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Abstract—We consider the problem of state estimation of a
discrete time process over a packet dropping network. Previous
pioneering work on Kalman filtering with intermittent observa-
tions is concerned with the asymptotic behavior of E[Pk], i.e., the
expected value of the error covariance, for a given packet arrival
rate. We consider a different performance metric, Pr[Pk ≤ M ],
i.e., the probability that Pk is bounded by a given M , and we
derive lower and upper bounds on Pr[Pk ≤ M ]. We are also able
to recover the results in the literature when using Pr[Pk ≤ M ] as
a metric for scalar systems. Examples are provided to illustrate
the theory developed in the paper.

Index Terms—Networked estimation, Kalman filtering, Packet-
dropping network.

I. INTRODUCTION

In the past decade, networked control systems (NCS) have

gained much attention from both the control community

and the network and communication community [1]. When

compared with classical feedback control systems, networked

control systems have several advantages. For example, they

can reduce the system wiring, make the system easy to operate

and maintain and later diagnose in case of malfunctioning, and

increase system agility.

Although NCS have advantages, inserting a network in

between the plant and the controller can introduce many

problems as well. For example, in communication networks,

data packets that carry the information can be dropped or

delayed due to the network traffic conditions. When closing the

control loop over such communication networks, the overall

system might have poor performance or even become unstable.

Thus the effect that those issues have on the closed loop system

performance must be fully analyzed before networked control

systems become commonplace.

Recently, many researchers have investigated these issues

and some significant results were obtained and many are in

progress. The problem of state estimation and stabilization of a

linear time invariant (LTI) system over a digital communication

channel which has a finite bandwidth capacity was introduced

by Wong and Brockett [2], [3]. In [4], Sinopoli et al. discussed

how packet loss can affect state estimation. They showed there

exists a certain threshold of the packet arrival rate below

which, E[Pk], the expected value of the error covariance

matrix, becomes unbounded as time goes to infinity. The

authors extended their result from estimation to closed loop

Fig. 1. System Block Diagram

control in [5] where stability region of packet arrival rates

are provided. A scheme based on multi-description coding for

packet dropping networks, but limited to the estimation, is

considered in [6]. The readers are referred to [7] and references

therein for some recent results in the area of networked control

systems.

The problem of state estimation of a dynamical system

where measurements are sent across a packet dropping network

is also the focus of this work. Despite the great progress of

the previous researchers, the problems they have studied have

certain limitations. For example, in [4], the authors assumed

that packets are dropped independently, which is not true

when burst packets are dropped or in queuing networks where

adjacent packets are not dropped independently. They also

use E[Pk] as the measure of performance, which can conceal

the fact that events with arbitrarily low probability can drive

expected value diverge, and it might be better to ignore such

events that occur with arbitrarily low probability.

The goal of the present work is to give a more complete

characterization of the estimator performance by instead con-

sidering a probabilistic description of the error covariance, i.e.,

Pr[Pk ≤ M ]. In [8] the present authors first introduced this

notion for the same problem setting but under the additional

assumption that the measurement matrix, C, is invertible.

In [9], the present authors extended the result to the case when

C is not invertible. However, extra assumptions are made, e.g.,

A is assumed to be purely unstable. The main contribution of

this paper can be summarized as follows. 1) Unlike almost all

previous work where the a priori error covariance is studied,

we consider the a posteriori error covariance in this paper. 2)

We remove the constraint in [9] that requires A to be unstable

and work with arbitrary A. 3) We are able to recover the result

in [4] for scalar systems.

The rest of the paper is organized as follows. In Section II,
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the mathematical model of the system that we consider is

given. In Section III, some frequently used terms are defined, a

quick summary of Kalman filter updating equations is provided

and some results on E[Pk] from [4] is reviewed. In Section IV

we derive lower and upper bounds for Pr[Pk ≤ M ]. In

Section V we provide an example to demonstrate the theory

developed. The paper concludes with a summary of our results

and a discussion of the work that lies ahead.

