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Kalman Filtering Over a Packet-Dropping Network:
A Probabilistic Perspective

Ling Shi, Michael Epstein, and Richard M. Murray

Abstract—We consider the problem of state estimation of a dis-
crete time process over a packet-dropping network. Previous work
on Kalman filtering with intermittent observations is concerned
with the asymptotic behavior of � �, i.e., the expected value of
the error covariance, for a given packet arrival rate. We consider
a different performance metric, ��� �, i.e., the probability
that is bounded by a given . We consider two scenarios in
the paper. In the first scenario, when the sensor sends its mea-
surement data to the remote estimator via a packet-dropping net-
work, we derive lower and upper bounds on ��� �. In the
second scenario, when the sensor preprocesses the measurement
data and sends its local state estimate to the estimator, we show that
the previously derived lower and upper bounds are equal to each
other, hence we are able to provide a closed form expression for
��� �. We also recover the results in the literature when
using ��� � as a metric for scalar systems. Examples are
provided to illustrate the theory developed in the paper.

Index Terms—Kalman filtering, packet-dropping network,
random process, state estimation.

I. INTRODUCTION

I N the past decade, networked control systems have gained
attention from both the control community and the net-

work and communication community. When compared with
classical feedback control systems, networked control systems
have several advantages. For example, they can reduce the
system wiring, make the system easy to operate, maintain and
diagnose, and increase system agility. Although networked
control systems have advantages, inserting a network in be-
tween the plant and the controller can introduce many problems
as well. For example, in communication networks, data packets
that carry the information can be dropped, delayed or even
reordered due to the network traffic conditions. When closing
the control loop over such communication networks, the overall
system might have poor performance or even become unstable
when the aforementioned issues exist. Thus the effect that
those issues have on the closed loop system performance must
be fully analyzed before networked control systems become
commonplace.
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Recently, many researchers have investigated these issues
and some significant results were obtained and many are in
progress. The problem of state estimation and stabilization of a
linear time invariant (LTI) system over a digital communication
channel which has a finite bandwidth capacity was introduced
by Wong and Brockett [1], [2] and further pursued by others
(e.g., [3]–[6]). Elia [7] considered the problem of stabilizing a
networked control system over fading channels. Sinopoli et al.
[8] discussed how packet loss can affect state estimation. They
showed there exists a certain threshold of the packet arrival rate
below which, , the expected value of the error covariance
matrix, becomes unbounded as time goes to infinity. They also
provided lower and upper bounds of the threshold value. The
authors extended their result from estimation to closed loop
control in [9] where stability regions of packet arrival rates
are provided. Following the spirit of [8], Liu and Goldsmith
[10] extended the idea to the case where there are multiple
sensors and the packets arriving from different sensors are
dropped independently. They provided similar bounds on the
packet arrival rate for a stable estimate, again in the expected
sense. Jin et al. [11] considered the problem of state estimation
over packet-dropping networks using a multi-description (MD)
coding scheme. They showed that by using the MD codes the
stability region the Kalman filter is increased and the perfor-
mance is improved. Gupta et al. [12] studied the problem of
LQG control across packet-dropping networks and showed
that it is optimal to let the sensor preprocess the measurement
data and sends its local state estimate to the remote estimator
over a packet-dropping network. The implicit assumption of
their work is that the sensor has unlimited computation capa-
bility. In [13], actuation buffers and a receding horizon control
strategy is proposed for the LQG control over packet-dropping
networks. Huang and Dey [14] considered Kalman filtering
over a packet-dropping network where data packet drops are
described by a two-state Markov chain. The readers are referred
to [15] and references therein for some recent results in the area
of networked control systems.

The problem of state estimation of a dynamical system
where measurements are sent across a packet-dropping net-
work is also the focus of this work. Despite the great progress
of the previous researchers, the problems they have studied
have certain limitations. For example, in both [8] and [10],
the authors assumed that packets are dropped independently,
which is certainly not true in the case where bursts of packets
are dropped or in queuing networks where adjacent packets are
not dropped independently. They also use as the measure
of performance, which can conceal the fact that events with
arbitrarily low probability can cause the expected value diverge,
and it might be better to ignore such events that occur with
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Fig. 1. System block diagram.

arbitrarily low probability. We will provide such an example in
Section III-C after necessary definitions are given.

