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A novel statistical approach is undertaken for the adaptive estimation of the gain and bias nonuniformity in
infrared focal-plane array sensors from scene data. The gain and the bias of each detector are regarded as
random state variables modeled by a discrete-time Gauss–Markov process. The proposed Gauss–Markov
framework provides a mechanism for capturing the slow and random drift in the fixed-pattern noise as the
operational conditions of the sensor vary in time. With a temporal stochastic model for each detector’s gain
and bias at hand, a Kalman filter is derived that uses scene data, comprising the detector’s readout values
sampled over a short period of time, to optimally update the detector’s gain and bias estimates as these pa-
rameters drift. The proposed technique relies on a certain spatiotemporal diversity condition in the data,
which is satisfied when all detectors see approximately the same range of temperatures within the periods
between successive estimation epochs. The performance of the proposed technique is thoroughly studied, and
its utility in mitigating fixed-pattern noise is demonstrated with both real infrared and simulated imagery.
© 2003 Optical Society of America
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1. INTRODUCTION

Modern imaging systems are ubiquitous in a wide range
of military and civilian applications including thermal im-
aging, night vision, surveillance systems, astronomy, fire
detection, robotics, and spectral sensing and imaging.1

At the heart of most modern imaging systems is the focal-
plane array (FPA), which consists of a mosaic of detectors
positioned at the focal plane of an imaging lens. How-
ever, the performance of FPAs is known to be strongly af-
fected by the spatial nonuniformity in the photoresponse
of the detectors in the array, also known as fixed-pattern
noise, which becomes particularly severe in mid- to far-IR
imaging systems. Despite the advances in detector tech-
nology in recent years, detector nonuniformity continues
to be a serious challenge, degrading spatial resolution, ra-
diometric accuracy, and temperature resolvability. More-
over, what makes the nonuniformity problem more chal-
lenging is the fact that spatial nonuniformity drifts slowly
in time; thus a one-time factory calibration will not pro-
vide a permanent remedy to the problem.

Nonuniformity correction (NUC) techniques are catego-
rized into two classes, namely, calibration-based and
scene-based techniques. In the commonly used two-point
calibration technique,2 for example, the normal operation
of the FPA is halted as the camera images a uniform cali-
bration target (typically, a blackbody radiation source) at
two distinct and known temperatures. The gain and the
bias of each detector are then calibrated across the array
so that all detectors produce a radiometrically accurate
and uniform readout at the two reference temperatures.
Scene-based correction algorithms, on the other hand, do

provide significant cosmetic NUC without the need to halt
the camera’s normal operation; however, this convenience
comes at the expense of compromising radiometric accu-
racy. Scene-based techniques typically use an image se-
quence and rely on motion (or changes in the actual
scene) to provide diversity in the scene temperature per
detector. This temperature diversity, in turn, provides a
‘‘statistical’’ reference point, common to all detectors, ac-
cording to which the individual detector’s responses can
be normalized.

In recent years, a number of scene-based NUC tech-
niques have been reported in the literature. Narendra
and Foss3,4 and, more recently, Harris and Chiang5–7 de-
veloped algorithms that continually compensate for bias
and gain nonuniformity by using the constant-statistics
assumption. This assumption postulates that, in time,
the mean and the standard deviation of the irradiance
flux become the same for every detector. Under this as-
sumption and by employing a linear model for the detec-
tor response, they showed that the mean and the stan-
dard deviation of each detector’s readout signal can be
regarded as its bias and gain, respectively. Scribner
et al.8 proposed a least-mean-square-error technique that
resembles adaptive temporal high-pass filtering. By ad-
justing the time constant of the filter, their algorithm was
used to reduce the spatial noise caused by bias nonunifor-
mity (the gain correction was performed separately). A
neural-network implementation of the adaptive least-
mean-square-error algorithm was also developed by
Scribner et al.9,10 O’Neil,11 Hardie et al.,12 and Hepfer
et al.13 developed NUC techniques that rely on the fact
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that detectors that record the same scene point at differ-
ent times should have the same response. For example,
O’Neil uses frames of data produced by dithering the de-
tector line of sight between consecutive frames in a
known pattern. In contrast, the technique developed by
Hardie et al. does not assume deterministic motion but
instead uses a motion-estimation algorithm to trace the
true scene value at a particular location and frame along
a motion trajectory of pixels. Hayat et al.14 developed a
statistical algorithm that relies on a key assumption that,
in time, all detectors in the array are exposed to the same
range of irradiance, which is further modeled by a uni-
formly distributed random variable with a constant
range. Recently, Ratliff et al.15 developed an algebraic
(nonstatistical) scene-based NUC technique that does not
rely on any statistical or scene-diversity assumptions
about the scene temperature. The algorithm utilizes es-
timates of interframe subpixel motion and a linear inter-
polation model for image motion to unify the biases of the
detectors.

A key limitation of all the scene-based NUC techniques
published to date is that they do not exploit any temporal
statistics of the drift in the nonuniformity. As a result,
each time that a drift occurs, a full-scale NUC is per-
formed, a process that may be greatly simplified and im-
proved if statistical knowledge on the nature of drift is ex-
ploited, especially in cases where the drift is small. In
this paper, we regard the gain and the bias of each detec-
tor as state variables modeled by a Gauss–Markov ran-
dom process. We use this model to develop a Kalman fil-
ter that updates the estimates of the gain and the bias of
each detector in the FPA. In our formulation, the input
to the Kalman filter is a sequence of fixed-length vectors
of detector readout values, representing a block of frames
over which no significant drift occurs in the detector’s
gains and biases. As drift occurs and a new vector of ob-
servations arrives, the Kalman filter updates the esti-
mates of the gain and the bias of each detector.

