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ABSTRACT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The inverse and forward dynamics problems for multi-link serial manipulators are 

solved by using recursive techniques from linear filtering and smoothing theory. The 

pivotal step is to cast the system dynamics and kinematics as a two-point 

boundary-value problem. Solution of this problem leads to filtering and smoothing 

techniques identical to the equations of Kalman filtering and Bryson-Prazier fixed 

time-interval smoothing. The solutions prescribe an inward filtering recursion to 

compute a sequence of constraint moments and forces followed by an outward recursion 

to determine a corresponding sequence of angular and linear accelerations. In addition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
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to providing techniques to compute joint accelerations from applied joint moments (and 

vice versa), the report provides an approach to  evaluate recursively the composite 

multi-link system inertia matrix and its inverse. The report lays the foundation for the 

potential use of filtering and smoothing techniques in robot inverse and forward 

dynamics and in robot control design. 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The central theme of this report is to examine the use of filtering and smoothing 

techniques in studying robot dynamics. In particular, the report shows that the 

recursive difference equations of Kalman filtering [l] and Bryson-Frazier fixed 

time-interval smoothing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Z], arising in the state estimation theory [3] for linear 

discrete-time state space systems, can be used to solve the problems of serial 

manipulator inverse and forward dynamics. The configuration analyzed is that of a 

joint-connected N-lW serial manipulator attached to an immobile base. The joints are 

assumed to be rotational, although extension to  configurations with joints allowing 

translation is simple. The inverse dynamics problem is to find the joint moments to  

achieve a set of prescribed accelerations. The forward dynamics problem is to  

determine the joint accelerations resulting from a set of applied joint moments. 

Typically, inverse dynamics solutions are useful for control design, whereas forward 

dynamics solutions are useful for system simulation. 

The solutions obtained are recursive in the sense that an inward recursion, which 

starts from the tip of the manipulator and proceeds sequentially from link to link to the 

base, is used to compute a sequence of constraint forces and moments. Similarly, an 

outward iteration from the base to the tip is used to determine a corresponding 

sequence of 1Wjoint  linear and angular accelerations. The recursive solutions are 

O(N) in the sense that the number of required computations only grows linearly with the 

number of links. 

The notions of spatial force, acceleration and inertia [4] are used to simplify the 

statement of these recursive equations. A spatial force acting on a link is defined here 

as a 6-dimensional vector whose first three components represent a moment and whose 

last three components represent a force. Both the moment and the force forming the 

spatial force act on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink with which the spatial force is associated. Similarly, a 

spatial acceleration is defined to be a 6-dimensional vector formed by an angular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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acceleration and a linear acceleration. An additional concept introduced is that of 

spatial inertia. For any given link, the spatial inertia used here is a 6-by-6 matrix 

which very compactly embodies the mass and inertia properties of the link about its 

inner joint. It should be pointed out that there are minor differences between the 

definitions for spatial force, acceleration and inertia used here and those of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. 

One of the important steps in the report is to recognize that the equations of 

translational and rotational motion (derived from Newton’s second law) for each link 

can be cast as a linear difference equation that allows the spatial force a t  the inner 

joint to be computed from the spatial force a t  the outer joint and the spatial 

acceleration of the link. The difference equation is very similar to those describing the 

evolution of the state of a discrete-time state space system [l]. The spatial force plays 

the role of the state. The link spatial interval, defined as the vector from the inner to 

the outer joint of a link, plays the role of the time interval between discrete time 

samples. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis establishes a means to ”propagate” the spatial force inwardly within a 

link from the outer to the inner joint. In addition, since the magnitude of the spatial 

force is continuous a t  the joints (due to Newton’s third law), a means also exists to 

propagate the spatial force across a joint a t  the interface between two adjacent links. 

Recursive use of these two propagation mechanisms allows a complete link-to-link 

sequential propagation of the spatial force from the tip of the manipulator to its base. 

The difference equation generates the joint moments as an output. The transformation 

from spatial forces to joint moments is a projection operator that takes the 

6-dimensional spatial force into the scalar that characterizes the applied joint moment 

along the joint axis. It should be stressed that the equation for the spatial forces is a 

difference equation in space and not in time. There is no time discretization involved, 

and a fully continuous time evolution is retained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Similarly, a complementary difference equation is obtained that produces a set of 

spatial accelerations as its solution and uses the joint accelerations as inputs. The 

spatial accelerations play the role of the eo-states (or adjoint variables) that are 

typical in optimal control and estimation problems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3]. This eo-state equation reflects 

the kinematic relationship that exists between the spatial (angular and linear) 

acceleration a t  the outer joint of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink and the acceleration at  its inner joint. Thus, 

the equation computes the spatial acceleration of a link a t  its outer joint given the 

acceleration of its inner joint. The difference equation can therefore be used to 

"propagate" in an outward direction the spatial accelerations within a link. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA similar 

outward propagation across the joint a t  the interface between two adjacent links is 

obtained because the angular acceleration along the joint axis introduces a "jump" 

discontinuity in the angular acceleration component of the eo-state (spatial 

acceleration) vector. 

When combined, the above state and co-state difference equations define a 

two-point boundary-value problem that very closely resembles those typically 

encountered as necessary (and at  times sufficient) conditions for optimality in optimal 

control and estimation theory. The boundary conditions in this problem are that the 

state vanishes a t  the tip of the manipulator and the eo-state vanishes at  the base. 

These conditions arise because of the assumptions that the tip is unconstrained and the 

base is immobile (undergoes no accelerations). This boundary-value problem defined in 

terms of state and eo-state variables is used as a pivotal step to develop the recursive 

inverse and forward dynamic solutions. 