The goal of the present work is to give a different charac-
terization of the estimator performance by considering a prob-
abilistic description of the error covariance, i.e., .
For scalar systems, this is equivalent to considering the cumu-
lative distribution of the random variable .

In [16] the present authors first introduced this notion for the
same problem setting but under the additional assumption that
the measurement matrix, , is invertible. In [17], the present
authors extended the result to the case when is not invertible.
However, extra assumptions are made, e.g., in order to obtain
the upper bound of , is assumed to be purely
unstable, i.e., for all , where is the -th
eigenvalue of discrete-time system matrix .

The main contributions of this paper are summarized as fol-
lows:

1) Unlike previous work where the a priori error covariance
is studied, we consider the a posteriori error covariance in
this paper.

2) We remove the constraint in [17] that requires to be un-
stable and work with arbitrary .

3) We are able to recover the result in [8] for scalar systems,
i.e., from the result using as a metric, we
derive the stability result using as a metric.

4) We study the case when the sensor can preprocess the in-
formation and sends its own state estimate to the remote
estimator. In this case, we show that the previously de-
rived lower and upper bounds on are the
same and hence we are able to give an exact expression for

.
The rest of the paper is organized as follows. In Section II,

the mathematical model of the system that we consider is given.
In Section III, some frequently used terms are defined, a quick
summary of Kalman filter updating equations is provided and
some results on from [8] is reviewed. In Section IV we
consider the case when the sensor directly sends its measure-
ment packet to the estimator and we derive lower and upper
bounds for . In Section V we consider the case
when the sensor preprocesses the measurement and sends its
own state estimate to the remote estimator. In Section VI we
provide two examples to demonstrate the theory developed. The
paper concludes with a summary of our results and a discussion
of the work that lies ahead.

II. PROBLEM SETUP

We consider the networked control system shown in Fig. 1.
The process dynamics and sensor measurement equation are

given as follows:

(1)

(2)

In the above equations, is the state vector,
is the observation vector, and are
zero mean, white, Gaussian random vectors with

, , , where
if and otherwise. We assume that the

pair is observable and is controllable.
Depending on its computational capability, the sensor can ei-

ther send or preprocess and send to the remote esti-
mator, where is defined at the sensor as

The two cases correspond to the two scenarios in Fig. 1, i.e.,
sensor with limited or unlimited computation.

We assume that the data packets from the sensor (either or
) are to be sent across a packet-dropping network, with neg-

ligible quantization effects, to the estimator. Thus the estimator
will either receive a perfectly communicated data packet or none
at all. Let be the random variable indicating whether a packet
is dropped at time or not, i.e., if a packet is dropped
and otherwise.

In addition, we assume the sensor has the ability to store some
previous measurements in a buffer when needed. Therefore each
packet sent through the network could contain a finite number of
the previous measurements. In packet based networks the trans-
mitted packet usually contains a fixed amount space for data,
therefore if less than this amount is needed to be transmitted,
the packet is padded to meet the required length [18]. We as-
sume all the data from the buffered measurements can fit into a
single packet and therefore the additional measurements do not
increase the bandwidth required nor the packet-dropping rate
(we require this when is not full rank).

We define the following state quantities at the remote state
estimator:

As mentioned in Section I, we are interested in finding a
closed form solution to given . In the next few
sections, we consider the two scenarios in Fig. 1 and provide
results on for each of them.

III. PRELIMINARIES

A. Definitions

The following terms that are frequently used in subse-
quent sections are defined in this section. It is assumed that

are the same as they appear in Section II. is
the set of by positive semidefinite matrices. When ,
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we simply write ; when is positive definite, we write
. We define the function as

(3)

As we shall see shortly, applying to the previous error co-
variance matrix corresponds to the time update of the standard
Kalman filter. Similarly, we define the function as

(4)

and the function as

(5)

Then and correspond to the measurement update for the a
priori and a posteriori error covariance matrices respectively in
the standard Kalman filter. It is easy to see that

(6)

We denote as spectral radius of , i.e.,
. We say is stable if , and is

unstable if is not stable. For functions ,
is defined as

(7)

and is defined as

(8)

For a random variable , we write its expectation value as
and its conditional probability given another random variable
as .