This paper is organized as follows. The Gauss–

Markov model for the gain and the bias, along with the
output model, is given in Section 2. In Section 3, the Kal-
man filter is derived, and its computational efficiency is
discussed. In Section 4, the proposed technique is ap-
plied to simulated data, and its performance is evaluated.
In Section 5, the technique is applied to real infrared (IR)
data. The conclusions are given in Section 6.

2. MODEL

In this paper, we adopt the commonly used linear model
for the detector response.1 For each detector in the ar-
ray, vectors of readout values are considered, correspond-
ing to a series of blocks of frames for which no significant
drift in the gain and the bias occurs in each block. For
the kth block of frames, the output of the ijth detector in
the nth frame is approximated by

Yk
ij~n ! 5 Ak

ijTk
ij~n ! 1 Bk

ij
1 Vk

ij~n !, (1)

where Ak
ij and Bk

ij are, respectively, the gain and the bias
associated with the ijth detector in the kth block of
frames and Tk

ij(n) is the average number of photons col-
lected by the ijth detector in the nth frame. The term

Vk
ij(n) represents the additive temporal readout noise as-

sociated with the ijth detector in the nth frame. Now, for
the ijth detector, the observation vector corresponding to
the kth block is Yk

ij
5 @Yk

ij(1) ¯ Yk
ij(lk)#8, which is an

array of length lk of readout values, where lk is the length
of the kth block of frames. For brevity of notation, the
pixel index ij will be omitted whenever convenient. For
example, we may write Tk(n), Ak , Bk , and Yk in place of
Tk

ij(n), Ak
ij , Bk

ij , and Yk
ij , respectively.

We are ultimately interested in the recursive and
minimum-mean-square-error (MMSE) estimation of the
two-dimensional state vector Xk 5 @Ak , Bk#8 given the
sequence of vector observations Y1,..., Yk . From the or-
thogonality principle, it follows that the above MMSE es-

timate, denoted by X̂k 5 @Âk , B̂k#8, must obey the rela-
tion

E@~Xk 2 X̂k!Yl8# 5 0, l 5 1,..., k. (2)

Equivalently, X̂k can be regarded as the conditional expec-
tation of Xk given Y1,..., Yk , i.e.,

X̂k 5 E@XkuY1,..., Yk#. (3)

To obtain the above MMSE estimate in a Kalman-filtering
setup, we need two mathematical models, namely, Eq. (1)
the state equation model, which characterizes the dynam-
ics of the gain and the bias (i.e., the Gauss–Markov
model), and Eq. (2) the observation model, which is an ex-
tension of the model presented in Eq. (1). We now de-
velop these two models.

A. State Equations for the Gain and the Bias
Motivated by the fact that the drift in the gain and the
bias occurs slowly in time (i.e., from one block of frames to
another), we wish to think of the gain and the bias at the
(k 1 1)th block as a random perturbation of the gain and
the bias in the kth block. In the context of Gauss–

Markov processes, we may express this perturbation
model by representing the state vector Xk with the follow-
ing autoregressive model:

Xk11 5 FkXk 1 Wk , (4)

where

Fk 5 Fak 0

0 bk
G (5)

is called the state transition matrix and Wk

5 @Wk
(1) , Wk

(2)#8 contains the driver noise sources for the
gain and the bias, respectively. The parameters 0 < ak

, 1 and 0 < bk , 1 are chosen according to the magni-
tude of the drift between times k and k 1 1. The driver
noise processes associated with the gain and the bias are
each assumed to be white, Gaussian, and mutually uncor-
related. The cross covariance of the two-dimensional
driver noise process Wk is therefore given by

Qk 5 F s
W

k
~1 !

2
0

0 s
W

k
~2 !

2 G , (6)

where s
W

k
(1)

2
and s

W
k
(2)

2
are the variances of the driver noise

for the gain and the bias, respectively. The assigned val-
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ues of these variances, however, will play a key role in the
evolution of the fixed-pattern noise and must be handled
delicately.

In the above model, it is important to ensure that the
stochastic mechanism for the gain and bias drift does not
lead to any long-term changes in the dynamic range of the
detector’s readout values. More precisely, although the
gain and the bias are allowed to drift randomly, we should
maintain that the net drift is zero on average. Thus we
require that the mean of the state vector Xk be constant
with respect to k. In particular, if we assume that a0

5 a1 5 ¯ 5 ak , a and b0 5 b1 5 ¯ 5 bk , b, a
simple calculation shows that the stationary-mean re-
quirement translates into the following condition:

Mk , E@Wk#8 5 X̄08F1 2 a 0

0 1 2 b
G , k > 0, (7)

where

X̄0 5 E@X0# , @Ā0 , B̄0#8. (8)

The mean initial gain and bias, Ā0 and B̄0 , are assumed
to be known and common to all detectors. They can be
taken as the nominal gain and bias values for the FPA
provided by the manufacturer. Finally, although the
drift in the gain and the bias changes the fixed-pattern
noise, it should not alter its severity. Hence the Gauss–

Markov model given by Eq. (4) must also have a station-
ary variance. The variances of the driver noise sources
are therefore derived under the requirement that
E@XkXk8# 5 E@X0X08#. With these requirements and by
using the assumption that the gain and the bias are un-
correlated, one can show that the variances of the driver
noise sources at the kth observation vector time are de-
termined in terms of the correlation parameters and the
initial variances. In particular, for k > 0,

s
W

k
~1 !

