Pj
is monotone increasing, it can be deduced that

Im(Pj) C Im (Pj+), j > 0. (4.56)

Thus for some k > 0.

Im (Pj) C Im(Pk), j > 0. (4.57)

This means that there is a projection of z which is estimated perfectly, and a projection, which after the kth

step can only be estimated with a positive definite error variance. We can, without loss of generality assume
that

X() = ( (j) ) (4.58)

where 2P(j) is the perfectly observed projection and Xz(j) the "non-perfectly observed projection". In this
case,

P (j 0 P (4.59)

where PF > 0 if j > k, and

P ( P (4.60)

where Pq > 0. Also note that the dynamics of the descriptor Kalman filter LjA, for j > k, must be block
tri-diagonal:

LjA = M l- (4.61)

because xP(j+ 1) can only be updated in terms of xP(j) and noise uncorrupted projection of y(j+ 1) otherwise,
it would not have a zero variance estimate. But we know that

Pk+j+l = (LA) +j+l(Pk - P)[L:+jiALk+j-lA...Lk:A]T (4.62)
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which if we denote by Mq the (2, 2)-block of LA, yields

Pq+j+lk = .f (P - Pq)[M +j . . .M] (4.63)

Note that Pkq is positive definite, so

k+j ki+jl-.MkI

is bounded, and since NMq is stable, P converges exponentially fast. O

Note the stabilizability assumption in particular implies that

E Q S
C ST RJ

has full row rank which implies that4

(E Q+APiAT S)
C ST R)

has full row rank for all Pj > 0. Thus. the descriptor Kalman filter can be expressed explicitly as indicated in
Corollary 3.1. The main results of this section are summerized in the next theorem:

Theorem 4.4 Let (4.17)-(4.18) be detectable and stabilizable. Then

1- the descriptor Kalman filter can be expressed as

( APj AT + Q S E / Ai(j)

i:(j+ 1) = (0 O °I ST R C y(j+l) , (0)= o (4.64)

E
T

C
T

O °

/ APjAT + Q S E 0

P2 +l - -( 0 0 I ) ( S rT C ) 1 (o) (4.63)
j+ = 0 , T (4.65)

E T C T 0 I

2- the error variance matrix Pj converges exponentially to P the unique positive semi-definite solution of
the algebraic descriptor Riccati equation

APA T+Q S E \
P=-( O I ) S T R C , (4.66)

E
T

C
T

0 I

3- the descriptor Kalman filter converges to the stable steady state descriptor Kalman filter

( APAT + Q S E -1 A(j) 

(j+l)=( O 0 I ) ST R C y(j+1) . (4.67)
ET CT 0 0

Next section is concerned with the construction of the matrix P.

4 In general if [X Y], Y > 0, has full row rank then [X. Y + ZI, Z > 0, has full row rank because Ker Y C Ker Y + Z.
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5 Construction of the steady state filter

In this section, we show that the solution of the algebraic descriptor Riccati equation can be constructed using
the eigenvectors and generalized eigenvectors of the pencil:

E -Q -S A O O

C -ST -R , o o (5.1)

0O A T O 0 E T CT

WVe shall assume throughout this section that the system is detectable and stabilizable.

Lemma 5.1 The pencil (5.1) is regular and has no eigenmode on the unit circle.

Before proving this lemma, let us introduce the following notation:

F=(E I G = (sQ (5.2)

The pencil (5.1) can now be expressed as

{ -G )( I FT (5.3)

and the descriptor Riccati equation as

P=-(O I) PI 0 +GI (5.4)

Proof of Lemma 5.1: All we need to show is that for all z on the unit circle,

, 0 I r + 0 FT (5.5)

is invertible. Note that thanks to the detectability assumption which can now be stated in terms of the new

notation as: "sF - tK has full colunm rank for (s, t) ~ (0.0) and Isl > [tl", we can see that F + zK has full
column rank for all z on the unit circle. Now suppose that (5.5) is not invertible, which means that there exist
u and v not simultaneously null such that

(u ) ( F+:K ,-GFT 0. (5.6)0 KIf r + zFT 0.