B. Kalman Filtering Preliminaries

If the network between the sensor and the estimator is perfect,
i.e., no packet is dropped, then it is well known that the optimal
linear estimator for the system described by (1) and (2) is a
standard Kalman filter, denoted as . We write in
compact form as

which represents the follow set of equations:

With some manipulation, and can be shown to satisfy

Let be the unique positive semi-definite solution1 to

, i.e., . Define as . Then we have

1Since ����� is assumed to be observable and ���
�
�� controllable, from

standard Kalman filtering analysis, � exists.

In other words

C. Kalman Filtering With Intermittent Observations

Consider the case when the sensor sends the measurement
data to the estimator without processing it. Sinopoli et al. [8]
showed that the Kalman filter is still the optimal linear estimator
in this setting. There is a slight change to the standard Kalman
filter in that only the time update is performed when a measure-
ment packet is dropped. When a measurement is received, both
the time and measurement update steps are performed. The fil-
tering equations are thus the same as except that

(9)

(10)

Unlike the standard Kalman filtering setting where is a de-
terministic quantity (given an initial value ), the randomness
of the data packet drops makes it a random variable as well.

When ’s are independent and identically distributed
Bernoulli random variables with mean , it was shown in [8]
that there exists a critical value such that if ,
converges as and diverges otherwise. When
exists, is given in exact form as

(11)

Using as a metric, however, may conceal the fact that
events with arbitrarily small probability can make the expected
value diverge, and it might be better to ignore such events when
evaluating the performance of the estimator. For example, con-
sider the unstable scalar system with , , in
(1). Let the packet arrival rate be

Then from [8] we conclude that

This is easily verifiable by considering the event that no
packets are received in all time steps. Then

By letting go to infinity, we see that diverges. Thus
alone can make diverge, and the probability that occurs
approaches zero when goes to infinity. This partially moti-
vates us to consider as a metric to evaluate the
performance of the estimator subject to packet drops.

IV. SENSORS WITH LIMITED COMPUTATION

A. Lower and Upper Bounds of

Similar to [8], the optimal state estimate and its error co-
variance matrix are given by

if ,
if .
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As a result

if ,
if .

Assume is full rank, and without loss of generality, assume
exists. We show in Remark 4.8 that the main result devel-

oped in Theorem 4.6 extends naturally to the general case.
Define . Then we have the following result

that shows the relationship between and .
Lemma 4.1: For any , if , then .

Proof: As , we have ,
where the inequality is due to Lemma A.2 in Appendix A and
the fact that .

Remark 4.2: We can also interpret Lemma 4.1 as follows.
One way to obtain an estimate when is simply by
inverting the measurement, i.e., . Therefore

Since Kalman filter is optimal among the set of all linear filters,
we must have .

For , define and as follows:

(12)

(13)

Notice that corresponds to the error covariance evolution
when there are consecutive packet drops from time . There-
fore if the current error covariance is (or ), then (or )
will be the minimum number of consecutive packet drops such
that the error covariance will grow and exceed the given . We
sometimes write as , , 2 for simplicity for the
rest of the paper. The following lemma shows the relationship
between and as well as and .

Lemma 4.3: (1) ; (2) whenever either is
finite, , 2.

Proof: (1) where the inequality is from
Lemma A.2 in Appendix A. (2) Without loss of generality, we
assume is finite. If is finite, and , then according
to their definitions, we must have

which violates the definition of . Notice that we use the prop-
erty that is nondecreasing as well as from Lemma
A.1 and A.2 in Section A in the Appendix. Similarly we can
show that cannot be infinite. Therefore we must have

.
Lemma 4.4: Assume . Then for all , .

Proof: We prove this by induction. Assume for
some . This clearly holds when . Let us consider

.
If , then

where the inequality is due to Lemma A.1 in Appendix A.
If , then

Fig. 2. Packet arrival sequence.