II. PROBLEM SETUP

We consider the networked control systems as seen in

Fig. 1. The process dynamics and sensor measurement equa-

tion are given as follows:

xk = Axk−1 + wk−1, (1)

yk = Cxk + vk. (2)

In the above equations, xk ∈ IRn is the state vector, yk ∈
IRm is the observation vector, wk−1 ∈ IRn and vk ∈ IRm are

zero mean white Gaussian random vectors with E[wkwj
′] =

δkjQ, Q ≥ 0, E[vkvj
′] = δkjR,R > 0, E[wkvj

′] = 0 ∀j, k,

where δkj = 0 if k �= j and δkj = 1 otherwise. We assume

that the pair (A, C) is observable and (A,
√

Q) is controllable.

After taking a measurement at time k, the sensor sends yk

to a remote estimator for generating the state estimate. We

assume that the measurement data packets from the sensor are

to be sent across a packet dropping network, with negligible

quantization effects, to the estimator. Let γk be the random

variable indicating whether a packet is dropped at time k or

not, i.e., γk = 0 if a packet is dropped and γk = 1 otherwise. In

addition, we assume the sensor has the ability to store some

previous measurements in a buffer when needed. Therefore

each packet sent through the network could contain a finite

number of the previous measurements.

Let us define the following state quantities at the remote

state estimator:

x̂k � E[xk|all data packets up to k],
Pk � E[(xk − x̂k)(xk − x̂k)′].

As mentioned in Section I, we are interested in finding a closed

form solution to Pr[Pk ≤ M ] given M . Before we present our

main results in Section IV, we go over some preliminaries first.

III. PRELIMINARIES

A. Definitions

It is assumed that (A, C,Q, R) are the same as they appear

in Section II; λi(A) is the ith eigenvalue of the matrix A;

X ∈ S
n
+ where S

n
+ is the set of n by n positive semi-definite

matrices; fi : S
n
+ → S

n
+, i = 1, 2; Yi is a random variable

where the underlying sample spaces will be clear from its

context.

ρ(A) � max
i

|λi(A)|,
h(X) � AXA′ + Q,

g(X) � h(X) − AXC ′[CXC ′ + R]−1CXA′,
g̃(X) � X − XC ′[CXC ′ + R]−1CX.

B. Kalman Filtering Preliminaries

If the network between the sensor and the estimator is

perfect, i.e., no packet is dropped, then it is well known that the

optimal linear estimator for the system described by Eqn (1)

and (2) is a standard Kalman filter, denoted as KF. We write

(x̂k, Pk) in compact form as

(x̂k, Pk) = KF(x̂k−1, Pk−1, yk)

which represents the follow set of equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂−
k = Ax̂k−1,

P−
k = APk−1A

′ + Q,
Kk = P−

k H ′
k[HkP−

k H ′
k + Rk]−1,

x̂k = Ax̂k−1 + Kk(yk − HkAx̂k−1),
Pk = (I − KkHk)P−

k .

P−
k and Pk are easy shown to satisfy

P−
k = g(P−

k−1), Pk = g̃ ◦ h(Pk−1).

Let P ∗ be the unique positive semi-definite solution1 to

g(X) = X , i.e., P ∗ = g(P ∗). Define P as P � g̃(P ∗). Then

we have

g̃ ◦ h(P ) = g̃ ◦ h ◦ g̃(P ∗) = g̃ ◦ g(P ∗) = g̃(P ∗) = P ,

where we use the fact that h ◦ g̃ = g. In other words,

P ∗ = lim
k→∞

P−
k , P = lim

k→∞
Pk.

C. Kalman Filtering with Intermittent Observations

Upon receiving the measurement data from the sensor, it

was shown in [4] that the optimal linear filter has the same

equations as a standard Kalman filter except that

x̂k = x̂−
k + γkKk(yk − Cx̂−

k ) (3)

Pk = P−
k − γkKkCP−

k . (4)

Due to the randomness of data packet drops, Pk is a random

variable as well. When γk’s are independent and identically

distributed Bernoulli random variables with mean γ, Sinopoli

et al. in [4] showed that there exists a critical value γc such that

if γ > γc, E[Pk] converges as k → ∞ and diverges otherwise.

When C−1 exists, γc is given in exact form as

γc = 1 − 1
ρ(A)2

. (5)

Using E[Pk] as a metric, however, may conceal the fact that

events with arbitrarily small probability can make the expected

value diverge, and it might be better to ignore such events

when evaluate the performance of the estimator. For example,

consider the unstable scalar system with a = 2, q = 1, P0 = 1
in Eqn (1). Let the packet arrival rate γ satisfy

γ = 0.74 < γc = 1 − 1
a2

= 0.75.

