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ABSTRACT 
 
We propose a novel algorithm for the identification of faces from 
image samples. The algorithm uses the Kalman filter to identify 
significant facial traits. Kalmanfaces are compact visual models 
that represent the invariant proportions of face classes. We employ 
the Kalmanfaces approach on the UMIST database, a collection of 
face images that were recorded under varying camera angles. 
Kalmanfaces show robustness against invisible facial traits and 
outperform the classic Eigenfaces approach in terms of 
identification performance and algorithm speed. The paper 
discusses Kalmanfaces extraction, application, tunable parameters, 
experimental results and related work on Kalman filter application 
in face recognition. 

Index Terms–Face recognition, Kalman filtering.  

1. INTRODUCTION 
 
Face recognition is one of the classic areas of pattern recognition 
[6]. Applications are manifold ranging from video surveillance to 
content-based retrieval. Face recognition research focuses on two 
problem areas: detection of faces in visual media streams and 
identification of detected faces. Face identification comprises of 
holistic approaches (e.g. Eigenfaces [3]), classification approaches 
(Linear Discriminant Analysis, Support Vector Machines, etc.) and 
regression approaches (e.g. Neural Networks). 

We propose a novel holistic approach for face identification 
from image samples that uses a simplified Kalman filter [2, 4] to 
detect invariant face features. The Kalman filter is frequently 
employed in face recognition for face detection in video sequences. 
However, the author is not aware of proposals to use the powerful 
linear data processing capabilities of the Kalman filter for the 
extraction of face features. We use the Kalman filter on a dataset of 
face images that were recorded under varying camera angles. These 
data are distinguished by a high variance of location and partial 
invisibility of the typically considered face features (eyes, mouth, 
etc.). Viewpoint-variant recognition is one of the hardest problems 
in face recognition (and object recognition in general). The authors 
of [6] stress that “generalization even from one profile to another is 
poor” (page 5, first paragraph). The results for classic Eigenfaces 
(Section 3) confirm this judgment. The Kalman filter considers 
variances in the data analysis process. Hence, we expect it to be an 
advantageous element of a model for robust face identification 
under such circumstances. 

The paper is organized as follows. Section 2 explains the 
Kalmanfaces extraction process. Section 3 discusses experiments 
and results. Section 4 sketches related work in face recognition and 
Kalman filter application. 

2. KALMANFACES APPROACH 
 
2.1. Kalmanfaces Extraction 
 
The Kalmanfaces approach identifies the most likely face class for 
an image by feature similarity. It expects every face class (person) 
to be represented by a sequence of image samples. The number of 
inputs should not be smaller than 3-5 for reasonable application of 
the Kalman filter. Each face class is represented by a single feature 
vector that is extracted as follows: 

1. Image normalization. All face images are transformed to 
luminance (greyscale) matrices of the same size (for example, just 
three by three pixels). In the experiments we employ a simple 
nearest neighbour selection. Every pixel represents one face region. 

2. Averaging. An average face is computed from the normalized 

images by a Kalman filter (“Kalmanface”). 
3. Feature extraction. Only those regions of the Kalmanface are 

considered as features that are sufficiently invariant. The 
luminance variance of a region must not exceed a certain threshold. 

The Kalman filter is applied in the second step to compute a 
class average that represents the facial traits adequately. Figure 1 
shows an example. The face class consists of twenty images like 
the ten examples on the left (a). Element b shows the mean image, 
element c shows the Kalman-averaged image. As can be seen, the 
Kalman-averaged image contains a large amount of the high-
frequency information present in the examples. The properties of 
the Kalman filter cause that variances in the most prominent 
positions (portrait, side-face) are preserved and in-between images 

are (to a certain extent) absorbed. The average image b is not able 
to capture relevant facial traits properly. It consists of self-similar 
pixel neighbourhoods. 

Kalmanface averaging is performed as follows. We assume the 
class samples to be a temporal sequence and compute the Kalman 
estimate for each pixel: 
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xt is the estimate of the pixel average at time t (the tth example 
image), lt is the luminance value and kt is the Kalman weighting 
factor (depending on the luminance variances at times t and t-1): 
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The Kalmanface of a face class is the spatial aggregation of the 
pixel averages at time T ([xT]). Weight kt is the crucial factor in 
this simplified application of the Kalman filter that does not 
consider complex noise models and weights for the measurements 
lt. σt is the standard deviation of the considered face region at time 
t. kt approaches zero if the variance increases, i.e. if the luminance 
of a pixel changes from sample to sample. In this case, the Kalman 



filter trusts on the earlier estimate and disregards lt. kt approaches 1 
if the variance decreases. In this case, the Kalman filter trusts on 
the luminance. The short time behaviour of the Kalman filter is to 
eliminate variances. In the long term Kalman filtering results in an 
average that preserves the properties of the input sequence (see 
Figure 1). It processes all information that is provided [2]. 