The induction step is thus complete.
Define as the number of consecutive packet drops at time

, i.e.,

(14)

Notice that is also a random variable which depends on
the underlying packet arrival sequence. Let us consider a scalar
example to illustrate , and .

Example 4.5: Consider (1) and (2) with , ,
, . It is easy to verify that ,

. For , it is calculated that , .
We plot for one possible packet arrival sequence in Fig. 2
with in the figure indicating that the data packet is lost at that
time and indicating that the data packet arrives at the estimator.
Notice that whenever the estimator receives a packet, is seen
to be between and , no matter how large is. For this
particular example, we have , , , ,
etc.

With the definitions of , and , we have the following
theorem that provides lower and upper bounds on .

Theorem 4.6: Assume . For any , we
have

(15)

Proof: We divide the proof into two parts.
1) Let us first prove

As or 0, there are in total possible realizations
of to as seen from Fig. 3.
Let denote those packet arrival sequences of to
such that . Similarly let denote those packet
arrival sequences such that . Let be the
error covariance at time when the underlying packet ar-
rival sequence is , where , , 2. Consider a
particular . As , from Lemma 4.1,

. Therefore we have
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Fig. 3. � � � .

where the first and second inequalities are from Lemma
A.1 in Appendix A and the last inequality is from the def-
inition of . In other words

Therefore we have

where the first equality is from the total probability the-
orem, the second equality holds as and are disjoint,
the third inequality holds as the first sum is non-negative,
the rest equalities are easy to see.

2) We now prove

Let denote those packet arrival sequences of to
such that , and denote those packet arrival
sequences such that (Fig. 4). Consider .
Let

As , we must have . Consequently

where the inequality is from Lemma 4.4. Therefore we
conclude . Otherwise

, which violates the definition of . In other words

Fig. 4. � � � .

Therefore we have

where the inequality is from the fact that
for any .

Remark 4.7: We assume in the theorem that . This
is without loss of generality as is the steady-state error co-
variance of the Kalman filter. Furthermore, for any , as
long as , from Lemma 4.1, we have . Therefore
the theorem applies to any . Notice that ,
i.e., .

Remark 4.8: We point out in this remark that the result in
Theorem 4.6 extends naturally to the case when is not full
rank. Since is observable, there exists )
such that

is full rank. In this section, we consider the special case when
, and in particular, we assume exists. The idea

readily extends cases where . Unlike the case when
exists, and is sent across the network, here we assume that
the previous measurement is sent along with . This only
requires that the sensor has a buffer that stores . Then if

, both and are received. Thus we can use the
following linear estimator to generate the state estimate:
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Fig. 5. Gilbert–Elliott model.

The corresponding error covariance can be calculated as

where

Since Kalman filter is optimal among the set of all linear esti-
mators, we conclude that if , then

Therefore we obtain the same results as in Section IV with the
new .

B. Computing

Theorem 4.6 provides a lower and an upper bound for
. Both bounds involve the term . In

this section, we show how we can compute given
a packet arrival and drop model.

Let and be given (see next section for their computation
and approximation). In order to compute , we need
to have a model that describes packet arrival and drop behaviors.
The most commonly used models in literature are

1) I.I.D model: i.e., ’s are independent and identically dis-
tributed (I.I.D) Bernoulli random variables with mean ,
e.g., [8], [10].

2) Gilbert-Elliott model: i.e., a two state Markov chain is used
to describe the transition from to , e.g., [19], [20].

We give closed form solutions to both models in this section.
1) I.I.D Model: If ’s are i.i.d Bernoulli random variables

with rate , then

(16)
2) Gilbert-Elliott Model: Now consider a two-state (0 or 1)

Markov chain that represents packet drops and arrivals (Fig. 5).
Let denote the state transition probability matrix, i.e.,

Let be the steady-state distribution of the Markov
chain, i.e., . Then can be computed as

Assume the Markov chain starts from the steady-state, then with
some manipulation, can be shown to be

(17)

Remark 4.9: If , i.e., we have the i.i.d model, (17)
then becomes:

which is exactly the same as in (16).

