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1 Introduction
In this paper, we consider the estimation problem for the following system

Erpiz(k+ 1) Apz(k) +u(k), £=0,1,2,... (1.1)
yk+1) = Ciz(k+1)+r(k), £=0,1,2,.. (1.2)

where matrices Ex4+) and A are [ x ng, and Cy, is pr X ny; u and r are zero-mean, Gaussian vector sequences

with r
u(k) u() _{ @ Sk .

M [( w ) () ] (& & )aws (%)
where M(.) denotes the mean and é(k,j) =1 if £ = j and 0 otherwise. We suppose that an a priori estimate
of z(0) is available.

Since no particular assumption is made about the E; and A; matrices, (1.1) does not, in general, specify
completely the sequence z. This means that z cannot be thought of as a stochastic process. The point of view
that we have adopted in this paper, is to consider z as a sequence of unknown vectors and consider both (1.1)
and (1.2) as observations of this unknown sequence. We show that this point of view is consistent with the
usual formulation of the Kalman filter in the case of Gauss-Markov processes.

We start, in Section 2, by introducing the maximum likelihood estimation and its connection with Bayesian
estimation. In section 3, we derive the descriptor Kalman filter. The results are specialized to the time-
invariant case and asymptotic properties of the filter are studied in Section 4. The construction of the steady
state descriptor Kalman filter is examined in Section 5. As in the classical case, there exists a dual control
problem for the descriptor Kalman filter; this control problem is presented in Section 6.

2 Maximum Likelihood Estimation

2.1 Maximum likelihood versus Bayesian estimation

Let = be unknown constant parameter vector and let z be an observation of z. The if P(z|z) denotes the
probability density function of z parameterized by z, the maximum likelihood (ML) estimate # based on
observation z satisfies

p(zlzarL) 2 p(zlz) for all z. (2.1)
In the linear Gaussian case. i.e. when
s=Lz+v (2.2)

where v is a zero-mean, Gaussian random vector with variance R, and L a full column-rank matrix, £z can
be obtained by noting that

(=12 lem s = 0. (2:3)
Since v is Gaussian, so is z and
p(z|z) = aexp(—(z — Lz)TR™}(z - Lz)/2) (2.4)
where « is a normalization constant. From (2.3) and (2.4), we can see that

tae = (LTR'L)™'LTR™ 2. (2.5)




The error variance associated with this estimate is given by
Pyrr = M((z = 2arL)(z — 2y)T] = (LTRTIL)TN (2.6) -

To see how the ML estimation method ties in with te Bayesian estimation method, consider the observation
(2.2) and suppose that z is not an unknown vector but a Gaussian random vector with known mean Z and
variance P.;. Then the Bayesian estimate g of z based on observation z is

tp = Pg(LTR 'z + P7'3) (2.7)

where Pp is the covariance of the estimation error:
Pg = M[(z - zp)(z — z5)T) = (LTR™'L+ P;1)~1. (2.8)
Note that if we let '
P7l =0, (2.9)

the maximum likelihood and the Bayesian estimates and estimation errors are identical.

The maximum likelihood estimation technique can also be used when an a priori estimate of z exists.
Specifically, any linear Gaussian Bayesian estimation problem can be formulated as a maximum likelihood
estimation problem. Consider the Bayesian problem stated above. This problem can be converted into a
maximum likelihood estimation problem if we consider the a priori statistics of z as an extra observation, i.e.
consider the following ML estimation problem

(2)-(4)+(2)

where w is a zero-mean, Gaussian random vector, independent of v and with variance P,. Applying expressions
(2.3) and (2.6) to this problem, we obtain the following

fayr = Pyr(LTR™': + P713) (2.11)
where
Pyp=(LTR™ 'L+ P7YH! (2.12)

which are exactly the Bayesian estimate and estimation error covariance (2.7), (2.8). Thus it is possible to
transform any linear Gaussian Bayesian estimation problem into an ML problem by transforming the a priori
statistics of z into an observation. :

2.2 The case of perfect observation

In the previous section, we considered the case where R, i.e. the variance of the observation noise, is positive
definite. If R is not invertible, it is clear that (2.3) and (2.6) cannot be used. In this case, there is a projection
of z which is known perfectly. and to obtain the ML estimate, we have to identify this projection.

Consider the ML estimation problem (2.2). Let T be a matrix such that

TRTT = ( g ?‘2 ) ‘ (2.13)

where R is a positive definite matrix. Then (2.2) can be expressed as follows

(2)=(8)=+(3) -



where

X
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( : ) =Tz, ( i: ) =TL, (2.15)

and 7 is a zero-mean, Gaussian random vector with invertible variance R. Now let S be an invertible matrix
such that

LS~ '=(Ly 0) (2.16)
where L;; has full column rank. Then if we let

( 2 ) = Sz, (2.17)
(2.14) can be expressed as T

(2)=(E 2)(2)+(8) -

Finally note that since L,; has full rank, it has a left inverse. Let L'{f' denote a left inverse of L,;, then by
premultiplying (2.18) by

I 0
= 2.19
v ( =Ll I ) (3.19)
we obtain the following
21 - Lll 0 - Iy 0
(32)‘(0 Lee)(=2)+(5> (2.20)
where
Za=z29— Loy L. (2:21)
The vector z; is the portion of z which is perfectly observed. Clearly,
(21)me = LTFa, (2.22)
and z, can be estimated from the results of the previous section,
(22)arz = (P)mr LLR™1 5, (2.23)
where .
(Pa)arr = (L5R™ Laa) ™t (229)
By combining (2.22) and (2.23), we see that
o = ( L 0 N ) ( 21 ) 2.25
( 2 )ML B ( 0 (Lg.zR-lL‘.’?)-ng'zR-l =) ( )
The ML estimation error covariance Pyrz and the ML estimate %z are then given by
0 0
P = (G agpnar ) (220
tyr = S} ( o ) . (2.27)
%2 /ML

The above procedure allows us to compute the ML estimate when R is not invertible, however, it does not
allow us to express this estimate in a simple closed form expression. The following result which is proved
in Appendix A, allows us to express this estimate in terms of a limit which, even though it is not useful for
computing the ML estimate, it is useful for analysis.