In the third step, features are extracted from the Kalman-
averaged face. We select those pixels as face features that have a 
luminance variance σt below a certain threshold. Hence, the face 
feature vector consists only of those traits that are relatively 
invariant over the samples. The threshold is an endogenous 
variable (Section 3 discusses approximations). 
 
2.2. Similarity Measurement 
 
Kalmanfaces querying is a straightforward application of the vector 

space model. We assume an Euclidean feature space. The query 

example is normalized to the same number of pixels as the face classes 

and compared to each of the Kalmanfaces. That is, one distance 

measurement operation per individual in the database has to be 

performed. We suggest a first order Minkowski distance (city block 

distance) for dissimilarity measurement. 
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The dissimilarity of a face f to a face class ci (represented by a 
Kalmanface) depends on the first order distance normalized by the 
feature vector size nc of the face class. Only those pixels are 

considered for distance measurement that satisfy the variance 

condition stated above. This feature selection may (and usually will) 

change from face class to face class. 

 
2.3. Discussion 
 
We propose the Kalmanfaces approach as a solution for face 
detection in environments with high variance (e.g. varying camera 
angles, varying lighting). In particular, Kalmanfaces have the 
following advantages: 

1. Face class information is easily extensible. One further 

iteration of the Kalman filtering process is sufficient to add a new 
face image of an already registered person. 

2. The application of the variance condition leads to short 
feature vectors. Distance measurement of short vectors by a linear 
function allows for fast querying.  

3. The length of the feature vectors is generally independent of 
the number of individuals in the database. Effective discrimination 

will require longer feature vectors for larger databases. However, 
database size and feature vector length are not as closely linked as, 
for example, in the Eigenfaces approach. In classic Eigenfaces the 
number of weights equals the number of face classes [3]. 

The Kalmanfaces approach does not try to influence the order 
of the images that are employed in the filtering process. If kt is 
assumed constant, then the Kalman filter tends to lay a higher 
weight on the last samples than on the first. However, in practical 
application kt alone determines the extent to which samples are 
represented in Kalmanfaces. By quantitative analysis we have 
found that the order of examples does not influence the face 
retrieval performance (this study is currently under review). 

The Kalman filter weight (equation 2) and the variance 
threshold cause – to a certain extent – opposite effects. The 
application of kt leads to a maximum of entropy in the 
Kalmanfaces. However, only those pixels are picked by the 
variance condition that are sufficiently invariant (“trustworthy”). 
Hence, Kalmanfaces feature vectors represent face classes by a 
maximum of information at a controllable level of trust. 
 

3. EXPERIMENTS AND RESULTS 
 
Below, we compare the performance of Kalmanfaces to the 
Eigenfaces approach [3] on the UMIST dataset [5]. Every 
Eigenfaces class Ωi is averaged over all class members (highest 
quality). The UMIST dataset comprises of photographs showing 
individuals that were recorded with the same expression from 
various camera angles under constant lighting conditions. The 
nearest neighbour function is used for image resizing. Kalmanfaces 

and Eigenfaces are implemented as Matlab functions and can be 
downloaded from [1]. Kalmanface averaging is employed with the 
following approximation for all pixels of the first two faces 
(otherwise, k1 would always be zero): 
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3.1. Face Retrieval Performance 
 
Figure 2 summarizes the face identification performance 
depending on the feature size, i.e. the frame length in pixels of the 
quadratic face images. Kalmanfaces that use all feature elements 
(variance threshold of 100%, depicted as “v=100%”) perform 
comparable to Eigenfaces. Interestingly, Eigenfaces and 
Kalmanfaces with a variance threshold of 50% or more (all 
features with at most 50% of the maximum variance are used) fail 
in reaching 100% face identification performance independently of 
feature size. Obviously, these parameterizations lead to feature 

 

Fig. 1. Kalmanface example. Kalmanface c is constructed from face class a (b is the mean image). 



vectors that contain partially misleading elements (those with high 
variance). Kalmanfaces with a variance threshold of 50% perform 
already significantly better than Kalmanfaces with a threshold of 
100% (a gap of about 30-50% face identification performance).  

However, the best performance can be observed for 
Kalmanfaces with a variance threshold of 10%. At this level the 
relationship of entropy and invariance in the feature data leads to 
optimal results. The parameterization reaches a face classification 
performance of 100% for features of 8 by 8 pixels. Even for very 
short feature vectors it is already superior over Eigenfaces. (A 
Kalmanface of 4 by 4 pixels and a variance threshold of 10% lead 
to a feature vector of approximately 8 (4^2*0,5) elements.) At a 
feature size of about 50 elements (10^2*0,5) the face identification 
performance reaches the ceiling. For more accurate Kalmanfaces 
performance remains constant at the optimal recognition level. 