Consider first the inverse dynamics problem. Its solution is obtained by means of 

a two-stage process involving: 1) an outward recursion from the base to the tip to 

obtain a set of eo-states (spatial accelerations), using the set of prescribed joint 

accelerations and the boundary condition at the manipulator base; 2) an inward 

recursion from the tip to the base using the results of the first stage above and 

producing a set of states (spatial forces) and the required applied joint moments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Sti l l  within the context of inverse dynamics, it is possible to use the above 

two-stage process to obtain the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby now traditional dynamical equations for an N-link 

manipulator, expressed in terms of an N-by-N composite system inertia matrix. To 

amve at  this equation requires that the two difference equations of the two-point 

boundary-value problem be solved symbolically instead of numerically. In particular, 

the solution of the state equation is obtained in terms of a weighting pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(or kernel) 

dependent on the transition matrix inherent in the state difference equation. Similarly, 

the co-state difference equation is solved in terms of the transpose of the transition 

matrix. Substitution of the solution for the eo-state into that of the state leads to the 

desired form of the equations of motion. An interesting by-product of this process is a 

method for recursive computation of the inertia matrix itself by means of an inward 

iteration from the tip of the manipulator to its base. This recursive relationship for the 

inertia matrix is equivalent to those that describe the evolution of the covariance of 

the state of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa linear discrete-time state space system that is driven by a white-noise 

process. With this result, the similarities between the statistical state estimation 

theory for discrete-time systems and recursive robot arm dynamics begin to reveal 

themselves. More similarities become apparent upon investigation of the forward 

dynamics problem as outlined below. 

Solution of the forward dynamics problem is also based on using the two-point 

boundary-value problem as a starting point. The key idea is to seek a solution of the 

form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ = zk + Pk Ak, where \ and A denote the state and co-state for link k. The 

symbol zk denotes a 6-dimensional vector which turns out to play the role of the 

predicted state estimate whose evolution is described by the Kalman filter. The applied 

joint moments play the role of the measurement process. Similarly, P is a 6-by-6 
k 

matrix, with the units of spatial inertia, analogous to the predicted state estimation 

error covariance. ‘ I h s  substitution, central to the ”sweep method” referred to in 131, 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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leads to a two-stage computation consisting of: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) inward filtering to obtain a sequence 

of state (spatial force) estimates and a corresponding "innovations" process defined as 

the difference between the actual and the predicted joint moment; 2) outward 

smoothing in which the innovations process resulting from the first stage is used to 

generate a sequence of co-states (spatial accelerations) and the desired joint 

accelerations. 

The filtering recursions have a predictor/corrector architecture corresponding to 

that of the Kalman filter, specialized to the case of no measurement noise. Prediction 

occurs by means of a difference equation that for each link allows computation of a 

state estimate for the spatial force a t  the inner joint using the previously obtained 

state estimate a t  the outer joint. Correction occurs in transferring the state estimate 

across a joint between two adjacent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinks. In this correction step, the updated state 

estimate is obtained as a linear weighted combination of the predicted estimate and the 

innovations process. The weight associated with the innovations is a 6-by-1 matrix 

k' 
playing the role of the Kalman gain. This gain can be computed from the matrix P 

The matrix Pk satisfies a difference equation analogous to the Riccati equation 

encountered in discrete-time systems. Propagation of this matrix from the outer to the 

inner joint of each link is achieved by using the system transition matrix. The spatial 

inertia associated with a link, playing the role of the process error covariance, appears 

as a driving term in this propagation equation. Correction occurs at  each joint by 

means of the update equation of the discrete Biccati equation. 

The second stage is an outward recursion that aims to compute a sequence of 

co-states (spatial accelerations) using the innovations as an input. It also produces the 

desired joint accelerations. The computations involved in this stage are identical to 

those of the fixed-time interval smoother 1231 of linear state estimation theory. The 

smoother is mechanized by means of what are referred to as the Bryson-Frazier 

equations. These equations also have a predictor/corrector architecture. Prediction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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occurs in outward propagation of the co-states within a link from the inner joint to the 

outer joint. Correction occurs in propagating the co-state from one link to the next 

across a joint. 

If the same two-stage filtering/smoothing process is conducted symbolically 

(instead of numerically), it is possible to arrive a t  a closed-form expression for the 

inverse of the inertia matrix. To amve a t  this equation, it is first necessary to solve 

the filtering equation for the predicted state estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in terms of the transition k 

matrix associated with the Kalman filter. Similarly, the smoother equations for the 

co-states can be solved symbolically in terms of the transpose of this transition 

matrix. Substitution of the solution for the states into the solution for the eo-states 

leads to the desired equation of motion. An interesting by-product of the above process 

is that it is possible to obtain recursive relationships for direct, non-numerical 

evaluation of the inertia matrix inverse. The recursive relationships are identical to 

those necessary to compute the covariance of the smoothed state estimate in a fixed 

time-interval smoother. They involve an inward recursion to compute the predicted 

state estimation error covariance, followed by an outward recursion to obtain the 

covariance of the co-states. 

The remaining sections of the report describe the configuration, the notions of 

spatial force, acceleration and inertia, recursive system dynamics and kinematics, the 

two-point boundary-value problem, inverse and forward dynamics solutions, similarities 

to the Kalman filter and the Bryson-Frazier smoother, closed form inversion of the 

inertia matrix, relationship to other work, and concluding remarks. 

2. CONFIGURATION AND PROBLEM STATEMENT 

Consider a mechanical system of N links numbered l,..,,N connected together by 

N joints numbered l,...,N to form a branch-free kinematic chain. The system is 

illustrated in Fig. 2.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 



'OINT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO Q y *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*JOINT N-1 

Fig. 2.1 N-Link Joint-Connected Mechanical System 

The links and joints are numbered in an increasing order that goes from the tip of 

the system toward the base. Joint N is the last in the sequence, and it connects link N 

to an immobile base. Joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk in the sequence connects links k and k+ l .  Joint 0 can be 

selected a t  any arbitrary point in link 1. Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink and joint numbers increase 

toward the base of the system. This differs from the more common numbering 

approach in which the numbers increase toward the tip. The ordering shown in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 2.1 

allows a simpler description of the recursive algorithms contained in the report. 

