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Kalman filtering with inequality constraints for 
turbofan engine health estimation 

D. Simon and D.L. Simon 

Abstract: Kalman filters are often used to estimate the state variables of a dynamic system. 
However, in the application of Kalman filters some known signal information is often either 
ignored or dealt with heuristically. For instance, state-variable constraints (which may be based 
on physical considerations) are often neglected because they do not fit easily into the structure 
of the Kalman filter. Thus, two analytical methods to incorporate state-variable inequality con
straints into the Kalman filter are now derived. The first method is a general technique that uses 
hard constraints to enforce inequalities on the state-variable estimates. The resultant filter is a com
bination of a standard Kalman filter and a quadratic programming problem. The second method 
uses soft constraints to estimate those state variables that are known to vary slowly with time. 
(Soft constraints are constraints that are required to be approximately satisfied rather than 
exactly satisfied.) The incorporation of state-variable constraints increases the computational 
effort of the filter but significantly improves its estimation accuracy. The improvement is proven 
theoretically and simulations are used to show that the proposed algorithms can provide an 
improved performance over unconstrained Kalman filtering. 

Introduction 

For linear dynamic systems with white process and 
measurement noises, the Kalman filter is known to be an 
optimal estimator. However, in the application of Kalman 
filters there is often available model or signal information 
that is either ignored or dealt with heuristically [1]. We  
intend to derive ways to modify the Kalman filter state 
estimate such that known inequality constraints are satisfied 
by the state-variable estimates. 
The first method presented to enforce inequality con

straints on the state-variable estimates uses hard constraints. 
It is based on a generalisation of the approach presented in 
[2], which dealt with the incorporation of state-variable 
equality constraints in the Kalman filter. Inequality con
straints are inherently more complicated than equality 
constraints, but standard quadratic programming results 
can be used to solve the Kalman filter problem with inequal
ity constraints. At each time step of the constrained Kalman 
filter, we solve a quadratic programming problem to obtain 
the constrained state estimate. A family of constrained state 
estimates is obtained, where the weighting matrix of the 
quadratic programming problem determines which family 
member forms the desired solution. We state, on the basis 
of [2], that the constrained estimate has several important 
properties. The constrained state estimate is unbiased and 
has a smaller error covariance than the unconstrained esti
mate. We show which member of all possible constrained 

only 

solutions has the smallest error covariance. We also 
show the one particular member that is always (i.e. at 
each time step) closer to the true state than the 
unconstrained estimate. 

The second method to enforce inequality constraints uses 
soft constraints via a penalty term in an optimisation 
problem. This prevents the state estimate from changing 
too rapidly. It essentially smooths the unconstrained 
Kalman filter estimate when the state variables are known 
to vary slowly with time. It is shown that the constrained 
state estimate is unbiased, approaches the unconstrained 
estimate as the time approaches infinity, and (under 
certain special conditions) is equal to the running average 
of the unconstrained estimate. 

The application considered in this study is turbofan 
engine health parameter estimation [3]. The performance 
of gas turbine engines deteriorates over time. This deterio
ration reduces the fuel economy of the engine. Airlines 
periodically collect engine data in order to evaluate the 
health of the engine and its components. The health evalu
ation is then used to determine maintenance schedules. 
Reliable health evaluations are used to anticipate future 
maintenance needs. This offers the benefits of improved 
safety and reduced operating costs. The money-saving 
potential of such health evaluations is substantial, but 

if the evaluations are reliable. The data used to 
perform health evaluations are typically collected during 
flight and later transferred to ground-based computers for 
post-flight analysis. Data are collected each flight at the 
same engine operating points and corrected to account for 
variability in ambient conditions. Typically, data are col
lected for a period of about 3 s at a rate of about 10 or 
20 Hz. Various algorithms have been proposed to estimate 
engine health parameters, such as weighted least squares 
[4], expert systems [5], Kalman filters [6], neural networks 
[6], and genetic algorithms [7]. 

We apply constrained Kalman filtering to estimate engine 
component efficiencies and flow capacities, which are 
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referred to as health parameters. We can use our knowledge 
of the physics of the turbofan engine in order to obtain a 
dynamic model [8, 9]. The health parameters that we try 
to estimate can be modelled as slowly-varying biases. The 
state vector of the dynamic model is augmented to 
include the health parameters, which are then estimated 
with a Kalman filter [10]. The model formulation in this 
study is similar to previous work [11]. However, [11] was 
limited to a three-state dynamic model and two health 
parameters, whereas this present work includes a more 
complete 16-state model and eight health parameters. In 
addition, we have some a priori  knowledge of the engine’s 
health parameters: we know that they never improve. 
Engine health always degrades over time, and we can 
incorporate this information into state constraints to 
improve our health parameter estimation. (This is assuming 
that no maintenance or engine overhaul is performed.) 
This is similar to the probabilistic approach to turbofan 
prognostics proposed in [12]. It should be emphasised 
that in this study we are confining the problem to the 
estimation of engine health parameters in the sole presence 
of degradation. There are specific engine cases that can 
result in abrupt shifts in filter estimates, possibly even indi
cating an apparent improvement in some engine com
ponents. An actual engine performance monitoring system 
would need to include additional logic to detect and 
isolate such faults. 