If we now let

r = :K+ F (5.7)

from (5.6) follows that

ur+ vG = 0 (5.8)

vri1 = 0. (5.9)

If we now multiply (5.S) and (5.9) on the right by vH and uH respectively and take the transpose-conjugate

of (5.9) and subtract from (5.8), we get
vGvH = 0 (5.10)

which since G is symmetric positive semi-definite implies that vG = 0. Thus since r has full column rank.

(5.8) implies that u = 0. But we also have that v(rFH G) = 0 which thanks to the stabilizability assumption

implies that v = 0 contradicting the assumption that u and v are not simultaneously null. D
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Lemma 5.2 The pencil (5.1) has exactly n stable eigenmodes.

Proof of Lemma 5.2: Let

p(s,t) = det s ( G )+t ( FT ))

= dets( O ) ( 0 FT det (F sK T +tF T (5.11)

then

(ts)=de(t( T )+( FT )) = det tF + s tK -tG sF (5.12)

Note that
I 0 0 sKT + tFT I/t 0

0 tI sF+tK -sG I =

I O )( O tKT + sFT )T I/s (5.13)
0 sI tF + sK -tG 0 I (5.3)

and so
t'+Pp(s, t)t - n = sl+Pp(t,S)S- n, (5.14)

so

t+P-n p(S, t) = s'+P-nlp(t, S). (5.15)

If we denote the number of zero eigenmodes by 60, stable but non-zero eigenmodes by 6,, unstable eigenmodes
by 6u and infinite eigenmodes by 6., from (5.15) and the fact that there are no eigenmodes on the unit circle.
we conclude that

s6, = 6, (5.16)

6, -5o = l+p-n. (5.17)

Finally noting that

c6 + 6, + 6, + 6,, = n + l + p (5.18)

we get that the number of stable eigenmodes So + 6, = n. -

Theorem 5.1 Let the columns of

Y2 

form a basis for the eigenspace of the pencil (5.1) associated with its n stable eigenmodes, i.e.

E -Q - A O O / X 
C -S T -R Y1 = 0 0 0 Y1 J (5.19)
O AT 0 , O ET CT Y2 

where J is stable. Then, P, the unique positive semi-definite solution of the algebraic Riccati equation (4.66J
is given by

P = X(ETy1 + CTY2 )- . (5.20)
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Proof of Theorem 5.1: Using notation (5.2) and by letting

Y=( Y (5.21)

we must show that

P = X(FY) -'. (5.22)

Consider perturbing G as follows

G, = G + cI (5.23)

and denote the matrix of eigenvectors and generalized eigenvectors associated with the stable eigenmodes of
the perturbed pencil by

(X,
and the matrix of eigenmodes by J,:

(F -GE )(Y )( T T) (X )J (5.24)

It is well know that as e goes to zero, X, and Y', converge respectively to X and Y (J, may or may not converge
to J depending on the eigenstructure of J).

Now suppose that X, is invertible for c > 0. Then we like to show that YEX'1 is real valued. Note that
the Jordan blocks of J, that correspond to complex eigenmodes, are in complex-conjugate pairs and thus J,

and J; (where (.)' denotes complex conjugate) are similar, i.e. there exists an invertible matrix W such that

J, = vW-'JW. (5.25)

Thus by using this fact and taking the complex conjugate of both sides of (5.24) and post-multiplication by
Iw, we obtain

F -G, X TV K 0 X;W

0 1, T Y'- W = 0 F T Y; A (5.26))JC (5.26)
which implies that columns of

Y'-IV

form a basis for the space spanned by the stable eigenvectors and generalized eigenvectors of the perturbed
pencil and thus, for some invertible matrix 1'. we must have

X;I )V= ( X '
(5.27)

which implies that

Y, X7, = Y?(x;)-' = (Y, X y)-. (5.28)