2
5 ~1 2 a2!sA0

2 , s
W

k
~2 !

2
5 ~1 2 b2!sB0

2 , (9)

where sA0

2 and sB0

2 are the variances of the gain and the

bias at k 5 0, respectively, representing the initial gain
and bias in the FPA, and they are assumed to be known.

B. Observation Model for a Block of Frames
We can write the observation vector Yk compactly as

Yk 5 HkXk 1 Vk , (10)

where Hk denotes the observation matrix, given by

Hk 5 F Tk~1 ! 1

] ]

Tk~lk! 1
G , (11)

and Vk 5 @Vk(1) ¯ Vk(lk)#8 is the readout noise vector
for the kth block.

As indicated in Section 1, we will adopt the constant-
range assumption.14 (The constant-range requirement,
along with its predecessor, the constant-statistics
requirement,3–7 has been shown to serve well as statisti-
cal reference points providing a common baseline accord-
ing to which the gain and bias nonuniformity in detectors
is compensated.) Namely, for each block of frames (the
kth, say), we will assume that the average number of

photons T ij(n) in the block in any detector (i, j) is an in-

dependent sequence of uniformly distributed random
variables in the range @Tk

min , T k
max#, which is common to

all detectors and frames within the block. Our experi-
ence indicates that the constant-range condition can be
satisfied, for example, in the presence of adequate motion
(global or local), as shown in the examples to come. For
simplicity, it is also assumed that the observation noise
term sequence $V ij(n)% is white and independent of the

signal sequence $T ij(n)% with the covariance matrix

Rk 5 Ilk
sVk

2 , (12)

where Ilk
is the lk 3 lk identity matrix and sVk

2 is the

variance of the additive observation noise in the kth block
time, which is assumed to be known.

With the above stochastic dynamical model [described
by Eqs. (4) and (10)] at hand, we proceed to obtain a Kal-
man filter to recursively (in terms of blocks of frames) es-
timate the gain and the bias in each detector.

3. RECURSIVE ESTIMATION OF THE GAIN
AND THE BIAS

In this section, we present a recursive linear MMSE filter
for the estimation of the system state Xk given Y1 ,..., Yk .
The Kalman filter is derived following the general proce-
dure given in Refs. 16–18, which is based on the orthogo-
nality principle (2) [or, equivalently, based on the condi-
tional expectation given in Eq. (3)]. The derivation can
be outlined in four main steps: (1) derivation of the pre-
dictor estimate of the state vector, (2) derivation of the
predictor estimate of the observation vector, (3) derivation
of the Kalman gain, and (4) derivation of a recursive
equation for the error covariance matrix. The special
structure of the observation matrix, given in Eq. (11), and
the fact that it is stochastic will play an important role in
steps 2 and 3. These two steps involve performing cer-
tain nonstandard calculations, which are included in Ap-
pendix A. The calculations involved in the remaining
steps are straightforward, and the details are omitted.
The final results are given below.

A. Kalman Filter
For the kth block (k > 1) and each detector, the MMSE

estimate X̂k , given the data vector Yk in the block, is com-
puted iteratively by using the relation

X̂k 5 X̂k
2

1 Kk~Yk 2 H̄kX̂k
2!, (13)

where X̂k
2 is called the predictor estimate, defined as

X̂k
2

, E@XkuY1 ,..., Yk21#, and can be iteratively com-
puted by using

X̂k
2

5 Fk21X̂k21 1 Mk218 , (14)

where Fk21 and Mk21 are given by Eqs. (5) and (7), re-
spectively. The (2 3 lk) matrix Kk is termed the Kalman
gain matrix and can be computed by using

Kk 5 Pk
2H̄k8@H̄kPk

2H̄k8 1 Rk 1 sT
2 ~ sA0

2
1 Ā0!Ilk

#21,

(15)
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where Rk is given by Eq. (12), and sT
2 and the (lk 3 2)

matrix H̄k are, respectively, the variance of the IR signal
T and the mean of the observation matrix, which are
given by

sT
2

5

1

12
~Tk

min
2 Tk

max!2, (16)

H̄k 5 F 0.5~Tk
min

1 Tk
max! 1

] ]

0.5~Tk
min

1 Tk
max! 1

G . (17)

Finally, Pk
2 is termed the a priori error covariance matrix,

which is defined as

Pk
2

, E@~Xk 2 X̂k
2!~Xk 2 X̂k

2!8#, (18)

and can be evaluated iteratively by employing the rela-
tion

Pk
2

5 Fk21Pk21Fk21 1 Qk21 , (19)

where the error covariance matrix Pk , defined by

Pk , E@~Xk 2 X̂k!~Xk 2 X̂k!8#, (20)

is updated by using the relation

Pk 5 ~I2 2 KkH̄k!Pk
2 , (21)

where I2 is the 2 3 2 identity.
Initial conditions. To execute the above iterations, we

need knowledge of the initial conditions for the state es-
timator, the error covariance matrix, and the predictor es-
timate. These are given as follows:

X̂0 5 X̄0 , (22)

where X̄0 is given by Eq. (8),

P0 5 FsA0

2
0

0 sB0

2 G , (23)

and, finally,

X̂1
2

5 F0X̄0 1 M08 , (24)

where F0 and M0 are given by Eqs. (5) and (7), respec-
tively.

As is the case in all Kalman estimators, the estimate

X̂k is the sum of two terms: the predictor X̂k
2 , defined by

Eq. (14), and a correction of the prediction, given by the
second term on the right-hand side of Eq. (13).

