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RAPID is a video-rate model based tracker which
generates refined estimates of an object's position
and orientation (pose) given approximate initial
estimates. A practical application of this technique
requires (1) prediction from-frame-to-frame of the
pose of the object being tracked, to accommodate
realistic target movement and (2) temporal
integration of pose estimates to reduce
measurement noise. These needs are both satisfied
by a Kalman filter. In order to apply a Kalman
filter, however, we first construct statistical models
of both the apparent motion of the object between
frames and also of the accuracy of pose
measurements made at each processed frame. The
filtered tracker output provides a robust estimate of
object pose at video rate when implemented in
software running on a standard mini-computer.
The capabilities of this technique are demonstrated
by application to the task of monitoring the pose of
an unmanned aircraft during its approach to an
airfield and during landing.

The use of a simple video camera to make
geometric measurements has much practical appeal
in a range of applications, provided of course that
viable processing algorithms can be developed.
The advantages of vision techniques stem from the
low cost of commercially available cameras, the
minimal instrumentation requirements and other
limitations placed on the design of the sensor
platform and the object under investigation.
Algorithms have been developed to extract the
relative pose of the sensor and viewed object, eg
by Lowe [1] and Stephens [2], but these
algorithms generally require significant processing
time, even when using advanced hardware.

The technique developed by Harris and Stennett
[3], which is the basis of the RAPID (Real-time
Attitude and Position Determination), is highly
efficient and has been demonstrated at video rate
with a standard mini-computer. This model-based
technique culminates in the determination of pose
by minimising (by linear algebra) the quantity

where q is a 6-vector defining the pose (position
and orientation) of the object, \ is the image plane

distance between an observed edge and the
predicted position of the i'th edge of the model at a
specified control point, and q is a 6-vector whose
value depends on the position of the edge within
the model and on an initial estimate of the object's
pose. (Model edges which pass undetected in the
image are simply ignored.)

When applying the RAPID technique to a practical
case of a moving object, it is in principle possible
to use the pose estimate, calculated by processing
one video frame, as the initial estimate of the
object's pose in the next video frame. This
approach to tracking a moving object has the
disadvantage that the object's motion would be
limited to small movements between frames since
RAPID searches for model edges in a limited
region about the predicted position. This problem
can be overcome by using a simple predictor, such
as an a-p tracker [4] which also has the advantage
of performing a temporal smoothing of pose
estimates, to reduce measurement noise. In
practise however, it has been found difficult to set
the tracker parameters as the measurement noise
depends on the number and position of edges
found, and also on the current pose of the object.
In some extreme cases, the edges detected in a
particular frame may not define all the object's
degrees of freedom; clearly a more sophisticated
predictor/filter is required.

This paper describes the use of a Kalman filter [5]
for pose prediction and filtering. The next section
outlines the formulation of a Kalman filter and the
following sections describe how the required
models are constructed for use in filtering pose
estimates. Finally, we demonstrate the technique
by applying RAPID to a video sequence recorded
in an unmanned aircraft during landing.

KALMAN FILTER OUTLINE

Let xt be a vector that represents the estimated state
of a system at time t. Given a new measurement,
yt, made at that same instant, the state vector
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estimate is updated to x't, given by

x' t = x t + K(y t-Hx t),

where K is the Kalman gain matrix and H is a
matrix which maps the estimated state to the
corresponding expected observation. Between
observations it is assumed that the true state of the
system evolves according to

x t + l = A x t + et,

where et is a random variable of zero mean and
covariance defined by the matrix Qt. Thus given
x't. xt+1 = A x't. If the error in the observation yt
has zero mean and covariance Rt, and the error in
xt has zero mean and covariance Pt, then the
optimal choice of K (that which minimises the trace
of P't, the covariance of x't) is

K = P tH
T[HP tH

T + Rt]-1, and

P't = Pt - KHPt.

In the time to the next observation, however,
confidence in the state vector estimate worsens
because of the uncertainty in evolution, thus

P t + l = A F t A
T + Qt.