1Since (A, C) is assumed to be observable and (A,
√

Q) controllable, from
standard Kalman filtering analysis, P ∗ exists.
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Then from [4] we conclude that limk→∞ E[Pk] = ∞. This is

easily verifiable by considering the event σ that no packets are

received in k time steps. Then

E[Pk] ≥ E[Pk|σ]Pr[σ] > (0.26k)4kP0 = 1.04kP0 = 1.04k.

By letting k go to infinity, we see that E[Pk] diverges. Thus

σ alone can make E[Pk] diverge, and the probability that σ
occurs approaches zero when k goes to infinity. This partially

motivates us to consider Pr[Pk ≤ M ] as a metric to evaluate

the performance of the estimator subject to packet drops.

IV. MAIN RESULTS

In this section, we assume C is full rank. Without loss of

generality, we assume C−1 exists. We extend the results to the

general case in Appendix B.

A. Lower and Upper Bounds of Pr[Pk ≤ M ]
Similar to [4], the optimal state estimate x̂k and its error

covariance matrix Pk are given by

(x̂k, Pk) =
{

(Ax̂k−1, h(Pk−1)), if γk = 0
KF(x̂k−1, Pk−1, yk), if γk = 1

As a result,

Pk =
{

h(Pk−1), if γk = 0
g̃ ◦ h(Pk−1), if γk = 1

Define M � C−1RC−1′
. Then we have the following result

that shows the relationship between Pk and M .

Lemma 4.1: For any k ≥ 1, if γk = 1, then Pk ≤ M .

Proof: As γk = 1, we have Pk = g̃ ◦ h(Pk−1) ≤ M ,

where the inequality is due to Lemma A.2 in Appendix A.

Remark 4.2: We can also interpret Lemma 4.1 as follows.

One way to obtain an estimate x̃k when γk = 1 is simply by

inverting the measurement, i.e., x̃k = C−1yk. Therefore

ẽk = C−1vk and P̃k = E[ẽkẽ
′
k] = C−1RC−1′

= M.

Since Kalman filter is optimal among the set of all linear filters,

we must have Pk ≤ P̃k = M .

For M ≥ M , define k1(M) and k2(M) as follows:

k1(M) � min{t ≥ 1 : ht(M) � M}, (6)

k2(M) � min{t ≥ 1 : ht(P ) � M}. (7)

We sometimes write ki(M) as ki, i = 1, 2 for simplicity for the

rest of the paper. The following lemma shows the relationship

between P and M as well as k1 and k2.

Lemma 4.3: (1) P ≤ M ; (2) k1 ≤ k2 whenever either ki

is finite, i = 1, 2.

Proof: (1) P = g̃(P ∗) ≤ M where the inequality is from

Lemma A.2 in Appendix A. (2) Without loss of generality, we

assume k2 is finite. If k1 is finite, and k1 > k2, then according

to their definitions, we must have

M ≥ hk1−1(M) ≥ hk1−1(P ) ≥ hk2(P )

which violates the definition of k2. Notice that we use the

property that h is nondecreasing as well as h(P ) ≥ P from

Lemma A.1 and A.3 in Section A in the Appendix. Similarly

Fig. 2. Nk ≥ k1

we can show that k1 cannot be infinite. Therefore we must

have k1 ≤ k2.

Lemma 4.4: Assume P0 ≥ P . Then for all k ≥ 0, Pk ≥ P .

Proof: We prove this by induction. Assume Pk ≥ P for

some k ≥ 0. This clearly holds when k = 0. Let us consider

Pk+1. If γk+1 = 1, then

Pk+1 = g̃ ◦ h(Pk) ≥ g̃ ◦ h(P ) = P ,

where the inequality is from Lemma A.1. If γk+1 = 0, then

Pk+1 = h(Pk) ≥ h(P ) ≥ P .

The induction step is thus complete.

Define Nk as the number of consecutive packet drops at

time k, i.e.,

Nk � min{t ≥ 0 : γk−t = 1}. (8)

We have the following theorem that provides lower and upper

bounds on Pr[Pk ≤ M ].
Theorem 4.5: Assume P ≤ P0 ≤ M . For any M ≥ M ,

we have

1 − Pr[Nk ≥ k1] ≤ Pr[Pk ≤ M ] ≤ 1 − Pr[Nk ≥ k2]. (9)

Proof: We divide the proof into two parts. 1) Let us first

prove 1 − Pr[Nk ≥ k1] ≤ Pr[Pk ≤ M ]. As γk = 1 or 0,

there are in total 2k possible realizations of γ1 to γk as seen

from Fig. 2.