We conclude this section by indicating that in many
practical cases that we have studied, the temporal read-
out noise is found to be approximately the same through
all the detectors in the FPA and over blocks of frames.
Also, we have found that it is quite possible that the
range of input irradiance is invariant from block to block
(i.e., Tk

max and Tk
min do not change with k). Under the

above assumptions, the Kalman gain matrix Kk , the er-
ror covariance Pk , and the predictor error covariance Pk

2

are all independent of k and also common to all detectors.
These quantities can therefore be computed off line. In
this situation, the on-line computations per detector and

per block of frames include the predictor estimate X̂k
2 and

the prediction correction term, which is given by the sec-
ond term on the right-hand side of Eq. (13). Hence the
algebraic operations involved (per detector and per block
of frames) are the product of a 2 3 2 matrix and a 2
3 1 vector, plus the product of a 2 3 lk matrix and an
lk 3 1 vector.

4. APPLICATION TO SIMULATED DATA

In this section, the performance of the proposed technique
is studied by using IR image sequences that are corrupted
by simulated nonuniformity. For convenience and in all
simulations, the mean gain is assumed to be unity and
the mean value of the bias is taken as zero. The stan-
dard deviation of the temporal noise is considered fixed at
unity. With these assumptions, blocks of simulated non-
uniformity patterns with high, low, and moderate drift
levels between consecutive blocks were generated (corre-
sponding to various values of the Gauss–Markov param-
eters). Further, different levels of artificial nonunifor-
mity were introduced in the simulated block of frames by
varying the variance of the gain and the bias. One hun-
dred trials of each case were generated, and each trial in-
cluded ten blocks, each containing 3000 frames. The ini-
tial estimates of the bias and gain matrices were simply
taken as the theoretical means (i.e., we initially assumed
uniform initial gain and bias matrices).

Two aspects of the performance are considered: (1) the
ability of the Kalman filter to estimate the gain and the
bias and (2) the use of these estimates to compensate for
nouniformity noise in imagery. In this paper, the nonuni-
formity compensation is performed by simply subtracting
the estimated bias from the data and dividing the out-
come by the estimated gain. When such an operation is
performed on a frame, we call the frame a corrected

frame.

A. Performance Metrics
To study the performance of the Kalman estimator, we
use the mean square error (MSE) for the gain and the
bias, averaged over all detectors. More precisely, for the
kth block, the MSE for the gain is defined as

MSEAk
5

1

pm
(
i51

p

(
j51

m

~Âk
ij

2 Ak
ij!2, (25)

where p and m are the number of rows and columns, re-
spectively, in the FPA. The bias average error MSEBk

,

associated with the bias estimate Bk , is defined similarly
to Eq. (25).

The NUC capability, on the other hand, is examined by
means of three metrics that are commonly used in assess-
ing the fixed-pattern noise in images. These metrics are
the roughness parameter r, the root mean square error
RMSE, and the correctability parameter c.1,14,19,20 These
parameters are defined below. For any image f, the
roughness parameter is defined by14

r~ f ! ,
ih1*f i1 1 ih2*f i1

i fi1

. (26)

where h1(i, j) 5 d i21, j 2 d i, j and h2(i, j) 5 d i, j21

2 d i, j , respectively, d ij is the Kronecker delta, i f i1 is the
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l1 norm of f, and * represents discrete convolution. Note

that r is zero for a uniform image, and it increases with
detector-to-detector variation in the image. Moreover,
since r does not require the knowledge of the true image,
it can be used as a measure of NUC in real IR data as well
as simulated data. The RMSE and c parameters require
the knowledge of the true scene (or irradiance). These
two parameters are therefore applied in this paper to
simulated data. The RMSE is defined by19

RMSE 5

1

pm
F(

i51

p

(
j51

m

~T̂ ij
2 T ij!2G 1/2

, (27)

where T ij and T̂ ij are, respectively, the true IR signal and
its estimate (i.e., the detector readout after NUC, namely,
after subtracting the readout bias and dividing by the de-
tector gain). (Note that for convenience we omit the block-
time subscript k and the frame number n from the signal
T ij and its estimate.) Moreover, the RMSE can be simi-
larly computed for the raw frame, which can then be com-
pared with the RMSE value for the corrected frame. Fi-
nally, the correctability parameter is computed by using
simulated flat-field (FF) data (namely, when all detectors
see the same IR signal), and it is defined by20

c 5 S stotal
2

sV
2

2 1 D 1/2

, (28)

where sV
2 is the variance of the temporal noise, which can

be estimated by using the techniques given in Ref. 14.
stotal

2 is the spatial sample variance, given by

stotal
2

5

(
i51

p

(
j51

m

~Y ij
2 Ȳ !2

pm 2 1
, (29)

and Ȳ is the spatial sample mean of the raw frame. Note
that stotal

2 combines the effect of the temporal noise of
each detector as well as the spatial noise. A correctabil-
ity less than unity indicates that the spatial noise is be-
low the level of the temporal noise, which is a highly de-
sirable outcome for any NUC technique. In particular, if
c 5 0, the NUC is perfect, i.e., no spatial noise is present.

B. Dependence of the Performance on the Level of
Nonuniformity and Drift
We studied two cases corresponding to situations where
the fixed-pattern noise is dominated by either the gain or
the bias nonuniformity. The performance in other cases
was also studied, and we will provide comments as
needed.