In many practical situations neither the object being
tracked nor the sensor are rigidly fixed, as for
example when the object is one aircraft and the
sensor is mounted on another flying nearby. In
such cases Q will be the combined effect of the
motion of the object in global coordinates and the
motion of the sensor in global coordinates. In
particular, if the sensor rotates, the object will
appear to move in sensor-based coordinates and the
greater the distance between sensor and object, the
greater will be the amount of movement. The
following paragraphs outline the computation of Q
in terms of the sub-matricies Qi, Q2 and Q3.

Suppose u and u1 are the velocities of the sensor
and object in global coordinates and w and w' are
their rotation-vector rates, and that all the
(co)variances of these quantities are known. Thus
i f i ^ a n d c are the variance and covariance
operators, 'Kwi) and c(wi,u'2) etc, are input
parameters for the model. Ql is simply the sum of
the covariances of «*/ and w', assuming the motion
of the sensor and object are uncorrelated.

THE OBJECT MOTION MODEL

In this application of Kalman filtering, the RAPID
pose estimate, yt, is the 6-vector pose estimate
found by the minimisation of E(q). In the simplest
moving object case we assume uniform motion, so
the state vector contains both position and velocity
terms. In particular we write,

x = (r, e, r, «)T,

where r is the object's position 3-vector (relative to
the sensor), and e is a rotation 3-vector defining its
orientation;

H=[I6O6],

where 16 and Og are the 6-by-6 identity and zero
matrices.

We assume that the above motion model is accurate
apart from a random fluctuation in velocities, ie

" O3 O3 O3 O3

O3 O3 O3 O3

Q= 0 3 03 Qi Q2

0 3 0 3 Q 2 03

where Ql, Q2 and Q3 are to be determined.

Q2 and Q3 depend on the current position of the
object relative to the sensor. The velocity of the
object in sensor coordinates is

v =wxr - u + u',

where r is the position of the object in sensor
coordinates. Suppose w is subjected to a small
fluctuation Aw about its mean position, and
similarly w' ,u, and u', then the corresponding
fluctuation in v is

Av = Awxr - Au + Au',

ie Avj = eijkAwjrk - Aui + Aui',

where eijk is the Levi-Cevita symbol and the
summation convention is in force. For small
fluctuations in the rotation rate of the sensor and
object, the corresponding change in relative
rotation rate is

We can now calculate Q2, the covariance of the
components of object's velocity (in sensor
coordinates) with it's components of rotation. Q2
is

- Aup+ Aup')].

In very many cases, such as aircraft flying nearly
parallel, it can be assumed that the motion of the
sensor and of the object are uncorrelated ie,

= £[Aw'iAUp] = 0.£[ Awi Aup'] = £[
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A further simplification is to assume that the
individual components of motion of the sensor and
object are uncorrelated with each other, ie
EfAwiAup] = £[Aw'iAun'] = 0 for all i and p, and
£[A^iAvjj] = 0 for i*j. In these circumstances the
above expression simplifies to

02=

0

0

0

(It should be noted that this last assumption is not
be wholly accurate for aerodynamic bodies, but it
appears to prove adequate for present purposes.)

Similarly Q3, the covariance of the components of
the velocity of the object in sensor coordinates is

£[ (eijkAwjrk - Aui + Aui')

- Aup + Aup1)].

With assumptions about sensor and object motion
as above, this simplifies to

Q3 =

Thus Qt can be calculated for each filter cycle, from
the model input parameters, using the current best
estimate of the relative position of the sensor and
object.

THE MEASUREMENT MODEL

The confidence we may attach to a particular
refined pose estimate depends on how well defined
is the minimum of the quadratic surface of function

E(q) =

where the q depend on the detected feature points
at the initially estimated object pose. Imagine an
ellipsoid touching the quadratic surface at the
minimum such that the second derivatives of the
quadratic surface and the ellipsoid match. This
ellipsoid is defined by the equation

(q-q ' )[c ic iT](q.q ' )T=l ,

where q' is the centre of the ellipsoid. We assume
that the axes and orientation of this ellipsoid
provide a good estimate of the covariance, R, of

the resulting measurement. Thus by analogy with
normal distribution theory, we set

i - l

Unfortunately, when only a few control points are
detected this inverse cannot be calculated because
of ill-conditioning. There are also certain situations
when the detected control points do not fully define
the pose of the object; in these cases the
coefficients matrix is singular. The formula
defining the Kalman filter gain can be re-arranged,
however, to avoid the need to compute the inverse.
Instead of the standard formulation we use

K = P tH
TRf

 1[HP tH
TRf1+I]-1 ,

where R"1 = q q
T l .