Let link b be characterized by an inertia tensor $ about joint k, a mass t+ a 

vector Lk from joint k to k-1, and a vector pk from joint k to the link k mass center. 

Let joint k be characterized by a unit vector \ along its axis of rotation. Let T~ 

be the active moment applied about the axis of joint k. Let \ be the corresponding 

joint angle which is positive in the right hand sense about \. 

The objective is to outline a recursive method for computation of the joint 

$, TQ Lk, pk, \ and -c A secondary objective accelerations ;h, given the values of 

is to solve the closely related inverse problem of computing rk from the desired 

accelerations . 

k' 

.. 
\ 
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3. SPATIAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFORCE, ACCELERATION AND INERTIA 

To describe simply the recursive dynamics solutions, it is convenient to define the 

notions of spatial force, acceleration and inertia. The definitions used here are closely 

related but not identical to those of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. Generally, the term spatial force for a given 

link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk will be used here to refer to a 6-by-1 vector whose first three components are 

pure moments and whose last three components are forces. Similarly, the term spatial 

acceleration will be used to describe a 6-by-1 vector consisting of three angular 

acceleration and three linear acceleration components. The link k spatial inertia is a 

6-by-6 matrix that summarizes the mass and inertia properties of link k about joint k. 

A more detailed definition of these concepts is provided below. 

t t T and f are 3-by-1 vectors representing, respectively, the constraint 

moment and force acting on link k t l  a t  joint k. The spatial force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< is the 

6-by-1 composite vector defined by \ = [-T I-ft], where the "t" 

superscript indicates that the corresponding variable is evaluated a t  a point 

on link k t l  that is immediately adjacent and on the "positive" side, toward 

the base, of joint k. 

k It 

t t 

k k  

T- and f -  are 3-by-1 vectors representing, respectively, the constraint 

moment and force acting on link k at  joint k. The spatial force < is the 

6-by-1 composite vector defined by < = ITilf;]. The "-'I superscript 

indicates that the corresponding variable is evaluated at  a point on link k 

that is immediately adjacent and on the "negative" side, toward the tip, of 

joint k. Note that Newton's third law implies < = 4. 
Tk and f 

gravity, for example) acting on link k a t  its mass center. 

k k 

are, respectively, the external moment and the force (due to k 

8 



+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoh: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand vk  are 3-by-1 vectors representing, respectively, the angular and 

linear velocity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink k+l a t  joint k. The corresponding spatial velocity is 

defined as Vk = [oklvkJ. It is assumed that both the angular and linear 

velocities associated with a link are specified in a coordinate frame 

attached to the link. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o and v- are 3-by-1 vectors representing, respectively, the angular and 

linear velocity of link k at  joint k. The corresponding spatial velocity is Vi 

= [o Iv 3. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"-I' superscript indicates that the corresponding variable is to 

be evaluated on the negative side of joint k. 

Ob k 

linear velocity of link k a t  its mass center. 

D Rk/Dt2 is a 3-by-1 vector representing the linear inertial acceleration of 

link k+l a t  joint k, where the operator D( *)/Dt denotes time differentiation 

in an inertial reference frame. Similarly, D2Ri /Dt2 is the .acceleration of 

link k a t  joint k, and D2Rk/Dt2is the acceleration of the link k mass center. 

+ + t  

- 
k k 

- L  

k k  

and v are 3-by-1 vectors representing, respectively, the angular and 

2 +  

Subsequently, it will be convenient to express these inertial accelerations in a 

local coordinate frame attached to link k. To this end, obsenre that vk = DBk/Dt, the 

h e a r  velocity of the link k mass center, is a 3-by-1 vector expressed in link k 

coordinates. Hence, 

D ' B ~ I D ~ '  = Gk t ok:x vk 

where = dv /dt denotes that the time derivative of the velocity is performed in a 

coordinate frame attached to link k. Similar relationships can be obtained for the 

accelerations D Rk/Dt2 and D2Ri/Dt2. This allows the following definition of the 

notion of spatial acceleration. 

k k 

2 +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 



. .  
The spatial acceleration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA i  = [oJv;! is a 6-by-1 vector of angular and 

linear accelerations of link k a t  the negative side of joint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. Ak = [okivk] 

is a vector of accelerations of link k+l on the positive side of joint k. Ak = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[o Iv J is the acceleration of the link k mass center. These accelerations 

are expressed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink k coordinates. 

+ * +  '+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .  

k k  

The spatial inertia matrix % for link k is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

(3.1) 

where H is the inertia dyadic of link k about joint L; pk is the vector from joint k to the 

link k mass center; zk is the 3-by-3 matrix equivalent to the cross-product operation 

p x; and U is the 3-by-3 identity. Note that the spatial inertia matrix summarizes the 

inertia and mass properties of link k about joint k. 

k 

k As an aside, observe that the kinetic energy T associated with link k can be 

expressed as 

where Vi is the 6-by-1 vector of link k spatial velocities a t  joint k. This follows 

because 

[: YKu O I  

(3.3) 



N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv is the link k mass center linear velocity. However, 
k 

is the link k inertia about its mass center; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is the link k angular velocity; 

(3.4) 

where o; and v i  are, respectively, the angular and linear velocities of link k at  joint 

k. Finally, substitute (3.4) in (3.3) and observe that Vi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[oil vi ]  to obtain (3.2). 

For later reference, it is also convenient to define the following 6-by-6 matrix 

(3.5) 

where is the 3-by-3 matrix equivalent to L x; and L is the vector from 
k,m k,m k,m 

joint m to joint k. This matrix has the following properties usually associated with a 

"transition" matrix for a discrete linear state space system [ 11: 

-1 - 
@k,m = @ k 1  - @i,m i @k,& = u; 'k,m - @m,k (3.6) 

which state that the matrix satisfies the semigroup property, that it be--me the 

identity when its two arguments (its subscripts) coincide, and that the matrix can be 

inverted by reversing its two arguments. 