Let Σ1 denote those packet arrival sequences of γ1 to γk

such that Nk ≥ k1. Similarly let Σ2 denote those packet

arrival sequences such that Nk < k1. Let Pk(σi) be the

error covariance at time k when the underlying packet arrival

sequence is σi, where σi ∈ Σi, i = 1, 2. Consider a particular

σ2 ∈ Σ2. As γk−k1+1 = 1, from Lemma 4.1, Pk−k1+1 ≤ M .

Therefore we have

Pk(σ2) ≤ hk1−1(Pk−k1+1) ≤ hk1−1(M) ≤ M,

where the first and second inequalities are from Lemma A.1

in Appendix A and the last inequality is from the definition of
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Fig. 3. Nk ≥ k2

k1. In other words, Pr[Pk ≤ M |σ2] = 1. Therefore we have

Pr[Pk ≤ M ] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤ M |σ]Pr(σ)

≥
∑

σ2∈Σ2

Pr[Pk ≤ M |σ2]Pr(σ2)

=
∑

σ2∈Σ2

Pr(σ2) = Pr(Σ2)

= 1 − Pr(Σ1) = 1 − Pr[Nk ≥ k1].

where the first equality is from the total probability theorem,

the second equality holds as Σ1 and Σ2 are disjoint, the

third inequality holds as the first sum is non-negative, the rest

equalities are easy to see.

2) We now prove Pr[Pk ≤ M ] ≤ 1 − Pr[Nk ≥ k2]. Let

Σ′
1 denote those packet arrival sequences of γ1 to γk such

that Nk ≥ k2 and Σ′
2 denote those packet arrival sequences

such that Nk < k2 (Fig. 3). Consider σ′
1 ∈ Σ′

1. Let s(σ′
1) =

min{t ≥ 1 : γk−t = 1|σ′
1}. As σ′

1 ∈ Σ′
1, we must have s ≥ k2.

Consequently,

Pk(σ′
1) = hs(σ′

1)(Pk−s(σ′
1)

) ≥ hs(σ′
1)(P ),

where the inequality is from Lemma 4.4. Therefore we con-

clude Pk(σ′
1) � M otherwise hs(σ′

1)(P ) ≤ Pk(σ′
1) ≤ M

which violates the definition of k2. In other words, Pr[Pk ≤
M |σ′

1] = 0. Therefore we have

Pr[Pk ≤ M ] =
∑

σ∈Σ1∪Σ2

Pr[Pk ≤ M |σ]Pr(σ)

=
∑

σ′
2∈Σ′

2

Pr[Pk ≤ M |σ′
2]Pr(σ′

2)

≤
∑

σ′
2∈Σ′

2

Pr(σ′
2) = Pr(Σ′

2)

= 1 − Pr(Σ′
1) = 1 − Pr[Nk ≥ k2],

where the inequality is from the fact that Pr[Pk ≤ M |σ′
2] ≤ 1

for any σ′
2 ∈ Σ′

2.

B. Computing Pr[Nk ≥ ki]

Theorem 4.5 provides a lower and an upper bound for

Pr[Pk ≤ M ]. Both bounds involve the term Pr[Nk ≥ ki].

Fig. 4. Gilbert-Elliott Model

In this section, we show how we can compute Pr[Nk ≥ ki]
given a packet arrival and drop model.

Let k1 and k2 be given (see next section for their compu-

tation and approximation). In order to compute Pr[Nk ≥ ki],
we need to have a model that describes packet arrival and drop

behaviors. The most commonly used models in literature are

1) I.I.D model: i.e., γk’s are independent and identically

distributed Bernoulli random variables with mean γ,

e.g., [4], [10].

2) Gilbert-Elliott model: i.e., a two state markov chain is

used to describe the transition from γk to γk+1, e.g., [11],

[12].

We give closed form solution to both models in this section.