Thus, if X, is invertible, YX¢'- is real valued.
Let us now show that X, is invertible. From (5.24) we get

FX, - G)Y, = KXJ, (5.29)

ITY; = FTyJ,. (5.30)
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If we premultiply (5.29) by YH we get

YHFX, = YHG,Y, + Y IKCXJ,. (5.31)

Now if we take the conjugate-transpose of (5.30) and use it in (5.31) we get

YrHFX, = YHG,Y, + JEHYHFXJe. (3.32)

But (5.32) is a Lyapunov equation with J, strictly stable and so YiHFX, is Hermitian positive-semi definite.
So if we let v be any matrix such that X,v = O, by pre and post-multiplying (5.32) by vH and v respectively,
we get

vHYHG,Ycv = 0 (5.33)

which since G¢ is positive-definite, implies that Ycv = 0. But this is a contradiction because

(XY,

has full column rank. Thus, X,, for small enough e > 0, is invertible. Note that X(O) = X is not necessarily

invertible.
Let us now show that FTYC is invertible. Suppose that FTY, is not invertible, in that case, from the

Lyapunov equation (5.32) we know that there exists an eigenvector w of J, such that

G,¥Yw = 0. (5.34)

If we now multiply (5.29) on the right by w and use the fact that Jw = Aw for some A < 1, we get that

FXw = AIKX,Yw (5.35)

contradicting the detectability assumption.5 Thus, FTrY is invertible. Note in particular that since we have

not used the invertibility of G,, FTY(O) = FTY is also invertible.
Now, let us solve for J, in (5.30) and substitute it in (5.29) and factor Y, as follows

FX, = [G, + KX,(FTY) -1 'KT]Y, (5.36)

from which we get
(FTy' )Xe 1 = FT(Gc + KX,(FTY )- I KT- F (5.37)

which implies that

X,(FYY)- l = [FT(G, + KX,(FTy)-lKT)-lF]- 1 (5.38)

which in turn implies that

p(e) = X,(FTYY)- 1 (5.39)

satisfies the perturbed algebraic descriptor Riccati equation

P(E) (0 I ) KP(E)IT + G, F (5.40)

Matrix X,(FrY,)-- l is real-valued and positive-definite: it is invertible because Xf and FTY, are invertible; it
is real-valued because

X,(FTY.) - 1 = (FTyXl-) - l (5.41)

5Detectability and stabilizability are generic properties and thus conserved under small enough perturbations.

~--~~--~~---------------------I-~_~~~_____ ______________17_



and we have already shown that kYXj- l is real-valued; it is positive semi-definite because YKHFX, is positive
semi-definite and

X,(F Y,) - = [(YHF)-l]Y;HFFX,[(yHF)- IH. (5.42)

Now let us show that the solution P(c) of the perturbed algebraic descriptor Riccati equation (5.40)
converges to P as c goes to zero. For that consider the perturbed descriptor Riccati equation

P+,(C)=-(O I)(K'P(C)K+GT F> (o (5.43)

with Po(e) = P. From the results of the previous section, we know that Pj(e) converges exponentially fast to
P(c) as long as the perturbed system remains detectable and stabilizable. Thus there exists c0o > 0 such that
for all e, 0 < c < co, Pj(e) converges exponentially fast to P(e) with a rate At. If we let

A= min A, (5.44)
O<c<co

we can see that for 0 < C < co, Pj(c) converges to P(c) at least with an exponential rate A. Thus, Pj(e)
converges uniformly to P(c). Also note that Pi(e) is a continuous function of C. But the uniform limit of
continuous functions is continuous and so P(e) is continuous which implies that

lim P(c) = P(O) = P. (5.45)

Finally, using (5.45) and the fact that Xc and Y, converge to X and Y, and that FTY is invertible, from
(5.39), by taking limit as C goes to zero, we get that P = X(FTY)- 1. a

6 Dual control problem

Consider the following optimal control problem:

Ek+lz(k + 1) = Akz(k) + Bk+lu(k + 1), x(0): given (6.1)

J ( = (j) (i) TQ ) s j ( (j) ) (6.2)

Since z is not in general completely specified in terms of u, the minimization is done over the "bitrajectory"

{z, u} (see [3]).
This problem can be expressed as follows

Fk,+l,(k + 1) = IKk:(k), ~(0) :given (6.3)

with

J = ((j)TG j ( j ) (6.4)
j=1

where

F = ( Ek -Bk) (6.5)

I = ( Alk 0) (6.6)

Gk = ( k
r RQ (6.7)

(k Rks/



Use dynamic programming approach (as in Bernhard et al., but more general). Let

V(S(j) .... .(N))Z= ~(k) T Gk(k) (6.8)
k=j

and

V*(E(j)) = r min Vj(.(j),..., (N)). (6.9)

It is clear that
V;(~(N)) = ((N)TGNy(N) (6.10)

and that

Vb_,(~(N - 1)) = (N - 1)TGNvl((N- 1) + min(N)TGN,(N). (6.11)
V(N)

To compute the minimum in (6.11), use the Lagrange multiplier technique: let

H = a(N)TGN(N) + AT(FNv(N) - KN.-1(N - 1)). (6.12)

Now by letting the partial of H with respect to C(N) to zero we get

GNa(N)' + F,%A = 0 (6.13)

and thus

(GF FT 0 (N)' (6.14)

Now assuming that Fv = [E,v - BN] has full row rank which is a necessary assumption to avoid infinite costs
(inadmissable states) and assuming that [GN FT] has full row rank (the equivalent of no perfect redundant
information for filtering problem) we get

f(Ny'=(I )( Gv 0 1k K ) 1). (6.15)
\v 0 KN-1

Thus

Vx1(T(N- 1)) = (N- 1)TGNv-(N -1)+

which after some algebra yields

VWf_l(~(N) ) = V(,V- 1) TG,v-l - ( 0 KT-1 ) F N 0 ) - l)- (6.17)

So in general
Vi((k()) = ,(k)

T
L A k(k) (6.18)

where

Ak-1 = Gkl_ - ( k 1 (k F [ 1) G o= (6.19)
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and

(0 ) ( Fk 0 (k 1). (6.20)
\~,Fk 0 (k- )

If we now let

Pk-,=-( 0 I ) A F ) (6.21)

which yields
AA = Gt + K.TPtKk, (6.22)

we obtain the dual control filter

( k)) I 0 0 / Qb+AT PkAk Sk Ek )
=(t' ~ ~ ~ k n R, B 0 xO(k - 1) (6.23)

Ek -Bk 0 Ak1 -

where Pk satisfies the descriptor Riccati equation

/Qk + ATPkAk Sk ET -1
Pk-1 = -( 0 I ) ST Rk -BT (6.24)

Ek -Bk 0 I

with final condition

PN = 0. (6.25)

Clearly, the optimal cost J* = Po.
Note that the descriptor Riccati equation (6.24) is similar to the descriptor Riccati equation for the filtering

problem. Thus all of the results obtained for the time invariant filtering problem extends trivially to this case.

In particular, for the time-invariant, infinite horizon problem

Ez(k + 1) = Ax(k) + Bu(k + 1), x(0): given (6.26)

E=-( (j)T U(j)T ( S (j ) (6.27)
j=I

we obtain the following result:

Theorem 6.1 Suppose

( sE-tA B)

and
sE-tA B

Q s
ST R

have respectively full row and column ranks for all (s, t) $ (0, 0) and Isl > Itl. Then, the solution to the infinite
horizon problem is given by

(T (R -BT o (k -) (6.2S
u(ik)' 0 + 0

E -B 0 A
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where P is the unique positive semi-definite solution of the algebraic descriptor Riccati equation

Q Q+ATPA S ET 

P= -(o o ) s T R -BT O . (6.29.)
E -B 0 \I

Moreover,

P = X(EY1 - BY2 )-1 (6.30)

where the columns of

Y(X

form a basis for the eigenspace of the pencil

-B T _S T -R | 0 0 0

0 A O 0 E -B

associated with its stable eigenmodes.

