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Kalman adaptive filtering was applied for the first time to the real-time simultaneous 

determination of water isotopic ratios using laser absorption spectroscopy at 2.73 µm. 

Measurements of the oxygen and hydrogen isotopologue ratios δ
18

O, δ
17

O, and δ
2
H in water 

showed a 1-σ precision of 0.72‰ for δ
18

O, 0.48‰ for δ
17

O, and 0.84‰ for δ
2
H, while 

sampling the output of the tuned Kalman filter at 1-s time intervals. Using a standard running 

average technique, averaging over ~30-s is required to obtain the same level of precision. The 

Kalman filter has the advantage of a faster response to step-like changes in the input than the 

30-s averaged output and is significantly less susceptible to outlier values (‘spikes’). This is 

an important advantage for applications in which small but fast changes in the isotopic 

composition need to be resolved, such as, for example, in on-line breath analysis. 

 

OCIS codes: 120.6200, 300.6260, 300.6340   
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Water (H2O) isotopologue ratio measurements (in the vapor or liquid phase) are of great 

relevance to various research fields, such as climate and paleoclimate studies, geological 

surveys, hydrological studies (see, e.g. [1]), and clinical research for diagnosis ([2-4]). As an 

alternative to isotope ratio mass spectrometry (IRMS), laser absorption spectroscopy (LAS) is 

more and more frequently employed to determine stable isotope abundance ratios [1, 5]. The 

high measurement precision required by many applications represents a real challenge for 

isotopic composition analysis by means of LAS [6], especially in the case of water [7, 8]. 

Apart from instrument instability and measurement errors related to sample handing and 

injection (e.g. incomplete evacuation of the gas cell between two consecutive measurements 

will lead to memory effects and thus affect the measurement precision), the signal-to-noise 

ratio (SNR) is often the most important limiting factor for achieving high precision. In LAS, 

apart from reducing the intrinsic noise of the spectrometer, a high SNR can be achieved by 

selecting stronger absorption lines and using a multiple-pass cell or a high-finesse optical 

cavity to enhance the effective optical path length. Another possibility is to decrease the 

detection bandwidth by averaging N laser scans. In the common case of white noise, this will 

reduce the noise by a factor of N
1/2

, until the limits of the spectrometer stability are reached. 

The optimal averaging time can be determined by an Allan variance analysis [9]. 

Alternatively, the individual spectral scans are processed, and the resulting isotope ratios are 

further averaged to obtain the desired level of precision (again limited by the system’s 

stability). Though this “post-processing” technique permits one to obtain a high measurement 

precision that can be similar to that obtained by the IRMS method [5, 7], the drawback is a 

slower response of the system to fast changes in the isotopic ratios. For specific applications, 

such as the on-line monitoring of exhaled breath [4], it is highly desirable to be able to 

perform real-time measurements with high sensitivity and precision, while maintaining a fast 

system response. Kalman adaptive filtering has been applied before to real-time trace gas 

concentration measurements [10, 11], while adaptive filtering was discussed in a more 

general sense by Werle and co-workers [12]. In this letter, we report on the first 

implementation of Kalman filtering to real-time isotopic ratio measurements using LAS. The 

Kalman filtering technique shows superior performance compared to a fixed bandwidth filter. 

It will adjust to changes in the signal statistics and dynamic range, and in addition is 

computationally efficient [11]. Simultaneous measurements of the H2
18

O/H2
16

O, H2
17

O/H2
16

O, 

and HDO/H2O isotopic ratios in liquid water have been performed with a precision of 0.72‰ 

for δ
18

O, 0.48‰ for δ
17

O, and 0.84‰ for δ
2
H (the isotopic composition is conventionally 
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expressed as a δ-value giving the relative deviation of the isotope ratio with respect to the 

reference standard), by sampling the output of the tuned Kalman filter at 1-s time intervals. 

Using a standard running average technique, averaging over ~30 s is required to obtain the 

same level of precision.  

The experimental set-up, mounted on a 50×70 cm
2
 optical breadboard, is depicted in 

Figure 1. The laser source used was a cw room temperature distributed feed-back (DFB) 

diode laser emitting at 2.73 µm (nanoplus GmbH) with a single mode output power of up to 

