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Dynamical evolution of the Kaluza-Klein space-time is studied using higher dimensional Einstein 
equation with dust matter. The difference of the topology between the usual space and the internal space 
gives rise to the segregation of these subspaces. Furthermore the contraction of the internal space causes 
the inflation of the usual space. 

From the standard big-bang model of the uni
verse we obtain excellent results, the explanation 
of 3K background radiation and of primodial 
helium abundance in the universe. This model 
has, however, fundamental problems, so-called 
"Horizon problem" and "Flatness problem". 
-These problems originate from two basic assump
tions: 

[1] The universe has 3-dimensional 
homogeneous isotropic space. 

[II] The matter contained in it is isentropic 
fluid (or dust) which satisfy the energy 
conditions. 

These are very natural at a later epoch in the 
evolution of the universe, but these may not hold 
at an early epoch. 

To solve the Horizon and Flatness problems, 
we must violate assumptions [1] and/ or (II] in an 
early time of the universe. As the model which 
violates condition [I], we may mention the Mix
master model in the sense of Misner.1) On the 
other hand, the vacuum energy behaving like the 
cosmological constant which violates condition 
[II] is introduced in the inflationary cosmological 
model based on the phase transition in Grand 
Unified Theories.2

) 

By the way, many authors are interested in the 
generalized Kaluza-Klein theories in relation to 
the supersymmetric theories.3

) One of the most 
important points of these theories is why the 
internal space is so small (~Planck length) in 
contrast to the usual space. According to these 
theories, the internal space is compactified spon
taneously whose size is determined by the vacuum 
expectation value of the gauge field contained 

therein. Candelas and Weinberg proposed that 
the direct product of Minkowski space-time and 
n-dimensional static sphere whose rudius is order 
of the Planck length is realised on account of the 
quantum effect of the matter fields in curved 
space-time!) On the other hand, many authors 
study the dynamical aspects of the space-time of 
this type to account for the smallness of the inter
nal space in comparison to the usual space.5

) In 
this paper, we consider the (4 + n )-dimensional 
space-time (as it were, the models of this line 
violate condition [I]) and in particular, focus on 
the dynamical evolution of the space determined 
by the classical Einstein equation:) but neither 
the classical expectation value of the gauge field 
used in Ref. 3) nor quantum effects are consider
ed. We imply that the difference of topology 
(this terminology contains not only the difference 
of the spatial curvature but also of the dimen
sions) between the usual space and internal space 
causes the segregation of these spaces. Further
more it is shown that the contraction of the inter
nal space gives rise to the inflation of the usual 
space. The horizon problem can be solved by 
this mechanism. 

For simplicity, we assume some ansatzs: 

Al) Metric is ( 4 + n )-dimensional extended 
Robertson-Walker type characterized by 
two scale factors, i.e., 

*) Recently Sahdev and Okada have studied 
respectively a similar problem. Of the 'two studies, 
Sahdev's is directly related to ours. His approach is 
mainly numerical one, but our concern is the segrega
tion mechanism induced by the difference between the 
usual space and the internal one. Moreover the time 
evolutions in typical n;gions are also clarified. 
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(M, M=O, 1, "', 4+n; i, j=l, 2, 3; 

a,/3=4, 5, "', 4+n) 

(1) 

where giJrap] is the metric of 3[n].dimen· 
sional usual [internal] space. 

A2) the evolution of space·time obeys the 
higher dimensional Einstein equation 

(2) 

A3) Initial conditions of usual space and inter· 
nal space are the same (J(t;)=h(ti), ieti) 
= Ii( ti», but the spatial curvature need not 
equal each other. 

The last assumption comes from the point of view 
that the universe may be so hot that all interac· 
tions ar~ unified in the early time. 