1) I.I.D Model: If γk’s are i.i.d Bernoulli random variables

with rate γ, then

Pr[Nk ≥ ki] = Pr[γk = 0, · · · , γk−ki+1 = 0]
= (1 − γ)ki . (10)

2) Gilbert-Elliott Model: Now consider a two state (0 or 1)

markov chain that represents packet drops and arrivals (Fig. 4).

Let T denote the state transition probability matrix, i.e.,

T =
[

β 1 − β
1 − γ γ

]

.

Let π = [π0 π1] be the steady state distribution of the

markov chain, i.e., π = πT . π can be computed as

π = [
1 − γ

2 − γ − β

1 − β

2 − γ − β
].

Let zk be defined as

zk =
[

z1
k

z2
k

]

�
[

Pr[γk = 0]
Pr[γk = 1]

]

.

Then zk can be shown to satisfy the following equation

zk = (T ′)kz0, k ≥ 1.

Furthermore, for k sufficiently large, zk ≈ π′, i.e.,

z1
k ≈ π0, z2

k ≈ π1.
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Therefore we have

Pr[Nk ≥ ki]
= Pr[γk = 0, · · · , γk−ki+1 = 0]

=
1∑

i=0

αiPr[γk−ki
= i]

= βkiz1
k−ki

+ (1 − γ)βki−1z2
k−ki

=
1 − γ

β(2 − γ − β)
βki (11)

where αi = Pr[γk = 0, · · · , γk−ki+1 = 0|γk−ki = i].

C. E[Pk] as a Metric

In this section, we show that we are able to recover the

results in [4] using Pr[Pk ≤ M ] as a metric for scalar systems.

Let us consider Eqn (1) and (2) with

A = a > 1, Q = q > 0, C = c > 0, R = r > 0.

Notice that in the scalar case, the assumption that (a, c) is

observable and (a,
√

q) is controllable holds trivially.

From Lemma A.4 in Appendix A, we can write E[Pk] as

E[Pk] =
∫ M

0

(1 − Pr[Pk ≤ M ])dM

+
∫ ∞

M

(1 − Pr[Pk ≤ M ])dM.

Using the fact 0 ≤ Pr[Pk ≤ M ] ≤ 1, we have

E[Pk] ≥
∫ ∞

M

(1 − Pr[Pk ≤ M ])dM

and

E[Pk] ≤ M +
∫ ∞

M

(1 − Pr[Pk ≤ M ])dM.

From Theorem 4.5, we know that when M ≥ M ,

1 − Pr[Nk ≥ k1] ≤ Pr[Pk ≤ M ] ≤ 1 − Pr[Nk ≥ k2].

Since in [4], i.i.d packet drop model is used, from Eqn (10),

we have Pr[Nk ≥ ki] = (1 − γ)ki , i = 1, 2. Therefore we

obtain
∫ ∞

M

(1 − γ)k2(M)dM ≤ E[Pk] ≤
∫ ∞

M

(1 − γ)k1(M)dM

+ M. (12)

Recall that k1(M) = min{t ≥ 1 : ht(M) � M} and

ht(M) = a2tM + q(1 + a2 + · · · + a2t−2)
= c1a

2t − c2,

where

c1 = M +
q

a2 − 1
, c2 =

q

a2 − 1
.

Therefore for any t ≥ 1,

k1(M) = t, if c1a
2t−2 − c2 ≤ M < c1a

2t − c2.

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

M

Fig. 5. yk is sent

From Eqn (12)

E[Pk] ≤ M +
∫ ∞

M

(1 − γ)k1(M)dM

= M +
∞∑

t=1

∫ c1a2t−c2

c1a2t−2−c2

(1 − γ)tdM

= M +
∞∑

t=1

c1(1 − 1
a2

)(a2 − γa2)t.

Clearly E[Pk] converges if a2 − γa2 < 1, i.e., γ > 1 − 1
a2 .

Similarly from Eqn (12)

E[Pk] ≥
∫ ∞

0

(1 − γ)k2(M)dM

=
∞∑

t=1

∫ c′1a2t−c2

c′1a2t−2−c2

(1 − γ)tdM

=
∞∑

t=1

c′1(1 − 1
a2

)(a2 − γa2)t.

where c′1 = P + q
a2−1 . Hence E[Pk] diverges if a2 − γa2 ≥ 1,

i.e., γ ≤ 1 − 1
a2 . We therefore conclude that

λc = 1 − 1
a2

which is exactly the same as Eqn (5) for scalar systems.