Lemma 2.1 Consider the ML estimation problem (2.2) with R possibly singular, then

Pyr = lim (LT(R+eQ)™' L)~ (2.28)
Ear = nn& (LT (R+€Q) ' L) ' LT(R+€Q)"Y)z (2.29)

where Q is any posilive semi-definite mairiz for which the R+ ¢Q is positive definite for € > 0. In particuler,
we can take Q= 1.

Note that Pysr does not depend on the choice of Q, however,

Jim (LT(R+e@)™' L)™' LT(R+ Q)™

may reflecting the non-unicity in the choice of LT,F.
It is easy to verify that Pyr and Zrr can also be expressed as follows

-1
Pa = -t D(FE2 ) (F) @0
~1
Iyvyr = (5%1(0 I)(RZ;’Q Ia) (é)z (2.31)

Which in the case there is no redundant perfect information, i.e., (L R) has full row rank or equivalently,
Ly, in (2.18) is square. simplify as follows (see Lemma 2.2)

-0 (& g)-l(?) | (232)
iy o= (0 I)(LRT g)-l(f))z. (2.33)

Expressions (2.32) and (2.33) are used in the next section for deriving a closed-form expression for the descriptor
Kalman filter.

Parc

Lemma 2.2 let R be positive semi-definite and L a full column rank matriz. Then if [R L] has full rou

rank, then
R L
LT o

is invertible.

Proof Suppose
R L
(= y)(LT 0)—_-0 (2-39)
then
tR+yLT =0 (2.35)
and
L =0. (2.36)



If we now take the conjugate transpose of (2.36) and multiply it on the left by y we get

yLTzT =0 (2.37)
which after substitution in (2.35) postmultiplied by zT yields

zRzT =0 (2.38)

which since R is positive semi-definite gives zR = 0. But we also have zL = 0 and so z = 0. It also implies
that yLT = 0 which since L is full rank implies that y = 0. a

3 Descriptor Kalman filter
Consider the standard Kalman filtering problem for causal Gauss-Markov process:

z(k+1) = Agz(k)+uk), £=0,1,2,... (3.1)
yk+1) = Cez(k+1)+r(k), k=0,1,2,... (3.2)

where u and r are white Gaussian sequences with

uk) Y (@) Y (& S .
A{(dﬂ>(ﬂﬂ)}'(¥ PLCE) 43
The initial state z(0) is also Gaussian with mean %, variance Py and independent of u and r. The Kalman
filter for this problem consists of sequentially computing the Bayesian estimate Zg(k) of the state z(k) based
on observations (3.2) up to time k — 1. The usual derivation of the Kalman filter equations is the construction
of the Bayesian estimate of the random process z based on past information y. But the Kalman filter can also
be obtained using the ML formulation. In particular, we consider z to be an unknown sequence and convert all

the dynamics equations (3.1) and the a priori statistics of z(0) into observations. The ML estimation problem
is then

0 = z(k+1)— Agz(k) —uk), k=0,1,2,.. (3.4)
yk+1) = Crz(k+1)+r(k), £=0,1,2,.. (3.5)
Zo = z(0)+v (3.6)

where v is a Gaussian random vector, independent of u and r, with variance P;. Here, all of the left hand sides
of (3.4)-(3.6) should be considered as measurements, with —u(k), r(k) and v playing the roles of measurement
noises. A question that arises at this point is whether 25(k) is equal to the ML estimate of z(k) based on
(36), (3.5) for1 <k < j—1 and (3.4) for all &, or, (3.6), and (3.5) and (3.4) for 0 < k < j — 1. The answer
is that both of these ML estimates yield the same result. It is straightforward to check, using the results
of the previous section, that future dynamics, given observations up to the present time, do not supply any
information regarding the present state. To see this, consider the “one step in the future” dynamics equation
for z(j):

0= 2(j +1) - A;2() - u(3). (3.7)
Given observations (3.3) only up to time k = j— 1, z(j + 1) is completely unknown which clearly implies that

(3.7) cannot supply any information regarding the value of z(j). Since (3.7), with j replaced with j+ 1, does
not contain any information regarding z(j + 1) either, then by induction we can see that no future dynamic



contains information regarding z(j). This, in fact, is closely related to the Markovian nature of the process z
in the original formulation of the problem.

This ML formulation of the optimal filtering problem (Kalman filter) can be extended to the descriptor
system (1.1)-(1.2). We consider z as an unknown sequence and convert all dynamics equations (1.1) and the
a priori information on z(0) into observations. The ML estimation problem is then

0 = Epprz(k+1)— Agz(k) —u(k), £=0,1,2,.. (3.8)
yk+1) = Cez(k+1)+r(k), k=012 .. (3.9)
Iy = z(0)+v (3.10)

where v is a Gaussian random vector, independent of u and r, with variance Po.

The difference here with the previous case is that (3.8) when k = j does indeed contain information about
z(j) when Ej4, is not invertible even if z(j+1) is completely unknown. Specifically, (3.8) contains information
about the projection of A;z(j) which lies in the null-space of E;41. In general, the situation is even more
complex because z(j + 1) is not completely unknown because of future dynamics. Thus, the optimal estimate
of z(j) based on observations (3.9), up to j — 1, and observations (3.8) up to j — 1, in general differs from
the optimal estimate of z(j) based on observations (3.9), up to j — 1, and observations (3.8), for all k. For
example consider the case where

E=B=0, A=C=1] (3.11)

with an a priori estimate Eo of z{0) with an associated positive-definite error variance P;. In this case, clearly
the only possibility is that z(j) = 0 for all j, however, based on the observations (3.8) up to j — 1 and
observations (3.9), up to j — 1, one can check that

Tvae(J)=y(d), j=12, .. (3.12)

So in formulating the Kalman filter for descriptor systems, we have to decide what we mean by the filtered
estimate Z(j) of z(j). If we choose to take into account all future dynamics, we do not get a causal filter
because the estimate of z(j) could depend on A; and Ey for k£ > j. There is a priori no upper bound on how
far in the future we have to look.