Table 1 shows the empirical MSE in the estimates of
the gain and the bias for high, low, and moderate levels of
drift. (For brevity, we tabulate the results for only the
first three blocks.) The standard deviations for the gain
and the bias are 0.15 and 5, respectively, and the number
of frames per block, lk , is 3000. It can be seen that the
empirical MSE decreases with the decrease in the drift
(i.e., as a and b increase). This is expected, since when
drift is low (i.e., a and b are high), the blocks become more
correlated and an estimate at k may use more of the in-
formation contained in the previous block. Moreover, our

calculations show that, as expected, the error covariance
matrix Pk increases with the increase in the drift magni-
tude but is independent of the block index. This is con-
sistent with our observation that the empirical MSE is
nearly independent of k. Figures 1, 2, and 3 show a
frame of the block used as the true image sequence, the
same frame including fixed-pattern noise, and the cor-
rected frame, respectively. The parameters r and RMSE,
computed for the corrected and raw frames, demonstrate
a reduction in the nonuniformity by a factor of 3 and 10,
respectively.

Similar results were obtained when the fixed-pattern
noise was generated primarily by the bias. For brevity,

Fig. 1. True 8-bit image from the fifth data set (k 5 5).

Fig. 2. Image of Fig. 1 corrupted with simulated nonuniformity.
The nonuniformity is generated with standard deviations for the
gain and the offset of 0.15 and 5, respectively.

Table 1. Empirical Mean Square Error (MSE) for

the Gain and Bias Estimates for Low and High

Drift Conditions

Block No.
k

MSEAk
MSEBk

MSEAk
MSEBk

(a 5 b 5 0.95) (a 5 b 5 0.1)

1 7 3 1024 0.434 1023 0.985

2 7 3 1024 0.436 1023 0.989

3 7 3 1024 0.432 1023 0.969
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we present only part of the results. Figures 4 and 5 show
the frame of Fig. 1 with nonuniformity generated mostly
by the bias, and the corresponding corrected frame, re-
spectively. The parameters r and RMSE, computed for
the corrected and raw frames, reveal a reduction in the
nonuniformity by a factor of 12 and 20, respectively.

C. Dependence of the Performance on the Block Length
We tested the Kalman filter by using sequences of simu-
lated data sets with different block lengths. The effect of

sampling the frames (as opposed to taking the frames
consecutively) was also studied. Sampling frames in
time (in each block) generally speeds up the motion and
brings about more diversity in the signal levels, which
can be beneficial to the performance. Table 2 shows the
RMSE performance parameter when the number of
sampled frames is varied (the frame sampling was carried
out in increments of ten samples). The standard devia-
tions of the gain and the offset are 0.1 and 5, respectively,
and the drift parameters are a 5 b 5 0.95. It was found
that when the number of sampled frames was in excess of
250 frames, the RMSE reached its minimum value, which
was approximately equal to 5. We also observed that
when the number of frames was less than 100 sampled
frames per block, the Gauss–Markov model played a cru-
cial role in improving the quality of the NUC from block
to block, in which case the Kalman filter takes more ad-
vantage of the information contained in the previous
block of frames.

When frames were taken consecutively, on the other
hand, the Kalman filter required approximately 1000 con-
secutive frames before reaching a RMSE close to 5. This
example shows the advantage in efficiency and perfor-
mance rendered when the frames are sampled. As an ex-
ample, Figs. 6, 7, and 8 show the corrected images for the
case of 50, 150, and 1000 consecutive frames, respectively.
Note the artifacts at the bottom of the image in Fig. 6
(and, to a lesser degree, in Fig. 7), which result from the

Fig. 3. Corrected version of the image in Fig. 2.

Fig. 4. Image of Fig. 1 with a high level of simulated bias non-
uniformity. The gain and offset standard deviations are 0.01
and 100, respectively.

Fig. 5. Corrected version of the image in Fig. 4.

Fig. 6. Nonuniformity correction (NUC) with 50 consecutive
frames. Note the artifacts at the bottom of the image, which re-
sult from the lack of statistical gray-value diversity within the 50
frames. This lack of diversity violates the constant-range
assumption.

Table 2. Root Mean Square Error (RMSE) of a

Corrected Image for Several Numbers of Sampled

Frames per Block

k

RMSE

lk 5 50 lk 5 100 lk 5 200 lk 5 250

1 22 14 10 5.9

2 12.9 9.5 8.6 5.6

3 12.7 9.2 8.6 5

4 12 9 8.5 5

5 12 9 8.5 5
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lack of statistical gray-value diversity within the 50
frames. This lack of diversity is causing the violation of
the constant-range assumption.

D. Dependence of the Performance on the Temporal
Noise
Traditionally, the methodology used to study the depen-
dence of the performance of FPA systems on the temporal
noise is based on the procedure proposed by Schulz and
Caldwell,20 and it involves the correctability parameter c.

The procedure involves implementing the NUC method
under question with raw FF data and investigating the
ability of the NUC technique in reducing the spatial noise
to a level below the temporal noise. Here we follow the
same procedure and apply the Kalman filter to sequences
of 300 frames of simulated noisy (with both temporal and
fixed-pattern noise) FF data. Several levels of temporal
noise were considered, and each block of frames contained
different levels of FF amplitudes in the gray-scale range
60–240. The results are tabulated in Table 3 for the case
of the fifth block (k 5 5). The standard deviations of the
gain and the offset are 0.15 and 5, respectively, and the
drift parameters are a 5 b 5 0.1. It can be seen that
the proposed technique can reduce the spatial noise to a
level slightly below the temporal noise when the standard
deviation of the temporal noise is greater than 0.5.
Therefore the so-called temporal-noise threshold, which
in this case is a number valid for data sets formatted in
the 8-bit gray-scale range, is 0.5. Also, note that the cor-
rectability parameter is lower in the middle of the FF
range (e.g., gray level of 100). The dependence of the per-
formance on the temporal noise was also studied in cases
with different levels of nonuniformity noise. In general,
the correctability parameter c follows a similar pattern to
that in the case discussed here.