2mW. A Thorlabs ITC-502 diode laser controller provided temperature control and drive 

current for the laser. The output laser beam was collimated first by an off-axis parabolic 

mirror (PM1) with an effective focal length (EFL) of 25mm. The laser beam was then 

transformed into a quasi-parallel beam with a diameter of ~4 mm by the use of a combination 

of a coated CaF2 lens F1 (EFL=200 mm) and a second off-axis parabolic mirror PM2 

(EFL=50 mm). A fraction (~8%) of the laser beam was separated by a beam splitter (CaF2) 

and coupled to a Fabry-Perot etalon consisting of two air-separated uncoated CaF2 plates for 

frequency metrology. Positions of H2O vapor absorption lines from the HITRAN 2004 

database [13] provided an absolute frequency reference for frequency calibration. The 

frequency scale was linearized using the interference fringes of the etalon with a free spectral 

range of 0.0283 cm
-1

. The main light beam was directed to a multiple-pass cell with an 

optical path length of 20-m. The emerging absorption signal from the cell was focused by a 

lens F2 (f=50 mm) onto a LN2-cooled HgCdTe detector (J15D22-M204-S01M-60). A home-

built bridge circuit was employed to realize DC coupling of the detector to a low noise 

preamplifier (EG&G, Model 5113). A beam shutter (Thorlabs, SH05) was placed before the 

detector for zero background level acquisition at the beginning of each absorption spectrum 

scanning.  

       The temperature of the multiple-pass cell has been actively controlled. The temperature 

was set at 30°C by use of a heater band and maintained constant within ±0.1°C by a PID 

controller. The cell temperature was monitored with calibrated platinum resistors (Pt100) 

(with an accuracy of 0.03ºC and a precision of 0.01ºC). No temperature gradient along the 

cell axis has been observed within the measurement precision of the temperature sensors. As 

the molecular absorption strength is temperature-dependent, temperature changes in the water 

vapor sample may cause systematic deviations in the isotope ratio determinations. The 

temperature coefficients for the selected lines are listed in Table 1. The lines used here are the 

same as those used previously in the work by Kerstel et al. [14]. The temperature coefficients 

of the respective line intensities yield the following sensitivities of the isotope ratio 
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determinations: -3.1‰/K for δ
18

O, -6.0‰/K for δ
17

O, -8.0‰/K for δ
2
H. A sample 

temperature stabilization to better than ±0.1°K is thus required to insure a measurement 

precision < 1 ‰. 

12 µL liquid water samples were injected into the pre-evacuated multiple-pass cell 

through a silicon membrane using a syringe, resulting in a pressure of ~4.5 mbar inside the 

absorption cell (the water saturated vapor pressure is ~42 mbar). Figure 2 (a) shows a portion 

of the H2O isotopologue absorption spectrum near 2.73 µm recorded in this work. The H2O 

absorption features were fitted to Voigt [15] or Galatry [16] profiles, in order to determine the 

integrated area under the absorption lines using a Levenberg-Marquardt multi-line fitting 

algorithm.  The baseline was modeled with a fourth order polynomial to account for the laser 

intensity ramp. As indicated by the residuals of the Voigt (b) and the Galatry (c) fits shown in 

figure 2, the use of the Galatry profile fit leads to a 3-fold reduction in uncertainty in 

determination of the integrated area in comparison with the use of a Voigt line shape. In 

theory, with knowledge of the line intensities (provided by HITRAN 2004, for instance), the 

integrated areas can be used to determine the isotopic δ-value with respect to the water 

isotopic composition of the international standard material known as Vienna Standard Mean 

Ocean Water (VSMOW). Unfortunately, the line intensity is usually not accurate enough for 

isotopic ratio determination with high accuracy. For this reason, our laser instrument was 

calibrated against water standards obtained from the Center for Isotope Research (CIO) of the 

University of Groningen. It is noted that for this study, this calibration is not essential as we 

are predominantly interested in the precision of the measurement, and less in the correct 

absolute values of the isotope ratios. Bottled water (Vittel, France), instead, was used as a 

less-expensive, unknown sample. The 1-s raw measured δ values shown in Table 2 give 1σ 

precision of 2.7‰ for δ
18

O, 2‰ for δ
17

O, and 3.3‰ for δ
2
H, respectively. In order to further 

improve the measurement precision, we first used conventional averaging of n measured δ-

values. The optimum number of measurements to average was determined from an Allan 

variance analysis. As can be seen in figure 3 (lower panel), the optimal averaging time for the 

present instrument was ~30-s. (i.e. an average of 30 δ-values). Herewith, the precision has 

been improved to 0.72‰ for δ
18

O, 0.46‰ for δ
17

O, and 0.82‰ for δ
2
H with an equivalent 

measurement time of 30-s. This improvement in measurement precision, obtained by post-

processing of the data, comes at the price of a slow, 30-s time-constant, system response.  

        We then applied the Kalman filtering technique to fast (1-s), real-time, high-precision 

isotope ratio determinations. In a recursive procedure, the true parameter to be determined by 



 5 

a measurement system is estimated in real time based on the previously determined value by 

taking into account the process variability and measurement noise. Using a linear stochastic 

difference model, the true isotope ratio value at time k+1 is evolved from the value given at 

k according to:    

kkk
wxx +=+1  ,                                                 (1) 

At time k, the measured isotope ratio value zk of the true value xk can be expressed as follows:                                                                                                     

kkk
vxz +=  ,                                                           (2) 

where wk and vk are uncorrelated random variables related to the process variability and the 

measurement noise, respectively, with covariance of σ
2

w and σ
2

v, respectively.  