Other reason for not considering the future dynamics is that when we consider the smoothing problem. we
like to have a forward and a backward Kalman filter from which the smoothed estimate can be constructed.
In that case, clearly considering all the dynamics for both filters would amount to counting the dynamics
equations twice. We shall consider the smoothing problem in a subsequent paper.

Definition 3.1 The filtered estimate (j) of z(j) in (1.1)-(1.2) is defined as the ML estimate of z(j) based
on observations (3.9) and dynamics (observations (3.8)) up to j— 1 and the a priori information, i.e. (3.10).
P; denotes the error varance associated with this estimate. The estimate £(0) = Zo with an error variance

Ps.

E;

Note that when ( c,

unobserved and no finite error variance estimate of it can be constructed. Thus we shall assume from here on

) does not have full column rank for some j, some projection of z(j) is completely

that g" has full column rank for all j > 1.
bj

Theorem 3.1 Let £(j) denote the filtered estimate of z(j) and P; the associated error variance for descriptor
system (1.1)-(1.2). Then. the filtered estimate (j + 1) of z(j + 1) and the associated error variance Pjy



are respectively equal to the ML estimate of £(j + 1) and its associated estimation error variance based on the
following observations

yU+1) = Ciaz(i+1)+r(j) (3.13)
4;8(J) = Ejnz(i+1)+w(j) (3.14)
where w(j) is a Gaussian random vector independent of r(j + 1) with variance AjP,-A? +Q;.

The proof is given in Appendix B.
Theorem 3.1 implies that we can construct the estimate at time j + 1 from the estimate at time j and
y(j + 1). This gives us a recursive method for computing Z(j) and is just the descriptor Kalman filter.

Corollary 3.1 If past and present observations and dynamics do not supply redundant perfect informations,
i.e. when
( AjPA]+Q; S; Ejn
sy Rj Cin

has full row rank, then the fillered estimate Z(j+ 1) and the corresponding error variance P41 can be obtained
as follows:

-1
AjPAT +Q;  S;  Ein (Aji:(j))

#j+1) = (0 0 I) ST R; Cin y(j+1) (3.15)
ET,., cf, o 0
-1
AjPAT+Q; S;  Ejn 0
Piyg = —(0 0 1) 5}' R; Cju 0 (3.16)
El, ch, o I

Note that the condition of Theorem 3.1 may not be fulfilled even in the standard causal case, i.e. when
E; =1 if Ry is singular.
4 Time-invariant case
In this section, we study the asymptotic properties of the descriptor Kalman filter in the time-invariant case:

Ex(k+1) = Az(k)+u(k), k=0,1,2,.. (4.17)
yk+1) = Cz(k+1)+r(k), £=0,1,2,.. (4.18)

where matrices E and A are I x n, and C is p X n; u and r are zero-mean, white, Gaussian sequences with

variance T
() (R (& ) @

-1



4.1 Stability and convergence of the descriptor Kalman filter

Here, we extend the existing results concerning the stability and the convergence of the standard Kalman filter
to the descriptor case.

Definition 4.1 System (4.17)-(4.18) is called detectable if

sE-tA
C
has full column rank for all (s,t) # (0.0) such that |s| > |t|.

It is called stabilizable if
sSE—tA Q S
o ST R /.
has full row rank for all (s,t) # (0,0) such that |s| > |t|.

Note that our definitions of stabilizability and detectability are consistent with classical definitions when £ = [
and R> 0.

If the system is detectable. we can always find a stable estimator filter. The optimal estimator, i.e. the
descriptor Kalman filter, however does not necessarily converge to a stable filter.

Theorem 4.1 Let (4.17)-({.13) be delectable, then there ezisis a stable filter
z,(k +1) = A,z (k) + K,y(k + 1) (4.20)

such that
lim M{(2(k) - 2, (£))(z(k) - 2,(k))7] < oo. (421)

Proof of Theorem 4.1: We start the proof by showing the following lemma:
Lemma 4.1 Let (4.17)-(4.13) be detectable, then there exisis a left inverse (L, L.) of( g ), i.e

LEE+L.C=1I, (4.22)

such that L. A is stable.

Proof of Lemma 4.1: Since ( f‘ ) has full rank, there exist invertible matrices U and V such that

UEV = ((I) LP) (4.23)
cV = (0 C) (429

where C has full column rank. If we denote

Au A]_g ‘
/]
U AV _( . ) (4.25)



then detectability of (C, E, A) implies that

sl — Al 1
. A2

has full column rank for |s/t| > 1 which means that (A;;, A2;) is detectable in the classical sense. Thus, there
exists a matrix D such that Ay + DA, is stable. It is now straightforward to verify that if F is any matrix

satisfying
_ [ —DE,
ree (250)
then I D !
0
(o 0 )(o En)""p(o C)=1
and

0 0 Asy Asn )= 0 0
which is stable because A;; + DA, is stable. Thus by taking

I D
L. = V(O O)U

L. = VFU

([ D><Au Am)__(Au-i-DAu A12+DA22)

the lemma is proved.

(4.26)

(4.27)

(4.28)

(4.29)
(4.30)

a

Continuing the proof of the theorem, note that using the above lemma, we can express z(k + 1) as follows

z(k+1)= L, Az(k) + Ley(k + 1)+ Lou(k) = Ler(k + 1)
where L.A is stable. If we now define
z,(k+1) = LeAzy(k) + Ley(k + 1)

we can easily see that

Jim M((z(k) = 2, (k) (z(k) = z,(k))T] = P,
where P, is the unique positive semi-definite solution of the Lyapunov equation
S LT
Po-LePea = (L L)( & 3) (1)
The theorem is thus proved.

Theorem 4.2 Let (4.17)-(4.18) be detectable. Then the algebraic descriptor Riccati equation

Peim {( e )<( AP,-;I;+Q }‘92)“1)-1(2)]—1

has a positive semi-definite solulion.