Kalman filtering 

This Section reviews standard (unconstrained) state esti
mation via the Kalman filter and some important properties 
of the filter that will be used later in this study. The results 
and notation are taken from [13]. Consider the discrete 
linear time-invariant system given by: 

xkþ1 ¼ Axk þ Buk þ wk ð1Þ 
yk ¼ Cxk þ ek 

where k is the time index, x is the state vector, u is the 
known control input, y is the measurement, and fwkg and 
fekg are noise input sequences. The problem is to find an 
estimate x̂kþ1 of xkþ1 given the measurements fy0, y1, . . . , 
ykg. We will use the symbol Yk to denote the column 
vector that contains the measurements fy0, y1, . . . , ykg. 
We assume that the following standard conditions are 
satisfied 

E½x0] ¼ xx0 ð2Þ 
E½wk ] ¼ E½ek ] ¼ 0 ð3Þ 

E½ðx0 - xx0Þðx0 - xx0Þ
T 
] ¼ S0 ð4Þ 

E½wk w T 
m] ¼ Qdkm ð5Þ 

E½ek e T 
m] ¼ Rdkm ð6Þ 

E½wk e T 
m] ¼ E½xk e T 

m] ¼ 0 ð7Þ 

E½xk w T 
m] ¼ 0 ðm 2 kÞ ð8Þ 

where E[.] is the expectation operator, xx is the expected 
value of x, and dkm is the Kronecker delta function 
(dkm ¼ 1 if  k ¼ m, 0 otherwise). Q and R are positive semi-
definite covariance matrices. The Kalman filter equations 

are given by: 

-1Kk ¼ ASk C
T ðCSk C

T þ RÞ ð9Þ 
x̂kþ1 ¼ Ax̂k þ Buk þ Kk ðyk - Cx̂k Þ ð10Þ 

Skþ1 ¼ ðASk - Kk CSk ÞA
T þ Q ð11Þ 

where the filter is initialised with x̂0 ¼ xx0, and S0 given 
above. It can be shown [13] that the Kalman filter has 
several attractive properties. For instance, if x0, fwkg, and 
fekg are jointly Gaussian, the Kalman filter estimate x̂kþ1 
is the conditional mean of xkþ1 given the measurements 
Yk; i.e. x̂kþ1 ¼ E[xkþ1jYk]. Even if x0, fwkg, and fekg are 
not jointly Gaussian, the Kalman filter estimate is the best 
affine estimator given the measurements Yk; i.e. of all esti
mates of xkþ1 that are of the form FYk þ g (where F is a 
fixed matrix and g is a fixed vector), the Kalman filter 
estimate is the one that minimises the covariance of the 
estimation error. It can be shown [13, pp. 92 ff.] that the 
Kalman filter estimate (i.e. the minimum variance estimate) 
can be given by: 

1 
x̂kþ1 ¼ xxxkþ1 ; xxkþ1 þ SxyS

-
ðYk - Yx k Þ ð12Þ yy 

where xxkþ1 is the mean of xkþ1, Sxy is the covariance matrix 
of xkþ1 and Yk, Syy is the covariance matrix of Yk, and xxxkþ1 
is the conditional mean of xkþ1 given the measurements Yk. 
In addition, from [13, p. 93] we know that the Kalman filter 
estimate x̂kþ1 and Yk are jointly Gaussian, in which case 
x̂kþ1 is conditionally Gaussian given Yk. The conditional 
probability density function of xkþ1 given Yk is: 

1
exp½-ðx - xxxÞT S- ðx - xxxÞ=2]

PðxjYÞ ¼ ð13Þ 
n=2 1=2ð2pÞ jSj

where n is the dimension of x and 

1S-S ¼ Sxx - Sxy yy Syx ð14Þ 

The Kalman filter estimate is that value of x that maximises 
the conditional probability density function P(xjY), and S is 
the covariance of the Kalman filter estimation error. 