7 Conclusion

We have generalized, in this paper, the theory of Kalman filtering to the case of descriptor systems. In

particular, we have derived explicit expressions for the filter and studied its asymtotic behavior. The square-

root implementation of this filter will be presented in a subsequent paper.

A Proof of Lemma 2.1

First note that the lemma holds when R is non-singular. Now suppose that R is singular and assume withou;

loss of generality that (2.2) has the following structure (as seen above this can always be achieved by a

coordinate transformation and premultiplication of (2.2) by some invertible matrix),

(Z )=( Li + (A. 1

where L11 has full column rank and v has an invertible variance denoted by R. Let

Q ( Q11 Q12 ) (A.2

Then, since

R= 0 (Y..3'
O)1

and thanks to the assumption that Q > 0 and R + eQ is invertible. we can see that

Qll > . (0.-
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Expression (2.28) can now be expressed as follows

_-o+ (( 0 L22OQ122 01 Q )) ( L2

)T //-

0Elim Li Q1 CQ12 ) ( .(A.5)
Cm+ (( °0 L22 )(Q21 R+ Q22 ) (0 L22 (A5)

To evaluate the above expression, we need the following identity:

CA DB -- F 'A-16)

where A = B - CA 1 D, E = A- 1 D and F = CA- 1. The (1, 1)-block entry of (A.6) can also be expressed as

(A - DB-'C) - '. Using (A.6) with the alternate expression for its (1, 1)-block entry, we get that

EQll EQ. 2I =( eQ 21 R + eQ22 

( (eQl - E2Q12(R + eQ'22)-lQ21l)-1 -Q[lQ.2 (R+ eQ. .-eQ 2 1Q[Qi ).)-

- (R+( + cQ2.2 1 -1Q.lQl2)--.Q
-(R + EQ2 - eQ21Qfl'Q12_Q21Ql (1? + EQ22 - EQ21Q Q12)

We can simplify the above expression by separating terms of order e and higher. The result is

(Q1L IQ1,2 ) =( Q1f e 1 +Q Q2lfQ , Q21Qfl' -Qfl'Q R )+ o(e). (A.8)
Q2 1 R + CQ_22 -R-'Q 21Q[l

Thus we get

PML = lim(( LT, LLL+LTQQ -l LT 2R- ) +o(e))
co+-L. QolQll L22R 92

li ( LQfl' L11/e + LT VQlQ21~R-lQ2,QU'L,, -LTQIQ.2 R L2. 
c-o+ -LTA- lQ21Q[~ L22

lim T (A.9)def lm( ( /E + I z 7' (A.9)

where X and Z are both positive-definite since L1, and L22 have full rank. Applying the identity (A.6) to

(A.9) we get

PaL = lim ( X -eX-Y(Z - eYTX'-1Y)- )
c-o+ ( -e(Z-eYT-1y)-1Y.TX1 (Z - eYTX-1Y)- 1

= (0 o0 )' (A.10)

Thus.

PML=( (L AL) ) (A. 1)
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By a similar argument, expression (2.29) yields

( (LT Q-lLl) -'LT Q-1 0
ZU11 f0 1f11 11( I= ( 2

1 L22)_'LTR'} (A. 12)

By noting that (LT Ql 'Lll)-'LTQllI is a left inverse of L1l, we can see that (A.12) is consistent with (2.25)
and thus the lemma is proved. D

Note that the non-unicity in the expression (A.3) which is due to the fact that Q11 can be any positive-
definite matrix, is related to the non-unicity of the left inverse of L 11 when L11 is not square, i.e., when
redundant, perfect observations are available.