(4.31)

(4.32)

(4.33)

(4.34)

a

(4.35)



Proof of Theorem 4.2: We prove the existence of a positive semi-definite solution P to (4.35) by showing
that the descriptor Riccati recursion

Pjs1 = {EI& l:( ET T )(( APf‘;:.+Q }52 )-}-c[)‘l ( g )]—1 (4.36)

with Py = 0 is monotone increasing and bounded.

To see the boundedness of Py, consider the stable filter (4.32) with z,(0) = Zo. It is then clear that the
associated error variance matrices P,(k) converge asymptotically to P, the unique solution of (4.34) and that
thanks to the optimality of the descriptor Kalman filter, P < P,(k).

We show that P is monotone increasing by induction. Clearly

P> Py=0. (4.37)
Now suppose that
P) 2 Pj-l) (4'38)
then
APAT +Q > AP1AT +Q, (4.39)
T < -1 ) T -1
(#5% 5)en) < (B0 8)on)™s o
Pj+l Z P]' (4'41)
a

Theorem 4.3 Let (4.17)-(4.13) be detectable and stabilizable. Then for all initial condition Py, as k goes to
infinity, P, converges exrponentially fast to the unique positive semi-definite solution of the algebraic descriptor
Riccats equation. Moreover. the descriptor Kalman filter converges to a stable filter.

Proof of Theorem 4.3: We have already shown that Py converges when Py = 0, so we start by extending
this result to the case of arbitrary P;. Then we prove that the convergence is exponential by showing that the
asymptotic filter is stable.

It is straightforward to verify that (4.36) can be expressed as

. S L7
P =(L‘.'.-{)Pj([.j:{)r+( L; Kj; )( .S?T R ) ( [\'JT ) (4.42)
J
where
(L; K; ):zkrg]+
AP;AT+Q 3 reN]T APAT+Q S -t
or ena (#4500 3)ea) (£ cor (#2500 2)va)”
. (4.43)
The algebraic Riccati equation can now be expressed as
. S T
P=(LYPLAT+(L K )( 22 ) ( [L\,T ) (4.44)

10



where
(L K ) = lim

=0+
-1
APAT +Q S “lrE APAT+Q S -1
[(ET cT)(( o R)-}-eI) S (T CT)<( e R)+e[) .
(4.45)
It is not difficult also to see that
LE=1-KC. (4.46)

We show that LA is stable using the fact that (4.44) has a positive semi-definite solution. Suppose LA is not
stable then there exist a scalar A > 1 and a complex row vector v such that

vLA = Av. (4.47)

From (4.44) we get that

(1=-P2ePf =o( L K )(s?f }";) (;’;; )v” (4.48)

where (.)¥ denotes the conjugate-transpose. Since the right hand side of (4.48) is non-negative and its left
hand side, non-positive, we must have

S
v( L K)(S%- R):o. (4.49)
But then thanks to (4.46) and (4.47) we get that
MWLE =vLA-MKC. (4.50)
From (4.49) and (4.50) follows that
. AE-A Q S\ _
v( L I\)( C ST R)-—O (4.51)

which since v(L K),# 0 (vL # O thanks to (4.47)) contradicts the stabilizability assumption. Thus LA is
stable.

Now we must show that for any arbitrary positive semi-definite Py, the descriptor Riccati equation con-
verges. We shall first prove this result for the case where P, is positive-definite. From (4.42) we get that

Pj=(Lj—1ALj_2A...LoA)Ps(Lj~1 AL;j_2A...LoA)T + non-negative terms. (4.52)
But P; is bounded thus thanks to the assumption that Py is positive-definite, we get that
Gj = Lj_lALj-gA...LoA ’ (453)

is bounded. Now let P be a positive semi-definite solution of the algebraic descriptor Riccati equation (4.35),
then using expression (4.36) and after some algebra we can show that

Pjyy — P = (LAYP; - P)(L; A)T. (4.54)

11




Thus, .
Piy1 — P = (LAY*Y (P — P)GT,,, (4.55)

but G; is bounded and LA is stable, which mean that P; converges to P.

To extend this result to the case where P, is only positive semi-definite, simply let P} represent the sequence
of matrices satisfying the descriptor Riccati equation with P} = 0 and P the sequence of matrices satisfying
the same equation with P§ > Py and Pj > 0. Then P} < P; < P} (where P; denotes the sequence generated
by the descriptor Riccati equation with initial condition P;) and since P} and PJ? converge to P, so does P;.

Note that we have shown that P; converges to P from any arbitrary initial condition Py > 0, where P is
any positive semi-definite solution of the algebraic descriptor Riccati equation. This clearly implies that P is
unique.

Now we have to show that P; converges exponentially fast for any initial condition Py > 0. For this, we
shall show the result for the case where Py > 0 and the case where Py = 0. These results can then be extended
to the general case by an argument similar to the one used to show convergence.

Let Py be positive-definite, then G; is bounded. Thus, since LA is stable, from (4.55) we can deduce that
P; converges to P exponentially fast at a rate determined by the magnitude of the largest eigenvalue of LA.

Now let Py be zero. If for some j, P; becomes positive definite then exponential convergence follows
immediately from the result of the previous case. If P; never becomes positive definite, using the fact that P;
is monotone increasing, it can be deduced that

Im(P;) CIm (Pj+1), Jj20. (4.586)

Thus for some k£ > 0.
Im(P)CIm(P:), j20. (4.57)

This means that there is a projection of z which is estimated perfectly, and a projection, which after the k**
step can only be estimated with a positive definite error variance. We can, without loss of generality assume

that G)
. zP(j )
= . 4.58
2= 59 (459
where zP(j) is the perfectly observed projection and z9(j) the “non-perfectly observed projection”. In this
case,
0 0
B = ( o ) (4.59)
where P; >0ifj> 4, and
0 0
- 460
\ r=(o o) (a0
where P? > 0. Also note that the dynamics of the descriptor Kalman filter L; A, for j > k, must be block
tri-diagonal:
MP OO
A= J 461
Lid ( MM ) (481

because zP(j+ 1) can only be updated in terms of z?(j) and noise uncorrupted projection of y(j+ 1) otherwise,
it would not have a zero variance estimate. But we know that