E. Sensitivity to Error in the Drift Parameters
When applying the Kalman estimator to real data, where
the Gauss–Markov model parameters a and b are un-
known, we must assume values for these parameters. To
see the sensitivity of the Kalman estimator and the re-
sulting NUC capability on errors in the selection of these
drift parameters, we used simulated data, with a 5 b
5 0.95, and examined the performance parameters MSE,
RMSE, and r as the estimator assumed erroneous param-
eters. Two cases were considered, comprising sampled
and consecutive frames. In the case of sampled frames,
sequences of blocks with 300 sampled frames were taken
from blocks of 3000 in steps of 10. It was found that the
MSE and the RMSE were not noticeably affected by the
error in the parameters a and b. This insensitivity is
due to the fact that the sampling of frames enhances the

Fig. 7. NUC with 150 consecutive frames. Note the improve-
ment in comparison with Fig. 6; however, some residual artifacts
remain, again as a result of a minor violation of the constant-
range assumption.

Fig. 8. NUC with 1000 consecutive frames. Note the improve-
ment in comparison with Fig. 7.

Fig. 9. Root mean square error (RMSE) as a function of the er-
ror in the drift parameters a and b. The symbols* and 1 corre-
spond to the case with 150 and 300 consecutive frames, respec-
tively.

Table 3. Correctability Parameter c as a Function

of the Temporal-Noise Variance for Six Flat-Field

Levels

Flat-Field
Level

Correctability Parameter c

sVk
5 3 sVk

5 1 sVk
5 0.5 sVk

5 0.2

60 0.59 0.83 1.41 3.3

80 0.57 0.74 1.2 2.7

100 0.54 0.68 1 2.34

150 0.57 0.72 1.16 2.6

200 0.65 0.98 1.73 4.27

240 0.75 1.26 1.63 5.85
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effect of motion, which results in signal diversity. In con-
trast, when frames were taken consecutively, the perfor-
mance of the Kalman filter was strongly affected by the
errors in the drift parameters unless the number of
frames was large (e.g., in excess of 500). For example,
when 150 consecutive frames were taken in each block,
the RMSE parameter was approximately four times the
corresponding value when 300 consecutive frames were
used. The dependence of the RMSE on the error percent-
age in the drift parameters is shown in Fig. 9. The
RMSE for a raw frame of the simulated data set for this
data set was 35. Note that even with a high error in the
assumed parameters a and b, the RMSE decreases to the
range of 22 with only 150 consecutive frames.

5. APPLICATION TO REAL INFRARED
DATA

The Kalman filter was applied to two sets of terrestrial IR
data. The data sets were collected by using a 128
3 128 InSb FPA camera (Amber model AE-4128) operat-
ing in the 3–5-mm range. The first set of scenes was col-
lected at 9 a.m., and the second set was acquired at 1 p.m.
of the same day. The four-hour time lapse between the
two sets of data resulted in observable drift in the respon-

sivity of each detector of the FPA. In each set of data,
3000 frames were collected at a rate of 30 frames per sec-
ond.

For convenience, we assumed that the range of the in-
put irradiance was [0, 255] (i.e., Tmin

5 0 and Tmax

5 255). In addition, the initial error covariance matrix

P0 and the initial state vector X̄0 were selected within the
practical range of the gain and bias values for the above
IR FPA camera.14 In our calculations, the following set of

initial conditions was assumed for all detectors: Ā0

5 3.57 3 103, B̄0 5 25.76 3 104, sA0

2
5 1.14 3 106,

and sB0

2
5 4.26 3 108.

Also, since the true drift in the gain and the bias was
unknown, the Kalman filter was repeatedly applied while
the drift parameters a and b were varied in the range
0.05–0.95. As in the case of simulated data, we used the
data in two modes: sampled frames and consecutive
frames. In the case of sampled frames, a sequence of 300
sampled IR frames (sampled in steps of 10 from the first
block of 3000) was used as the input to the Kalman filter
at k 5 1 (i.e., l1 5 300). With the estimates of the gain
and the bias computed at k 5 1, we compensated for the
spatial nonuniformity present in the first set of data.

Fig. 10. Raw frame from the second real infrared (IR) data set
(k 5 2).

Fig. 11. Corrected version of the image in Fig. 10 using 300
sampled frames. The drift parameters are assumed as a 5 b
5 0.95.

Fig. 12. Example of a raw frame from the second real IR data
set (k 5 2). The dots at the bottom of the image correspond to
branches of trees.

Fig. 13. Corrected version of the image in Fig. 12 using 300 con-
secutive frames. The drift parameters are assumed as a 5 b
5 0.95, which corresponds to weak drift.
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The transition to the second data set (k 5 2) was imple-
mented according to the iterative procedure described in
Eqs. (14)–(21).