C. Computing

In the previous section, we calculate the term
in (16) and (17) for two different models that describe packet
arrival and drop behavior. In this section, we show how we can
compute .

In general, can be computed from their definitions, i.e., we
check whether (or ) is satisfied. If the
answer is yes, we check whether (or )
is satisfied, and so on and so forth until is found. However,

could be unbounded when is stable and is sufficiently
large. Even when is unstable, depending on the parameters,

could be very large. Therefore computing from their def-
initions may be time consuming or even result in infinite com-
putations. The good news is that from previous section, we see
that using either the i.i.d or the Gilbert-Elliott model, when
is sufficiently large

For example, when using the i.i.d model, in order that

we only need to set

(18)

When using the Gilbert-Elliott model, in order that

we only need to set

(19)

where .
When , , (18) returns . Using

the same and let , , (19) returns .
Hence we can use 67 or 66 to approximate the true . Thus we
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propose Algorithm 1 to compute (and approximate) , where
in the algorithm and .

Algorithm 1 INCREMENT SEARCH ALGORITHM

while and do

end while

There are a few cases where we can make Algorithm 1 run
faster or get better approximation, depending on whether is
stable or not. We discuss those cases below.

1) When is Stable: It is well known that the Lyapunov
equation for being stable and has a
unique solution . Since

we immediately obtain for all . Thus if

and as a result

2) When is Unstable: In this case we can find efficiently
via Algorithm 2. The efficiency and the correctness of the algo-
rithm is easily seen.

Algorithm 2 BINARY SEARCH ALGORITHM

while and do

end while

if then

while do

if then

else

end if

end while

end if

D. Finding : Scalar Case

In this section, we show that we are able to recover the results
in [8] using as a metric for scalar systems. Let us
consider (1) and (2) with

Notice that in the scalar case, the assumption that is ob-
servable and is controllable holds trivially.

From Lemma A.4 in Appendix A, we can write as

Using the fact

we have

and

From Theorem 4.6, we know that when

Since in [8], i.i.d packet drop model is used, from (16), we have

Therefore we obtain

(20)

and

(21)
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Recall that and

where

Therefore for any , if

then . From (20), we have

Clearly converges if , i.e.,

(22)

Similarly from (21), we have

where . Hence diverges if
, i.e.,

(23)

From (22) and (23), we conclude that

which is exactly the same as (11) for scalar systems. Further-
more if we assume

then we have

V. SENSORS WITH UNLIMITED COMPUTATION

We now consider the second scenario in Fig. 1, i.e., when the
sensor has unlimited computation capability, and it can prepro-
cesses and send to the remote estimator. At the estimator
side, it is clear that the optimal state estimate and error covari-
ance evolve as

if ,
if .

For any , converges to exponentially fast. There-
fore without loss of generality, we assume the Kalman filter en-
ters steady-state at the sensor side and hence , then we
can write as

if ,
if .

In Section IV, we have defined and in (13) and (14)
respectively. With these two numbers, we have the following
result that gives the exact form of .

Theorem 5.1: Assume the Kalman filter enters steady-state
at the sensor side and hence . Then for any , we
have

(24)

Proof: A simple way to prove this runs as follows. In this
case, when , , hence if we let , we
immediately obtain . As a result, and Theorem
5.1 follows directly from Theorem 4.6.

Computing and follows exactly the same
way as in Sections IV-B and IV-C. Since we get a strict
equality for , the special cases we considered in
Section IV-B have simpler forms. For example, when is stable
and when , we have shown that ,
therefore we obtain . Assume

then similar to Section IV-D, we have

where . If
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Fig. 6. Sensor with Limited Computation: ���� � � � and its lower and
upper bounds.

then

As pointed out in [12], it is always better to let the sensor (if it
is able to) preprocess the measurement before send it out. This
is also seen from the fact that the upper bound of
in (15) is achieved when the sensor has unlimited computation
(i.e., (24)).