With this formulation for K, the filter gain can be
calculated robustly for each filter cycle, weighting
each measurement according to its expected
accuracy.

DEMONSTRATION

The RAPID algorithms, have been implemented in
Pascal running on a VAX3400 machine, hosting an
Imaging Technology IT 100 card for image capture
and display. Although the VAX3400 is a general
purpose machine the RAPID algorithms run fast
enough for video rate processing to be
demonstrated.

Video data has been recorded, for this
demonstration, from a forward looking sensor
mounted in the nose of an unmanned aircraft. The
data has been recorded during approach and
landing at an airfield which is modelled visually, as
shown in figure 1, by a set of 16 edge features: 4 at
each side of the main runway, 2 at each end of the
runway, and 2 each side of a section of the
perimeter tax-way.

As the aircraft approaches the airfield, under the
control of a remote pilot, the video shows the
runway growing in the field of view. Figure 2
shows two frames of typical video data, with the
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airfield model superimposed according to its pose
as estimated by RAPID; the white lines mark the
edges and ends of the main runway and the
selected section of taxi-way. Good alignment
between the image data and projected model data
can be seen in both images.

acquisition, in particular differences in the time of
start of track. (Some small differences may be the
result of analog noise in video-tape replay.) These
figures give an indication of the repeatability of the
technique, though a more controlled analysis is of
course required. The tracks are in close agreement
up to the point, at about 800m from touch down,
where the model has expanded beyond the
camera's field of view. The discrepancies at about
1200m-1400m correspond to a temporary burst of
video interference. The tracker is seen to be
notably stable despite this period of very noisy
data.

' • :
;
:

:
:

:
:

:
:

:
: -

• 4

4 modelled
edge features

Figure 1 Visual model of runway.

Figures 3 and 4 show a typical track, plotting (in
airfield coordinates) the height and cross-runway
displacement of the aircraft as a function of down-
runway range. The apparently fast initial
movement of the aircraft, at about 2200m, is the
result of RAPID correcting the very first pose
estimate. This acquisition stage is performed
manually at present. After acquisition the tracker
shows an expected descent path until about 800m
from touch down. At this point the airfield model
has expanded beyond the camera's field of view so
that an insufficient number of features can now be
detected to define the model's pose and the tracked
path gradually diverges from expectation.

Figures 5, 6 & 7 show the estimated aircraft roll,
pitch and yaw. In each figure a set of tracks have
been plotted, each obtained by independent
processing of the same segment of recorded video
data. The differences between these tracks are
mainly the result of differences at manual

Figure 2a: Typical video frame with
projected model outline superimposed.

Figure 2b: Typical video frame with
projected model outline superimposed.
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Figure 3. Aircraft height (m) versus
down-runway range (m) during landing.
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Figure 6. Aircraft pitch (degrees) versus
down-runway range (m) for five

independent passes through video data.
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Figure 4. Aircraft cross-runway
displacement (m) versus down-runway

range (m) during landing.
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Figure 5. Aircraft roll (degrees) versus
down-runway range (m) for five

independent passes through video data.
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Figure 7. Aircraft yaw (degrees) versus
down-runway range (m) for five

independent passes through video data.

CONCLUSIONS

The RAPID algorithms combine a fast model-based
technique to calculate the pose of a viewed object
given an initial estimate, and Kalman filtering for
smoothing and pose prediction. These algorithms
can be implemented at video rate in a standard
mini-computer. They are robust in operation, as
has been demonstrated in application to recorded
data from a camera mounted in the nose of an
unmanned aircraft during landing.
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