3 Kalman filtering with hard inequality 
constraints 

This Section modifies the well known state estimate of 
the previous Section so that the estimate satisfies linear 
inequality constraints that are known to exist among the 
state components. Also, several important properties of 
the constrained filter are discussed. Consider the dynamic 
system of (1) where we are given the additional constraint 

Dxk  dk ð15Þ 

where D is a known s x n constant matrix, s is the number 
of constraints, n is the number of state variables, and s  n. 
It is assumed in this study that D is full rank, i.e. that D has 
rank s. This is an easily satisfied assumption. If D is not full 
rank that means we have redundant state constraints. In that 
case we can simply remove linearly-dependent rows from D 
(i.e. remove redundant state constraints) until D is full rank. 
Three different approaches to the constrained state esti
mation problem are given in this Section. The time index 
k is omitted in the remainder of this Section for ease of 
notation. 
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3.1 The maximum probability method	 the problem: 

x - xÞT x - xÞ x 
problem by using a maximum probability method. From 
[13, pp. 93 ff.] we know that the Kalman filter estimate is where W is any symmetric positive definite weighting 
that value of x that maximises the conditional probability matrix. This problem can be rewritten as: 

~^~^~
~x 
ð Wð ð23Þsuch that D dIn this Section we derive the constrained Kalman filtering min 

density function P(xjY), which is given in (13). The con
strained Kalman filter can be derived by finding an estimate minð T W T W such that D~x d ð24Þx x - 2x xÞ 

The constrained estimation problems derived by the 

~^~~
~x 

x such that the conditional probability P(xjY) is maximised 

^

x satisfies the constraint (15). Maximising P(xjY) is the 
same as maximising its natural logarithm. So the problem maximum probability method (17) and the mean-square 
we want to solve can be given by: method (22) can be obtained from this equation by setting 

W ¼ S21 and W ¼ I respectively. Note that this derivation 
xjYÞ ¼)min x - xxÞT S - x - xxÞ 

x; i.e. 

~

x~

~

x ~ 
~x 

~x 

~

~and
~

1
max ln Pð ð ð of the constrained estimation problem does not depend on 

fwkg,the conditional Gaussian nature of andx0, 
ð16Þ fekg in (1) are not assumed to be Gaussian.such that D d 

x ¼ xx 
(the conditional mean of x), we rewrite the above equation estimation problem 
as: 

The problem defined by (24) is known as a quadratic pro-

x^ 3.4 The solution of the constrained stateUsing the fact that the unconstrained state estimate

1 1T T S -S - gramming problem [14, 15]. There are many algorithmsx x - 2x xÞ x 

Note that this problem statement depends on the conditional 

~~^~~
~
ð ð17Þsuch that D dmin 

to solve quadratic programming problems, almost all of 
which fall into the category known as active set methods. 
An active set method uses the fact that it is only those con-x, which in turn depends on the Gaussian 
straints that are active at the solution of the problem that arenature of x0, fwkg, and fekg in (1). 
significant in the optimality conditions. Assume that t of the 
s inequality constraints are active at the solution of (24), and 

^Gaussian nature of

^D̂ and d the t rows of D and t elements of d 
corresponding to the active constraints. If the correct set 

In this Section we derive the constrained Kalman filtering of active constraints was known a priori then the solution 
problem by using a mean-square minimisation method. of (24) would also be a solution of the equality-constrained 
We seek to minimise the conditional mean-square error problem: 
subject to the state constraints: 

3.2 The mean-square method denote by

^~^~~~
~~

~

x xÞ Dx ¼ d 
2k j ÞY xx x 

~

This shows that the inequality-constrained problem defined 
where k.k denotes the vector two-norm. If we assume that x by (24) is equivalent to the equality-constrained problem 

~

and Y are jointly Gaussian, the mean-square error can be	 defined by (25). The equality-constrained problem was dis

~

written as	 cussed in [2], and so those results can be used to investigate 
the properties of the inequality-constrained problem. 

xk2jYÞ ¼ xÞT 
ðx - xÞPðxjYÞdx 

~x 

~

x 

T
ð ð25ÞWx - 2x̂Wmin such that

Eðkx - ð18Þsuch that D dmin 

ð
Eðkx - ðx - ð19Þ 

3.5 Properties of the constrained state estimate ð ð
TT In this Section we examine some of the statistical properties¼ xPðxjYÞdx - 2 xPðxjYÞdxx 

~
x̂ to denote the 

state estimate of the unconstrained Kalman filter, and x to 
of the constrained Kalman filter. We use

T
þ ð20Þ~~x x 

Noting that the Kalman filter estimate is the conditional 
denote the state estimate of the constrained Kalman filter 
as given by (24), recalling that (17) and (22) are special 
cases of (24).mean of x, i.e.: 