Piyj1 = (LAY P, — P)[LigjALksjr ALy AT (4.62)

12




which if we denote by M7 the (2,2)-block of LA, yields

Pl =M (P~ POMEME L M (4.63)

Note that P{ is positive definite, so
MM M

is bounded, and since M7 is stable, P)f’ converges exponentially fast.
Note the stabilizability assumption in particular implies that
E Q@ S
c ST R
has full row rank which implies that*

E Q+ APAT S
C sT R

has full row rank for all P; > 0. Thus, the descriptor Kalman filter can be expressed explicitly as indicated in

Corollary 3.1. The main results of this section are summerized in the next theorem:
Theorem 4.4 Let (4.17)-(4.18) be detectable and stabilizable. Then

1- the descriptor Kalman filter can be ezpressed as

APiAT+Q S E -t Ax(j)
y(j+1) |, #(0)=2%, (4.64)

#(j+1) = (0 0 I) sT R C
ET cT o 0
APAT+Q S EN\ "'/
Piyp = =(0 0 7)) sT R C 01, (4.63)
ET cT o I

2- the error variance matriz P; converges ezponentially to P the unique positive semi-definite solution of

the algebraic descriptor Riccali equation

APAT+Q S E\ ' /[0
P=-(00 1) sT R C 0, (4.66)
ET cT o I
3- the descripior Ralman filter converges to the stable steady state descriptor Kalman filter
| APAT+Q s E\"'/[ Az())
Hj+1)=(0 0 I) sT R C vG+1) |. (4.67)
ET cT o 0

Next section is concerned with the construction of the matrix P.
4In general if (X Y], Y > 0, has full row rank then [X,Y + Z}, Z > 0, has full row rank because Ker Y C Ker Y + Z.
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5 Construction of the steady state filter

In this section, we show that the solution of the algebraic descriptor Riccati equation can be constructed using
the eigenvectors and generalized eigenvectors of the pencil:

E -Q -S /A 0 O
cC -ST -R |, 0 0 o0 . (5.1)
0 AT o 0 ET T

We shall assume throughout this section that the system is detectable and stabilizable.
Lemma 5.1 The pencil (5.1) is regular and has no eigenmode on the unit circle.

Before proving this lemma, let us introduce the following notation:

F:(ﬁ),{{:(?),@:(ﬁ Z) (5.2)

The pencil (5.1) can now be expressed as

(5 39).(5 &)

and the descriptor Riccati equation as

_ KPRT+G F\ ™' [0
P=-(0 I)( P 0) 1) (5.4)
Proof of Lemma 5.1: All we need to show is that for all z on the unit circle,
F -G K 0 -
(5 38)e(5 &)

is invertible. Note that thanks to the detectability assumption which can now be stated in terms of the new
notation as: “sF — tK has full column rank for (s.t) # (0.0) and |s| > |t|”, we can see that F' + zK has full
column rank for all z on the unit circle. Now suppose that (5.5) is not invertible, which means that there exist
u and v not simultaneously null such that

F+4+:N -G

If we now le_t

[=:KN+F (5.7)

from (5.6) follows that
ul+vG = 0 (5.8)
o7 = 0. (5.9)

If we now multiply (5.8) and (5.9) on the right by v and uf respectively and take the transpose-conjugate
of (5.9) and subtract from (5.8), we get

vGvH =0 (5.10)
which since G is symmetric positive semi-definite implies that vG = 0. Thus since I' has full column rank.
(5.8) implies that u = 0. But we also have that v(I'¥ G) = 0 which thanks to the stabilizability assumption
implies that v = 0 contradicting the assumption that u and v are not simultaneously null. o
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Lemma 5.2 The pencil (5.1) has ezactly n stable eigenmodes.

Proof of Lemma 5.2: Let

F -G K o0
p(s,t) = det (s( 0 KT )+t( o FT ))
_ 0 KT 0 FTY _ 0 sKT +tFT
= det S(F _G)+t(K 0 ))-det(sF+tK —sG (5.11)
then KT T 0 KT 4 sFT
0 K 0 F tK* +s
p(t,s)_det(t(F _G)-i-s( K 0 ))=d§t(tF+sI{ —iG ) (5.12)
Note that
I 0 0 sKT +tFT Ijft 0\ _
0 tI sF +tK -sG o I)"
I o 0 tKT+sFT\T/ I/s 0 (5.13
0 sI J\tF+sk -G 0 I 13)
and so
¥ Pp(s, )t~ = sMPp(t, s)s™", (5.14)
SO
t+P=np(s, t) = s'HPp(t, 5). (5.13)

If we denote the number of zero eigenmodes bs' g, stable but non-zero eigenmodes by §,, unstable eigenmodes
by 6y and infinite eigenmodes by 6., from (5.15) and the fact that there are no eigenmodes on the unit circle.
we conclude that

§ = by (5.16)
bo—8 = l+p—n. (5.17)
Finally noting that
bo+d,+6u+bs=n+l+p (5.18)
we get that the number of stable eigenmodes 6, + é, = n. ’ a

Theorem 5.1 Let the columns of

form a basis for the eigenspace of the pencil (5.1) associated with its n stable eigenmodes, i.e.

E -Q =S X A 0 O X
c -ST -R Yi =10 0 o W |J (5.19)
0 AT o Ya 0 ET T Y,

where J is stable. Then, P, the unique positive semi-definite solution of the algebraic Riccati equation (4.66}
s given by
P=X(ETY; +CTYs)"L. (5.20)
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Proof of Theorem 5.1: Using notation (5.2) and by letting

Y= ( h ) : (5.21)
we must show that
P = X(FY)™L. (5.22)
Consider perturbing G as follows :
G=G+el (5.23)

and denote the matrix of eigenvectors and generalized eigenvectors associated with the stable eigenmodes of
the perturbed pencil by '

Xe
Ye
and the matrix of eigenmodes by J,:

(5?§)(fj)=(’§ F%)(i‘)h (5.24)

It is well know that as ¢ goes to zero, .\ and Y, converge respectively to X and Y (J, may or may not converge
to J depending on the eigenstructure of J).