       In practice, the parameters σ
2

v (representing the measurement noise) and σ
2

w 

(representing the process variability due to real isotope abundance variation and real-time 

drifts resulting from laser frequency shift, thermal fluctuation, pressure variation, etc.) should 

be well defined. Information on σ
2

v is usually available, because it depends on the quality of 

the measurement instrument, while determination of the process variability variance σ
2

w is 

quite subjective. Whereas both σ
2

v and σ
2

w vary with real variations of the isotope abundance, 

once the measurement system has reached equilibrium, the ratio of σ
2

v to σ
2

w should be 

constant [11]: 

q = σ
2

v / σ
2

w = constant       (3) 

This ratio of variances can be used as a parameter to tune the filter.  

In our experiment, σ
2

v was determined by the δ value variance deduced from the first 10 

raw measurements of water samples. σ
2

w was then calculated by dividing σ
2

v by q. The 

selection of the value for q depends on the particular instrument and its application 

environment. The larger the q value, the longer time it will take for the system to follow large 

changes in the measured isotopic ratio. For a smaller q value, the filtering is less efficient in 

removing shot-to-shot variability related to the real-time noise. Figure 4 shows the standard 

deviations as a function of the q-value for our water isotope ratio determinations using 

Kalman filtering (the water vapor concentration remained constant during the measurement 

time of ~30 min). A value of q=150 was chosen, independent of the Allan variance result, as 

a compromise between fast temporal response and high filtering efficiency for the laser 

instrument. Not surprisingly, this value corresponds to a precision level that can be obtained 

by conventional 30-s averaging, where the 30 seconds correspond to the optimum averaging 

time as derived from an Allan variance analysis (Figure 3, bottom panel). The measurement 

precisions are summarized in Table 2. The 1-σ standard deviation has been improved from 
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2.7‰ to 0.72‰ for δ
18

O, from 2.0‰ to 0.48‰ for δ
17

O, and from 3.3‰ to 0.84‰ for δ
2
H, 

with a measurement time of 1-s at the output of the Kalman filter. 

In conclusion, we demonstrated the potential of using Kalman filtering for real-time 

isotope ratio measurement, which permits for a significant improvement in measurement 

precision and temporal response. We are currently applying this adaptive filtering technique 

to on-line measurements of water isotope ratios in exhaled breath, where we expect to see a 

significant improvement in the ability to resolve small changes in the input isotope ratios, 

while maintaining a sufficiently fast response to observe rapid changes without distortion. 
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Table captions 

 

Table 1  List of the absorption lines used for the measurements in this work. 

Table 2  Measurement precision comparison: Raw measured δ was determined from the 

average of 10 laser scans in 1-s. Optimal average time of 30-s leads to average 

of 30 δ-value, and q=150 was used for Kalman filtering.  
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Table 1 

 

 

Isotopologue     Frequency        Rotational               Intensity                Ground state             Temp. 

coef. 

                     (cm
-1

)            assignment          (10
-23

cm·mol
-1

)         energy (cm
-1

)           at 296K(K
-1

) 

 H
18

OH             3662.9196            515←514                    2.1                          398.3                       1.5 ‰  

 H
16

OH             3663.0452            624←717                    8.5                          586.4                       4.6 ‰  

 H
17

OH             3663.3213            313←414                    7.2                          224.3                      -1.4 ‰  

 H
16

OD             3663.8419            212←313                    1.2                          100.4                      -3.4 ‰  
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Table 2  

 

 

 

                       Method / Time                                             Measurement precision 

                                                                       δ
18

O (SD)           δ
17

O (SD)            δ
2
H (SD) 

                   Raw measurement / 1s                       2.7 ‰                   2.0 ‰                       3.3 ‰ 

                   Averaging 30-δ / 30s                          0.72 ‰                 0.46 ‰                     0.82 ‰ 

                   Kalman filtering / 1s                          0.72 ‰                 0.48 ‰                     0.84 ‰ 
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Figure captions 

 

Figure 1 Optical layout. PM: parabolic mirror; F: lens. 

Figure 2 H2O isotopologue absorption spectrum (a) measured in this work. Data were 

fitted to Voigt and Galatry profiles. Residuals resulting from each fit are 

shown : (b) from Voigt fit and (c) from Galatry fit, respectively. 

Figure 3  The upper three panels show the raw measurements of δ
18

O, δ
17

O, and δ
2
H 

(dots) and the corresponding Kalman-filter output for a q-value of 150 (lines). 

The Allan variances in the lower panel show an optimal averaging time of 

about 30-s for the present laser system: (a) δ
18

O, (b) δ
17

O, (c) δ
2
H. 

Figure 4 Plots of the standard deviations in the measurement of the water δ
18

O (a), δ
17

O 

(b), and δ
2
H (c) using Kalman filtering as a function of the q-value. 
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