In the case of sampled frames, it was found that the
Kalman filter satisfactorily corrected the nonuniformity
in data sets 1 and 2 regardless of the assumed values of
the drift parameters. An example is shown in Figs. 10
and 11 for data set 2, where the selected drift parameters

were a 5 b 5 0.95. In contrast to the case of sampled
frames, the selection of the drift model parameters plays
an important role in the case of consecutive frames. In
this case, good NUC was not achieved for values of the
drift parameters approximately less than 0.5. In other
words, good NUC was achieved only when the estimates
of the gain and the bias at k 5 2 appropriately weighed
the gain and the bias from the previous block, exploiting
the presence of slow drift in the gain and the bias. For
example, consider the raw frame of Fig. 12 and compare
the good NUC achieved in Fig. 13, with a 5 b 5 0.95
(which is suitable for the weak-drift conditions of the real
data collected for this paper), with the poor performance
shown in Fig. 14, which corresponds to a 5 b 5 0.05
(which would be suitable for strong-drift cases). This ex-
ample demonstrates that the Kalman filter is capable of
taking advantage of information contained in a previous
block of frames and effectively updating this information
by using the current block. This observation is also sup-
ported through the behavior of performance parameter
r on the assumed drift parameters, which is shown in
Table 4.

Finally, to emphasize the need for updating the gain
and the bias, we attempted to compensate for nonunifor-
mity in data set 2 by using the estimated gain and bias for
data set 1. The raw frame of data set 2, the corrected im-
age using the gain and the bias for data set 1, and the cor-
rected image using the updated gain and bias are shown
in Figs. 10, 11, and 15, respectively. By comparing Figs.
11 and 15, we see that updating the parameters improves
the performance and that the Kalman filter compensates
for the dead pixels, as it regards dead pixels as detectors
with severe gain nonuniformity. Our calculations have
shown that there is an approximate drift of 2.8% and 3%
for the gain and the bias, respectively, within the four-
hour span between data sets 1 and 2. The simplifying as-
sumption that the driver noise processes @Wk

(1) , Wk
(2)#8

are white, Gaussian, and mutually uncorrelated seemed
to have served us well. Indeed, we have found that the
drift in the gain is smaller than the drift in the bias,
which is consistent with two-point calibration results.

6. CONCLUSIONS

In this paper, we introduced a novel statistical approach
for the recursive estimation and correction of gain and
bias nonuniformity in focal-plane array sensors. The
proposed technique operates on individual blocks of image
sequences, which are separated by lengths of time during
which drift in the gain and the bias may occur. Through
modeling the gain and the bias of each detector by a
Gauss–Markov process, the proposed method captures
the temporal drift in the gain and the bias in each detec-
tor. This memory-inclusive characterization is further
exploited in estimating the gain and the bias adaptively
as drift occurs. The strength of the drift is captured by
the appropriate choice of two drift parameters, which dic-
tate the dependence of the current gain and bias on their
respective past values. To achieve the recursive estima-
tion, we derived a Kalman filter, within the confines of the
Gauss–Markov model, that estimates the gain and the
bias of each detector in each image-sequence block. As a
new block of frames arrives, the filter updates the gain

Fig. 14. Corrected version of the image in Fig. 12 using 300 con-
secutive frames. The drift parameters are assumed as a 5 b
5 0.05, which corresponds to strong drift.

Fig. 15. Corrected version of the image in Fig. 10 using the gain
and the bias corresponding to data set 1. Note that less NUC is
achieved in comparison with that in Fig. 11 because of the drift
in the gain and the bias. Also note that there is no compensa-
tion for the dark spots (dead pixels) that appear in Fig. 10.

Table 4. Performance Parameter for a Corrected

Frame for Different Values of the Drift

Parametersa

a, b

Data Block 1 Data Block 2

rsf

(31023)
rcf

(31023)
rsf

(31023)
rcf

(31023)

0.95 1.51 1.98 1.81 1.98

0.55 1.56 2.58 1.83 3.16

0.05 1.58 3.2 1.86 3.8

a Both the sampled frame case (rsf) and the consecutive frame case

(rcf) are considered.
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and the offset accordingly. Once the gain and the offset
of each detector are estimated in each block of frames, the
fixed-pattern noise is compensated for in the usual way by
subtracting from each pixel readout the appropriate de-
tector bias and dividing by the corresponding gain.

The estimation and nonuniformity-compensation capa-
bility of the proposed technique was evaluated by employ-
ing motion-rich and spatially diverse real IR image se-
quences as well as image sequences containing simulated
fixed-pattern noise. Simulation results indicate that the
proposed technique can reduce the fixed-pattern noise to
a level that is almost independent of the severity of the
noise. Moreover, with the appropriate choice of the drift
parameters, the quality of the nonuniformity compensa-
tion can be maintained even with high levels of the tem-
poral drift in the detector’s parameters. Simulations
also show that the proposed technique can reduce the spa-
tial noise to a level below the temporal noise. In cases
where the drift is weak and the number of frames per
block is low (i.e., in the range of few hundreds of frames
per block), good nonuniformity compensation may not be
possible unless accurate values for the drift parameters
were used to adequately capture the slow drift. This
demonstrates how the Gauss–Markov model and the as-
sociated Kalman filter provide a mechanism for utilizing
past estimates of the detector’s parameters in forming im-
proved current estimates.