According to the metric form of Eq. (1), Eq. (2) 
and its combinations are reduced to 

3 i2+k+n(n-1) li2+1+3 ili=TO 
12 2 h2 n /ho, 

1+2i2+k+ ili_ Tl + liT 7 ---yz- 1tjtZ-:- 1 n+2 g 
1 , 

ii +( -1) li2+ 1 +3 iii 
h n h 2 /h 

- T4 + 1 4 T 
-- 4 n+2g4 , 

f,h 

or 

(3) 

(4) 

(5) 

k=1.n>3 6 
<iii) 

where (k= -1, 0, + 1) is spatial curvature of the 
usual space, and n is dimension of the internal 
space. Here and below the dot denotes the 
differentiation with respect to t. Being inter
ested in the unification of gravity and non-Abelian 
gauge fields we restrict ourselves to the case of 
that the internal space is Sn. It might be natural 
to consider the pressure of the matter in (4 + n)

dimensional space-time. In the anisotropic 
space-time, however, the presence of pressure 
terms of the energy·momentum tensor makes the 
situation complicated. In this paper we assume 
the dust matter, so the energy-momentum tensor 
reduces to 

TOo=p other components = ° . (6) 

There is no presstire terms and we do not take 
account of the excitation of the off-diagonal 
components of gMN which become the gauge parti
cles in the later time. This assumption and 
energy conservation law lead to 

c 
p= 13h n , (7) 

where C is a constant. If we adopt ansatz A3), 
initial conditions I(t;)=h(ti) and iCti)=Ii(t;) 
determine the value of C. 

From ansatz A3), when the spatial curvature 
terms can be neglected, i.e.; Ilh2, k/!24;.p, it is 

f,h 

k=l,n=2 
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Fig.1. The behaviour of the scale factors j(t) (the us~al space) and h(t) (the internal space) in the 
linear scales. The solid line represents j( t), and the broken line h( t). 
(a) In the case k<O, n>2,i.e.,(flat or open usual space)M3Q95n(n>2), the internal space contracts 
and the usual space inflates. In the case k=l, n>3, i.e., 5 3Q95n(n>3), the situation is similar to 
the above case. In region (j) (4 + n dimensional Friedmann era), j(t) and h( t) are described by 
Eq. (9). In region (ii) (exponential era), j(t) and h(t) are described by Eq. (12), and in region (iii) 
by Eq. (14) (time reversal Kasner era). 
(b) In the case k=l, n=2, i.e., 53Q952, the 3-dimensional space contracts. 
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.valid in a very early time, Eqs. (3) is reduced to 

(n + 3)( n + 2) ( .l...)2= 
2 f p. (8) 

The solution of Eq. (8) with initial conditions A3) 
is as follows: 

(9) 

Expanding f( t ) and h( t ), since p decreases faster 
than the spatial curvature terms, the latter terms 
become important. In this epoch it becomes 
smaller than j because the inequality 

. 1 k 
(n-1)7l2>2 /2 (10) 

is valid if k~O or n>3. Then j becomes greater 
than Ii, so f becomes greater than h. If the 
situation f> h occurs, inequality (10) acts more 
strongly. In this way; the spatial curvature 
terms act as a trigger of the separation of the 
usual space and the internal space. From Eqs. 
(3) and (5), we can see that the situation Ii=o 
( h = hmax) and j > 0 is possible. In this region 
from Eqs. (3) and (4) we obtain 

j +2n+l j2+k n(n-1) 1 (11) 
f n+2 F 2(n+2) h 2max' 

It. allows 

1 
(11/3 )Sinh(/3t)) 

f(t)= exp(/3t) 
(11/3 )cosh(/3t ) 

where 

/3=_1-
hmax 

n(n+l) 
6(n+1) . (13) 

When h( t ) is decreasing, Eq. (4) suggests that f is 
increasing. Because ilil/h acts as positive cos
mological term. If kIF, I1h2 and p can be neg
lected in comparison to other terms appear in Eqs. 
(3)~(5), they have (time reversal) Kasner type 
solution: 

=_I_{I+j3(n+2)}. 
q n+3 n (14) 

Numerical calculation (see Fig. 1) confirms this 
evolution. 

From the numerical integration, we can con
ch,Ide that the internal space (Sn) separate from 
the usual space and less expand by means of the 
difference of the topology (spatial curvature and 
lor dimension) between them if k<O or n>3, and 
the contraction of the internal space induces the 
inflation of the usual space. Furthermore, this 
behaviour is not affected very much of small 
change of the initial conditions (J =1= h, j =1= Ii). 

Since the final stage of this model is described 
by the time reversal Kasner solution, we cannot 
avoid the singularity in the future direction. We 
expect optimistically, however, this situation will 
be saved if we take into account the effects of 
quantized matter in curved space-time6

) or other 
mechanisms. The investigation of these effects 
will be published elsewhere. 
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