ð 
Theorem 1: The solution

xPðxjYÞdx ð21Þ ~x of the constrained state esti
mation problem given by (24) is an unbiased state estimator 
for the system (1) for any symmetric positive definite 

x̂ ¼

we formulate the first-order conditions necessary for a weighting matrix W. That is: 
minimum as: 

~x 

~

~~^~~
~x 

xÞ ¼ EðxÞ 
x x - 2x xÞ x 

estimation problem given by (24) with W ¼ S21, whereAgain, this problem statement depends on the conditional 

Eð ð26Þ 
T Tð ð22Þsuch that D dmin 

The solution of the constrainedTheorem 2: state 

S is the covariance of the unconstrained estimate given inx̂, 
(11) and (14), has an error covariance that is less than orGaussian nature of x0, fwkg, and fekg in (1). 
equal to that of the unconstrained state estimate. That is: 

Gaussian nature of which in turn depends on the 

3.3 The projection method covðx - ^~

^

xÞ xÞ 

In this Section we derive the constrained Kalman filtering At first this seems counterintuitive, since the standard 
problem by directly projecting the unconstrained state Kalman filter is by definition the minimum variance filter. 

x onto the constraint surface. That is, 

covðx - ð27Þ 

estimate we solve However, we have changed the problem by introducing 



 

- - -

state-variable constraints. Therefore, the standard Kalman solution to the above problem is: 
filter is no longer the minimum variance filter, and we can 

x0 ¼ E½~ x0]do better with the constrained Kalman filter. 
ð33Þ 

-
¼ ðW þ Vk Þ 1

ðWxk xk þ Vk xk-

Since W and Vk are both positive definite, we know thatW ¼ S21 has the smallest estimation error covariance. 
(W þ Vk)

21 exists.That is: 

~

x xW Þ 

^~

~~

1ÞTheorem 3: Among all the constrained Kalman filters 
resulting from the solution of (24), the filter that uses 

covð 1 Þ covð for all W ð28Þ Theorem 6: Assume (as stated above) that A ¼ I and B ¼ 0S -

in (1). Then the solution of the constrained state esti
mation problem given by (33) is an unbiased state estimator 

~x 
The solution of the constrainedTheorem 4: state 

for the system (1) for any symmetric positive definiteestimation problem given by (24) with W ¼ I satisfies the 
weighting matrices W and Vk. That is:inequality: 

~x 

Eð Þ ¼ ðE~x xÞ ð34Þ 
xk k  k xk k 

where k.k is the vector two-norm and

^~k for all k ð29Þ- -xk xk 

Proof: The theorem can be proven by induction. Since 

~
^

x is the unconstrained 
A ¼ I and B ¼ 0 we know that E[xk] ¼ xx0 for all k. WeKalman filter estimate. 

~
x1] ¼ xx0.  

xk] ¼ E[xk] ¼ xx0 for all k.  

^

~x0 ¼ xx0. 
We repeat this process to 

therefore know from (33) that From (33) with 
k ¼ 0 that E[we see 

The error of the solution of theTheorem 5: x 
constrained state estimation problem given by (24) with 
W ¼ I is smaller than the unconstrained estimation error 

~ Ashow that E[

Theorem 7: Assume (as stated above) that A ¼ I and B ¼ 0 
in the sense that: 

^

in (1). Further assume that wk ¼ 0 in (1) (since we are trying 
to estimate constant parameters). Then the constrained state 

x in the~
xÞ] xÞ] 

x approaches the unconstrained estimate

where tr[.] indicates the trace of a matrix, and cov(.) limit as time goes to infinity. That is: 

^~tr½covð tr½covð ð30Þ 
estimate

indicates the covariance matrix of a random vector.
^~xk xk 

k!1 k!1 
The above theorems all follow from the equivalence of 

(24) and (25), and the proofs presented in [2]. We note Proof: We see from (9)–(11) that, under the conditions 

¼ lim ð35Þlim 

stated here, Kk ! 0 as  k ! 1. Therefore,

^

^

~^~

xk approaches a 
(24), then strict inequalities hold in the statements of constant value as k ! 1. From (33) we see that, in 
theorems 2–5. The only time that equalities hold in the steady-state conditions: 
theorems is if there are no active constraints at the solution 

x ¼ ðW þ Vk Þ x þ Vk xÞ 

x 

that if any of the s constraints are active at the solution of 

-1
ðWof (24); that is, if the unconstrained Kalman filter satisfies 

the inequality constraints. 1Vk ] 1
ðW þ Vk Þ 1W~x ¼ ½I - ðW þ Vk Þ 

- -14 Kalman filtering with soft inequality ¼ ðI þW 1Vk ÞðW þ Vk Þ 
constraints 

¼)

x̂ 

where the last equality follows from the matrix inversion 
In this Section we are interested in obtaining a Kalman- lemma. Premultiplying both sides of the above equation 