Now suppose that X, is invertible for ¢ > 0. Then we like to show that Y. X ! is real valued. Note that
the Jordan blocks of J, that correspond to complex eigenmodes, are in complex-conjugate pairs and thus J,
and J; (where (.)* denotes complex conjugate) are similar, i.e. there exists an invertible matrix W such that

Je=W-lIw. (5.23)

Thus by using this fact and taking the complex conjugate of both sides of (5.24) and post-multiplication by

IV, we obtain
F -G, \(XxW\_(K o X:w -
( o KT )( Y w )‘( 0o FT ) ( vew )7 (5.26)
which implies that columns of
X:w
: YoV

form a basis for the space spanned by the stable eigenvectors and generalized eigenvectors of the perturbed
pencil and thus, for some invertible matrix 1", we must have

XJW _{ X -
( Yow )V—( Y, ) (5.27)

Y.XIU =YX = (Y XTY) (5.28)

Thus, if X, is invertible, Y, X! is real valued.
Let us now show that X is invertible. From (5.24) we get

which implies that

FX-GYe = KXJ. (5.29)
KTy, = FTv.J.. (5.30)
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If we premultiply (5.29) by Y. we get
YEFX.=YHG.Y. + YEKX.J.. (5.31)
Now if we take the conjugate-transpose of (5.30) and use it in (5.31) we get
YEFX, =YHG.Y, + JEYEFX.J.. (5.32)

But (5.32) is a Lyapunov equation with J, strictly stable and so Y, F X, is Hermitian positive-semi definite.
So if we let v be any matrix such that X,v = 0, by pre and post-multiplying (5.32) by v¥ and v respectively,
we get

vAIYHG Y v =0 (5.33)

which since G, is positive-definite, implies that Y,v = 0. But this is a contradiction because

X

Y,
has full column rank. Thus, X, for small enough e > 0, is invertible. Note that X(0) = X is not necessarily
invertible.

Let us now show that FTY, is invertible. Suppose that FTY, is not invertible, in that case, from the
Lyapunov equation (5.32) we know that there exists an eigenvector w of J, such that

G Yw=0. (5.34)
If we now multiply (5.29) on the right by w and use the fact that J,w = Aw for some A < 1, we get that
FXw=AMX.w (5.35)

contradicting the detectability assumption.® Thus, FTY, is invertible. Note in particular that since we have
not used the invertibility of G, FTY(0) = FTY is also invertible.
Now, let us solve for J, in (5.30) and substitute it in (5.29) and factor Y, as follows

FX.=[Gc+ KX(FTY) 'KTY, (5.36)
from which we get
(FTY)X ' = FT(G + KX (FTY)"*KT)"'F (5.37)
which implies that
X(FTY) ' = [FT(G + KXAFTY) 'KT)~tF)? (5.38)
which in turn implies that
P(e) = X(FTY)™ (5.39)
satisfies the perturbed algebraic descriptor Riccati equation
- -7 -1
Pe)=-(0 1)(1‘P(‘)1{}T +Ge f;) (?,) (5.40)

Matrix X (FTY,)"! is real-valued and positive-definite: it is invertible because X, and F TY, are invertible; it
is real-valued because
X(FTy) ' = (FTY.x71H)™! (5.41)

SDetectability and stabilizability are generic properties and thus conserved under small enough perturbations.
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and we have already shown that Y, X! is real-valued; it is positive semi-definite because YHFX, is positive
semi-definite and
XAFTY) = (YR WHFX[(YAF)~1)E. (5-42)

Now let us show that the solution P(e¢) of the perturbed algebraic descriptor Riccati equation (5.40)
converges to P as € goes to zero. For that consider the perturbed descriptor Riccati equation

> 1. -T -1
Pt == (o 1)( FAOET+G 2 () (5.43)

with Py(¢) = P. From the results of the previous section, we know that P;j(€) converges exponentially fast to
P(e) as long as the perturbed system remains detectable and stabilizable. Thus there exists €g > 0 such that
for all ¢, 0 < € < €, Pj(€) converges exponentially fast to P(e) with a rate A.. If we let

= mi 5.
A og:xsnma\e (5.44)

we can see that for 0 < € < €o, Pj(€) converges to P(e) at least with an exponential rate A. Thus, P;(e)
converges uniformly to P(¢). Also note that Pj(e) is a continuous function of e. But the uniform limit of
continuous functions is continuous and so P(¢) is continuous which implies that

lim P(e) = P(0) = P. (5.45)
=0+
Finally, using (5.45) and the fact that X, and Y, converge to X and Y, and that FTY is invertible, from
(5.39), by taking limit as € goes to zero, we get that P = X(FTY)~!. o
6 Dual control problem

Consider the following optimal control problem:

Eeprz(k+ 1) = Agz(k) + Besru(k + 1), =z(0): given (6.1)

V
=S AT (T Qi S; z(j)
I= 2 T (& % )(:3) (5:2)

Since z is not in general completely specified in terms of u, the minimization is done over the “bitrajectory”

{z, u} (see [3]).