Remark 5.2: An interesting thing to notice is that can only
take values over a countable set .
Take the I.I.D packet-drop model for example, we have

, and in particular,
. From this, we can easily compute

every quantity associated with such as , ,
etc. This also explains the stair-like values of
(e.g., Figs. 7 and 9) and its associated lower and upper bounds
(e.g., Fig. 6) in the example session. For the first scenario,
i.e., the sensor has limited computation, to the best of our
knowledge, it is still an open problem whether the steady-state
distribution of exists.

VI. EXAMPLE

A. Scalar System With I.I.D Packet Arrivals

Consider (1) and (2) with

The packet arrivals are assumed to be I.I.D and we run a Monte
Carlo simulation for both scenarios considered in Sections IV
and V, respectively. In the simulation, we use the empirical
probability of the event .

For scenario one, i.e., when the sensor has limited compu-
tation and only the measurement packet is sent across the net-
work, we plot the value of and its lower and upper
bounds for two different values of . As we can see from Fig. 6
that the lower and upper bounds that we have derived in (15)
provide tight approximation of . We also notice

Fig. 7. Sensor with Unlimited Computation: ���� � � �.

Fig. 8. Packet arrival and drop model.

that increases with larger which leads to better
estimator performance.

For scenario two, i.e., when the local estimate is sent across
the network, we can also see from Fig. 7 that the predicted value
of given by (24) agrees well with the true value
of .

B. Vector System With Markov Packet Arrivals

Consider a vehicle moving in a two dimensional space ac-
cording to the standard constant acceleration model, which as-
sumes that the vehicle has zero acceleration except for a small
perturbation. The example was considered in [21]. The state of
the vehicle consists of its and positions as well as velocities.
Assume a sensor measures the positions of the vehicle and sends
the measurements to a remote estimator over a packet-dropping
network. The system parameters are given according to (1) and
(2) as follows:

The process and measurement noise covariances are
and .

The packet arrival and drop is modeled as a Markov chain with
state transition probabilities shown in Fig. 8.

Similar to the scalar example, when the local estimate is sent
across the network, the predicted values of from
(24) matches well with the actual value as seen from Fig. 9. As
is not invertible in this case, the sensor stores its previous mea-
surement and sends it along with at time . Unlike the
scalar system example, where the actual value of
lies midway between the lower and upper bounds given by (15),
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Fig. 9. Vector system example.

the actual value here approaches the lower bound. This happens
as whenever a data packet is received, the error covariance is
reset to using the estimation scheme in Remark 4.8. In both
cases, is obtained from (17).

VII. CONCLUSION

In this paper, we study the problem of state estimation of a
discrete time process over a packet-dropping network based on
a modified Kalman filter. We consider a probabilistic metric on
the error covariance matrix, i.e., . The advantage
of the new metric is easy to see compared with the most widely
used performance metric in literature, e.g., , as the new
metric completely characterizes the behavior of .

When the sensor has limited computation capability, we de-
rive lower and upper bounds for . Both bounds
depend on the underlying model that describes packet arrival
and drop behavior of the communication network between the
sensor and the estimator. When the sensor has unlimited com-
putation capability, we are able to compute in an
exact form. We also recover the result for scalar systems in [8].

There are many interesting directions for continuing this
work, which include: finding better estimation scheme that
outperforms the simple linear estimation scheme presented in
Remark 4.8; finding better bounds of for the first
scenario that the sensor has limited computation; extending
the results in Section IV-D to general vector systems; studying
closed loop system performance from a probabilistic angle;
looking at distributed and cooperative control problems over
packet-dropping networks; and experimentally evaluating the
theory developed in the paper.

APPENDIX

A. Supporting Lemmas

Lemma A.1: For any

Proof: holds as is affine in . Proof
for can be found in Lemma 1-c in [8]. As is a
special form of by setting and , we immediately
obtain . Next we have

and

Finally we have

Lemma A.2: For any , .
Proof: For any , we have

For all , since , it is clear that there exists
such that . Therefore

by using the fact that if .
Lemma A.3: .

Proof:

where the first and the last equality are from the definition of ,
the third equality is from the definition of . The rest equality
and inequality are from Lemma A.1.

Lemma A.4 : Let be a continuous random variable defined
on and let . Then

Proof: See Lemma (4) in [22], page 93.
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