ð36ÞW

^~x ¼ Wx, so  if  W is invertible (which it 
know a priori vary slowly with time. Since we are is, since we are assuming in this Section that W is positive 

by W we obtain Wfilter-based state estimate for state variables which we 

~

^~

^

x ¼ x (in steady-state conditions). Note 
mator, we will assume for this problem that the A matrix in that the theorem is true even if Vk does not approach a 
(1) is the identity matrix and the B matrix is zero. With this steady-state value as k ! 1. A 
in mind, we can use the results of the previous Section, 

xk is the running 
xk. 

definite), we obtainconcerned with using the Kalman filter as a parameter esti

especially (23), to formulate a Kalman-filter-based estimate Theorem 8: If Vk ¼ (k 2 1)W in (33) then

^~^~

as follows: average of

xk xk Þ xk xk Þ
T Wðð

~
min 
xk 

- - ^

ð31Þ 1 k 

Proof: The running average of

^

xk is defined as: 

X
xi 

i¼1 

such that varies slowly with time~xk 

where, as before, W is a constant symmetric positive 
definite weighting matrix. This is a type of regularisation; which implies that 
that is, some additional structure is incorporated into the 

Xk ¼ ð37Þ 
k 

~~~~^~^~

1Kalman filter estimate [16–18]. The above problem can Xkþ1 ¼ ð
be formulated as 

xk xk Þ xk xk Þ þ ðxk xk- xk xk-

^

x̂kþ1 þ kXk Þ 

Now if Vk ¼ (k 2 1)W then (33) shows that: 

xkþ1 þ kW

ð38Þ 
k þ 1 

T Wð 1Þ
T Vk ð½ð 1Þ]

~
min 
xk 

- - - -
-1
ðW

^

~xkþ1 ¼ ½ðk þ 1ÞW]
ð32Þ 

1 
¼ ð

~

~

xk Þ 

xkþ1 þ kxk Þ 

The which is exactly the running average shown in (38). 

ð39Þ 

A~^

where Vk is a (possibly time-varying) symmetric positive 

x x. 

k þ 1 
definite weighting matrix that balances the desire for a 
close approximation and smooth estimateto
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high-pressure low-pressure 
turbine turbine 

inlet fan compressor combustor augmentor nozzle 

station: 0 2 2.1 2.2 3 4 4.1 5 6 7 8 E 

Fig. 1 Schematic representation of a turbofan engine 

Turbofan engine health monitoring 

Figure 1 shows a schematic representation of a turbofan 
engine. A single inlet supplies airflow to the fan. Air 
leaving the fan separates into two streams: one stream 
passes through the engine core, and the other stream 
passes through the annular bypass duct. The fan is driven 
by the low-pressure turbine. The air passing through the 
engine core moves through the compressor, which is driven 
by the high-pressure turbine. Fuel is injected into the main 
combustor and burned to produce hot gas to drive the 
turbines. The two air streams combine in the augmentor 
duct, where additional fuel is added to further increase the 
air temperature. The air leaves the augmentor through the 
nozzle, which has a variable cross-sectional area. 
Various turbofan simulation packages have been pro

posed over the years [19–21]. The model used in this 
study is based on a gas turbine engine simulation soft
ware package called DIGTEM (digital turbofan engine 
model) [8, 22]. DIGTEM is written in Fortran and includes 
16 state variables. It uses a backward difference integration 
scheme because the turbofan model contains time constants 
that differ by up to four-orders of magnitude. 
The nonlinear equations used in DIGTEM can be found 

in [8, 9]. The time-invariant equations can be summarised 
as follows: 

x_ ¼ f ðx; u; pÞ þ w1ðtÞ 
ð40Þ 

y ¼ gðx; u; pÞ þ eðtÞ 

Table 1: Turbofan states and nominal values 

State Nominal value 

Low-pressure turbine rotor speed, rpm 6140 
High-pressure turbine rotor speed, rpm 9395 
Compressor mass flow, kg s21 0.457 
Combustor inlet temperature, K 965 
Combustor mass flow, kg s21 0.264 
High-pressure turbine inlet temperature, K 1593 
High-pressure turbine mass flow, kg s21 1.48 
Low-pressure turbine inlet temperature, K 1129 
Low-pressure turbine mass flow, kg s21 1.79 
Augmentor inlet temperature, K 790 
Augmentor mass flow, kg s21 1.46 
Nozzle inlet temperature, K 790 
Duct fluid momentum, kg s22 53.6 
Augmentor fluid momentum, kg s22 103 
Duct mass flow, kg s21 4.52 
Duct temperature, K 571 

Table 2: Turbofan controls and nominal values 

Control Nominal value 

Combustor fuel flow, kg s21 0.37 
Augmentor fuel flow, kg s21 0 
Nozzle throat area, cm2 430 
Nozzle exit area, cm2 492 
Fan vane angle, deg 225 
Compressor vane angle, deg 220 

where x is the 16-element state vector, u is the six-element 
control vector, p is the eight-element vector of health par
ameters, and y is the 12-element vector of measurements. 
The noise term w1(t) represents inaccuracies in the model, 
and e(t) represents measurement noise. The elements in 
these vectors are summarised in Tables 1–4, along with 
their values at the nominal operating point (x0, u0, p0, y0) 
considered in this study. Table 4 also shows typical 
signal-to-noise (SNR) ratios for the measurements, based 
on NASA experience and previously published data [23]. 