This problem can be expressed as follows

Fie &k +1) = Ri&(k), £(0) : given (6.3)

with v
7= &iTGiE) (69

j=1

where

Fo = (E; —B) (6.3)
Ky = (A 0) (6.6)
_ Qr Sk -
Ge = (SZ o ) (6.7)

18




Use dynamic programming approach (as in Bernhard et al, but more general). Let

N
Vi(€(), - E(N)) = D (k)T GRé(k) (6.8)
k=j
and
ViEU) = min V(). 6N (6.9)
It is clear that
VR(E(N)) = &(N)TGNE(N) (6.10)
and that ' ’
VRo1(6(N = 1)) = &N = 1)TGro16(N - 1) + %s(N)TGNe(N). (6.11)

To compute the minimum in (6.11), use the Lagrange multiplier technique: let
H = §N)TGNE(N) + AT(FNE(N) — Kn—1&(N —1)). (6.12)

Now by letting the partial of A with respect to £(NN) to zero we get

GNEN) +FEA=0 (6.13)

and thus Gy FI V) 0
( F:v 0 ) ( A ): ( Kn-1§(N - 1) ) (6.14)
Now assuming that Fy = [Ex — By] has full row rank which is a necessary assumption to avoid infinite costs

(inadmissable states) and assuming that [Gy FJ] has full row rank (the equivalent of no perfect redundant
information for filtering problem) we get

T \ -1
gNy=(1I0) ( f,:,’ Fu ) ( K£_1 )5(N- 1). (5.15)

Thus
Va_1(8(N = 1)) = &NV = 1) TGy 1E(N - 1)+

T " T Gy F% TGy 0 Gn F§ -t 0 o
gN-1T(0 Kf_, )(F‘v o\) ( 0 0)(&: 0 Ky, )Y -D (6.16)

which after some algebra yields

-1
Vi (E(N)) = &V = DT (G,v_l—( 0 K%_, (?,; ?) (KO 1 ))E(N—l). (6.17)

N-

So in general

Vi (&(k)) = S(k)T Arg(R) (6.18)
where -
A1 =Gy — (0 KT,) ( ?.: F;;‘ ) ( Kf—l ) , An=Gn (6.19)
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and

A\ e Ak Fg‘ -t 0 .
aor=(o ) (5 F) (L2, )ae-n. (6:20)
If we now let 7t
Ay F 0
Poy=-(0 1)<F: & ) (1) (6.21)
which yields
Ar =Gy + KTPK,, (6.22)

we obtain the dual control filter
; -1
. Q.+ ATP.A. S ET 0
k I 00
( :EL; ) = ( 0 I 0 ) Si Ry -Bf 0 z(k-1) (6.23)
E; -B 0 Ap-y

where P satisfies the descriptor Riccati equation

Qi+ ATP.Ay  Sx  ET A
Peoy=-(0 0 1) sT R, -BT 0 (6.24)
Ey —~ B 0 I
with final condition
Py =0. (6.25)

Clearly, the optimal cost J* = Ps.

Note that the descriptor Riccati equation (6.24) is similar to the descriptor Riccati equation for the filtering
problem. Thus all of the results obtained for the time invariant filtering problem extends trivially to this case.
In particular, for the time-invariant, infinite horizon problem

Ez(k+1) = Az(k) + Bu(k +1), =z(0):given (6.26)
-5 AT (T Q S z(j) : -
7= 3 (0 W) 2) () (6:27)
we obtain the following result:
Theorem 6.1 Suppose
(sE-t4 B)

and

sE—-tA B
Q S
sT R

have respectively full row and column ranks for all (s, t) # (0,0) and |s| > |t|. Then, the solution to the infinite
horizon problem ts given by

- Q+ATPA S ET \"' [0
( 2(2)~ ) _ ( I 3 0 ) ST R BT 0 |z(k-1) (6.23)
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where P is the unique positive semi-definite solution of the algebraic descriptor Riccati equation

Q+ATPA S ET \"' /o
P=-(0 0 I) sT R -BT 0 ]. (6.29)
E -B 0 I
Moreover,
P = X(EY; - BY,)™! (6.30)

where the columns of

X

Y

Y,
form a basis for the eigenspace of the pencil

ET Q@ -5 AT o o
-BT -sT _-R |, 60 0 O
0 A 0 0 E -B

associated with its stable eigenmodes.

7 Conclusion

We have generalized, in this paper, the theory of Kalman filtering to the case of descriptor systems. Iz
particular, we have derived explicit expressions for the filter and studied its asymtotic behavior. The square-
root implementation of this filter will be presented in a subsequent paper.

A Proof of Lemma 2.1

First note that the lemma holds when R is non-singular. Now suppose that R is singular and assume withous
loss of generality that (2.2) has the following structure (as seen above this can always be achieved by 2
coordinate transformation and premultiplication of (2.2) by some invertible matrix),

z L 0 r 0 .
(1>=( o Ln)(z;)*’(g) (A1

where L,; has full column rank and ¥ has an invertible variance denoted by R. Let

[ Qu Qi ) Lo
e= ( Qxa Q2 /7 (
Then, since
0 0
= - A
R=(5 %) (
and thanks to the assumption that Q > 0 and R + ¢Q is invertible, we can see that
Q11 > 0. (A4
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Expression (2.28) can now be expressed as follows
Ly o0 \'//0o o Qu Q R SN
: 11 0 1 @i 11
Puz e}-l-!?%- (( 0 Lo > (( 0 R )+€( Q21 Q2 )) ( 0 Lo >)

TreQu €2 Y '[Lu O -
) ( €Q21 R+€Q22 ) ( 0 L22 ) ) (A’s)

To evaluate the above expression, we need the following identity:

( A D ‘)’1 _ ( Al + EA-'F —EA™! )

]
=
3

N
P

o &

S o

(&)

c B —ATlF AT (4.6)

where A= B—-CA™'D, E = A"'D and F = CA~!. The (1,1)-block entry of (A.6) can also be expressed as
(A—= DB-1C)~!. Using (A.G) with the alternate expression for its (1,1)-block entry, we get that

(CQu _€Qr2 >—1_
€Q21 R+ €Qaa -
( (€Q11 = €Qu2(R + €Q22) ™' Q)™ —Qa‘gu(meqzz—eanza‘Qn)-‘) (A7)
~(R+¢Qa2 — €QuQT'Q12)"'Qu QT (R+ €Qaz — €QQ1'Q12) "

We can simplify the above expression by separating terms of order ¢ and higher. The result is

(fQu _ Qe )“___ ( Qil/e+ Qi QuR™QuQn QT QuR™ ) fole).  (A8)

€Qa1 R+ €Qan "R_‘Qleﬁl R-1
Thus we get
. LT Q-lL /€+LT Q—IQ _,R—XQ,’ Q-IL ~LT Q—lleé—ngg 1
P = 1 ntan 11¢11 @1z 1y L1 11«11 +o(e
e "{I[I’L(( —LLRT'QuQT Ly LLR™ Loy (€)
5 - =_ -1