The results reflect the seriousness of the investigated 
recognition problem in the weak performance of the Eigenfaces. 
We have decided to compare Kalmanfaces to this approach, 
because they are structurally similar. Firstly, both are holistic 

approaches. That is, they derive face similarity from the entire 
image data and do not try to extract particular facial features. 
Secondly, both methods neglect semantic knowledge. In fact, both 
methods could be applied to arbitrary object recognition problems. 
Eventually, neither Kalmanfaces nor Eigenfaces require a training 
process for sample-based classification. Without doubt, a feature-
based approach that makes use of kernel-based learning (e.g. a 
Support Vector Machine) would be able to outperform Eigenfaces 
(especially, on a small but well-defined scientific database). 
However, it would be difficult to find a relation of such results to 
the performance gain achieved by Kalmanfaces with increasing 
feature size. 

Clearly, the variance threshold is the decisive parameter in the 
application of Kalmanfaces. At a threshold of 50% Kalmanfaces 
outperform Eigenfaces, at 10% retrieval performance is soon 
optimal. At 1% (approximately 10% of the most invariant features 
are chosen for similarity measurement) performance drops under 
the level of a 50% variance threshold. Precise judgement of the 
variance threshold is obviously crucial for retrieval performance. 

 

Fig. 3. Misclassification example. If all features (bottom line, a-c) are considered, then face a is misclassified as person b instead as 
person c. If only features with a variance of at most 50% of the maximum are considered (d-f), then the face is classified correctly. 

 

Fig. 2. Performance of Eigenfaces and Kalmanfaces at different variance threshold levels (not smoothed). “v=50%” means that the 
Kalmanfaces variance threshold is set to 50%. 



The next subsection discusses this parameter in detail. 
 
3.2. Relevance of the Variance Condition 
 
The variance threshold determines which features are used for 
Kalmanfaces similarity measurement. Only those features of a face 
class are selected that have a variance σt below the threshold (given 
in percent of the maximum variance in the face class). That is, only 
sufficiently invariant features are considered. The application of 
variance thresholds causes no computational overhead, since the 
variances have to be calculated for Kalmanface averaging anyway. 

Figure 3 shows a typical misclassification example (feature 
vector edge lengths of four pixels). If a threshold of 100% is used, 
face a is misclassified as member of face class b instead of c. If a 
threshold of 50% is employed, fewer regions are considered 
(depending on the face classes). Then, face d is correctly classified 
as a member of Kalmanface class f. 

However, it has to be mentioned that the reduction of the 
feature vector to just eleven elements in Figure 3f is not typical. 
Figure 4 gives the average relationship of variance threshold value 
and feature vector size (in percent to the Kalmanface class sizes). 
In average, a variance threshold of 50% leads to the elimination of 
just 3-5% of the features with highest variance. 

We would like to close this section with a few considerations 
on the relationship of performance and feature vector length. A 
variance threshold of 10% means that approximately 50% of the 
features of each Kalmanface class are considered for similarity 
measurement. Hence, the best-performing Kalmanfaces in Figure 2 
(v=10%) use feature vectors with 50% of the total feature size. The 
feature vectors of Eigenfaces are proportional to the number of 
face classes (UMIST dataset: 20). A feature vector length of 20 
elements is reached by Kalmanfaces of edge length 6 and v=10% 
(6²*0.5). At this level, Kalmanfaces with a variance threshold of 
10% outperform Eigenfaces by 35%. 
 

4. RELATED WORK 
 
Face detection and face recognition have applications in a large 
number of domains (visual retrieval and video surveillance, to 
name a few). Hence, it is not surprising that hundreds of new 
approaches are suggested every year (see, for example, [6]). The 
Kalman filter [2] is employed in a number of approaches to 

identify face locations in video streams. However, its beneficial 
properties are hardly exploited for face class description. This is 
surprising, since a large number of approaches depend on face 
class averaging (Principal Component Analysis, Linear 
Discriminant Analysis, Machine Learning approaches, etc.). Most 
of these approaches rely on the statistical mean, though the mean is 
for two reasons disadvantageous for this task. Firstly, it does not 
conform structurally to the original population. The mean can only 

under certain assumptions be interpreted with respect to the 
underlying data. Secondly, the application of the mean function 
has a blurring effect. Fragile high-frequency information (as the 
facial traits important for identification) is lost. 
 

5. CONCLUSIONS 
 
We propose a novel approach for face identification that uses the 
Kalman filter for face class averaging. Experimental evaluation 
shows that Kalmanfaces perform excellently on face images that 
were recorded under varying camera angles. Classic Eigenfaces are 
outperformed by up to 50%. The Kalmanfaces approach scales 
well with increasing numbers of individuals and face examples. In 
future work, we will investigate its sensitivity to more/less-variant 
face classes and its performance on other face identification 
problems (e.g. aging) and databases (e.g. FERET).  
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Fig. 4. Variance and feature size. Feature size depends on the threshold. The graph uses two log scale at the intervals [0, 0.1] and [0.1, 1]. 