B Proof of Theorem 3.1

Let

X(k)T = ( (O)T X(1)T ... z(k)T (B.1)

,(k)T = ( ZT y( 1)T ... y(k)T )T (B.2)

/(k)T = ( u(0)T (1)T ... u(k-1)T )T (B.3)

p(k)T = ( T r(O)T ... r(k - 1 )T )T, (B.4)

and consider the problem of estimating X(k) based on the following observations

SkX(k) = 6ik#(k) (B.5)

47(k) = Cx(k) + p(k) (B.6)

where

-Ao E1

-Al E.

=r; i --A - 4 E2 -Ak-1 Ek

C1

Ck = .... (B.S)

Ck

This estimation problem is well-posed because ( k ) has full column rank (that thanks to the assumption

that ( ) has full column rank).

It is easy to see that

.(k) = (0 .. 0 I ), (k) (B.9)
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Pk = (0 .. O I0)p o (B.10)

where y(k) denote the ML estimate of -(k) based on observations (B.5) and (B.6) and Pk the corresponding
estimation error variance.

From the results of.the previous section, we know that

*(k) = lim Zk(e) ( kT' c )(( srI ' ) +I) - I)( k) l (B.11)

where

z()= W ( c) ( s RSk +el ( I) (B.12)

and where

Po 

Rk = R2 (B.13)

Rk-1

jk: = Q1 (B.14)

Qk-1

Sk= 0 0 S1 (B.15)

Note that

Sj+1 = Si( . (B.16)

Cj+ 1 = o 0 (B.17)
0 C+i+

0+ = (°JQ ) (B.18)
= Qj B0

7j+l 0 I R" ) (B.19)0 Ri+l 

And thus

=,l(_) + [( c T+i )(( ±sr Tl Sj+l j+ -
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o|0 .. o 2() 2() (B.20)

(o ... o n(C)T )
93(6)

where

Ql(=) (AT 0 )(( Qi 3 )+I) ( )A (B.21)

Q (e)= (AT 0 )((QTj Si) + ( E+ ) (B.22)

=23 ( Er+ 1 Cf+1 )(( S Rj ) ) ( C j+l (B.23)

If we denote the (j, j)-block entry of Zj(e) by Pj(e) and use the matrix identity (A.6), and the matrix identity

(A + BCD)- ' = A -l - A-'B(C-' + DA-1B)-'DA- ' (B.24)

after some algebra, (B.20) yields

Zj+i(c) =

( ( O .. O 1 r;+l(,) ( Ej~ir CiT+ )(( AjPj(c)Aj +Qj Sj A)i
((0 0 7.'(c)( Ef+ ICT+1 )sT R 1 +.1())

(B.25)
where *'s denote "don't care entries" and

= ( Ef+1 C>+ ) (( jA P S )+(e))A ( )(jB.26)Tj +1 Ej+ 1CjT+I S Rj el Cj+I '

It is not difficult to see that Zj(c) and thus Pj(e) are increasing in e > 0, 6 and since Pj(e) goes to Pj as e
goes to zero, we have

Pj(c) = Pj + ct + o(e ' ) (B.27)

where A > 0.
Finally, noting that

(j+ l) = lirn Zj+ t ()( ( +T CT1 Q+1 Sj+1 ) [) 0 ( i( j+ l (B.2S),-O+ +i Se1

Nwe get that

z(j+ l) = linm ( EjT+i c[ + ) (( Csj+ 1 I+ AjAAT )) ( Cj+i
,-0+ sfJ+ Rj +o I Cj+1

'The derivative of Z,(c), 2,(c) = cZ,(c) [( rc CT + Z, (C) > O, when e > 0.
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j+1 2+1 ) ( R, j I ))' y(j ) (B.29)

T 1 jT Qj+l $j+I Aj A j-
P+1 = '+[ ( cf+ ) S(+ Rj+ )( j )) ( (B.30)

The Theorem is now proved because (B.29) and (B.30) are consistent with (2.29) and (2.28).
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