4. DYNAMICS: AN INWARD RECURSION FOR THE JOINT SPATIAL FORCES 

The main objective of this section is to establish that the spatial forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 satisfy 
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+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xo = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl,...,N 

k = l,..,N 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- is the 6-by-1 vector of joint k spatial accelerations and 

r 1 

k 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The arguments required to establish this result can be summarized as follows. Equation 

(4.1) is based on the rigid-body equations of rotational and translational motion for link 

k. Equation (4.2) reflects the equivalence of actiodreaction moments and forces a t  

joint k. Equation (4.3) states that the initial joint 0, which can be specified a t  any 

location on link 1, is not under the influence of any external moments and forces. A 

more detailed proof of this result is outlined below. 

Proof. Consider the equations of rotational motion for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink k about its mass center zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo is the link k angular velocity; 4, is the link inertia about its mass center; Ti 

and f; are the moment and force acting a t  joint k Tk - and fk-l are the moment and 

k 
t + 

force acting a t  joint k-1; and T and f k k 
are the moment and force acting at  the link 

mass center. 
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The translation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass center is described by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo x v is the inertial acceleration of the mass center. Substitution of 

this on the right side of (4.5) leads to 

k k k  

(4.7) 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 -  - 
+ o k X V k = V  + o  x v  + k k k  However, recall that vk = vk + ok x pk. Therefore, vk 

o k x p k +  o k x ( o k x p  ),and 
. 

k 

+; ;+okxp k (4.8) 

Substitution of (4.8) in (4.7) and use of well-known cross-product expansion identities 

lead to 

+ + .- 
T; = - T ~ - ~ - L ~  x fk-l + Lk + vk x vk + 

where '1, =-$ + \ [(p p )U-p :p J is the link k inertia about joint k. 
k k  k k  

Now, substitute (4.8) in (4.6) to obtain 

13 
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(4.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Equations (4.9) and (4.10) combine into 

x ( o  xv-1- T -p x f k  
okx$c'"k+%% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk k k k 

m p k  x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- f k  - (4.11) 

.- .- t t t 
Recall that < = [Tilfi], %-1 = [-Tk-ll-fk-l] and 1; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[o k k  Iv ] to show that (4.11) is a 

more detailed version of (4.1). 

To establish Eq. (4.21, it is enough to observe that < = < implies (and is implied 

by) 

t 
T i  = -Tk ; 

which state that 

(4.12) t - 
f = - f  k k  

the moment T i  and force f; acting on link k a t  joint k are equal to the 

+ + 
negatives of the reaction moment T and force f acting on link k+l at  joint k. k k 

Finally, Eq. (4.3) reflects the assumed lack of constraints (due to loads, for 

example) a t  the tip of the system on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
14 



5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKINEMATICS: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAN OUTWARD RECURSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR THE JOINT VELOCITIES AND 
AC C E LE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+ To v; = Vk + %Ilk* 

The sequence of spatial velocities satisfy 

b=N, ..., 1 

k=N, ..., 1 

v;=o 

+ 
where Vi and Vk 

T 

arev respect,qelyr the spatial velocities of link k a t  joints k and k-1; 

= [\I 01 is a 1-by-6 vector based on the unit vector h kalong the joint axis; and u kis 

- 

the relative angular velocity a t  joint k. 

The accelerations satisfy the closely related recursion 

+ T 
'k-1 = *k&l 'i 

where 1 is the "bias" acceleration 

(5.4) 

(5.5) 

Proof: Consider the location of the joints k and k-1 with respect to an inertial 

reference, as illustrated in Fig. 5.1. 
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I NERT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI AL 
REFERENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1 Inertial Locations of Joints k and k-1 and Link k Mass Center 

Observe that 

where L is the vector from joint k to h-1. Hence, 
h 

t 
v =.v- t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- x L k-1 k h h (5.8) 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
where vh - = DRh-l/Dt and v i  = DR;/Dt are the inertial velocities of the two joints. 

In addition, the angular velocity of Link k at  the two joints is common, since the link is 

assumed to be rigid. Hence, 

which is a more detailed version of (5.1). 
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To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAestablish (5.21, observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o k = o k + 4 \  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- +  

- +  
vk = vk 

(5.10) 

(5.11) 

which state that the h e a r  velocities on both sides of joint k are equal to each other 

and that the relative angular velocity between links k and k+l equals the joint rotation 

4 4. 
The boundary condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.3) is based on the assumption that the manipulator is 

attached to an immobile base. 

The recursive relationships (5.4) - (5.6) for the accelerations can be established by 

appropriate time differentiation of (5.1) - (5.31, or of the equivalent equations (5.81, 

(5.10) and (5.111. Observe that (5.8) implies 

v '  + a '  x v '  = v  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ o  x v  + k-1 k-1 k-1 k k k 

L- x L + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- x (0- x Lk) k k k k  

- +  However, (5.8) and ok = ok-l imply 

This establishes (5.4). Similarly (5.10) and (5.11) imply 

+ o k = ; ; + \ ; i + o k X \ \  * -  

.- - * +  + + 
v + o - x v  = v  + o  x v  k k k k k k  
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(5.13) 

(5.14) 

(5.15) 



Use of (5.10) and (5.11) in (5.15) leads to 

(5.16) 

Equations (5.14) and (5.16) together imply zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.5). 

Finally, the boundary condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 follows from (5.3). 