Sensor dynamics are assumed to be high enough bandwidth 
that they can be ignored in the dynamic equations [23]. 
Equation (40) can be linearised about the nominal operating 
point by using the first-order approximation of the Taylor 
series expansion. Therefore, a linear small-signal system 
model can be defined for small excursions from the 
nominal operating point. 

We obtained numerical approximations to the linearised 
system matrices by varying x and p from their nominal 
values (one element at a time) and recording the new x_
and y vectors in DIGTEM. 

Turbofan engine health monitoring is typically a two-step 
process [3]. In the first step, engine data is collected each 
flight at the same engine operating points and corrected to 
account for variability in ambient conditions. Data are typi
cally collected for a period of about 3 s per flight at a rate of 
about 10 or 20 Hz. In the second step, the data are trans
ferred to ground-based computers for post-flight analysis 
to determine engine health. 

The goal of our turbofan engine health monitoring 
problem is to obtain an accurate estimate of dp (the 
change in the health parameter vector), which varies 
slowly with time. We therefore assume that dp is constant 
between measurement times. We also assume that the 
control input is perfectly known, so du ¼ 0. We augment 
the state vector with the health parameter vector [11] to 
obtain an augmented system equation. Then we can use a 
Kalman filter to estimate dxk and dpk. Actually, we are 
only interested in estimating dpk (the health parameter 

Table 3: Turbofan health parameters and nominal 
values 

Health parameter Nominal value 

Fan airflow, kg s21 102 
Fan efficiency 0.82 
Compressor airflow, kg s21 48.7 
Compressor efficiency 0.83 
High-pressure turbine airflow, kg s21 41.0 
High-pressure turbine enthalpy change, J kg21 101 
Low-pressure turbine airflow, kg s21 48.3 
Low-pressure turbine enthalpy change, J kg21 27.1 
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Table 4: Turbofan measurements, nominal values, and 
SNR ratios 

Measurement Nominal SNR 
value 

Low-pressure turbine rotor speed, rpm 6140 150 
High-pressure turbine rotor speed, rpm 9395 150 
Duct pressure, N cm22 19.0 200 
Duct temperature, K 571 100 
Compressor inlet pressure, N cm22 20.5 200 
Compressor inlet temperature, K 577 100 
Combustor pressure, N cm22 97.5 200 
Combustor inlet temperature, K 965 100 
Low-pressure turbine inlet pressure, N cm22 26.8 100 
Low-pressure turbine inlet temperature, K 1130 70 
Augmentor inlet pressure, N cm22 17.4 100 
Augmentor inlet temperature, K 790 70 

deviations), but the Kalman filter gives us the bonus of also 
estimating dxk (the excursions of the original turbofan state 
variables). 
It is known that health parameters do not improve over 

time. That is, dp(1), dp(2), dp(3), dp(4), dp(6) and dp(8) 
are always less than or equal to zero and always decrease 
with time. Similarly, dp(5) and dp(7) are always greater 
than or equal to zero and always increase with time. In 
addition, it is known that the health parameters vary 
slowly with time. As an example, since d̃p(1) is the 
constrained estimate of dp(1), we can enforce the following 
constraints on d̃p(1): 

dpð1Þ 

~

dpkþ1ð1Þ 

dpkþ1 dpk 

~

~

~

0 

~dpk ð1Þ þ g

ð1Þ 2

þ 2where g1 and g1 are non-negative factors chosen by the offers 

Tables 1–4. The SNR ratios were determined on the basis 
of NASA experience and previously published data [23] 
and are shown in Table 4. We used a one-sigma process 
noise in the Kalman filter equal to 1% of the nominal 
state values to allow the filter to be responsive to changes 
in the state variables. We set the one-sigma process noise 
for each component of the health parameter portion of the 
state derivative equation to 0.01% of the nominal parameter 
value. This was obtained by tuning. It was small enough to 
give reasonably smooth estimates, and large enough to 
allow the filter to track slowly time-varying parameters. 
For the filter with hard constraints, we chose the g variables 
in (41) such that the maximum allowable rate of change in 
d̃p was a linear 9% per 500 flights in the direction of 
expected change, and 3% per 500 flights in the opposite 
direction. The true health parameter values never change 
in a direction opposite to the expected change. However, 
we allow the state estimate to change in the opposite direc
tion to allow the Kalman filter to compensate for the fact 
that the state estimate might be either too large or too 
small. We set the weighting matrix W in (24) and (32) 
equal to S21 in accordance with theorem 3. We found by 
experimenting that setting the weighting matrix Vk in (32) 
equal to 120W resulted in a good performance for the 
Kalman filter with soft constraints. 

The test scenario that we considered was the case where 
all eight health parameters degrade at the same time. We 