= lim < LTQu Lun/e + LN QT Q2R QuQp Ly —L1Q1' Qu2R™ Lo )

em0+ —LLR'QuQ7} L LL,R 'Ly,

. . . -1

def .. X/e+V Y
= A9

tlx_rcr)k(( YT A ) (A.9)

where X and Z are both positive-definite since Ly, and Las have full rank. Applying the identity (A.6) to
(A.9) we get

- eXT! —eX~Y(Z - eYTX-1Y)™! ) 2
Pae = l‘.’&( —6(Z —eYTX-1y)-1y T x-1 (Z - eYTX-1y)~! +o(e)
0 0 _
- A10
- (o z-! ) (A.10)
Thus.
0 0
= -~ . All
Pae ( 0 (LLR™'Lyy)™? ) (410)
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By a similar argument, expression (2.29) yields

. _ ( Chen L LT 0 . ) .
ZyL = ( 0 : (L"Zz"zR—lez)—ng'zR—l e ('&'12)

By noting that (LT, Q7 L11) " LT Q7! is a left inverse of Ly;, we can see that (A.12) is consistent with (2.25)
and thus the lemma is proved. c

Note that the non-unicity in the expression (A.3) which is due to the fact that Q;; can be any positive-
definite matrix, is related to the non-unicity of the left inverse of L;; when L;; is not square, i.e., when
redundant, perfect observations are available.

B Proof of Theorem 3.1

Let
x0T = (20T ()T ... 2B)T)" (B.1)
a7 = (F yT . oymT )T (B.2)
)T = (w©O)T w)T ... wk-1T)T (B.3)
)T = (T #0)T ... rk-1T)7, (B.4)

and consider the problem of estimating x(k) based on the following observations

Sex(k) = Brp(k) (B.3)
n(k) = Cix(k)+ o(k) (B.8)
where
/-—Ao El
-4, E-»
T = . (B.7)
K —Ar-1 Ex
(I
Cy
C = . (B.3)
Ck
Sk

This estimation problem is well-posed because ( ) has full column rank (that thanks to the assumption

Ci
E} .
that c has full column rank).
k

It is easy to see that

k) = (0 . 0 I)xk) (B.9)
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0
0 (B.10)
I

P = (0 . 0 I)P

where Y(k) denote the ML estimate of x(k) based on observations (B.5) and (B.6) and P the corresponding
estimation error variance.
From the results of the previous section, we know that

-1
. . QS 0
x(k) = lim Zi(e) (=T cT) (( 53.‘5 n: >+£I) ( I )n(k) (B.11)
where .
) - -
, o, S T
Zi(e) = [( <7 cT )(( Ek; R’; >+el) ( c: >} (B.12)
and where
P,
" R
Re = R, (B.13)
\ Re-1
[
Qe = @ (B.14)
\ Qi-1
[0 So
S = |90 5 (B.15)
Sk-1
Note that
o Sj 0
S+t = ( (0 . 0 -4;) Ejn ) (B-16)
- (&G O o
C]+1 = ( 0 CJ'+1 ) (B.ll)
0. 0
Qjy1 = (‘6’ Qj) (B.18)
- [ R O
Rjp = ( 0 R ) (B.19)

And thus

-1 -1
Q; S; s
. = T T =j+1 J+1 J+1 -
Zip1(e) = [( i G )(( SJ-T“ Riet )-%-el) < Chu >]
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0 .0 0 0 -t
Zi(e)"t + ( : : : ) ( : )
0 .. 0O Qg(f) QQ(E) (B.20)

( 0 .. O Qg(C)T ) Q3(€)
where
-1
_ T Q; S; A
Q) = (AT 0) (( 5}} R, )+e1) ( 0 ) (B.21)
-1
€)= T Q; S ' Ejp
Qa(e) = (AT 0) (( s}" R, )+eI) ( Cint (B.22)
-1
- T T Qi Sj Ejq1
Qi) = (EL, CF )(( 43 )+cz) ( S ) (B.23)
If we denote the (j, j)-block entry of Z;(¢) by Pj(¢) and use the matrix identity (A.6), and the matrix identity
(A+ BCD) ' = A"! = A~'1B(C"' + DA™!B)"!DA™! (B.24)
after some algebra, (B.20) vields
Zjpi(e) =
* *
-1
(0 - 0 TA( Ef Ty )(( .4ij(€;?j+Qj }92; )+el> (A’ > )Zj(f) T ()
j
(B.23)
where *’s denote “don’t care entries” and
-1
AjPi(e)4; +Q; S E;
Tiw(e) = ( Efy, CTy )(( i J(%}_J Q; RJ,- )+d) (cjii ) (B.26)

It is not difficult to see that Z;(¢) and thus P;j(e) are increasing in € > 0,° and since P;(¢) goes to P; as ¢
goes to zero, we have

Pj(€) = Pj + €A + o(¢?) (B.27)
where A > 0.
Finally, noting that
xG+1) = lim Zj(e) (T, 7., ) Qi Sim ) Lo (o n(G+1) (B.28)
' e—o+ 77T AR A St Rin I

we get that
-1 -1
o 3 - 1 T T Qj+1 Si41 I+ AjAAT it
Hj+1)= lm CEw Cin )(( STy Rin )+E( 0o I Cit1

-2
$The derivative of Z,(e), Z,(¢) = ¢Z,(¢) {( E;r CJT ) (( g]f' 153’ ) +:I> ( g]’ )] Z,(¢) 2 0, when e > 0.




+1 S I+ 4;A4T A
(a0 (S 72 )+<(7% ) (Le5) e

-1
Q'+l 5'+1 I 441\447' -t S‘;l
P, T i i + A4 js
j+1 = hm [( i Cla )(( ST, Riw +e 0o 1 Cia (B.30)

The Theorem is now proved because (B.29) and (B.30) are consistent with (2.29) and (2.28).
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