6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATWO-POINT BOUNDARY-VALUE PROBLEM 

The sequences of spatial forces \ and spatial accelerations )ck satisfy the 

following two-point boundary-value problem: 

t t  
xo = )cN = 0 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

where -c 

ac c elerations. 

is the active moment at  joint k, and 9 are the corresponding joint 
k 
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The above is a two point boundary-value problem in the sense that the boundary 

conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.6) are satisfied a t  the two points: the manipulator tip and its base. 

Equations (6.1) and (6.2) are inward recursive equations which determine the 

The term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEk, defined sequence of spatial forces, given the spatial accelerations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA')c 

by (4.41, appears as a b& term in this equation. 

k' 

Equations (6.3) and (6.4) constitute an outward propagation and update that 

% determines the sequence of spatial accelerations ')c 

and the "bias" acceleration term 

given the joint accelerations k 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3K 
Equation (6.5) can be viewed as an output equation in the sense that it relates the 

state \ and the output T by means of the state-to-output map Hr 
b 

This two-point boundary-value problem is analogous to those encountered in 

optimal control and estimation theory for h e a r  systems based on quadratic criteria 

[3]. Such problems have been investigated extensively to develop filtering and 

smoothing solutions for dynamical systems. The equivalence between (6.1) - (6 .6)  and 

the problems in optimal control and estimation can be outlined by means of Table 6.1. 

ESTIMATION 

States 

C o-States 

Measurements 

Transition Matrix 

Process Error 
Covariance 

TABLE 6.1 

Equivalence Between Two- Point Boundary-Value 
Problems in Optimal Estimation and in 

Recursive Robot Dynamics 

ROBOT DYNAMICS 

Spatial Forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

't 

k 
T 

Spatial Accelerations 

Active Moments 

Spatial Transition Matrix 
'k,k- 1 

Spatial Inertia Matrix Mk: 

'k 
Known D e t e w s t i c  
Input 

E4: State to Output Map 

Bias Spatial Force 

Projection from State 
to Joint Axis 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmore complete investigation of this equivalence is contained in Section 9. 

The above problem can be used to solve the following two closely related 

problems: obtain the moment sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'z: , given knowledge of the joint accelerations 

s; obtain the joint accelerations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 from knowledge of the active moments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr These 

are referred to, respectively, as the inverse and forward dynamics problems and are 

solved in the following two sections. 

7. INVERSE DYNAMICS SOLUTION 

k 

k' 

The solution to the inverse dynamics problem consists of a two-stage process of 

outward recursion based on the eo-state difference equation followed by an inward 

recursion based on the state equation. 

The first stage involves an outward sequential process to determine a sequence of 

spatial accelerations. This outward recursion is based on Eqs. (6.3) and (6.4) and 

assumes that the spatial bias accelerations \ have been previously determined from 

the spatial and joint velocities Vk and < in (5.1) - (5.3). Equation (6.4) describes an 

operation by which the spatial acceleration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAk on the positive side of joint k, the joint 

acceleration s, and the bias acceleration T+ are combined in order to obtain the 

updated spatial acceleration A; at  the negative side of joint k. Although this has not 

been explicitly shown, in practice, in going from one link to the next, a coordinate 

transformation is typically performed that converts the spatial accelerations into the 

coordinate frame of the next link. The updated acceleration is then operated on as in 

Eq. (6.3) by the matrix akIL to arrive at  the spatial acceleration Ak-l at  joint k-1. 

These two steps, consisting of update a t  the joints and propagation from the inner to 

the outer joint of a link, provide a sequential process that generates the spatial 

accelerations A 

+ 

+ 
- 

+ 
This process is started with the terminal condition AN = 0. 

The second stage in the inverse dynamics solution involves an inward sequential 

process to generate the spatial forces and the required joint moments. This second 

stage is based on Equation (6.1) and (6.2). 

k' 
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Equation (6.1) involves propagation of the spatial force a t  the outer joint of a link 

to the inner joint by using the spatial accelerations made available by the first stage 

and the bias term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,. Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.2) expresses continuity of the spatial force in going 

across a joint between two adjacent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinks. The process starts with the boundary 

condition xo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  indicating that the initial (and fictitious joint) is unconstrained in 

motion. The process continues inward from the tip to the base until the full sequence 

< of spatial forces has been generated. The active moments r a t  the joints are 

obtained as an output of this process by means of the state-to-output transformation 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

Ht. 
The boundary-value problem (6.1) - (6.6) can also be used to arrive a t  the 

traditional second-order matrix equation 

where M(u) is the inertia matrix, and V(u,d is a term that comprises nonlinear velocity 

and gravity dependent effects. To this end, observe that the co-state equations (6.3) 

and (6.4) imply 

N 

Similarly, the state equations (6.1) and (6.2) imply 

k 

j = 1  

Substitution of (7.2) in (7.3) leads to 

k N  k 
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However, observe the identity 

which can be established zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby inspection of Pig. 7.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I / i = k  I 

/ 
/ j = k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi N 

Fig. 7.1 Illustration of Double Summation Order Reversal 

Use of this in (7.4) implies 

N k 

i= 1 i= 1 

where r is the 6-by-6 matrix 
k,i 

j = l  

Note that rh,i can be specified as 

I 1 S i S k S N  I N L i L k h l  I 

(7.6) 

(7.7) 

where 
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(7.8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j=1 

Observe also that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr satisfies the recursive relationship 
k,k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(7 .9)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This formula, in filtering and prediction theory, is that satisfied by the covariance of 

the state of a h e a r  discrete-time system subject to a process error with covariance 

Mk 131. 

Use -rk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 < in (7.6) to obtain 

N 

i= 1 

where 
N 

k = 1, ..., N 

k 

(7.10) 

(7.11) 

i= 1 i= 1 

1 
This is the scalar version of the matrix equation (7.11, where V = [V ,...,PI; M is the 

N-by-N inertia matrix whose general element n j , i  is specified by (7.11); and 

T = [ T ~ , . . . , T ~ ~  is the vector of all active joint moments. 