simulated a degradation over 500 flights of 21% for the 
fan airflow, 22% for the fan efficiency, 23% for the com
pressor airflow, 22% for the compressor efficiency, þ3% 
for the high-pressure turbine airflow, 22% for the high-
pressure turbine enthalpy change, þ2% for the low-pressure 
turbine airflow, and 21% for the low-pressure turbine 
enthalpy change. Figures 2–4 show the performance of 
the Kalman filters in this case. Table 5 shows the perform
ance of the filters averaged over 16 simulations like this 

þ ð41Þ (each simulation being subject to a different random noise 
1 

history). It can be seen that (on average) the filter with 
-ð1Þ - g soft constraints offers a 9% improvement over the uncon1 

strained filter, and that the filter with hard constraints 
a 38% improvement over the unconstrained filter. 

user that allow the state estimate to vary only within pre
2 þscribed limits. Typically we choose g1 . g1 so that the 

state estimate can change more in the negative direction 
than in the positive direction. This is in keeping with our 
a priori knowledge that this particular state variable never 
increases with time. Ideally we would have g1þ ¼ 0 since 
dp(1) never increases. However, since the state-variable 
estimate varies around the true value of the state-variable, 

þwe choose g1 . 0. This allows some time-varying increase 
in the state variable estimate to compensate for a state-
variable estimate that is smaller than the true state-variable 
value. 
These constraints are linear and can therefore easily be 

incorporated into the form required in the constrained filter
ing problem statement (15). Note that this does not take into 
account the possibility of abrupt changes in health par
ameters due to discrete damage events. That possibility 
must be addressed by some other means (e.g. residual 
checking [3]) in conjuction with the methods presented in 
this study. 

Simulation results 

We simulated the discussed methods using Matlab. We 
simulated a steady-state 3 s burst of engine data measured 
at 10 Hz during each flight. Each of these routine services 
was performed at the single operating point shown in 

These numbers should not be interpreted as having any stat
istical significance (due to our limited sample size of 16 
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Fig. 2 Unconstrained Kalman filter estimates of the health 
parameters. The true health parameter changes were various 
values between 23% and þ3%. The true health parameter 
changes are shown as heavy lines, and the filter estimates are 
shown as lighter lines 

6 



de
gr

a d
at

io
n 

es
tim

at
e,

 %
de

gr
a d

at
io

n 
es

tim
at

e,
 %

3 

2 

1 

0 

-1 

-2 

-3 
0 100 200 300 400 500 

flight number 

Fig. 3 Soft-constrained Kalman filter estimates of the health 
parameters. The true health parameter changes were various 
values between 23% and þ3%. The true health parameter 
changes are shown as heavy lines, and the filter estimates are 
shown as lighter lines 
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Fig. 4 Hard-constrained Kalman filter estimates of the health 
parameters. The true health parameter changes were various 
values between 23% and þ3%. The true health parameter 
changes are shown as heavy lines, and the filter estimates are 
shown as lighter lines 
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cases) but they do show the improvement that is possible 
with constrained Kalman filters. 

The improved performance of the constrained filters 
comes at a price, and that price is computational effort. 
The filter with soft constraints requires only slightly 
(14%) more computational effort than the unconstrained 
filter, but the filter with hard constaints requires about 
four-times the computational effort of the unconstrained 
filter. This is because of the additional quadratic program
ming problem that is required for hard constraints. 
However, computational effort is not a critical issue for 
the particular application of turbofan health estimation 
since the filtering is performed on ground-based computers 
after each flight. 

7 Discussion and conclusions 

We have presented two methods to incorporate linear state 
inequality constraints into a Kalman filter. The first method 
incorporated hard constraints into the Kalman filter to main
tain the state-variable estimates within a user-defined envel
ope. The second method incorporated soft constraints into 
the Kalman filter to ensure that the state-variable estimates 
vary slowly with time. The simulation results demonstrate 
the effectiveness of these methods, particularly for turbofan 
engine health estimation. 

If the system whose state variables are being estimated 
has known state-variable constraints, then those constraints 
can be incorporated into the Kalman filter as shown in this 