The approach undertaken in this paper relies on two
key assumptions: First, the number of frames used to es-
timate the gain and the bias in each block of frames must
be such that all the pixels are exposed to approximately
the same temperature range. This is called the constant-
range assumption. Second, the gain and the bias in each
detector (and any drift therein) and from detector to de-
tector are uncorrelated. The constant-range assumption
turns out to be central to the successful operation of the
reported algorithm. Through the use of simulated imag-
ery and real IR data, we showed the consequences that re-
sult from violating the constant-range assumption. In
the examples considered, such a violation occurred when
the number of frames used in each block was small
(,150). The result was the appearance of artifacts in the
corrected imagery in the form of shaded regions, as dis-
tant segments of the array observed different tempera-
ture ranges, contrary to the constant-range assumption.
However, as the number of frames (per block) was in-
creased, such artifacts quickly disappeared as a result of
the presence of motion, which, in turn, guaranteed that
all detectors were exposed to the same temperature
range. As for the second assumption, the results of ap-
plying the algorithm to real IR data showed that this as-
sumption did not seem to be problematic for the examples
considered. Albeit, we would generally expect some cor-
relation between the gain and the bias if we consider the
nonlinear behavior of the detector output (as a function of
the collected photons), which is particularly prominent
near saturation. The correlation between the gain and
the bias is through their dependence on the random irra-
diance. If the irradiance is fixed, then it would be safe to
assume that the gain and the bias are uncorrelated; how-
ever, if the irradiance is allowed to fluctuate in a wide
range, causing the detector response to exhibit a

nonlinear behavior, then we would start to observe corre-
lation between the gain and the bias as the irradiance
varies. Correlation between the biases and the gains of
different detector elements is also possible for the same
reason, depending on the spatial distribution of the scene.
In practice, so long as the detector is operated within its
linear range, we would expect the gain and the bias to be
uncorrelated. Thus the reason that the assumed absence
of correlation between the gain and the bias was not prob-
lematic in the examples considered is that the data re-
mained, for the most part, within the linear range of the
detector.

Possible extensions of the technique include developing
an adaptive method for the estimation of the drift param-
eters from scene data (i.e., similar to plant estimation in
control theory). Future extensions may also accommo-
date nonlinearities in the detector response. This can be
done, for example, by piecewise linearizing the detector
response model and applying appropriate versions of the
proposed technique to the linear segments.

APPENDIX A

The standard recursive form of the Kalman estimator X̂k ,
which is given by Eq. (13), can be found in any of the good
references on Kalman filtering (see, for example, Refs. 17
and 18). This recursive form involves the following three
quantities: (1) the Kalman gain matrix Kk , defined by

Kk 5 E@~Xk 2 X̂k
2!~Yk 2 Ŷk

2!8#

3 $E@~Yk 2 Ŷk
2!~Yk 2 Ŷk

2!8#%21, (A1)

(2) the predictor estimate Ŷk
2 of Yk given Y1,..., Yk21 , de-

fined by

Ŷk
2

, E@YkuY1,..., Yk21#,

and (3) the predictor estimator X̂k
2 of Xk given

Y1,..., Yk21 , which is involved in the estimator X̂k

through the standard recursion given by Eq. (14).
What is new in the derivation of the Kalman filter here

is the calculation of the Kalman gain Kk and the predictor

estimate Ŷk
2 . We will show these calculations and omit

the remaining standard calculations involved in the deri-
vation of the Kalman filter. In deriving the Kalman gain

matrix Kk and the predictor estimate Ŷk
2 , a number of ex-

pectations must be computed that involve the random ob-
servation matrix Hk . Once these expectations are calcu-
lated, the remainder of the derivation is straightforward.

We first derive the predictor estimate Ŷk
2 . Using the ob-

servation model (10), we can write

Ŷk
2

5 E@HkXkuY1,..., Yk21# 1 E@VkuY1,..., Yk21#.
(A2)

Note that Hk depends on the collected irradiance values
Tk(i), i 5 1,..., lk , which are independent of the gain
and the offset Xk . Hence E@HkXkuY1,..., Yk21# can be ex-
pressed as

E@HkXkuY1,..., Yk21#

5 E@HkuY1,..., Yk21#E@XkuY1,..., Yk21#.
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Moreover, since Hk is independent of each element of
Y1,..., Yk21 , E@HkuY1,..., Yk21# 5 E@Hk#. Consequently,
using the fact that the second term on the right-hand side

of Eq. (A2) is zero, we can write the predictor estimate Ŷk
2

as

Ŷk
2

5 E@Hk#E@XkuY1,..., Yk21# 5 H̄kX̂k
2 ,

where the mean observation matrix H̄k is given by Eq.
(17).

We now show the calculations involved in the deriva-
tion of the Kalman gain matrix (A1). First, observe that

the matrix E@(Yk 2 Ŷk
2)(Yk 2 Ŷk

2)8# can be expanded as

E@~Yk 2 Ŷk
2!~Yk 2 Ŷk

2!8#

5 H̄kPk
2H̄k8 1 Rk 1 E@HkXkXk8Hk8# 2 H̄kE@XkXk8#H̄k8 ,

where the readout noise covariance matrix Rk and the
predictor error covariance matrix Pk

2 are defined by Eqs.
(12) and (18), respectively. Then a straightforward (but
tedious) calculation shows that

E@HkXkXk8Hk8# 2 H̄kE@XkXk8#H̄k8 5 sT
2 @ sA0

2
1 Ā0I,k

,

where the quantities sT
2 , s

X
0
(1)

2
, and X̄0

(1) are all defined in

Section 3. Also, the term E@(Xk 2 X̂k
2)(Yk 2 Ŷk

2)8# can
be reduced to

E@~Xk 2 X̂k
2!~Yk 2 Ŷk

2!8# 5 Pk
2H̄k8 ,

and the Kalman gain can be finally expressed as

Kk 5 Pk
2H̄k8$H̄kPk

2H̄k8 1 Rk 1 sT
2 @ sA0

2
1 Ā0#I,k

%21.

In the above expression, the term Pk
2 is defined by Eq.

(18) and can be computed recursively. This recursion can
be obtained straightforwardly to yield the recursions
given by Eqs. (19) and (21).
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