8. FORWARD DYNAMICS SOLUTION 

The forward dynamics problem is to find the accelerations 5 at  the joints, given 

the active moments T This problem can be solved using (6.1) - (6.6) and what is 

referred to as the "sweep method" in [3]. The sweep method begins by assuming that 

the state \ and the co-state hk are related by 

k' 

z + P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh % = k  k k  
(8.1) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzk and Pk are to be determined by means of recursive formulas that emerge upon 

substitution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8.1) in equations (6.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (6.6). In these formulas, zk will play the role 

that the predicted state estimate plays in the Kalman filter, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPk will play the role of 

the corresponding state estimation error covariance. 

RESULT 8.1 The joint accelerations 

by means of the following two-stage process of inward filtering and outward smoothing. 

can be computed from the applied moments -rk 

Filtering 

Initial Condition 

State 
Prediction 

Spatial Inertia 
Prediction 

Gain 
Computation 

Innovations 

State 
Update 

Residuals 

Spatial Inertia 

Update 

T 
= %,k- 1 'L- 1 'k,k- 1 + % 

T T -1 Dk = s P ; s v  G k= P- k k k  H D 

+ -1 - = D  e k k 

P i =  Pi -  Pi€$ T ~ - l ~  P- 

The residuals e: and the gains Gk are stored in this stage. 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

The scalar Dk, whose inversion is required to compute the gain G 

inertia along the joint k axis of the composite body formed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinks 1, ..., k. 

represents the k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Smoothing 

Terminal Condition AN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T 

Co-State 'c-1 = @k,k-l 
Propagation 

(8.10) 

(8.11) 

(8.12) 
t T t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = ek-Gk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A k+ qk) Joint Accelerations 

t T.. T t  T t  
k k  k k  

Xi = Ak t t %uk= (I-G H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( A k +  q d  t H e Co-State Update (8.13) 

Not shown explicitly is a link k to link k+l  coordinate transformation that is performed 

immediately after a joint has been crossed and the state and spatial inertias have been 

updated in (8.7) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8.9). A similar transformation from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlink k+l to link k is performed 

after the co-state update in (8.13). 

Proof: Substitute (8.1) in (6.5) to obtain 

P A- k k 

where e; is the innovations process defined by 

Now, substitute (6.4) in (8.14) t o  obtain 

T where Dk = % P i s .  Hence, 

.. t T t  
% = e k -  k k k G (A t q  1 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGk is the Halman gain Gk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= PigD;.  Substitute this in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.4) to obtain 

which verifies (8.13). Substitute (8.1) in (6.1) to obtain 

(8.18) 

(8.19) 

However, in view of (6.3), 

1-t (8.20) t - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'i 'khk = 'k,k-l'k-l %,k-l pi-1 @k,k-l k % zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi 'k 

The state and spatial inertia propagation equations (8.3) and (8.4) are sufficient 

conditions to satisfy (8.20). 

To obtain the state and inertia update equations, use (8.1) in the identity (6.2): 

t t t  - zk t PbXk = zk t P-A- k k  
(8.21) 

However, substitute (8.18) on the right side of (8.21) to obtain 

(8.22) 

and 

T -1 
D H P- P;=P;- k k k 

+ -  - t  
= z  t G  e t P k \  'k b b k  
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These are the inertia and state update equations. 

As an aside, note that the updated spatial inertia satisfies the following 

alternative formulas: 

as is well-known in Kalman filtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[1,3]. These two equations can be obtained 

routinely from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8.23). 

9.  SIlVlZLARITIES TO KALMAN FILTER AND BRYSON-FRAZIEB SMOOTHER 

The two-point boundary-value problem of Section 6 and the filtering and 

smoothing equations of Section 8 are analogous to those typically used to obtain the 

best smoothed state estimate of a discrete-time state space system with discrete 

measurements (for the special case of no measurement noise). To examine this analogy 

more closely, consider the following system: 

is the transition matrix; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH is the where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ is the state; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ck is the obsenration; 

state to measurement map; and wk is a white Gaussian process with mean and 

covariance specified by 

k k, k- 1 

where 5. is the link k bias spatial force, and % is the link b spatial inertia. To k 
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simplify the discussion, it is assumed in this section that the acceleration bias term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

has been set to zero. 

The filtering problem consists of finding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(9 .4 )  

the best estimate of the state given all of the previous measurements 'c 1 ?... , 'c~-~. 

Closely related zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  this filtered estimate is the innovations process defined by 

and the filtered state estimation error covariance 

(9 .5 )  

(9 .6 )  

which is known to satisfy the discrete-time Riccati equation. The covariance of the 

innovations is also known to be 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

(9 .7 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T 

Note that ( 9 . 7 )  is obtained from the more general formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADk = HkP; Hk + R kby 

setting the measurement noise covariance Rk to zero. The equations for the Kalman 

gain and the updated covariance are 

TD- 1 
'k=';% k 

(9 .8 )  
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(9.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

The updated state estimation error covariance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP+ can be shown to be 
k 

where 

+ -  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = z k + G e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk k k  

is the updated state estimate 

The smoothing problem associated with (9.1) and (9.2) is to find 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

the best estimate of the state, given all of the data -r1,...,-c at  the N measurement 

locations. It is known [3] that the best smoothed estimate can be generated by means 

of the Bryson-Frazier equations 

N 

A 
z + P A  X k = k  k k  

where A are the co-states specified by k 

'; = %+l,k = A- k+1 

(9.14) 

(9.15) 
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(9.16) 

The state estimate error covariance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS associated with the smoothed state 
k 

estimate is defined as 

This matrix is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA131 

Sk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPk - Pk hkPk 

where A is the covariance of the co-states defined as k 

It is known also that A satisfies the recursive relationships k 

T 
= 'k+l,k %+1 'k+l,k 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

This is a backward recursion consisting of propagation in (9.20) followed by an update in 

(9.21). The boundary condition A h  = 0 is valid a t  the N th  
sample. 