study. However, in practice, the constraints enforced in the 
filter might be more relaxed than the true constraints. This 
allows the filter to correct state-variable estimates in a direc
tion that the true state variables might never change. This is 
a departure from strict adherence to theory, but in practice 
this improves the performance of the filter. This is an 
implementation issue that is conceptually similar to tuning 
a standard Kalman filter. 

It was seen in theorem 2 that the filter with hard con
straints has a smaller estimation error covariance than the 
unconstrained Kalman filter. At first this seems counter-
intuitive, since the standard Kalman filter is by definition 
the minimum variance filter. However, we have changed 
the problem by introducing state-variable constraints. 
Therefore, the standard Kalman filter is not the minimum-
variance filter for the turbofan engine health estimation 

Table 5: Kalman filter estimation errors. HPT 5 high-pressure turbine, and LPT 5 
low-pressure turbine. The numbers shown are root-mean-square estimation errors 
(percent) averaged over 16 simulations, where each simulation had a linear 
degradation of all eight health parameters 

Health parameter Estimation error, % 
Unconstrained Soft-constrained Hard-constrained 
filter filter filter 

Fan airflow 0.129 0.113 0.089 
Fan efficiency 0.163 0.149 0.105 
Compressor airflow 0.152 0.146 0.103 
Compressor efficiency 0.101 0.087 0.052 
HPT airflow 0.119 0.114 0.076 
HPT enthalpy change 0.092 0.078 0.050 
LPT airflow 0.104 0.091 0.057 
LPT enthalpy change 0.168 0.155 0.111 

Average 0.128 0.116 0.080 



problem, and we can do better with the constrained Kalman 
filter. 
We saw that the filter with hard constraints required a 

much larger computational effort than the standard 
Kalman filter. This is due to the addition of the quadratic 
programming problem that must be solved in the con
strained Kalman filter. The engineer must therefore 
perform a trade of between computational effort and esti
mation accuracy. For real-time applications the improved 
estimation accuracy may not be worth the increase in 
computational effort. 
It was seen in Figs. 2–4 that although the constrained 

filters improve the estimation accuracy, the general trend 
of the state-variable estimates does not change with the 
introduction of state constraints. This is because the con
strained filters are based on the unconstrained Kalman 
filter. The constrained filter estimates therefore have the 
same shape as the unconstrained estimates until the con
straints are violated, at which point the state-variable 
estimates are projected onto the edge of the constraint 
boundary. The constrained filters presented in this study 
are not qualitatively different to the standard Kalman 
filter; they are rather a quantitative improvement on the 
standard Kalman filter. 
Note that the Kalman filter works well only if the 

assumed system model matches reality fairly closely. 
The method presented in this study, by itself, will not 
work well if there are large sensor biases or hard faults 
due to severe component failures. A mission-critical 
implementation of a Kalman filter should always include 
some sort of residual check to verify the validity of 
the Kalman filter results, particularly for the application 
of turbofan engine health estimation considered in this 
study [3, 24]. 
Although we have considered only linear state con

straints, it is not conceptually difficult to extend this work 
to nonlinear constraints. If the state constraints are nonlinear 
they can be linearised as discussed in [2]. 
Finally we emphasise that the constrained filters pre

sented here are not optimal filters; they are rather modifi
cations of the optimal Kalman filter in the presence of 
constraints. An optimal constrained filter would have to 
take into account constrained probability density functions 
[25]. This is similar to saying that the Kalman filter itself 
is not optimal unless the noise is Gaussian. Particle filters 
could be used for truly optimal constrained filtering, 
although they tend to optimality only as the number of par
ticles becomes very large [26] and therefore may not be 
computationally feasible. 
Further work along the lines of this research could focus 

on combining our work with [27] in order to guarantee 
convergence in the presence of nonlinear constraints. Other 
efforts could explore the incorporation of state constraints 
for optimal smoothing, or the use of state constraints in 
H1 filtering [28]. Further work could also focus on integrat
ing the nonlinear simulation logic in DIGTEM [8, 22] with 
the Kalman filter to obtain more complete results. This 
would also allow us to more easily test the Kalman filter 
at various operating points without translating data from 
DIGTEM to Matlab. 
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