V. EXAMPLE

Consider Eqn (1) and (2) with

A = 1.4, C = 1, Q = 0.2, R = 0.5, γ = 0.5.

We run a monte carlo simulation for demonstrating the main

results in Section IV. Fig. 5 plots the result, where the red

dashed curve is the upper bound, green dotted curve is the

lower bound, and the blue solid curve is the actual value of

Pr[Pk ≤ M ] measured as the relative frequency of Pk ≤ M .

We can see from Fig. 5 that the lower and upper bounds that

we have derived in Eqn (9) provide tight approximation of

Pr[Pk ≤ M ].
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VI. CONCLUSION

In this paper, we study the problem of state estimation of a

discrete time process over a packet dropping network based on

a modified Kalman filter. We consider a probabilistic metric on

the error covariance matrix, i.e., Pr[Pk ≤ M ], and we derive

lower and upper bounds for Pr[Pk ≤ M ]. We also recover the

result for scalar systems in [4].
There are many interesting directions for continuing this

work, which include: study closed loop system performance

from a probabilistic angle; look at distributed and cooperative

control problems over packet dropping networks; and experi-

mentally evaluate the theory developed in the paper.

APPENDIX

A. Supporting Lemmas
Lemma A.1: For any 0 ≤ X ≤ Y ,

h(X) ≤ h(Y ), g(X) ≤ g(Y ), g̃(X) ≤ g̃(Y ),
g̃(X) ≤ X, h ◦ g̃(X) = g(X), g(X) ≤ h(X).

Proof: h(X) ≤ h(Y ) holds as h(X) is affine in X . Proof

for g(X) ≤ g(Y ) can be found in Lemma 1-c in [4]. As g̃ is a

special form of g by setting A = I and Q = 0, we immediately

obtain g̃(X) ≤ g̃(Y ). Next we have

g̃(X) = X − XC ′[CXC ′ + R]−1CX ≤ X

and

h ◦ g̃(X) = A(X − XC ′[CXC ′ + R]−1CX)A′ + Q

= g(X).

Finally we have

g(X) = h(X) − AXC ′[CXC ′ + R]−1CXA′ ≤ h(X).

Lemma A.2: For any X ≥ 0, g̃(X) ≤ M .

Proof: For any t > 0, we have

g̃(tM) =
t

t + 1
M ≤ M.

For all X ≥ 0, since M > 0, it is clear that there exists t1 > 0
such that t1M > X . Therefore

g̃(X) ≤ g̃(t1M) ≤ M.

Lemma A.3: P ≤ h(P ).
Proof:

h(P ) = h ◦ g̃(P ∗) = g(P ∗) = P ∗ ≥ g̃(P ∗) = P ,

where the first and the last equality are from the definition of

P , the third equality is from the definition of P ∗. The rest

equality and inequality are from Lemma A.1.
Lemma A.4: Let X be a continuous random variable de-

fined on [0,∞) and let F (x) = Pr[X ≤ x]. Then

E[X] =
∫ ∞

0

[1 − F (x)]dx.

Proof: See Lemma (4) in [13], page 93.

B. When C Is Not Full Rank

Assume C is not full rank. Since (A, C) is observable, there

exists 2 ≤ r ≤ n such that [C; CA; · · · ; CAr−1]′ is full rank.

In this section, we consider the special case when r = 2, and

in particular, we assume [C; CA]−1 exists. The idea readily

extends to other cases.

Unlike the case when C−1 exists, and yk is sent across the

network, here we assume that the previous measurement yk−1

is sent along with yk. This only requires that the sensor has

a buffer that stores yk−1. Then if γk = 1, both yk and yk−1

are received. Thus we can use the following linear estimator

to generate x̂k

x̂k = A

[
CA
C

]−1 [
yk

yk−1

]

.

The corresponding error covariance can be calculated as

Pk = AM1A
′ + Q

where

M1 =
[

CA
C

]−1 [
CQC ′ + R 0

0 R

] [
CA
C

]−1′

.

Since Kalman filter is optimal among the set of all linear

estimators, we conclude that

P ≤ Pk = AM1A
′ + Q � M if γk = 1.

Therefore we obtain the same results as in Section IV with the

new M .
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