It is possible to obtain the closed-form inverse of the inertia matrix in terms of a 

pair of matrices analogous to P and Ak above. This is done in the next section. k 
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10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLOSED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFORM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINERTIA MATRIX XNVERSE 

The central objective is to obtain the following equation: 

1 2 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= ak t ak + ak (10.1) 

where ai, a i  and a' are the joint angle accelerations due to the applied moments k 

T the bias spatial forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,, and the bias spatial accelerations . The three 

acceleration components are given by 

k' 9 K  

k- 1 N 

i= 1 i=k+ 1 

k- 1 N 

(10.2) 

i- 1 i=tt 1 

k- 1 N 

i= 1 i= kt 1 

where c and d are, respectively, the scalar and the 1-by-6 vector 
k k 

(10.3) -1  T t  T t  ck = Dk t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGkh k =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG kA k- ckHk 

defined in (10.6) below. 

Recall that (7.1) implies that = M-l(u)[~-V(u,h), where M is the inertia matrix. 

1 
Hence, the elements of its inverse can be obtained by inspection of ab: in (10.2). 
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The overall approach used to  arrive a t  (10.1) is based on solving both the state and 

eo-state difference equations in terms of their corresponding "weighting" kernels. 

Substitution of the eo-state solution into the state solution leads to the desired results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This is now performed in detail. 

Solution of the State Equation 

The aim here is to  show that the sequences of "predicted" spatial forces 2; and 

residuals e are specified by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
k 

k- 1 

i= 1 

k- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

i= 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hr 

where *(k-,i+) and ti are defined as 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

ti = (I-GiHi) si + G.T. 1 1  + Piqi 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

Note that JI(k-,i+) is the transition matrix for the Kalman filter. This matrix is 

evaluated at  its two arguments k- and i , representing, respectively, the negative 

(outboard, toward the tip) side of joint k and the positive (inboard, toward the base) side 

of joint i. 

+ 

- Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecaii that 

+ - 

'k = 'k + @k,k-1 'k-1 

+ + zk = (I-Gk\h; + G k k  T + Pk\ 
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Substitution of (10.8) in (10.9) leads to 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This implies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q(k-lt,it) < h- 1 

i= 1 

(10.10) 

(10.11) 

(10.12) 

where 

Jr(k-lt,it) = q(k-lt,k-Zt) ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 (itlt,it) (10.13) 

To obtain (10.41, substitute (10.12) in (10.8) and observe that JI(lc-,it) = +k,k-l 

q(lc-lt,it). This and (8.8) imply (10.5). 

Solution of the Co-State Equation 

The aim here is to  show that the sequence of spatial accelerations hk + is 

specified by 

where 

T T t  
Vi = (I-G.H.) vi + H e 

1 1  i i  

- 

(10.14) 

(10.15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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To establish (10.141, begin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby observing that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ T A- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'k = 'k+l,k b+l 

with the terminal condition A h  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. Substitution of (10.17) in (10.16) leads t o  

where 

Hence, 

N 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

i=k+ 1 

where 

JI(i-,b+l-) = +. . (I-G. H. )...+k+2 H I  (10.21) 
1,l-1 1-1 1-1 , + l(l-Gk+ 1 k+ 1 

T -  T 
To obtain (10.141, substitute (10.20) in (10.17) and observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJI (i ,k+) = +b+l,b 

JI (i ,k+l-). 
T -  

.. 
The joint accelerations \ can be obtained by substitution of (10.14) in (8.12): 

N 

i=k+ 1 

(10.22) 



mt Angle Accelerations due to  Joint Moments, Bias Spatial Forces, and Bias Spatial 
Accelerations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - ~ -  

The objective here is to obtain (10.11. To this end, observe that (10.5) and (10.22) imply 

that 

k- 1 N 

i= 1 j=kt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyk is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

HkEk - Tk = Tk - 

However, 

N N 

xJtT(i-,kt)qi = [Jt T t  (i ,k t )vi t Jr T -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i ,kt)HTe+] 
1 1  

(1 0.23) 

(1 0.24) 

(10.25) 
i=kt 1 i=kt 1 

T t t  T T where JI (i ?k 1 = Jt (i-,kt) (I-G.H.) . In view of (10.5), 
1 1  

N N i- 1 
T -  t T - 1  JtT(i-,kt)H:e: = Jt (i ,k 1 HiDi [ri-H.t 1 1  .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc HiJt(i-,jt)F.J (10.26) 

i=kt 1 i=kt 1 j =  1 

Recall the identity 

N i-1 N-1 N-1 c c = x  c 
i=kt l  j = l  j = 1  i=max(kt 1, j t  1) 

to  obtain 

N i-1 
T -  t T - 1  - t -  t- 

Jt (i ,k )Hi Di HiJt(i , j  ) E j  = hkEkt 
i=kt l  j = l  
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k- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 N 

j=kt 1 j =1  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

(1 0.28) 

(10.29) 

i=kt 1 

In arriving at  the upper limit N of summation for the last term in (20.281, use has 

been made of the terminal condition AN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 implied by (10.29). Finally, use of (10.28) 

in (10.261, (10.26) in (10.251, and (10.25) in (10.23) leads to (10.11. 

Observe that (10.29) implies that the sequence Ak satisfies the recursive 

+ 

equations 

(10.30) 

These equations are identical to the ones satisfied by the co-state variable covariance 

of the fixed-time smoother in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9.  

11. RELATIONSHIP TO OTHER WORK 

The basic reference on filtering is, of course, Kalman's original report 113, which 

derives the filter for discrete-time systems with discrete data and which, in addition, 

introduces a global framework (Riccati equation, Kalman gain, predictiodcorrection, 

covariances, etc.) that underlies much of today's linear filtering and prediction theory. 

A similarly basic reference for smoothing is [2]. Reference [3] provides a summary 

exposition of both filtering and smoothing, as well as the sweep method for solution of 

two-point boundary-value problems. The main contribution of the present report is to 

recognize that these filtering and smoothing techniques provide a unified framework to 
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solve recursively the fundamental robotics problems of inverse and forward dynamics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This complements many of the recursive and nonrecursive techniques currently used to 

solve these problems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4- lo]. 

Because they address forward dynamics (instead of the more common problems of 

inverse dynamics), Refs. [4,5] are very close in spirit to the present report. In fact, the 

recursive equations of 141 are very similar t o  the filtering and smoothing solutions of 

Section 8. The solutions advanced here expand on the results of [4] in two 

areas: 1) recognizing similarities with filtering and smoothing, and 2) providing what is 

believed to be a more appropriate way t o  account for the bias spatial forces and 

accelerations due to coriolis, centrifugal, gyroscopic and gravitational effects. 

Reference [4] suggests that these effects be accounted for by conducting an inverse 

dynamics computation prior to the forward dynamics solution. This has the possible 

drawback of requiring that certain calculations (link-to-link coordinate 

transformations, spatial force and acceleration propagation, etc.) be performed twice: 

once for inverse dynamics and again for the forward dynamics problem. Hence, two fu l l  

recursions along the entire span of the manipulator appear to be required. In contrast, 

the recursive techniques advanced here embody these effects in the bias terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ of the filter and smoother equations. No advance inverse dynamics solution is 

required, and a single inward/outward iteration is sufficient to solve the problem. An 

additional contribution of the present report is to introduce a framework that, in 

addition to solving the forward dynamics problem of (41, also provides inverse dynamics 

solutions. 

Another result which is believed to be unique is the closed-form evaluation of the 

inertia matrix and its inverse in terms of estimation error covariances. This result 

suggests that numerical inertia matrix inversion can be avoided (or a t  least performed 

recursively). This can be done if the emphasis is placed instead on direct 

matrix-symbolic evaluation of the inertia matrix inverse (as in Section 10 of this report) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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or in the filtering and smoothing formulas which provide a constructive procedure for 

determining joint accelerations from applied moments. 

Many of the references zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6-91 presenting recursive solutions focus primarily on the 

inverse dynamics problem. These recursive methods lead either to the evaluation of 

required joint applied moments from desired joint accelerations or to evaluation of an 

inertia matrix for an equation of the form (7.1). The forward dynamics problem is not 

addressed directly. Instead, the usual approach requires a numerical inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 

inertia matrix. This causes the resulting forward dynamics algorithms to be O(N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, Le., 

the number of computations is proportional to the cube of the number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlinks. This 

means that for large N thercomputations required may be dominated by the matrix 

inversion process. 

3 

Yet another point of view with regards t o  robot dynamics is that initiated by [lo], 

which advances the notion that explicit scalar equations of motion can be obtained for 

common manipulators such as the JPL/Stanford and PlJMA arms. These equations are 

explicit in the sense that the scalar elements of the inertia matrix (as well as other 

matrices accounting for coriolis, centrifugal, and other effects) are evaluated 

symbolically in terms of link mass and inertia, mass center offsets, etc. The end results 

of this approach are algebraic expressions [11,12] for each of the inertia matrix 

e le ments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Such explicit equations can lead to substantial computational savings. One key 

reason for this is that terms in the inertia matrix which do not depend on the 

instantaneous value of the joint angles (reflecting the manipulator configuration) can be 

grouped together and need be evaluated only once at  the beginning of the model 

application. The same value of those terms is then retained after this initialization. 

This is a feature that less explicit equations do not have. However, because of the 

complexity of the trigonometric and algebraic operations required, manual derivation 

methods cannot be used easily, and symbolic manipulation programs [11,12] that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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conduct machine differentiation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Lagrangian are typically used. One of the 

challenges that remains after symbolic evaluation of the inertia matrix elements is the 

numerical inertia matrix inversion required to solve the forward dynamics problem. 

The recursive equations developed in Section 10 can, in principle, be used to 

arrive at  direct explicit evaluation of the scalar elements of the inertia matrix inverse. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A symbolic manipulation program could be set up to conduct the operations in Eq. (10.1) 

symbolically, as opposed to numerically. The end result would be a set of equations of 

the form (10.1) where the accelerations ak, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak and ak would be determined as 

explicit functions of the joint angles, the link masses and inertias, the l i i  dimensions, 

etc. Such results would eliminate the need to invert the inertia matrix numerically, and 

could lead to significant computational savings. Savings comparable to those achieved 

in [11,12] for explicit evaluation of the inertia matrix could be achieved for a similarly 

explicit evaluation of its inverse. 

1 2  3 

12. CONCLUDING R E M A R K S  AND FUTURE DIRECTIONS 

The pivotal step presented in this report is that the dynamics and kinematics of an 

N-link serial manipulator can be described by a two-point (in space) boundary-value 

problem. This observation allows the solution of inverse and forward dynamics within a 

single unified framework based on recursive techniques from the theory of optimal 

filtering and smoothing. 

The results of this report suggest several areas for future research. 

Development of methods for symbolic evaluation of the scalar elements in 

the inverse of the inertia matrix, as opposed to the current ones that focus on 

the elements of the inertia matrix itself. This would simplify system 

simulation as well as implementation of increasingly important exact 

linearization techniques for control design [13, 141. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExtensive numerical studies with the proposed methods to establish the same 

level of confidence as exists for current methods. 

0 Development of forward and inverse dynamics solutions based on "fast" 

filtering and smoothing techniques which involve direct propagation of the 

filter gain as opposed to indirect methods requiring covariance propagation. 

Use of the forward dynamics solutions presented here for control design. 0 

A full investigation of these areas will require much work and will be quite 

interesting. 
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